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Abstract The present study deals with the measurements
of the impact wi and rebound wr velocities of steel par-
ticles in different fluids colliding with a rigid wall. The
results are presented in terms of the coefficient of resti-
tution e=wr/wi as a function of the Stokes number (ratio
between the particle inertia and the viscous forces). We
focus the attention on possible differences between
rebounds that occur in Newtonian fluids and in non-
Newtonian, shear thinning fluids. The measurements of
wet coefficients of restitution in Newtonian fluid are in
good agreement with the experimental data found by
Gondret et al. (2002). In the range of Stokes number
investigated, an increase of the coefficient of restitution
with the shear thinning fluid is clearly observed with
respect to the Newtonian data. Particular attention has
been dedicated to techniques of image processing to
perform an optimal estimation of the particle centroid in
highly noisy images.

1 Introduction

Many natural phenomena as well as many applications
in mechanical engineering involve particle–particle or
particle–wall collisions. Understanding of the mechanics
of a single collision is an essential input in modeling
natural or industrial processes such as, among others,
agglomeration, granular flows, sediment transport and,

in general, any multi-phase flow problems where solid
particles are involved.

During recent decades, a considerable effort has been
dedicated to study the dynamics of collisions in terms of
the coefficient of restitution e, defined as the ratio of the
moduli of the rebound (wr) and the impact (wI) velocity.
The coefficient of restitution is commonly adopted to
model both the collision between two particles and the
collision between one particle and a wall and, therefore,
it can be inserted as an input into more complicated
mechanical models. The case of dry collisions, i.e., when
a particle collides with a rigid wall falling in fluids with
negligible dynamic viscosity (e.g., air), has been exten-
sively studied in the past. Starting from the classical
Hertzian theory, which is based on the hypothesis of a
perfectly elastic rebound and eventually predicts a
coefficient of restitution equal to unity, many studies
have been devoted to understand the non-ideal
rebounds, including different sources of energy loss that
cause a decrease of the dry coefficient of restitution.
Along this line, the value of the coefficient of restitu-
tion is found to be influenced by plastic deformation
(Johnson 1985), waves and vibrations (Zener 1941;
Hunter 1957; Sondergaard et al. 1990), and viscoelas-
ticity (Falcon et al. 1998). Sondergaard et al. (1990) have
investigated experimentally the influence of the ratio of
the particle diameter D and the plate thickness b,
showing a decrease of e with increasing D/b. Moreover
the authors studied the dependence of e on the position
of the plate supports and on the impact velocity. The
latter aspect has also been studied in detail by Falcon
et al. (1998) where successive rebounds have been mea-
sured showing a decrease of e with the impact velocity.

When a particle–wall collision occurs inside a viscous
fluid, viscous dissipation has to be taken into account.
The effect of a Newtonian fluid has been extensively
studied both theoretically and experimentally. Davis
et al. (1986) solved the coupled problem of the lubrica-
tion layer together with solid deformation showing that
the particle–wall collision is described by the Stokes
number defined as:
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where D is the diameter of the spherical particle, qP and
qf are the particle and fluid densities respectively, m is
the particle mass, l is the fluid dynamic viscosity, and
Re is the particle Reynolds number. The elasticity
parameter is given by:

e ¼ hlwiD3=2

8z5=20

ð2Þ

where z0 is the distance between the two approaching
surfaces at which the velocity assumes the values wi,
h=(1�m1

2)/p E1+(1�m2
2)/p E2 and m1,m2 and E1,E2 are the

Poisson’s ratio and Young’s modulus of elasticity for the
ball and the wall, respectively. They also found a critical
value of the Stokes number below which no rebound
occurs that weakly depends on the elasticity parameter.
The dependence of the coefficient of restitution on the
Stokes number has been experimentally verified in many
studies (Barnocky and Davis 1988; Lundberg and Shen
1992; Zenit and Hunt 1998, 1999; Gondret et al. 1999,
2002; Joseph et al. 2001; Davis et al. 2002), together with
other aspects of collision dynamics. For example, Joseph
et al. (2001) with a pendulum experiment investigated a
possible role of the particle roughness, while Gondret
et al. (2002) analyzed the entire trajectory of the collid-
ing particle.

