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Abstract
In this paper, we study a model of flow in the vitreous humour in the posterior
chamber of the human eye, induced by saccadic eye rotations. We concentrate
on the effect of the shape of the chamber upon the mixing properties of the
induced flows. We make particle image velocimetry measurements of the fluid
velocity in a transparent plastic (Perspex) model of the posterior chamber during
sinusoidal torsional oscillations about a vertical axis. We use a Newtonian
fluid to model the vitreous humour, which is most realistic when either the
vitreous humour is liquefied or has been replaced by purely viscous tamponade
fluids. The model of the posterior chamber is a sphere with an indentation,
representing the effect of the lens. In spite of the purely periodic forcing,
a steady streaming flow is generated, which plays a fundamental role in the
mixing processes in the domain. The streaming flow differs markedly from that
in a perfect sphere, and its topological characteristics change substantially as
the frequency of oscillation varies. We discuss the flow characteristics in detail
and show that, for physiological parameter values, the Péclet number (based
on a suitable measure of the steady streaming velocity) is large, suggesting that
advection strongly dominates over diffusion for mass transport phenomena.
We also compute particle trajectories based on the streaming velocity and use
these to investigate the stirring properties of the flow.

1. Introduction

The vitreous humour occupies the posterior chamber of the eye, which is a roughly spherical
space that accounts for the majority of the volume of the eye. The vitreous humour maintains
the shape of the eye, promotes adherence between the retina and the choroid and acts as a
barrier between the anterior and posterior segments of the eye. Dynamical motion of the
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vitreous humour can be induced by movements of the eyeball, and the shear stress at the retina
induced by this motion may be linked to the incidence of rhegmatogeneous retinal detachment
(David et al 1998).

Another important application of vitreous humour dynamics is their effect on mass
transport in the posterior chamber. Some eye conditions (age-related macular degeneration,
glaucoma, diabetic retinopathy) are treated by intravitreal delivery of drugs through
implants and direct injections into the vitreous cavity (Yasukawa et al 2004) or via the
transscleral pathway (Balachandran and Barocas 2008). This enables significantly higher
drug concentrations to reach the retina than is possible with topical or systemic administration.
Many drugs have a narrow range of concentrations over which they are effective, meaning
that an understanding of mass transport in the vitreous humour is vital. Diffusive transport
in the vitreous humour has been extensively studied using theoretical and numerical models
(see Ethier et al (2004) for a comprehensive bibliography), and a few in vivo studies have also
been performed (e.g. Atluri and Mitra (2003) and Cunha-Vaz (2004)). Advection due to flow
in the vitreous cavity can also play a very important role. There is a slow flow across the
eye from the hyaloid membrane (anterior) to the retina (posterior) driven by a small pressure
gradient (studied in Balachandran and Barocas (2008), Kathawate and Acharya (2008) and
Xu et al (2000)), and also a flow induced by eye rotations. In some people, the fluid in the
posterior chamber is approximately Newtonian, which may occur as a result of liquefaction of
the vitreous humour due to synchysis (degradation of the collagenous framework), or after a
vitrectomy (replacement of the vitreous humour by tamponade fluids), and for these patients
Repetto et al (2009) estimated that vitreous motion due to eye rotations is much more important
in inducing drug transport than diffusive processes.

A detailed understanding of vitreous motion induced by eye rotations is a prerequisite to
a study of the drug transport in the vitreous cavity. David et al (1998) developed an analytical
model to determine the flow of vitreous humour due to eye rotations. They modelled the
vitreous humour as a viscoelastic material with the characteristics measured in Lee et al
(1992). The vitreous chamber was assumed to be a sphere performing small-amplitude
harmonic torsional oscillations about an axis passing through its centre, and the authors
calculated the velocity profiles that are generated.

