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Abstract
We present an experimental study of the vitreous motion induced by saccadic
eye movements. A magnified model of the vitreous chamber has been
employed, consisting of a spherical cavity carved in a perspex cylindrical
container, which is able to rotate with a prescribed time law. Care has been
taken to correctly reproduce real saccadic eye movements. The spherical cavity
is filled with glycerol and the flow field is measured on the equatorial plane
orthogonal to the axis of rotation, through the PIV technique. Visualizations
of the fully three-dimensional flow suggest that it essentially occurs on planes
perpendicular to the axis of rotation, the motion orthogonal to such planes
being smaller by three to four orders of magnitude. Theoretical results, based
on a simplified solution, are in very good agreement with the experimental
findings. The maximum value of the shear stress at the wall, which is thought
to play a possibly important role in the pathogenesis of retinal detachment,
does not significantly depend on the amplitude of saccadic movements. This
suggests that relatively small eye rotations, being much more frequent than
large movements, are mainly responsible for vitreous stresses on the retina.
Results also illustrate the dependence of the maximum shear stress at the wall
from the vitreous viscosity.

1. Introduction

The vitreous humour, which is bounded between the lens and the retina, is the substance
filling the vitreous chamber of the human eye. Lee et al (1992) have studied the rheology of
vitreous, showing that, in normal conditions, it behaves as a viscoelastic material. However,
typically, with advancing age the vitreous partially or completely loses its elastic properties,
as a consequence of a ‘liquefaction process’.
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Vitreous motion plays an important role in retinal detachment mechanisms. In particular,
the so-called rhegmatogenous retinal detachment occurs when a progressive infiltration of
liquefied vitreous takes place through a retinal tear, i.e. a break in the retina. This not yet
deeply understood mechanism seems to have a purely mechanical nature.

The need for achieving better insight into vitreous motion led Lindner in 1933 to perform
hydrodynamic experiments aimed at understanding the structure of the flow field induced by
eye rotations within the vitreous chamber. The above experiments were later reconsidered and
extended by Rosengren and Östrelin (1976). Both the above authors point out the importance of
eye rotations on the vitreous dynamics. However, their works only provide a qualitative picture
of the hydrodynamic events within the vitreous chamber because their experimental approach
did not permit quantitative measurements of fluid velocity to be performed. Moreover, in order
to simplify the experimental conditions, both of the authors modelled the eye as a cylinder
while, clearly, a spherical domain better represents the real shape of the vitreous chamber.
Finally, in the previous experiments, no attempt was made to take into account the scale effects
arising from the magnified size of the eye model.

Greater insight into vitreous motion is provided by the work of David et al (1998). The
authors studied analytically the motion of a viscoelastic fluid within a periodically rotating
sphere, adopting simplifying assumptions on the flow characteristics, whose validity has been
tested numerically for the case of a purely viscous Newtonian fluid. Their results clarify most
of the features of the flow field, showing, in particular, that the fluid motion in the inner part
of the domain is out of phase with respect to the wall motion. Moreover, David et al (1998)
computed the shear stress at the wall and showed that it increases with the sphere radius. The
latter observation was interpreted by the authors as a possible explanation of the more frequent
occurrence of retinal detachments in myopic eyes, typically characterized by a larger size.

In the present contribution, we present the results of a series of experiments on vitreous
motion. The vitreous chamber has been modelled as a spherical cavity, magnified with
respect to the real geometry, carved within a perspex cylinder and able to rotate according
to a prescribed time law. The cavity has been filled with glycerol, which is a high viscosity
Newtonian fluid; thus, the elastic properties of physiological vitreous are disregarded in this
first experimental approach to the problem. However, David et al (1998) report that the elastic
component plays a fairly minor role on the flow field within the eye globe with respect to
the viscous one. Moreover, according to the authors’ results, the elastic component of the
vitreous behaviour does not influence the maximum shear stress at the wall, which is the most
important quantity to be evaluated in order to understand the connection between vitreous
motion and retinal detachment. Finally, it is worth noting that after surgery (vitrectomy) the
vitreous may be replaced by tamponade fluids, typically silicon oils, which are highly viscous
Newtonian fluids. The flow field has been experimentally measured, on the equatorial plane
orthogonal to the axis of rotation, through the PIV technique. This has allowed us to obtain
the spatial structure of the flow field in such a plane with great detail. Moreover, the time
evolution of the flow can also be suitably described.

