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The formation and evolution of double-diffusive interleaving is experimentally
investigated with the purpose of analysing the influence of the convective flow
structures, at different scales, on the mean flow. Recently, Krishnamurti (J. Fluid
Mech., vol. 558, 2006, p. 113) has shown that, in the case of a continuous stratification
experiment, the Reynolds stresses, due to convective flow patches, are able to vertically
transport horizontal momentum, maintaining the mean flow. This mechanism is
similar to the turbulent wind observed in thermal convection. In this study, the
interleaving is produced using the classical set-up of Ruddick & Turner (Deep-Sea
Res., vol. 558, 1979, p. 903). The dam-break experiments better resemble the case
of oceanic fronts, where interleaving is commonly observed. The flow structures are
investigated by measuring the two-dimensional flow fields using the particle image
velocimetry technique. The resulting two-dimensional vector fields reveal complex
fine-scale flow structures, and convective patterns are observed inside the finger-
favourable layers. Vortical structures at scales comparable with the layer thickness
are embedded in these regions and seem to be responsible for sustaining the horizontal
mean flow against the viscous dissipations, especially in a region close to the layer
nose. A spectral analysis of the flow fields suggest that the energy balance is governed
by an inverse energy cascade, which implies a transfer of energy from the smaller
scales to the larger scales (mean flow).
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1. Introduction
The occurrence of double-diffusive interleaving in oceanic fronts and confluence

zones is well documented in the oceanographic literature (see Ruddick & Richards
2003, for a review). The role of the thermohaline intrusions in the transport of heat
and salt is often invoked to explain the formation of thermal inversion measured
via CTD (conductivity, temperature, depth) recordings. Intrusions are most likely
to occur near fronts, where the spatial variability of the physical characteristics
(temperature and salinity) of the water masses are more pronounced. Examples are
found at the Mediterranean outflow, tropical and subtropical Pacific regions, and
at the Antarctic, where intrusions are thought to be an important aspect in the
formation of the Antarctic bottom water. Furthermore, horizontal intrusions and the
consequent enhanced lateral fluxes cause the decay of large-scale vortical structures
like Meddies and rings, such as the Gulf Stream ring (see Ruddick & Richards 2003,
and references therein).
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Owing to its relevance, double-diffusive interleaving has been extensively studied
both theoretically (see Stern 1967; Toole & Georgi 1981; Holyer 1983; Niino 1986;
Ruddick & Kerr 2003, among others) and experimentally (e.g. Ruddick & Turner
1979; Holyer et al. 1987; Ruddick, Phillips & Turner 1999; Krishnamurti 2006;
Griffiths & Bidokhti 2008).

Holyer (1983) has theoretically proved that a fluid with a vertical and horizontal
distribution of salt and temperature, with horizontal gradients that compensate each
other to ensure that the isophycnals are essentially horizontal, is linearly unstable for
any values of the horizontal gradients of the two components. The resulting motion
takes the form of a sequence of layers that alternately move in opposite directions.
If we consider a single layer, it has been observed that one interface is unstable in a
finger sense, whereas the opposite one is unstable in a diffusive sense (see Ruddick &
Turner 1979; Holyer et al. 1987, among others). In particular, below the layer that
carries fluid with an excess of salt, we expect salt fingers to occur.

Ruddick (2003) has published an exhaustive and stimulating review of the
numerous experimental work regarding thermohaline intrusions. He discussed
several experimental configurations used to produce horizontal intrusions, trying to
summarize the main outcomes of more than three decades of research. Recurrent
questions can be found in most of the cited works regarding, in particular, the
driving mechanism of the horizontal intrusions, the typical vertical length scale of
the layers and the nose velocity. In most of these studies, the vertical layer spacing
was found to be proportional to the ratio of the property anomaly with the density
gradient. Agreement is also found in the dependence of the nose velocity on the
buoyancy frequency and the layer thickness. As a possible driving mechanism of
the intrusions, Ruddick & Turner (1979) proposed a dynamical argument based on
the energy balance of a sequence of layers, where the salt-finger-buoyancy fluxes
dominate causing the intrusions to slope and, consequently, release potential energy.