Repetto et al (2005) used a spherical, Perspex, magnified-scale model of the vitreous
chamber filled with a Newtonian fluid. The model was placed on a motor, which performed
prescribed torsional oscillations that were either sinusoidal or were based on measurements of
real eye movements, and particle image velocimetry (PIV) measurements of fluid motion were
taken during the experiment. A similar experimental technique, together with a theoretical
model, was used in Repetto et al (2008) to show that the flow has a streaming component
in addition to the leading-order oscillatory component, consisting of two counter-rotating
toroidal vortices, one in each hemisphere. In reality, the vitreous chamber is not perfectly
spherical, as, typically, the antero-posterior axis is slightly shorter than the other two axes and,
in the anterior part of the chamber an indentation is present, caused by the lens. Moreover,
symmetry in the nasal/temporal direction might be broken by the presence of the optic disc.
The largest departure from the spherical shape is, however, due to the presence of the lens,
which induces a change of curvature of the inner surface of the vitreous chamber. Stocchino
et al (2007) studied the effect of the non-sphericity experimentally, using a spherical domain
with an indentation representing the lens. The axis of rotation and the line joining the centre
of the indentation and the centre of the circle were at 90◦ to one another. They measured the
characteristics of the flow field, and one of their main findings is that a circulation is generated
every half period behind the indentation, which proceeds to migrate towards the centre of
the domain, where it is annihilated. Balachandran et al (2008) investigated vitreous motion
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Figure 1. Sketch of the geometry under consideration.

induced by eye rotations numerically, and their findings are in qualitative agreement with the
experimental results mentioned in Stocchino et al (2007). Repetto et al (2009) studied this
system analytically and found the streaming flow generated in the non-spherical domain. The
most striking feature of this flow is the presence of two counter-rotating steady circulations
centred on the equatorial plane (which is the plane of symmetry perpendicular to the rotation
axis that contains the centre of the indentation).

In this paper, we adopt an experimental approach and consider sinusoidal torsional
oscillations of a model of the posterior chamber. The flow separates into an oscillatory
component and a steady streaming component. The steady component of the flow is expected
to have a much greater influence on the stirring properties of the flow (Repetto et al 2009) than
the oscillatory component, and so in this paper we consider only the steady component. We
find the Péclet number associated with the flow to be very large, and hence diffusion plays a
minor role in mass transport. We describe the topological characteristics of the flow in detail
and use a variety of techniques to estimate their mixing properties.

2. Material and methods

2.1. Experimental procedure

In this study, we employed, with suitable modifications, the apparatus described in detail
in Repetto et al (2005) and Stocchino et al (2007), and here we briefly recall the main
characteristics. We model the vitreous chamber using a Perspex container with an internal
cavity. The shape of the cavity is obtained from the smoothed intersection of two spheres of
equal radius R0 = 40.8 mm (figure 1). We used this shape in order to isolate and investigate
the effect of the indentation due to the lens alone, which is the most important in modifying
flow field characteristics with respect to the spherical case. This choice also allows for
direct comparison with previous experiments (Stocchino et al 2007) and analytical predictions
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(Repetto et al 2009). We thus neglect smaller geometrical effects, which we assume to have
minor importance. This domain is approximately 3.7 times the typical size of the real posterior
chamber. The geometry is characterized by the nondimensional parameter δ = L/R0, where
L is the maximum depth of the indentation (figure 1). In real eyes, the lens shape changes to
allow for adjustment of the focal distance, which leads to significant differences in vitreous
chamber shape under different conditions. An analysis of a few real eye cross-sections from
MRI scans performed by the authors suggests that δ may range approximately between 0.1
and 0.3. We therefore used three different models characterized by δ = 0.1, 0.2 and 0.3. We
also note that our vitreous chamber is rigid, i.e. we neglect the small deformation of the eye
shape induced by the pulling action of the external muscles attached to the outside of the eye
globe. This effect, however, is expected to be of minor importance for understanding fluid
motion in the vitreous chamber.