All the experiments mentioned regard the influence of
a Newtonian fluid. The main purpose of the present
experiments is to study whether the properties of a shear
thinning fluid may influence the measured coefficient of
restitution. So far, many works are available in the lit-
erature regarding the settling of a solid particle in non-
Newtonian fluids (e.g., Mena et al. 1987; Becker and
McKinley 1994; Navez and Walters 1996; Bot et al.
1998). The latter works are mainly focused on the effect
of the rheological properties of the fluid, e.g., visco-
elasticity, on the dynamics of the particle motion. In the
cited works, shear thinning fluids have been used for the
experiments, which in most cases are described by a
power law model as the Ostwald-de-Waele equation. To
our knowledge, no experiments have been performed to
study the coefficient of restitution with a particle im-
mersed in a shear thinning fluid.

To measure the coefficient of restitution starting from
recorded images, we developed a new digital method to
evaluate the position of the centroid of the falling par-
ticle. The proposed method is specifically designed to
treat very noisy images.

The rest of the paper proceeds as follows. The
experimental set up and the working fluids are described
in the next section. Then, the image analysis method is
discussed in detail. The experimental results are first
presented for the coefficient of restitution obtained with
a Newtonian fluid and then the measurements with the
shear thinning fluid are compared with the Newtonian
case. Some brief conclusions follow.

1.1 Experimental apparatus and rheological properties
of the working fluids

The experiments were carried out in a cubic Perspex
tank with lateral size of 50 cm and a glass bottom 2.5 cm
thick. The Young’s modulus of the bottom wall is
60 GPa and the Poisson’s ratio is 0.23. Different
spherical Nickel-steel particles were released by means of
an electromagnetic device located approximately 15 cm
above the bottom of the tank. The main parameters of
the spherical particles are shown in Table 1. In the
present experiments the influence of the elastic proper-
ties of the material has not been studied. The entire
experimental setup is shown in Fig. 1.

The dimensions of the experimental tank are such to
avoid any influence of the side walls; the distance of the
walls from the impact being much larger than the critical
distance predicted by Sondergaard et al. (1990). More-
over, the diameters of the spherical particles used in the
present work are sufficiently large to consider the surface
forces negligible during the rebound. The release mech-
anism imposed some limitations in the choice of the
materials for the particles, which must be made of fer-
romagnetic material. Therefore, it was impossible to
drop less dense particles (plastic or glass spheres).

Regarding the working fluids, measurements of the
immersed coefficient of restitution with Newtonian fluids
were performed using aqueous solutions of Glycerol.
Solutions were produced starting from a Glycerol 98%
pure and adding different volumes of distilled water
obtaining twenty different mixtures. Dynamic viscosities
of Glycerol solutions were measured using a Haake
falling ball viscometer and ranged from 0.825 mPa s for
clear distilled water, up to 468.04 mPa s for a 98%
aqueous solution of Glycerol at a temperature of about
20 �C.

Table 1 Experimental parameters: particle properties

No. D (mm) q (g/cm3) m (g) E (GPa) m

1 15.584 8.109 16.0698 210 0.30
2 15.278 8.112 15.1469 210 0.30
3 13.994 7.702 11.0520 190 0.27
4 10.977 8.105 5.6128 210 0.30

Fig. 1 Sketch of the experimental apparatus
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The shear thinning fluid used in the present experi-
ments was an aqueous solution of carboxymethyl
cellulose (CMC). CMC has a very wide range of appli-
cations, for example, in detergents and soaps it acts as a
soil-suspended agent, in food products it is used for its
properties of thickener, water binder and emulsion sta-
bilizer. CMC semisynthetic white granules are colorless
and odorless and are classified as a nontoxic water sol-
uble polymer, which is available at various levels of
viscosity. It is the sodium salt of CMC (CH2COONa)
that promotes water solubility, which is not affected by
the temperature of the water itself. The resulting solu-
tions of CMC are transparent to light. However,
increasing the concentration of the transparency de-
creases rapidly, worsening the optical characteristics of
the solution in terms of absorption and diffusion of light.