Krishnamurti (2006) has presented measurements of a continuous interleaving
set of experiments, discussing the role of the convective regions and the related
Reynolds stresses on the sustainment of the horizontal mean flow. The set-up used is
consistent with the basic state of the linear stability analysis of Holyer (1983). The
main conclusion of this work was that the Reynolds stresses generated by convective
flow are able to vertically transport horizontal momentum against the viscous fluxes,
therefore maintaining the mean flow. Moreover, the observations suggested that when
the interleaving reaches finite amplitude, the slope of the layers is negligible.

In this study, we extend the analysis of Krishnamurti (2006) to the case of a sharp
discontinuity of the components. The present experiments are, therefore, designed
with a set-up similar to the classical dam-break double-diffusive front of Ruddick
& Turner (1979). The dam-break configuration is closer to the conditions found at
the oceanic fronts than the continuous stratification experiments of Krishnamurti
(2006). Indeed, the Krishnamurti suggested the need to investigate the case of a sharp
discontinuity of the fluid properties (temperature and salt). Particle image velocimetry
(PIV) is employed to measure two-dimensional flow fields. From the two-dimensional
velocity fields, we can ultimately investigate the relative importance of the Reynolds
stresses compared to the viscous momentum flux, on the transport of horizontal
momentum. The Reynolds stresses are due to highly convective flows characterized
by vortical structures at different scales. These structures are identified using a vortex
identification technique based on the evaluation of the swirling strength (Chong, Perry
& Cantwell 1990; Zhou et al. 1999; Adrian, Christensen & Liu 2000). Moreover, the
budget of the mean-flow kinetic energy is also discussed. We will show that close
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Experiment run ρ/ρ0 �S (g l−1) �T (g l−1) Total depth d (cm)

Experiment 1 1.0526 ± 0.0002 148 78.8 23 ± 0.2
Experiment 2 1.0526 ± 0.0002 148 78.8 23 ± 0.2
Experiment 3 1.1764 ± 0.0040 566 300 23 ± 0.2
Experiment 4 1.0195 ± 0.0001 56.5 30 23 ± 0.2
Experiment 5 1.1278 ± 0.0002 375 200 23 ± 0.2

Table 1. Main parameters of the experiments.
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Figure 1. (a) Front view of half of the tank where the PIV is located together with the laser
and optics. (b) Side view of the apparatus.

to the nose of the interleaving, the Reynolds stresses at small scales are able to
sustain the mean flow. This conclusion is further supported by a spectral analysis
in terms of power spectral density (PSD) as a function of the wavenumber, which
suggests that kinetic energy is transferred from the small scales to the larger scales
(mean flow). These kinds of processes are well documented in the literature and
are often called ‘negative eddy viscosity’ processes (see Tsinober 2001, § 8.6): they
are observed wherever the Reynolds stresses have an opposite sign with respect to
the mean shear. Other examples can be found in different experimental contexts, for
instance the turbulent wind in Rayleigh–Bénard convection (Krishnamurti & Howard
1981), small-scale flows driven by electromagnetic forces (Paret & Tabeling 1998), and
turbulent-channel flows with drag-reducing polymers (Wei & Willmarth 1992).

2. Experimental set-up and data analysis
The experimental set-up is inspired by the approach proposed by Ruddick & Turner

(1979). For experimental purposes, it is possible to use a system of sugar and salt
as a proxy of the natural system in which double-diffusive convection is triggered by
stratification due to salt and temperature, since the ratio between the coefficients of
molecular diffusivity is 1/3. Using this analogue, sugar plays the role of salt, and salt
plays the role of the temperature. The working solutions are made of distilled water
and sodium chloride (T ) or sucrose (S). The main parameters of the experimental
runs are shown in table 1.