Two sets of experiments have been carried out. The first one is aimed at verifying the
results of David et al (1998) for purely viscous fluids; therefore, the eye model is rotated
according to a sinusoidal time law. Real saccades have a much more complex time behaviour,
though, and can hardly be described in terms of a simple sine function. Therefore, in a
second set of experiments, a time law for the container angular velocity has been adopted that
correctly reproduces all the features of real large amplitude saccadic movements. Saccades
with different amplitudes (from 10◦ to 50◦) have been studied. The second set of experiments
provides important insight both into the structure of the flow field occurring within the eye and
into the shear stresses exerted by the vitreous on the retina during real saccadic movements.
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Flow visualizations have also been carried out, with the purpose of quantifying the
magnitude of secondary flows possibly generated by the spherical shape of the domain.

2. Saccadic movements

Eyes are subject to various kinds of movements. In the present paper we are concerned with
the so-called saccadic eye movements that, due to their characteristics, are by far the most
important in inducing vitreous motion within the vitreous chamber.

Metrics of saccadic eye movements are reported in detail in Becker (1989). The author
identifies the following basic features of saccadic eye movements: (i) a very high initial angular
acceleration (up to 30 000◦ s−2); (ii) a somewhat less intense deceleration that is nevertheless
capable of inducing a very efficient stop of the movement; (iii) a peak angular velocity that
rises in proportion to the saccade amplitude up to a saturation value ranging between 400
and 600◦ s−1. Saccade amplitude ranges from 0.05◦ (microsaccades) to 80–90◦, which is the
physical limit for the orbit. Obviously, very large saccades are normally accompanied by head
rotations.

A saccade movement is typically described through the following quantities: the saccade
amplitude A, the saccade duration D, the peak angular velocity �p and the acceleration time
tp, i.e. the time required to reach the peak velocity starting from rest. Becker (1989) reports
that the relationship between saccade duration and saccade amplitude is very well described
by the following linear law:

D = D0 + dA, (1)

in the range 5◦ < A < 50◦. In equation (1) D is measured in seconds and A in degrees.
According to measurements performed by the author the slope d approximately assumes the
value of 0.0025 s deg−1 and the intercept D0 typically ranges between 0.02 and 0.03 s.

The average angular velocity during a saccadic movement is defined as � = A/D and
measurements suggest that the ratio �p/� between the peak and the mean velocities attains
a fairly constant value. Becker (1989) suggests the following estimate:

�p/� ∼ 1.64. (2)

Finally, the experimental data show that small amplitude saccades (smaller than 10◦)
follow an almost symmetrical time law, the acceleration time being approximatively equal
to 0.45D. The dimensionless acceleration time tp/D varies linearly with increasing saccade
amplitudes, to the value tp/D ∼ 0.25 for saccades of 50◦.

In the present work, in order to reproduce the time law θ(t), describing the angular
displacement of the eye, we employ a fifth degree polynomial function, of the form

θ(t) = c0 + c1t + c2t
2 + c3t

3 + c4t
4 + c5t

5. (3)

The six coefficients are computed imposing the following constraints: θ(0) = 0, θ(D) = A,

θ̇(0) = 0, θ̇ (D) = 0, θ̇ (tp) = �p and θ̈ (tp) = 0, where D,�p and tp are evaluated by
the relationships described above and superscript dots denote time derivatives. The resulting
functions θ(t) and �(t) = dθ(t)/dt are shown in figures 1(a) and (b) and they satisfactorily
reproduce the main features of real saccadic movements as reported by Becker (1989)
(figure 1, chapter 2, page 14).