The model was mounted on a computer-controlled motorized support that could reproduce
any prescribed time-dependent torsional oscillation about the vertical diameter of the sphere.
The plane orthogonal to the axis of rotation and containing the centres of the spheres is a plane
of symmetry and is hereinafter referred to as ‘the equatorial plane’ (figure 1). We refer to
the region near the indentation as ‘anterior’ and that far from the indentation as ‘posterior’.
In this study, we used periodic sinusoidal oscillations of angular position, characterized by
angular frequency ω and amplitude ε. Real eye rotations may last for a few periods, but
they are at best only approximately sinusoidal. However, we found in our experiments that,
starting from rest, the flow becomes approximately periodic after a few periods, suggesting that
our measurements are relevant even for relatively short intervals of approximately sinusoidal
motion. Moreover, we will show that the flow field exhibits complex features, even in the
relatively simple case of sinusoidal forcing, and understanding the flow field in more complex
cases is not possible until we understand these. We leave the problem of non-sinusoidal
oscillations for future work.

The cavity was filled with aqueous solutions of glycerol at concentrations between
70% and 98%. The dynamic viscosity of the fluid was measured at the beginning of each
experimental run using a falling ball viscometer, and care was taken to maintain a constant
room temperature during each experimental run so that the viscosity remained constant.

A 2D PIV system, synchronized with the torsional oscillations, was used to acquire two-
dimensional velocity fields on a plane. In order to directly measure the steady streaming and
filter out the oscillatory component of the flow, we set the pulse separation for image pairing to
be a multiple of the oscillation period T. Since the equatorial plane is a plane of symmetry, the
flow there has no vertical component, which means we can gain particular insight by inspecting
the flow on this plane. We also measured the two-dimensional projection of the velocity on
other horizontal planes and on the vertical plane passing through the axis of rotation and the
apex of the indentation.

For each experimental run, the velocity field was extracted from the images via a
cross-correlation analysis over approximately 450 oscillation periods. Depending on the
experimental parameters, the final spatial resolution of the vector fields ranged between 1
vector every 1.5 or 2 mm on a square grid. For the analysis, we used an ensemble average
of the velocity maps and computed the corresponding standard deviation of the two velocity
components, which was found to be at most 5% of the average velocity. Note that the standard
deviation averaged over the whole measurement domain was less than 1%. The differences
between repetitions of experiments with identical parameters were found to be of the same
accuracy as the averaged error.

The flow is governed by three dimensionless parameters: the Womersley number
α = √

R0ω/ν (where ν is the kinematic viscosity of the fluid), the torsional oscillation



Mixing processes in the vitreous chamber induced by eye rotations 457

Table 1. Main parameters characterizing the experimental runs.

Experimental
series No of runs ε (rad) α δ Plane of measurement

s1 11 0.069 (3.95◦) 10.7–48.0 0.3 Equatorial plane
s2 34 0.175 (10.03◦) 2.5–50.4 0.3 Equatorial plane
s3 11 0.261 (14.95◦) 14.5–47.7 0.3 Equatorial plane
s4 11 0.348 (19.94◦) 10.7–48.0 0.3 Equatorial plane
s5 10 0.069 (3.95◦) 14.5–47.7 0.2 Equatorial plane
s6 10 0.176 (10.08◦) 14.5–47.7 0.2 Equatorial plane
s7 10 0.260 (14.90◦) 14.5–47.7 0.2 Equatorial plane
s8 9 0.350 (20.05◦) 3.5–47.6 0.2 Equatorial plane
s9 9 0.350 (20.05◦) 3.5–10.6 0.1 Equatorial plane
s10 12 0.174 (9.97◦) 3.5–17.6 0.3 Vertical plane
s11 12 0.174 (9.97◦) 3.5–17.6 0.2 Vertical plane
s12 12 0.174 (9.97◦) 3.5–17.6 0.1 Vertical plane
s13 35 0.174 (9.97◦) 17.6 0.3 Horizontal planes