The experiments are performed in a Perspex rectangular tank with dimensions
180 cm × 30 cm × 10 cm, placed on a rigid support, as shown in figure 1. The tank is
designed with a removable partition in the central section, which initially separates
the solutions. The method used to prepare the density gradients is the ‘two-bucket
system’, which is essentially a mechanical-mixing procedure, commonly used in the
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double-diffusion experiments (Ruddick & Turner 1979; Holyer et al. 1987). Great
care is taken to minimize the density anomaly effects across the vertical interface by
producing density profiles on the two side of the tank as close as possible. Moreover,
to avoid pressure gradient effects, the depth has to be equal on both sides of the
tank. The gate is completely removed at a very slow rate, in order to minimize any
disturbances. Measurements of two-dimensional velocity fields on a vertical plane are
obtained with a PIV system. We adopt a continuous green light He–Ne laser with a
power of 25 mW to illuminate a portion of the tank and a high resolution still digital
camera. The dimensions of the field of view of PIV images are 6.75 cm × 9 cm. The
position of the measuring window is fixed and is displayed in figure 1; its position
is approximately 30 cm from the removable gate. The digital image evaluation is
performed by means of cross-correlation analysis. Based on our set-up, the measured
velocity-vector fields have a resolution of three vectors per millimetre. This leads to a
reasonable spatial resolution to describe flow structures with spatial scales of the order
of a few millimetres. From the two-dimensional velocity fields, we compute horizontal
averaged velocity profiles, Reynolds stresses, momentum fluxes and production and
dissipation terms of the mean-flow kinetic energy budget. Moreover, we employ
a vortex identification method based on the swirling strength (λci) to reveal the
presence of coherent vortical-flow structures (see Chong et al. 1990; Zhou et al. 1999;
Adrian et al. 2000, among others). To evaluate the swirling strength in the case of
two-dimensional flow fields, u = (u(x, z, t), v(x, z, t)), it is necessary to compute the
eigenvalues of the local velocity gradient tensor, which takes the form

∇u =

(
∂u/∂x ∂u/∂z

∂v/∂x ∂v/∂z

)
, (2.1)

where u(x, z, t) is the horizontal velocity and v(x, z, t) is the vertical velocity. The
characteristic equation is of second order and, therefore, the resulting two eigenvalues
can be both real or complex conjugates (λr ± iλci). The swirling strength is defined
as the positive imaginary part of the complex eigenvalue (Adrian et al. 2000); it
measures the pure rotational velocity (swirl) of the fluid particles around the λr -axis
in eigen-frame coordinates (Zhou et al. 1999). A vortex is then identified as a region
of the flow with high values of λci . Note that the swirling strength is invariant with
respect to any rigid translation; therefore, a vortex moving with the mean flow is
revealed without any preprocessing of the velocity fields. The swirling strength is
more efficient than the vorticity to identify vortices since it is not sensitive to the
mean shear.

Finally, together with velocity measurements, we have also followed the evolution
of the interleaving recording pictures using the colour polarigraph technique proposed
by Ruddick (1991), which is based on the ability of sugar to modify the polarization
of the light depending on its concentration. The resulting images, converted to grey
scale, will show darker regions where the fluid is rich in sugar, and lighter regions
will correspond to layers rich in salt.

3. Experimental observations
A soon as the barrier is removed, an intruding wave-like motion is generated by

the residual density mismatch across the vertical interface between the two solutions.
During the very early stage of the experiment, these density currents are predominant.
However, these motions rapidly die away, i.e. in less than a minute, and then the
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Figure 2. Two-dimensional velocity-vector fields at four different times of experiment 4.
Time goes from (a) to (d ).

diffusive processes take place, leading to the formation of the interleaving. The
double-diffusive intrusions evolve with velocity around a few centimetres per minute.
Typical sequences of velocity-vector fields at four different times during experiment
4 are shown in figure 2. The velocity vectors are plotted together with contours
of the swirling strength λci which help in the identification of the core of vortical
structures. By inspecting these figures, regions with strong convective motions, i.e.
vortical structures at different scales and with non-steady features, appear clearly.
These convective regions are typically more intense near the bottom of the tank,
where the salinity contrast β�S is higher. The scales of these vortices range from
quite small scales up to scales comparable with the layer thickness. Similar flow
structures are described in the recent work of Krishnamurti (2006), where they were
visually recognized in the shadowgraphs and in the PIV fields. Moreover, a similarity
can also be found in the visualizations of Tsinober, Yahalom & Shlien (1983, figure 8)
and of Tanny & Tsinober (1988, figure 14).
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Figure 3. Two-dimensional flow fields showing the presence of salt fingers at two different
times during experiment 5. The scales of the plot are stretched for clarity.