3. Experimental set-up and data analysis

The eye globe has been modelled by means of two semi-spherical cavities of 40 mm radius,
carved into two halves of a plastic cylinder of external radius equal to 120 mm. The material
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Figure 1. Examples of saccadic eye movements as predicted by equation (3). (a) Angular
displacement θ(t), (b) angular velocity �(t) = dθ/dt (D0 = 0.025 s, d = 0.0025 s/deg).

employed was perspex for the reasons explained below. The spherical cavity was filled
with a 98% pure glycerol solution, a highly viscous Newtonian fluid. Due to its strong
dependence on the external temperature, the dynamic viscosity of the glycerol solution was
periodically measured, using a falling ball viscometer, during each acquisition session in
order to continuously monitor its possible variations. Note that the index of refraction of
the glycerol matches the index of refraction of the perspex used for the container, thus
excluding any deformation in the images due to refraction of light rays when they cross the
curved interface between the two materials. The cylinder was mounted on a support directly
connected to the shaft of an electrical brushless motor, which allowed the eye model to rotate
around its vertical axis, according to an assigned temporal law. In particular, the movement of
the eye globe was simulated assigning either a sinusoidal or a polynomial temporal law, see
equation (3), the latter representing the human saccadic movements as described in the previous
section. The motor was remotely controlled and the actual position was tracked recording the
feedback position analog signal. Moreover, the rotation of the shaft was synchronized with a
two-dimensional particle image velocimetry (PIV) acquisition system that was employed to
measure two-dimensional velocity fields. A cylindrical and a spherical lens converted a laser
beam generated by two 30 Hz Nd:Yag lasers into a laser sheet of 0.5 mm thickness and of
planar dimensions sufficient to illuminate the area of interest. The laser sheet was aligned with
the equatorial plane orthogonal to the axis of rotation using two coated laser mirrors placed on
a linear rail. The seeding particles used were hollow glass spheres of mean diameter around
10 µm and a density that matches the density of the working fluid. A sketch of the experimental
apparatus is shown in figure 2.

The sampling rate employed in the experimental measurements was set such to obtain
40 vector fields within a period in the case of a sinusoidal movement and 20 flow fields in
a single duration of a saccadic movement. Each velocity field (u(x, y, t), v(x, y, t)), where
u(x, y, t) and v(x, y, t) are the velocity components in the x and y directions respectively, was
measured 60 times. An ensemble average (U(x, y, t), V (x, y, t)) was then determined and
the corresponding root mean square values uRMS and vRMS assumed values of a few per cent
of the averaged velocity components U and V . The PIV settings used to analyse the images
in terms of cross-correlation yielded to a spatial resolution of about one velocity vector per
1.5 mm2. Vector fields were transformed into polar coordinates, which is a more natural choice
for the geometry of the domain investigated. The velocity components have been interpolated
following the method suggested in Agüı́ and Jeménez (1987) and Stüer and Blaser (2000).
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Figure 2. Sketch of the lateral view of the experimental apparatus.
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Figure 3. An example of two-dimensional interpolated velocity fields of a periodic experiment
(A = 10◦, f = 1.75 Hz) together with contours of the circumferential velocity: (a) velocity field
corresponding to the maximum peripheral velocity, (b) velocity field measured immediately after
the inversion of the peripheral velocity.

Finally, in view of the axial symmetrical shape of the domain, we have performed an average of
the circumferential velocity uϕ along ϕ. From the measured velocity profiles we have derived
tangential stresses, by differentiation of the velocity using a finite least-squares scheme. An
example of the two-dimensional interpolated velocity fields is given in figure 3, where two
vector fields at different times of a sinusoidal experiment are shown together with contours of
the circumferential velocity uϕ .