amplitude ε and the indentation size δ. As discussed above, δ usually lies between 0.1 and 0.3
and its value varies as the lens changes shape during focusing. During typical eye movements,
ε can take any value up to π/4, whereas the value of α may take a wide range of values
spanning many orders of magnitude from order 1 up to around 104 (Dyson et al 2004). The
parameter values and planes of measurement used in our experiments are shown in table 1.
Note that, due to limitations of our experimental apparatus, in the present study we consider
values of α approximately ranging between 2 and 50. These values are representative of a fairly
wide range of medically relevant conditions. In particular, small values of the Womersley
number are encountered either when the vitreous cavity contains a highly viscous fluid (e.g. a
tamponande fluid) or when low frequency eye movements are considered.

In order to ensure similitude between the model and the prototype scale, we need to
preserve the dimensionless parameters α, ε and δ. We define the length magnification
ratio as λL = LP /LM ≈ 0.27 and the kinematic viscosity ratio as λν = νP /νM , which
varies from experiment to experiment (where the subscript P denotes the prototype real
eye and M the model). Imposing αP = αM yields the following scale factor for the
oscillation frequency: λω = ωP /ωM = λν

/
λ2

L. This, in turn, implies that the velocity
scale is given by λU = UP /UM = λν/λL. To estimate the relative strength of advective
and diffusive processes for a drug in the vitreous humour, we calculate the Péclet number,
Pe = UP LP /D = λνUMLM/D, where D is the drug diffusion coefficient in vitreous humour.

2.2. Post-processing of results

Fluid mixing is driven by both molecular diffusion and advection. In this paper, we consider
stirring, which is the component of mixing that arises due to advection only. For steady flows,
the Okubo–Weiss parameter λ0 describes the stirring by relating it to the local flow topology
and it quantifies the local rate of separation of initially close trajectories (Weiss 1981). It is
defined as λ0 = − det(M), where the tensor M is the gradient of the Eulerian velocity. In
regions where λ0 > 0, the flow is locally hyperbolic, strain overcomes rotation and dispersion
is locally efficient. In regions where λ0 < 0, the flow is dominated by rotation, is classified
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as elliptical, and particle trapping can occur due to coherent vortical structures (Provenzale
1999, Hua and Klein 1998).

To analyse the stirring properties in more detail, we used Lagrangian quantities. We
calculated particle trajectories on the equatorial plane, which is a material plane due
to symmetry, determined from integrating the measured velocity fields using a fourth-
order Runge–Kutta algorithm with adaptive step size, which has errors of order (	t)4,
where 	t is the integration time step. For each flow field, we computed approximately
104 trajectories, seeding the flow on a regular grid with a spacing equal to half of the
PIV grid and interpolating the experimental velocity vectors using a bi-cubic algorithm.
Note that, since we consider a steady flow, the particle trajectories coincide with the
streamlines and thus, any intersection of trajectories would be due to numerical errors in
the calculation. Close inspection of the trajectories shows that the computed paths do not
cross.

Once the particle trajectories are known, the absolute dispersion tensor, A(2), can be found
(see for example Provenzale (1999)):

A
(2)
ij (t, t0) = 1

M

M∑
m=1

{[
xm

i (t) − xm
i (t0)

][
xm

j (t) − xm
j (t0)

]}
, (1)

where M is the total number of particles, xm(t) is the position of the mth particle at time t and
xm(t0) is its initial position (at time t0). If the flow is isotropic, A(2) will be a multiple of the
identity matrix. The mean square displacement is given by the trace of A(2), defined as total
absolute dispersion, and here we consider its dimensionless equivalent:

a2 = tr(A(2))

R2
0

. (2)

The absolute diffusivity is given by

K = 1

2

d

dt
[tr(A(2))], (3)

which has the same dimensions as the molecular diffusion coefficient D, and measures the
average rate of spreading of the particles in the domain.