Since the measuring window is fixed, after a while the nose passes over the field of
view of the digital camera and, then, the core of the layers can be studied. Away from
the interleaving layers’ nose, the flow becomes smoother and the convective activity
is less and less vigorous (see figure 2d ).

If we now look at the small-scale flows, we expect those layers with an excess
of salt to be prone to generating fingers and, indeed, in the present experiments,
salt fingers are observed during the evolution of the interleaving. Fingers are usually
tilted with respect to the vertical and they become unstable, leading to the generation
of intense convective regions. Also in the case discussed in this paper, the mean
flow has the opposite directions above and below the convective flows, as revealed
in the observation of Krishnamurti (2006). An example of a finger zone observed
during experiment 5 is given in figure 3, where contours of the vertical velocity are
superimposed on the vector fields to help the identification of the single finger cell.
We estimate that the thickness of the interface is usually of the order of 1–3 cm,
decreasing appreciably with time. From the behaviour of the vertical velocity, we
evaluate the typical horizontal length scale of the fingers, obtaining values of a few
millimetres. On the opposite side of the finger-favourable layers, the gradients of salt
and sugar are present to such an extent that they excite a diffusive-like instability,
which can produce either an oscillatory pattern or rolling structures. The latter is
known as a travelling wave instability, which may grow in the same condition of the
diffusive regime, as described in the linear stability analysis by Baines & Gill (1969).
In fact, Baines & Gill (1969) have shown that an instability leading to pure oscillatory
modes can arise in the first quadrant of their stability diagram in the thermal and
salinity Rayleigh numbers plane. If one allows for the existence of propagating
disturbances for the same Rayleigh numbers of the pure oscillatory mode, travelling
waves are observed in the form of small vortices, all rotating in the same direction,
which are convected by the mean flow. Theory and observations can be found in
Predtenchensky et al. (1994), where patterns of travelling waves are recorded by the
Schlieren technique. Predtenchensky et al. have performed a finite amplitude analysis
based on a Ginzburg–Landau equation. Mapping the swirling strength, together with
a simple Galilean decomposition of the flow, allows us to locate these rolling structures
and its convective velocity. An example of travelling waves is shown in figure 4. The
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Figure 4. Travelling wave instability revealed by a Galilean velocity decomposition applied
to a vector field of an interface between two layers. A contour of the swirling strength is
plotted to emphasize the location of the rolling structure.

convective velocity of the small-scale vortices found in the vector fields is consistent,
in terms of magnitude and direction, with the mean horizontal velocity of the layer
with an excess of T .

Regarding the slope of the interleaving layers, the observations suggest that it tends
to decrease as the layers extend laterally, leading to almost horizontal intrusions. These
observations are in qualitatively agreement with those of Krishnamurti (2006).

Finally, once the intrusive noses reach the end walls of the experimental tank,
typically in about 30 min, the supply of the components S and T is inhibited, after
which the layers change from growing/extending to running down, causing a decrease
in intensity and scales. In the present contribution the run down is not investigated.