4. Flow visualization

As described in the previous section, we have performed two-dimensional measurements of
the velocity field on the equatorial plane orthogonal to the axis of rotation. Such a plane is a
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Figure 4. Snapshots of vertical planes, in false colours, at different times of the visualization
in a periodic experiment. Time grows from top left to bottom right, the time interval between
two successive frames is 8 s, which corresponds to 20 periods of the sinusoidal rotation
(A = 20◦, f = 2.5 Hz).

plane of symmetry of the motion; therefore, one expects the velocity vectors to lie on it. In
order to gather information on the three-dimensional structure of the flow field, we have also
performed a series of flow visualizations, both rotating the eye model with a periodic time law
and with a series of saccadic movements. Flow was visualized by injecting a coloured dye
close to the wall, just above the equatorial plane. The evolution of the dye streak inside the
domain was recorded by means of a digital camera. In figure 4 frames of vertical planes at
different times are shown for a periodic experiment. It appears that, in addition to the motion
on horizontal planes, which is forced by the boundary condition at the wall, a ‘secondary
flow’ takes place, consisting of two toroidal vortices, located in the northern and southern
hemispheres, respectively. The sense of rotation of such vortices is such that, in the upper
hemisphere, particles close to the equatorial plane move towards the globe centre, then proceed
upwards to descend back close to the curved wall. Such a secondary flow, which had been
found numerically by David et al (1998), has been invariably observed, both for periodic
and saccadic movements. Its intensity, however, is at least three to four orders of magnitude
smaller than that of the circumferential flow in the case of periodic rotations and even smaller
for saccadic movements.

5. Theoretical background

David et al (1998) have proposed a simplified analytical model for the motion of a visco-
elastic fluid within a periodically rotating sphere, which will shortly be described in the
following for the case of a purely viscous fluid. The authors assume that the flow field is
axis-symmetrical, as a consequence of the symmetry of the domain, and that the velocity
vectors lay anywhere on planes perpendicular to the axis of rotation. Let us consider a
system of spherical coordinates (r, ϑ, ϕ), with ϑ and ϕ the elevation angular coordinate and
the azimuthal coordinate, respectively. Let us also assume that the sphere rotates about the
vertical axis ϑ = 0, π . If the flow field is described in terms of the corresponding velocity
components (ur , uϑ, uϕ) the simplifying assumptions adopted by David et al (1998) imply
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that ur = uϑ = 0 and that uϕ does not depend on ϕ. Note that the above assumptions can be
formally justified on a mathematical ground only in the case of small values of the Reynolds
number, i.e. when the nonlinear terms in the Navier Stokes equations can be neglected. In
the experiments performed in the present work the Reynolds number (computed adopting the
maximum wall velocity and the sphere radius) ranges between 1 and 10. This implies that
the above assumptions are not strictly mathematically justified. However, as described in the
previous section, visualizations of the flow field have shown that the vertical component of
the velocity (i.e. the out-of-plane component) is three to four orders of magnitude smaller than
the primary flow taking place on horizontal planes, both in the case of periodic rotations and
in the case of saccadic movements. This provides a justification for the assumptions adopted
in the theoretical model. Using the above scheme the ϕ component of the momentum equation
may be written as:

∂uϕ

∂t
= ν

[
1

r2

∂

∂r

(
r2 ∂uϕ

∂r

)
+

1

r2 sin ϑ

∂

∂ϑ

(
sin ϑ

∂uϕ

∂ϑ

)
− uϕ

r2 sin2 ϑ

]
, (4)

with the boundary conditions

uϕ = F(t) sin ϑ (r = R), (5)

uϕ = 0 (r = 0), (6)

where ν denotes the kinematic viscosity and R is the sphere radius.
David et al (1998) considered the case of periodic rotations of the sphere with frequency

ω, seeking a separable solution of the form:

uϕ = eiωtg(r) sin ϑ + c.c., (7)

where c.c. denotes the complex conjugate and the dependence of the solution from sin ϑ arises
from the boundary condition at the wall (5). The solution for the function g is found in the
following form:

g(r) = cj1(kr), (8)

where j1 is the spherical Bessel function of the first kind and of order 1. The coefficient k in
equation (8) is defined as

k =
√

2

2
(1 − i)

√
ω

ν
. (9)