To study how dispersion processes are influenced by flow structures for inhomogeneous
flows, we calculated the nondimensional absolute square displacement of a particle:

b2(x0, t) = ‖x(t) − x0‖2

R2
0

, (4)

where x(t) is particle position at time t that satisfies x(t0) = x0. Note that a2 is the spatial
average of b2.

3. Results

3.1. Description of flows

In this section, we describe the flows we observed and we will discuss the stirring that they
induce in section 4. We observed a steady streaming flow for all parameter values considered,
the qualitative nature of which depends strongly upon the value of α and moderately upon ε

and δ, whereas its intensity depends on all three parameters. As the Womersley number is
progressively increased, a sequence of topological changes occurs in the velocity field, which
are described in the following paragraphs.
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In figure 2, we present velocity fields on the equatorial plane for values of the Womersley
number ranging from 3.8 to 45.7, keeping the oscillation amplitude and indentation size fixed
(ε = 0.17 rad and δ = 0.3). The shading shows the value of the Okubo–Weiss parameter
λ0. This helps to identify circulation structures and to distinguish regions of the flow. Large
positive values of λ0 indicate regions that are locally characterized by high levels of stirring,
and low values of λ0 show low levels of stirring. Figure 2(a) shows the flow with α = 3.8;
the anterior part of the chamber (top) is dominated by the presence of two intense circulation
structures whose centres are marked by solid white circles, which we refer to as A-vortices.
They are reflections of one another in the line of symmetry, and their sense of rotation is such
that the flow is directed from the apex of the indentation towards the centre. Two further weak
vortices are also apparent (labelled as B-vortices, solid black circles in the figure) between the
previous vortices and the wall, which rotate in the opposite sense to the A-vortices. Close to
the indentation, an intense hyperbolic region is clearly visible, the centre of which is marked
by a white square. In the posterior part of the chamber, the flow is predominantly in the radial
direction, from the wall towards the centre, and it is similar to that obtained in a perfect sphere
for the same parameter values (Repetto et al 2008). This steady streaming pattern is in very
good qualitative agreement with the analytical predictions of Repetto et al (2009), which are
based on the assumptions of small amplitude eye rotations and small departure of the domain
from the spherical shape (small ε and δ) and small to moderate values of α. As α increases,
figures 2(b) and (c), the A-vortices decrease in size and move towards the indentation, and
the B-vortices grow in size and intensity. A further increase in α produces two new vortical
structures, C-vortices, the centres of which are marked by open circles, figure 2(d). The
C-vortices have the opposite sense of rotation from the A-vortices, which are squeezed between
the C-vortices and the indentation. The flow between these vortices is now directed from the
centre towards the indentation.

For the largest values of α considered (figures 2(e) and (f)), the C-vortices become
dominant, both in size and intensity. The flow in the posterior region is not significantly
affected by the presence of the lens.

We obtained a qualitatively similar sequence of flows for all values of ε and δ tested.
However, a decrease in either ε or δ increases the value of α for which both the B- and
C-vortices first appear.

The measurements shown in figure 2 are relative to the equatorial plane, which is a plane
of symmetry for the flow under investigation. The vortices described, however, are a slice
of a more complicated three-dimensional flow structure. To get some insight into the three
dimensionality of the flow, experiments have been carried out to measure the 2D velocity
fields on horizontal planes (orthogonal to the axis of rotation) at different heights, from the
equatorial plane towards the north pole of the eye model, and also on the plane containing the
apex of the indentation and the axis of rotation.

Horizontal projections of the velocity vectors measured on different horizontal planes
(series s13) are shown in figure 3. As z increases, the A-vortices become closer to each other,
remaining visible up to approximately z = 0.625R0, figure 3(c), which is approximately the
maximum extent of the indentation. This suggests that the A-vortices take the form of a
three-dimensional toroidal structure around the edge of the indentation, which is corroborated
by measurements on the vertical plane.