One of the most important properties of CMC is the
viscosity building character. Each polymer chain of di-
luted solution of CMC is hydrated and extended and
exhibits a stable viscosity. Regarding the rheological
behavior of CMC solutions, they can be both pseudo-
plastic and thixotropic depending on the type and the
time scale of the process under investigation. However,
almost all types of CMC are strongly pseudoplastic. The
latter property is the main reason for having chosen
CMC solutions as a shear thinning fluid for the present
experiments, together with sufficiently good optical
properties. The rheological properties of CMC have
been widely studied in the last decade for both low and
high concentrations (Young and Shoemaker 2001;
Kokini and Surmay 1994; Ghanam and Esmail 1997;
Escudier and Presti 1999; Barbesta et al. 2001; Edali
et al. 2001). The rheological response to steady-state
shear flow tests for the CMC can be modeled by the
power law Ostwald-de-Waele equation written as
(Ghanam and Esmail 1997; Edali et al. 2001):

s ¼ kcn; ð3Þ

where s is the shear stress (Pa), k is the consistency index
(Pa sn), c is the shear rate and the exponent n is the flow
behavior index, which assumes values less than unity.

Table 2 shows the values of both k and n for the
solutions used during the present experiments. The data
reported in Table 2 have been obtained from rheological
tests performed using the Haake-Rheostress RS100

system. The above system features two test modes,
namely the controlled rate mode (CR) and an oscillating
test mode (OSC). The parameters of the Ostwald-
de-Waele equation were obtained assigning a shear rate
in the CR mode. The RS100 allows for the measure-
ments of very low values of strain or shear rate due to its
high encoder resolution. The present rheological tests
agree fairly well with previous experiments (Ghanam
and Esmail 1997; Edali et al. 2001). Test values of the
apparent viscosity g, defined as the ratio between the
shear stress and the shear rate s/c, were also obtained. In
Fig. 2 the dependence of the viscosity on the shear rate is
shown for all the solutions of CMC used. The viscosity g
decreases for increasing shear rate, though extremely
slowly for high values of c.

The motion of the falling ball was recorded using a
high-speed digital camera with an acquisition rate of
500 Hz and an image resolution of 320 · 280 pixel.
Finally, note that relatively low concentrations of CMC
were used, due to the poor transparency of high con-
centration solutions, which may cause the falling ball to
be almost invisible in the recorded images.

2 Digital image evaluation method

In the present section we describe how digital images
were elaborated to obtain the particle position in each
frame and, eventually, the estimate of the coefficient of
restitution. We also suggest a novel method of analysis,
suitable for highly noisy images, derived from classical
digital particle image velocimetry evaluation methods.
In order to increase the contrast, each digital image,
originally in gray scale color mode, is binarized by
selecting the threshold value which best separates the
sphere from the background. Once the image has been
binarized, a standard algorithm to locate the particle

Table 2 Ostwald-de-Waele equation constants of CMC solutions.
Concentrations are expressed in terms of volume fraction

CMC (%) k (Pa sn) n

0.49751 0.0396 0.9457
0.63425 0.0483 0.9309
0.70922 0.0538 0.9227
0.80429 0.0617 0.9123
0.90091 0.0708 0.9018
0.92879 0.0737 0.8987
1.06007 0.0889 0.8844
1.23457 0.1142 0.8654

Fig. 2 Viscosity versus shear rate of CMC solutions
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centroid is based on the geometrical definition of the
centroid. The latter procedure is often successfully used
in experimental measurements of particle trajectories
(Becker and McKinley 1994; Kharaz et al. 1999;
Gorham and Kharaz 2000, 2001; Joseph et al. 2001;
Gondret et al. 2002). However, the image area used
during the evaluation of the centroid position is pre-
scribed once a threshold value is set, which is not always
a straightforward procedure. In fact, during the acqui-
sition of the digital frames many unexpected drawbacks
may occur to deteriorate the quality of the image. In
case of uneven lighting of the tank or reflections, the
shape of the recorded particle image may not be circular.