The constant c can be determined imposing the boundary condition at the side wall and takes
the following values:

c = 1

2j1(kR)
, (10a)

c = − i

2j1(kR)
, (10b)

depending on whether F(t) is equal to cos(ωt) or sin(ωt).
Obviously, as pointed out by David et al (1998), the above basic solution can be used to

build up more complicated ones induced by sphere rotations which are not sinusoidal in time.
Indeed, periodic functions F(t), with period T , can be Fourier decomposed in the form

F(t) = c0 +
∞∑

n=1

cn cos

(
2πn

T
t

)
+ sn sin

(
2πn

T
t

)
. (11)
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In the present case, in order to reproduce saccadic eye movements, we have employed a time
law consisting of a sequence of rotations described by the fifth-order polynomial function (3)
followed by a period of no motion long enough to allow for a complete stop of the fluid motion.
In this case, the coefficients c0, cn and sn can be readily determined analytically (though we
do not report them here for the sake of brevity) and the solution for the ϕ component of the
velocity can be written in the form:

uϕ = sin ϑ

{
c0r/R +

∞∑
n=1

cn

[
e2π int/T 1

2j1(knR)
j1(knr) + c.c.

]

+ sn

[
−e2π int/T i

2j1(knR)
j1(knr) + c.c.

]}
. (12)

6. Experimental results and discussion

In the experiments a magnified model of the vitreous chamber has been employed; therefore,
scale effects need to be properly accounted for. If we make equation (4) dimensionless, scaling
uϕ by �pR (with �p being the peak angular velocity), t by T (with T a characteristic time
scale of globe rotation) and r by R, it is readily found that the only dimensionless parameter
relevant for the problem reads:

W =
√

R2

νT
. (13)

Physically, the above dimensionless number represents the ratio between a characteristic length
scale of the domain (R) and the thickness of the boundary layer at the wall, which is of order√

νT . In the case of periodic rotations it is a natural choice to assume 1/ω as the characteristic
time scale and W reduces to the usual Womersley number, as appears in David et al (1998)
for the purely viscous flow.

We have therefore chosen to preserve the same value of W in the prototype, denoted by
the subscript P , and the model. Thus we impose

R2

νT
= R2

P

νP TP

. (14)

In our case R = 40.8 mm. The glycerol viscosity has been measured in each experiment.
Moreover, we have assumed RP = 12 mm and νP = 1.4 × 10−4 m2 s−1, as suggested by Lee
et al (1992). Once a particular eye movement has been selected equation (14) allows us to
determine a relationship between T and Tp, i.e. the scaling of time.

6.1. Periodic movements

In the first set of experiments the eye model was rotated according to a sinusoidal law. The main
goal of this series of experiments was to validate the experimental apparatus under relatively
simple conditions and verify the feasibility of theoretical results obtained through the approach
proposed by David et al (1998) and described in the previous section. Note, moreover, that a
sinusoidal rotation may be thought of, in a highly simplified way, as a sequence of saccadic
movements with alternate directions and with a duration of half the period of rotations (see
figure 1(a)). In table 1, the relevant parameters of the whole set of the periodic experiments
performed are reported.

In figures 5(a) and (b) the experimental profiles of the averaged circumferential velocity
along the radial direction are plotted at different times for experiments sin-10 and sin-16.
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Figure 5. Experimental profiles of the averaged circumferential velocity uϕ along the radius at
different times, with interval equal to 1/40 of the period. (a) Experiment sin-10 (W = 3.75,

T = 1.33 s); (b) experiment sin-16 (W = 5.80, T = 0.4 s).

Table 1. Main parameters of the periodic experiments.

Exp. no. A (◦) f (Hz) ν (10−4 m2 s−1) W

sin-1 10 1.0 3.79 5.25
sin-2 20 1.0 6.58 3.99
sin-3 5 1.0 6.25 4.10
sin-4 10 0.5 6.79 2.77
sin-5 10 1.25 7.16 4.27
sin-6 30 1.0 6.73 3.94
sin-7 40 1.0 6.50 4.01
sin-8 10 1.5 6.11 5.07
sin-9 10 1.75 6.26 5.41
sin-10 10 0.75 5.58 3.75
sin-11 20 1.5 6.29 5.0
sin-12 10 2.0 6.87 5.52
sin-13 10 2.5 6.94 6.14
sin-14 5 1.0 7.33 3.79
sin-15 10 1.25 7.37 4.21
sin-16 20 2.5 7.76 5.80
sin-17 10 2.0 6.64 5.61
sin-18 10 1.5 7.22 4.66
sin-19 10 1.75 7.13 5.01
sin-20 20 1.5 7.08 4.71
sin-21 10 2.5 6.98 6.12