Two examples of velocity fields in the vertical plane (from series s4) are shown in
figure 4. In the anterior (right-hand side), the velocity is larger due to the indentation. Two
intense vortical structures, one in each hemisphere, are visible, whose sense of rotation is
consistent with the flows shown in figures 2(a) and (b), which have similar parameter values.
In the posterior of the domain, the indentation has little effect on the flow.
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Figure 2. Flow vectors and contours of λ0 (shaded) for experiments in series s2 (δ = 0.3,
ε = 0.17 rad): (a) α = 3.8; (b) α = 16.9; (c) α = 27.6; (d) α = 33.8; (e) α = 36.5; (f) α = 45.7.
Circles mark the centres of vortices: solid white circles: A-vortices; solid black circles: B-vortices;
open circles: C-vortices. Solid white squares mark the centres of the hyperbolic regions.
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Figure 3. Horizontal velocity components and contours of λ0 (shaded) on horizontal planes (series
s13, ε = 0.174, α = 17.6) at different heights: (a) z/R0 = 0; (b) z/R0 = 0.5; (c) z/R0 = 0.625;
(d) z/R0 = 0.75. The circle drawn with a solid line indicates the size of the equatorial plane,
whereas the circle with a dashed-dot line indicates the actual dimension of the domain at different
values of z/R0.

3.2. Analysis of the flows

We define a synthetic measure of the intensity of the steady streaming and investigate its
dependence on the parameters. One possible measure is the maximum streaming velocity,
which was used in Repetto et al (2008) for flow in a rotating sphere. However, this measure
is delicate, since it is based on a measurement at a single point, so here we use a more robust
quantity: the spatial average of the magnitude of the streaming velocity over the equatorial
plane, denoted by U. Graphs of the dimensionless quantity I = U/ωR0, which we refer to as
the ‘intensity’, are shown in figure 5. It is plotted as a function of α in figure 5(a) for three
values of ε and for δ = 0.2. For ε = 0.34 rad (squares) and small α, I grows rapidly with α until
it reaches a local maximum. As α increases further, the intensity decreases, attaining a local
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Figure 4. Velocity vectors onto the vertical plane containing the axis of rotation and the apex of
the indentation (series s10, δ = 0.3, ε = 0.17 rad). (a) α = 3.5; (b) α = 17.6.
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Figure 5. Plots of the steady streaming intensity (dimensionless averaged velocity): (a) as a
function of α for δ = 0.2 and different values of ε; (b) as a function of ε for δ = 0.2 and different
values of α, the results for the case δ = 0 (Repetto et al 2008) are also reported, note that the plot
has logarithmic axes; (c) as a function of α for ε = 0.35 rad and different values of δ.

minimum approximately in correspondence with the appearance of the C-vortices (α ≈ 20),
figures 2(c) and (d). In the case of a spherical domain, the intensity tends asymptotically to
a constant value, see figure 4(a) of Repetto et al (2008). Here the intensity is dominated by
the presence of the hyperbolic region, which is not present in the spherical case, so there is
no reason necessarily to expect similar behaviour, although we cannot rule out the possibility
of an asymptotic value of I at higher α. For different values of ε, the curve is qualitatively
similar. The local minimum is still present, but, as ε decreases it occurs at larger values of α,
approximately corresponding to the value of α at the formation of the C-vortices.

The relationship between I and ε is plotted in figure 5(b), and this shows a close match
to a power law dependence with exponent 2, which agrees with the predictions of Repetto
et al (2008) for the spherical case and of Repetto et al (2008) for the weakly deformed sphere.
The results of Repetto et al (2008) for δ = 0 are also shown in the figure. In figure 5(c), there
is only a partial overlap in the range of α between the different experimental series; however,
the graphs suggest that, as expected, I increases as δ increases, and that this effect becomes
smaller for very large α.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Particle trajectories corresponding to velocity fields shown in figure 2. Series s2
(δ = 0.3, ε = 0.17 rad): (a) α = 3.8; (b) α = 16.9; (c) α = 27.6; (d) α = 33.8; (e) α = 36.5;
(f) α = 45.7.