Thus, the shape of the binarized particle image may
change depending on the value of the threshold and
eventually the location of the centroid can be affected
(Kharaz et al. 1999). Unfortunately, a simple threshold
operation is unable to remove reflections on the particle
image, see for example Fig. 3a–c.

Hence, particle position measurements based on the
geometrical definition of centroid become threshold
dependent, the latter being a user defined parameter
(Kharaz et al. 1999; Gorham and Kharaz 2000, 2001).

An alternative approach to the measurements of the
particle position is based on edge detection and clus-
tering methods. Different methods have already been
applied in experimental applications, e.g., particle tra-
jectories tracking during a collision (Labous et al. 1997)
or in particle image velocimetry experiments of multi-
phase flows (Khalitov and Longmire 2002). The main
aspect of these techniques is that particles are extracted
from the entire image and labeled as single objects and
then the centroid is evaluated for the single object. Al-
though the method suggested by Labous et al. (1997) is
able to solve part of the problems related to the back-
ground noise and the uneven illumination, results still
strongly depend on the size and shape of the objects
detected in the image. In fact, the position of the object
(particle) is still evaluated in terms of the geometric
centroid.

In the present experiments we work with aqueous
solutions of Glycerol and CMC that have an acceptable
clearness only for low concentrations (see Fig. 4). For
increasing Glycerol and, especially, CMC concentration
both the transparency of the optical medium and the
light diffusion are seriously affected. In fact, the particle
and its shadow near the bottom wall are often recorded
with a similar gray intensity, for example see Fig. 3a .
Hence, the size and shape of the particle image may not
be well-defined and an algorithm to locate the centroid,
based on its geometrical definition, produces poor re-
sults. Based on these observations, we formulated a new
method to measure the position of a particle which is
reasonably independent of the threshold value. We
briefly summarize the main steps of the algorithm.

Fig. 3 Sequence of images illustrating the steps of the proposed
algorithm. a Original gray scale image of an experiment in CMC,
which shows how the poor optical characteristic of the fluid can
produce a very noisy image. b Binarized image obtained with a high
threshold value. c Binarized image obtained with a low threshold
value. d Edge image after the edge detection algorithm. e Image of
the object identified as the particle. f Superposition of the fictitious
particle (gray circle) placed in the center of the image and image e. g
Best overlap after the cross correlation analysis. h Image of the final
particle image obtained by the algorithm with the location of the
centroid (+). Note that in d–h the colors are inverted

Fig. 4 Left: example of a high-quality image recorded during a low
concentration Glycerol experiment. Right: the same image after
processing, the symbol (+) indicates the position of the centroid
evaluated with its geometrical definition
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Starting from the original gray scale image, a
threshold is automatically applied based on the intensity
histogram. The threshold value is such to contain the
entire particle, even though the resulting binarized image
is noisy. Figure 3b, c shows the difference between a
high threshold image, where part of the particle is lost,
and a low threshold image, where the noise is higher but
the whole particle is preserved. The second step is to
apply an edge detection algorithm. We used a differen-
tiation-based edge detection method, which locates an
edge finding all zero-crossings of the image intensity
Laplacian. The edge image obtained after processing is
shown in Fig. 3d; note that the colors have been inverted
just to illustrate each step of the algorithm more clearly.
When all the edge points are identified, they have to be
linked into closed chains that correspond to single ob-
jects in the image. Any pixel inside each linked-edge
belongs to that object and its intensity is set equal to the
edge points. After these procedures we are left with a
finite number of white objects on a black background.
We then clean up the image using a procedure based on
the size of each single object in terms of the number of
pixels. The object identified as the moving particle must
have the largest size. Finally, the result of this object
detection algorithm is shown in Fig. 3e, where only one
object (the sphere) is left. The novel aspect of the
method herein suggested, regards the procedure em-
ployed to estimate the position of the particle. From
Fig. 3e it is clear that using a simple geometrical defi-
nition for the centroid would yield unacceptable results.
However, the shape of the original particle is still pre-
served, except for a region close to the bottom of the
image. This means that a matching between a fictitious