4. Discussion of the results
A quantity that is interesting for the description of the interleaving is the mean

horizontal velocity profile along the vertical direction. We introduce a decomposition
of the instantaneous horizontal velocity which reads u(x, z, t) = U (z, t) + u′(x, z, t),
where u(x, z, t) is the instantaneous horizontal velocity derived from PIV analysis,
U (z, t) is the horizontal velocity averaged along the x -axis and u′(x, z, t) is the
fluctuation of the horizontal velocity with respect to the mean. Similarly, we can
define a mean vertical velocity V (z, t) and its fluctuating part v′(x, z, t). Examples of
the computed averaged profiles of horizontal velocity are shown in figure 5 together
with the corresponding distribution of the viscous stresses and the mean horizontal
Reynolds stress u′v′, at two different times during experiment 2: in a neighbourhood
of the layer noses (see figure 5a); in the core region of the intrusions (see figure 5b).
Note that the x -axis range of the panel showing the Reynolds stresses at the layer
nose has been extended in order to include the higher values compared with the
viscous stresses.

Averaging over the horizontal direction leaves us with a sequence of layers
alternately pointing in opposite directions. However, figure 5 can be misleading
when we consider the profiles of the mean velocity in regions away from the nose. In
fact, to understand where a single layer extends, we need to place beside the previous
figure a visualization taken of the PIV measurements at the same time (see figure 6).
We remind the reader that the visualizations have been performed using the property
of sugar solutions to polarize light rays; the resulting images show darker regions
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Figure 5. Vertical profiles of horizontal averaged velocity U , viscous stresses and Reynolds
stresses for experiment 2 at two different times: (a) close to the nose of the layers, (b) inside
the core of the layers. Note that to make the values of the viscosity of the Reynolds stresses
readable, different ranges in the x -axis have been adopted for the plots.

wherever the fluid carries an excess of sugar, whereas lighter regions correspond to
layers richer in salt. The mean horizontal velocity in the cores of the layers has been
found to exceed the nose velocity; therefore, an intense recirculation is due to the
horizontal divergence. Ruddick et al. (1999) have related this recirculation to the
requirement that the mean salt profile spread with the noses owing to horizontal
advection. By inspecting the grey-scale picture, it can be noted that the slope of the
intrusion is substantially zero and, therefore, the layers grow horizontally.

The profiles reported in figure 5 show that, close to the nose of the interleaving, the
Reynolds stresses largely exceed the viscous stresses, whereas inside the core of the
layers the viscous stresses are comparable or even larger than the turbulent stresses.
Moreover, in some regions along the vertical axis, the sign of the Reynolds stresses
is opposite to the sign of the mean shear. This condition is of some interest and
suggests that the Reynolds stresses may play an important role in the maintenance of
the mean flow. In fact, the Reynolds stresses can couple the small-scale fluctuations
with the mean flow. These kinds of phenomena are often called ‘negative eddy
viscosity’ processes (Tsinober 2001), and observations are reported in different fields
(Krishnamurti & Howard 1981; Wei & Willmarth 1992; Paret & Tabeling 1998).

We then start to discuss an analysis similar to Krishnamurti (2006), who studied
the diffusive interleaving in the case of continuous horizontal gradients of T and S.
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Figure 6. Example of a coloured visualization of the core region of the interleaving together
with the corresponding velocity profiles (experiment 5); darker regions correspond to layers of
fluid richer in sugar. The dot-dashed lines indicate the interfaces between layers.

In particular, assuming an unbounded longitudinal domain, the steady momentum
equation along the horizontal axis can be written as (see Krishnamurti & Howard
1981; Tsinober 2001; Krishnamurti 2006, among others):

∂u′v′

∂z
= ν

∂2U

∂z2
. (4.1)

Integrating once leads to:

u′v′ − ν
∂U

∂z
= const. (4.2)

where the right-hand side of the equation is independent of z.
The averaged longitudinal pressure gradient is usually not retained in the equation

by Krishnamurti & Howard (1981), Tsinober (2001) and Krishnamurti (2006). In
this study, we have tried to compute the intensity of the pressure term starting from
the time-dependent two-dimensional velocity fields following the method proposed
by Imaichi & Ohmi (1983). In fact, starting from the unsteady two-dimensional flow
equation, it is possible to compute all the terms and, ultimately, deduce the values of
the pressure gradients. This method has been applied in different experimental set-ups,
where two-dimensional velocity measurements were performed (see Green & Gerrard
1993; Jillians & Maxworthy 1994; Guala & Stocchino 2007, among others). In this
study, the values of the averaged longitudinal pressure gradient has always been found
to be of the order of 10−6–10−7 cm s−2 and, therefore, several orders of magnitude
smaller than the divergence of the stresses, which have values of order 10−3 cm s−2.
For this reason, we have omitted the pressure term from the momentum balance.