4. Stirring processes

In figure 6, we report the particle trajectories corresponding to the Eulerian velocity fields
shown in figure 2. The colour indicates the integration time (blue is the start and red the
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Figure 7. Nondimensional absolute dispersion a2 against nondimensional time τ for ε = 0.35 rad:
(a) δ = 0.1 (series s9); (b) δ = 0.2 (series s8); (c) δ = 0.3 (series s4). Each line corresponds to a
different value of α. Note that all plots have log–log scales.

end of the trajectory). The elliptic and hyperbolic regions are clearly visible, and these
undergo topological changes agreeing with those described in section 3. As particles approach
hyperbolic points, they are rapidly swept away. On the other hand, near elliptical points the
trajectories are confined to spiral paths around them and the velocity is low.

We also used the particle trajectories to calculate the nondimensional total absolute
dispersion a2 and the absolute diffusivity K. For short times, a2 is expected to depend strongly
on the topological characteristics of the flow, whereas for sufficiently large times the average
particle path has a length comparable to the size of the domain, and for a perfectly mixing flow
a2 will tend to the dimensionless mean square distance between two points placed at random
in a unit circle, which is given by

2

π

∫ 1

0

∫ 1

0

∫ 2π

0

√
(r1 cos(θ) − r2)

2 + r2
1 sin(θ)2 r1r2 dθ dr1 dr2 ≈ 0.905. (5)

Figure 7 shows the evolution in dimensionless time (τ = t/T ) of the nondimensional
absolute dispersion for various values of α and δ. In each case, when τ is of order at most 102,
a2 and τ obey an approximate power law relationship with exponent between 2 and 3, which
is similar to the results of Rossi et al (2006), who also considered, albeit in a different context,
multi-scale laminar flows. They also obtained flows with elliptic and hyperbolic points and
found that a2 grows faster than t2. In fact, the exponent of the power law mainly depends on
the existence and persistency of the stagnation points and it has a weak dependence on α, ε

and δ.
For long times, a2 tends approximately to a constant value, which is expected in a closed

domain, and the limiting value ranges between 0.7 and 1.1. Both the value itself and the
time required to attain it are strongly dependent on the amplitude of the oscillation ε and the
indentation size δ. We used the results to compute the absolute diffusivity coefficient K, which
measures the rate of spreading of a cloud of particles, and found values ranging on the order
of 10−4 to 10−1 m2 s−1. For Brownian dispersion in an unbounded domain, K has a constant
value (Rossi et al 2006) whereas in our case K rises to a maximum before falling back to zero
for large τ , when a2 attains an almost constant value.

When the flow is inhomogeneous, as in the present case, it is of some interest to study
how the dispersion processes are locally influenced by the flow structures. This cannot be
captured by a2, which is an average over the domain, so instead we plot the spatial distribution
of the square displacement, b2, which can reveal regions of particle trapping (low values) and
efficient stirring (high values). In figure 8, we show plots of b2 for the same flows as shown
in figures 2(a) and (f), each at three different times. These show that the distance travelled
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Figure 8. Contour plots of the nondimensional absolute square particle displacement b2, defined
by equation (4), for two experiments of series s2. All plots are for δ = 0.3, ε = 0.17 rad. In (a, b,
c), α = 3.8; in (d, e, f), α = 45.7. (a, d) τ = 50; (b, e) τ = 100; (c, f) τ = 500.

by a particle depends strongly on its initial location. Dark regions indicate efficient stirring,
which coincide with neighbourhoods of the hyperbolic points, while lighter colours indicate
low stirring, which correspond to elliptic points (vortical structures). The closed circulations
act as mass trapping structures, particularly the A-vortices for low α and the C-vortices for
high α.