target object, representing the image of the real sphere,
inserted into the image plane, and the recorded object
Fig. 3e could be easily found. To perform this image
matching, we implement a cross-correlation analysis,
which is a fundamental tool for particle image veloci-
metry measurements (Raffel et al. 1998). We prepare an
artificial image of the same size with a fictitious circle
with the same dimensions, in pixel, of the real particle
placed in the center of the image plane. Note that the
knowledge of the exact dimensions of the particle is not
strictly necessary. Figure 3f shows the fictitious particle
superimposed on the recorded particle image. We then
perform a two-dimensional cross-correlation via FFT
between the artificial image and the recorded image,
providing the best matching between the two objects
with subpixel accuracy. In fact, the displacement of the
correlation peak in the correlation plane is the distance
covered by the fictitious particle from the starting posi-
tion (center of the image plane). Therefore, we can infer
the position of the real sphere from the centroid of the
fictitious particle. Figure 3g shows the matching of
the objects and Fig. 3h shows the centroid of the sphere
(black cross in the figure). The proposed method has the
advantage of being independent of the threshold value
and, as a consequence, of the shape and size of the
particle image; and even if the recorded image is highly
noisy the results are accurate. The method has been

Fig. 5 Example of a complete particle trajectory. The filled symbols
correspond to an experiment performed with ball 3 released with a
solution of Glycerol (60%). Hollow circles correspond to an
experiment performed with ball 3 released with a solution of CMC
(1.23457%)

Fig. 6 Particle trajectory and velocity during the first collision for
an experiment with 1% solution of CMC and ball 1
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tested using high-quality images like the one shown in
Fig. 4.

3 Velocity estimation and error analysis

Once the position of the particle is found in all images,
the trajectory of the sphere is known. Examples of
particle trajectory and velocity are reported in Figs. 5
and 6. Starting from the trajectory, a least square linear
fitting over a proper number of points before and after
the rebound is used to calculate the coefficient of resti-
tution, since the slopes of the fitted lines represent the
rebound and impact velocities. The linear fitting of the
trajectories near the rebound has been often used in
particle wall collision experiments (see e.g., Joseph et al.
2001; Davis et al. 2002; Gondret et al. 2002). The
number of points used in the fitting is crucial for the final
result, since a small error in the determination of the
slopes of the fitting lines may cause a large error in terms
of the coefficient of restitution. Following Joseph et al.
(2001), we used five–ten points performing an iterative
fitting maximizing the linear correlation coefficient of
the fitted line to the experimental data, imposing a
minimum acceptable value of 0.99.

Considering the single particle image, the particle
dimension in terms of pixels ranges between 100 and
140. The precision of the position could be estimated
within an error ranging from 0.37% to 0.50% of the
particle diameter, which implies an absolute error of
0.055 mm regardless of the subpixel accuracy for the
correlation peak detection. Introducing the latter
refinement in the image processing, we expect that the
error will be likely reduced by half. We then estimate the
standard deviation of the particle position of each tra-
jectory with respect to the fitting line obtaining a most

probable value of 0.033 mm. This value is consistent
with the expected error discussed above. In terms of
particle velocity the error distribution is shown in Fig. 7.
Finally, the error of the present measurements of the
coefficient of restitution ranges from 1% to 6%
depending on the impact velocity.

The velocity of the particle along its whole trajectory
can be evaluated, starting from the discrete sampled
position, using a first-order backward or forward dif-
ferencing scheme, as shown in Fig 6. In agreement with
Gondret et al. (2002), we do not observe a decrease in
the velocity while the particle is approaching the wall
as was found for the pendulum experiments (Joseph
et al. 2001).