By inspecting (4.2), it is clear that wherever, along the vertical direction, the sign
of the Reynolds stresses is opposite to the sign of the viscous momentum flux, they
could transport horizontal momentum vertically to the mean flow. If this is the case,
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production term P is also reported together with the stress ratio R. Note that negative values
of P imply an energy transfer from the small-scale turbulent flow to the mean flow.

the interleaving can be sustained by the stresses generated by the convective motion
inside the intrusions themselves. To test this hypothesis, we evaluate both terms of
(4.2) and, then, we estimate the contribution of the Reynolds stresses to the transport
of horizontal momentum, evaluating their ratio R = u′v′/(ν∂U/∂z). Regarding the
nose region, an example of a velocity profile with the corresponding distribution of
the ratio between the Reynolds stresses and the viscous momentum fluxes R is shown
in figure 7. In the neighbourhood of the nose, the Reynolds stresses exceed the viscous
transport by two orders of magnitude, as a consequence of intense convection. The
stress ratio R assumes high values for layers of considerable depth. In this case,
the vertical transport of horizontal momentum owing to the Reynolds stresses is
extremely efficient in the layers, where R is negative. On the contrary, the intensity
of the Reynolds stresses in the core of the interleaving is much less with respect to
the nose of the layers. However, the turbulent stresses still contribute to sustaining
the mean recirculating flow with the layer. Values of order O(1) for the ratio R are
registered even if convection is much weaker. Negative eddy viscosity will imply an
energy conversion that transfers kinetic energy from the small-scale turbulent flow
to the larger flow scales (mean flow) (Tsinober 2001), and this should correspond to
negative values of the turbulent kinetic energy term, which is the product between
the Reynolds stresses and the mean shear, and reads

P = −u′v′ dU

dz
. (4.3)

The vertical distribution of the production term P is reported in figure 7 on the same
plot of R and assumes negative values wherever R is negative-valued as well.

To explore further the physical processes that underlie the mechanism expressed
by the momentum balance described above, we have performed a spectral analysis of
the velocity fields for each experiment. In particular, we have computed the PSD as
a function of the horizontal and vertical wavenumbers, kx and kz. The PSDs of the
velocity components can reveal the dominant wavenumbers of flow structures and
the energy processes related to the different scales. Typical examples of computed
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Figure 8. Examples of PSDs of the velocity components for different experiments:
(a) experiment 2; (b) experiment 3; (c) experiment 4; (d ) experiment 5. The PSDs of the
longitudinal velocities u are shown with triangles, and the spectral distribution for the vertical
velocity component v with diamonds.

PSDs experiments in a region close to the nose for different experiments are shown in
figure 8. The energy spectra are very consistent among the different experiments and
are characterized by the presence of different peaks in the wavenumbers. The main
peak located for a value of the vertical wavenumber around 0.2–0.3 mm−1, which
corresponds to a vertical length scale of λz = 2π/kz = 20–30 mm, can be associated
with the large-scale mean-flow layers. Minor peaks are visible in a range of kz between
0.4 and 3 mm−1 (λz = 2–15 mm) that can be related to smaller-scale convective
patches in the flow. In figure 8, the power laws proportional to k−5/3

z and k−3
z are also

reported. This scaling is typical of an inverse energy cascade process, as described by
Kraichnan (1976). The main consequence of an inverse energy cascade is a loss of
energy of the small-scale flow at the advantage of the straining field. This mechanism
is usually associated to a forced turbulence, in the sense that energy is provided at
some specific wavenumbers (Kraichnan 1976). The energy supply in the case discussed
in this paper is provided by the buoyancy forcing that can play the role of an external
forcing for the turbulent-convective structures. By inspecting figure 8, it seems that
the change in the power law occurs for wavenumbers of order 0.6–0.8 mm−1. A
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Figure 9. Vertical profiles of horizontal-averaged velocity at two successive times (time goes
from the solid to the dotted line) and the energy balance (P − D) for experiment 2.

physical explanation for this value is not clear at the moment. Unfortunately, the
present experimental apparatus did not allow for density measurements that would
have provided valuable information on the energy source at small scales.