5. Conclusions

An improved understanding of mixing processes in the vitreous chamber due to fluid motion
is important to ensure effective delivery of drugs intended for the retina. In this work, we used
a model of the vitreous chamber of the eye to study the fluid motion and mixing induced by
idealized sinusoidal torsional oscillations of the eyeball. We concentrated on the effect of the
shape of the posterior chamber, specifically the indentation in the anterior part due to the lens.
We considered a Newtonian fluid, which is relevant when either the vitreous is liquefied or it
has been replaced, after vitrectomy, by a purely viscous tamponade fluid. Moreover, this work
is a necessary step towards investigating fluids with more complex rheological behaviour. The
flow is governed by three dimensionless parameters: the Womersley number α, the oscillation
amplitude ε and the indentation size δ. Using physiologically relevant parameter values, we
calculated the steady streaming component of the flow, which, as pointed out by Repetto et al
(2009), has a much larger effect on mixing in the domain than the oscillatory component.

In this paper, we considered stirring processes, neglecting the effect of diffusion. In order
to ascertain the relative importance of advection and diffusion we now calculate an a posteriori
estimate of the Péclet number of the flow. In section 2, we showed that the Péclet number of the
flow in the vitreous chamber (prototype scale) is Pe = λνUMLM/D, where λν is the ratio of
kinematic viscosities between prototype and model, UM and LM are typical velocity and length
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scales, respectively, and D is the diffusion coefficient. We take UM to be the spatial average
of the magnitude of our streaming velocity over the equatorial plane, LM = R0 = 0.0408
m (radius of the sphere) and D ≈ 6 × 10−10 m2 s−1 (diffusion coefficient of fluorescein, a
commonly used diagnostic tool, in the vitreous humour (Kaiser and Maurice 1964)). The
calculated Péclet numbers range from approximately 103 (at low values of α, ε and δ) up to a
maximum of approximately 106, which is consistent with the theoretical predictions obtained
in Repetto et al (2009), valid for small ε and δ and moderate values of α. Hence the estimated
Péclet number is very large in all cases, suggesting that advective processes play a crucial role
in inducing mass transport in the vitreous chamber and largely overcome diffusive processes
in the case of liquefied vitreous humour.

We may also use the measurement of the absolute diffusivity coefficient to evaluate the
time required for a particle to travel a distance of one radius; this is given by R2

0

/
K ≈ 1–

100 s depending on the value of K. On comparing this with the diffusive timescale, R2
0

/
D ≈

2.7 days, it can immediately be seen that advection is several orders of magnitude more
efficient in inducing mass transport. Note that, according to Atluri and Mitra (2003), the
residence time of chemicals injected into the vitreous humour in rabbit eyes is of order of
hours, i.e. much larger than the time required for a fluid particle to travel a distance of one
radius, at least in the case considered here of purely viscous fluid.

Our experiments reveal complex structures in the flow. On the equatorial plane, elliptic
and hyperbolic regions organize the mass transport. Particle trapping occurs in elliptic regions,
corresponding to low stirring, while conversely hyperbolic regions are responsible for high
stirring. Moreover, for larger Womersley number, a complex sequence of topological changes
takes place in the flow, giving rise to particle paths that lead directly from the posterior to
the anterior of the chamber. At low frequencies, particles from both the anterior and the
posterior tend to drift towards the centre of the eye. Hence we predict significantly faster mass
transport from the posterior to the anterior of the eye for high-frequency oscillations than for
low-frequency oscillations.

The intensity of the streaming flow increases as the oscillation frequency increases, but
has a local minimum due to a topological change in the flow (creation of new vortices). Its
dependence on ε closely follows a power law and it also increases with increasing δ. For small
times, the absolute dispersion increases faster than the square of the time, which is due to the
presence of hyperbolic stagnation points in the flow.
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