4 Results

In this section we present the measured coefficient of
restitution e as a function of the Stokes number for both
Newtonian and non-Newtonian fluids. The Stokes
number is the pertinent nondimensional number in
describing the dependence of the coefficient of restitu-
tion on the fluid and particle properties, as pointed out
by Gondret et al. (2002). Our assumption is that this
choice can be also fully justified for the case of the shear
thinning fluid, provided an estimate for the proper vis-
cosity to be used in its evaluation. In fact, for a non-
Newtonian fluid the apparent viscosity g is a function of
the rate of strain c. The definition of the appropriate
apparent viscosity is then crucial, since it controls the
values of the impact Stokes number. Hence, while there
is no ambiguity in the case of a Newtonian fluid, on the
contrary, great care must be taken in providing a value

Fig. 7 Pdf of the error in estimating the particle velocity

Fig. 8 Coefficient of restitution scaled with edry as a function of the
impact Stokes number in the case of Newtonian fluid. The hollow
symbols represents the measurements of Gondret et al. (2002)
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for the apparent viscosity when a non-Newtonian fluid is
studied.

4.1 Dry coefficient of restitution

We first measured the dry coefficient of restitution for
the whole set of spherical particles to evaluate the
influence of the ratio between the bottom plate thickness
b and the particle diameter D. It is well known from
previous experimental investigations that the coefficient
of restitution of dry impact of spherical particles in-
creases with the plate thickness until it is about four
times the particle diameter (Zener 1941; Sondergaard
et al. 1990), due to less vibrational losses related to
flexural modes of the plates excited during the impact.
Accordingly, we found a dry coefficient of edry=0.91, for
particles 1 and 2, edry=0.8 for particle 3 and edry=0.72
for particle 4.

4.2 Wet coefficient of restitution: the Newtonian case

Figure 8 shows the measured immersed coefficient of
restitution divided by the proper edry in the case of the
Newtonian fluid as a function of the impact Stokes
number. Moreover, in the same plot are reported the
experimental data by Gondret et al. (2002), which were
obtained with a similar experimental set up. The present
measurements are in fairly good agreement with the
cited data, reproducing all the main features of the
particle collision dynamics. In particular, the normalized
coefficients of restitution e/edry, for the range of Stokes
number investigated, follow a clear trend described
theoretically by Davis et al. (1986). The value of the
critical Stokes number measured in the present experi-
ments is around 10, which is in agreement with the
observations of Gondret et al. (2002) and Joseph et al.
(2001). No further comments are needed regarding the
measurements of the immersed coefficient of restitution
in the case of Newtonian fluid, since the present results
do not add any new information with respect to previous
studies. However, the measurements performed in
Newtonian fluids had the purpose of both testing the
image evaluation method described in Sect. 3 and,
mainly, to allow for a methodologically rigorous com-
parison with the measurements in the case of the non-
Newtonian fluid discussed in the next section.

4.3 Wet coefficient of restitution: the non-Newtonian case

In order to maintain the Stokes number as the pertinent
dimensionless parameter to describe the behavior of the
coefficient of restitution also with the shear thinning
fluid, we should specify which is the proper viscosity to
be used in calculating the Stokes number for each
experiment. The viscosity, in the case of shear thinning
fluids, is no longer a property of the fluid; instead, it