Finally, it is interesting to analyse the kinetic energy budget of the mean flow in
order to see how the energy process described above is reflected in the mean-flow
energy. From the momentum equation, using the same hypothesis assumed to obtain
(4.2), the kinetic energy budget of the mean flow can be expressed in a simplified
form as (Tsinober 2001; Krishnamurti 2006)

∂

∂t

∫
layer

(
U 2

2

)
dz =

∫
layer

(
u′v′ ∂U

∂z

)
dz − ν

∫
layer

(
∂U

∂z

)2

dz, (4.4)

where the integral indicates a volume average over a single layer defined by the velocity
inversions (zero-crossing of the velocity profiles). The first term on the right-hand
side of (4.4) represents the production (P ) of the mean-flow kinetic energy, whereas
the second term represents the viscous dissipation (D). Depending on the sign of
P , the kinetic energy of the mean flow can be increased by the interaction between
the Reynolds stresses and the mean velocity gradient, leading to an acceleration of
the horizontal intrusion. This occurs as long as the sign of the Reynolds stresses
is opposite to the sign of the mean shear, i.e. R < 0. Note that in the presence
of a direct-energy cascade, the production term in the above equation is typically
negative, indicating that the mean flow (large scales) is supplying energy to the smaller
turbulent scales. We compute the difference between the production and the
dissipation term of (4.4). An example is shown in figure 9 for experiment 2, where
averaged velocity profiles at two consecutive times (from solid to dashed line)
are compared with the distribution of the difference P − D. It can be seen that
the intrusions are accelerating accordingly with a net production of kinetic energy
that exceeds the viscous dissipation.

5. Conclusions
Double-diffusive interleaving has been reproduced in the case of a sharp front

separating two stably stratified fluids with different distributions of T and S. The
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intrusions have been followed in their evolution employing PIV techniques, from which
two-dimensional vector fields at different times have been obtained on a vertical plane.
The analysis of the flow maps and the derived quantities have suggested the following
conclusions.

(i) The x-averaged horizontal velocity U can be efficiently sustained against the
viscous dissipation by the counter-gradient transport of horizontal momentum, owing
to the x-averaged Reynolds stresses u′v′.

(ii) The analysis of the PSDs of the velocity components suggests that an inverse
energy cascade is occurring, leading to a transfer of energy from the small-scale
turbulent-convective structures to the large-scale flow. This process is typical of
negative eddy viscosity phenomena.

(iii) Salt fingers are mostly observed as a transient flow structures, leading to the
generation of strong convective flow structures.

(iv) The balance of the mean-flow kinetic energy is consistent with the above
argument; in fact, the production term (product between the Reynolds stresses and
the mean shear) can exceed the viscous dissipation, leading to an increase in the kinetic
energy of the mean flow and, therefore, causing an acceleration in the intrusions.

(v) The slope of the intruding layer is found to be horizontal within the
experimental accuracy.

The main limitation of this study resides in the dimensions of the measuring area,
which has prevented the possibility of following the development of the interleaving
for the entire duration of the experiment. In fact, it would have been interesting
to have an overall measurement of an intrusion along its entire path. Nonetheless,
in spite of the above limitations, we feel that a step further has been made in the
direction of understanding the driving mechanisms of double-diffusive interleaving.
In particular, we hope that this study may contribute to addressing at least a few of
the many challenging questions raised by Ruddick (2003) in his inspiring review.

The author is grateful to the anonymous referees for their valuable suggestions that
inspired the spectral analysis described in this paper.
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