depends on the local conditions of the flow expressed in
terms of shear rate c. An estimate of a typical shear rate
can be made by selecting a characteristic velocity scale
and a characteristic length scale. As a first attempt, we
used the settling velocity Ws as a scale for the velocity
and the particle diameter D as a typical length scale,
obtaining a rate of strain equal to Ws/D. This choice is
suitable to describe the particle settling dynamics, as
reported in Mena et al. (1987), Becker and McKinley
(1994), Navez and Walters (1996), and Bot et al. (1998),
among others, and it is consistent with the analogous
particle settling in Newtonian fluid. However, when the
particle is approaching the wall, the representative rate
of strain becomes higher, since the characteristic length
scale is no longer the particle diameter, but the distance z
between the two approaching surfaces. This may de-
crease to a value between z0 and zc, upper and lower
boundaries, respectively, of the flow region where the
lubrication approximation holds, as suggested in Joseph
et al. (2001). Typical values of z0 and zc are D/100 and
D/105, respectively (see Joseph et al. 2001). Moreover,
the proper velocity scale was chosen as the impact
velocity wi, which in general could be different from the
settling velocity Ws; therefore, a reasonable estimate of
the shear rate in the case of a particle wall collision is
found setting c=wi/z0. As a consequence, the apparent
viscosity consistent with the latter rate of strain drops
down appreciably with respect to the value estimated
using a rate of strain equal to wI/D. Using the value
suggested by Joseph et al. (2001) for z0, the rate of strain
at the impact is two orders of magnitude higher than the
rate of strain while the particle is settling. The range of
rate of strain estimated in the present experiments is
between 1,380 s�1 and 11,000 s�1 and the measured

Fig. 9 Coefficient of restitution scaled with edry as a function of the
impact Stokes number; comparison between the Newtonian
measurements (white symbols) and non-Newtonian measurements
(black symbols)
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impact velocities range from 0.21 ms�1 to 1.3 ms�1. The
corresponding values of the viscosity g vary from
0.024 Pa s to 0.043 Pa s.

In Fig. 9a comparison of the coefficient of restitution
observed with CMC against the data discussed in Sect.
5.2 is shown. In the range of Stokes number investigated
in the present experiments, the coefficients of restitution
for CMC solutions was observed to be higher compared
to those obtained in Newtonian fluids, at a fixed Stokes
number.

A possible explanation of this result may be found in
the non-Newtonian rheological properties of the CMC.
The shear thinning behavior of CMC solutions is taken
into account through the correct determination of the
viscosity and, therefore, of the Stokes number. This
suggests that the increase of the coefficient of restitution
of the CMC with respect to Newtonian fluids for a fixed
value of the Stokes number has to be related to other
rheological properties typical of the CMC. In particular,
a possible role of the viscoelastic behavior of the CMC
solutions is herein investigated. In many experimental
works viscoelasticity and normal stresses have been
extensively studied for aqueous solutions of CMC
(Escudier and Presti 1999; Williamson et al. 1997;
Windle and Beazley 1997; Barbesta et al. 2001), showing
that in many flow regimes the order of magnitude of the
normal stresses is comparable with the shear stress.

For a viscosity value ranging 10–2–100 Pa s, the
lubrication approximation holds in a layer thickness of
the order of 10–5–10–3 m such that, for an impact
velocity of order 1–0.1 ms�1, a characteristic time scale
of the order of 10–5–10–2 s is given. This is in agreement
with Joseph et al. (2001), since z0 is assumed as
D/100=10�4 m. Then, assuming wi/z0 as a scale for c we
have corresponding to the lower viscosity a value for the
shear rate c=103 s�1 and, corresponding to the higher
viscosity, c=105 s�1 and, respectively, s=102 and
103 Pa. In the lubrication layer we have s ¼ qf w2

i ; thus
varying only due to a variation of the impact velocity,
regardless, at least indirectly, of viscosity. For the
aqueous solution of CMC, with the apparent viscosity g
of the order of 10�2 Pa s, the same criterion, although
not fully appropriate for non-Newtonian fluids, yields to
a time scale of the order of 10�5 s. The measured impact
velocity in the non-Newtonian case allows for estimating
s=102–103 Pa. For such high shear stress, or in other
words high c , it is possible that the effects of the normal
stress N1(c) are not negligible. It is reported in Kokini
and Surmay (1994) for s=10–1–10 Pa and in Escudier
and Presti (1999) for s=102 that even for low CMC
concentration (0.6% to 1.5% in volume) N1 is of the
same order of magnitude of s. Precisely a dependence of
the first normal stress on the shear stress is suggested in
Escudier and Presti (1999) and reads:

N1 ¼ 0:85s1:25: ð4Þ

Moreover, Williamson et al. (1997) provides an estima-
tion of a characteristic relaxation time for some shear

thinning fluids, which is expressed by:

h ¼ N1 cð Þ
�

2gc2
� �

: ð5Þ

Using Eq. 5 to estimate a relaxation time for the solu-
tions used in the present experiments, it turns out that k
is of order O(10�5), which is comparable with the time
scale characteristic for particle-wall collisions as re-
ported in Zenit and Hunt (1999), Joseph et al. (2001),
and Gondret et al. (2002). This means that the fluid has
enough time to experience such a viscoelastic effect while
the particle is approaching the wall and expelling the
fluid trapped in the particle wall gap, and it is thus able,
in this short time, to provide a feed-back effect on the
particle. Values of N1 of the order of 10 Pa for s of the
order of 103–104 Pa are also given in Windle and Beazley
(1997), while in Barbesta et al. (2001) for the same s, N1

is of the order of 1–10 Pa.
The fact that shear thinning Newtonian fluids can

react in a very short time providing, besides a shear
stress, a normal stress in the presence of high velocity
gradients, i.e. high shear rate, can be a possible expla-
nation for the observed trends in our comparative
analysis of the coefficients of restitution in Newtonian
and non-Newtonian fluids.

5 Concluding remarks

The novel image evaluation method proposed yields
accurate measurements of the particle position, even if
the recorded image is highly noisy. When the noise af-
fects the dimension and the shape of the particle image
like in the present experimental measurements, the
location of the centroid may not be accurate if a pure
geometric algorithm is applied. Following the latter
approach the final results are also strongly dependent on
the threshold applied (Kharaz et al. 1999; Gorham and
Kharaz 2000; Kharaz et al. 1999). In the literature,
alternative methods based on edge detection and clus-
tering methods can be found. However, the threshold
value is still a user-defined parameter, which has to be
tuned up in order to obtain reliable results (Labous et al.
1997). In the light of removing this dependence, we
introduced mathematical tools commonly used in digital
PIV analysis. As a consequence, the implementation of a
two-dimensional cross correlation ensures that the re-
sults are almost completely independent from the
threshold applied.

The main results on the coefficient of restitution may
be summarized as follows: (1) the measurements per-
formed in Newtonian fluids are in fairly good agreement
with the data available in the literature, regarding both
the overall trend as a function of the Stokes number and
the value of the critical Stokes number; (2) the coefficient
of restitution in the case of non-Newtonian fluids, for
the range of Stokes number investigated, was observed
to be higher compared to the Newtonian case; (3) the
Stokes number remains the pertinent parameter even for
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the shear thinning fluid provided a proper value for the
viscosity, i.e., the value obtained using the shear rate
related to the lubrication layer; and (4) the increase of
the coefficient of restitution may be related to the non-
negligible normal stresses, since the time scale associated
with the particle rebound, within the lubrication layer, is
long enough for the fluid to experience viscoelastic
effects.

As a final comment, we acknowledge that the present
experiments cover only a limited range of Stokes number
in the case of non-Newtonian measurements. This was
due to the non-perfect optical properties of the medium
viscosity CMC used and to some limitations of the entire
experimental set up (electromagnetic release device). As
a consequence, the range of low Stokes number remains
partially uncovered and the critical Stokes number could
not be investigated. However, we expect that in the
surroundings of the critical Stokes number viscoelastic
effects may not be important since, in that case, the
shear rate assumes a low value. We acknowledge also
that possible effects of the surface roughness have not
been considered in the present analysis, since particle
roughness should play an important role only for values
of the Stokes number less than a hundred, as described
in Joseph et al. (2001). The behavior of the coefficient of
restitution near the critical Stokes number remains an
open question of particular interest and it will be the
object of further experiments.
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