In agreement with results shown by David et al (1998) it appears that a significant phase lag
characterizes the motion of fluid in the most internal regions relative to the motion at the
wall. It also appears that, for larger values of the Womersley number (experiment sin-16),
the oscillating boundary layer at the wall is narrower and the fluid particles in the most inner
region are subject to small amplitude oscillations. As far as the Womersley number decreases
(experiment sin-10) the envelope of the velocity profiles progressively tends to a linear shape.

In figure 6 the amplitude of speed oscillations, scaled by its maximum value, is reported
as a function of the dimensionless radial coordinate r/R for some experiments. Referring
to the notation employed in section 5 the curves in figure 6 represent the modulus of the
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Figure 7. Comparison between the experimental and theoretical distributions of the functions
|g∗| = |g|/|g(R)|, its real part Re{g∗} and its imaginary part Im{g∗}. Symbols denote experimental
data, continuous lines theoretical predictions.

dimensionless function g∗ = g(r)/|g(R)|. Each profile is associated with a different value of
W , varying from 2.77 (experiment sin-4) to 6.12 (experiment sin-21). The agreement between
measurements and theoretical predictions is good for all values of W . Weak discrepancies
may be partly due to the simplified assumptions adopted in the theoretical model and partly to
measurement errors, which are estimated to be of 3–4%. Comparison is satisfactory for each
experiment though we do not report all data in the figure for the sake of clarity.

A more detailed comparison is shown in figures 7(a) and (b) for experiments sin-10 and
sin-16. In this case both the real Re and imaginary Im parts of the dimensionless function g∗

are plotted. Note that the ratio Im{g∗}/Re{g∗} is equal to tan φ, where φ denotes the phase lag
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Table 2. Main parameters of the experiments on saccadic movements.

Model Prototype

Exp. no. A (deg) D (s) �p (deg s−1) ν (10−4 m2 s−1) D (s) �p (deg s−1)

sac-1 10 0.1024 160.11 7.9 0.050 328.0
sac-2 15 0.1297 189.70 7.8 0.0625 393.6
sac-3 20 0.1536 213.48 7.9 0.075 437.33
sac-4 25 0.1793 228.73 7.9 0.0875 468.57
sac-5 30 0.2023 243.20 8.0 0.10 492.0
sac-6 35 0.2334 245.91 7.8 0.1125 510.22
sac-7 40 0.2529 259.42 8.0 0.1250 524.80
sac-8 45 0.3007 245.41 7.4 0.1375 536.73
sac-9 50 0.3468 236.45 7.0 0.1375 546.67
sac-10 30 0.2043 240.77 7.92 0.10 492.0
sac-11 40 0.2470 265.58 8.19 0.1250 524.80
sac-12 20 0.1428 229.69 8.5 0.0750 437.33
sac-13 10 0.1018 161.12 7.95 0.050 328.0
sac-14 15 0.1386 177.54 7.3 0.0625 393.60

with respect to the wall motion at each point in the radial direction. The agreement between
measurements and theoretical predictions appears quite satisfactory.

6.2. Saccadic movements

Let us now consider the experiments performed employing the time law (3). The duration of
a saccadic movement is computed adopting equation (1) and the corresponding duration of
the motion in the experiment is obtained multiplying D by the factor (R/RP )2νp/ν. Each
saccadic movement is followed by a time of rest with a duration of five times the saccade
duration, thus allowing a complete stop of the fluid motion. The whole set of experiments
performed is reported in table 2; each experiment corresponds to a rotation with a different
amplitude.

In figures 8(a) and (b) the experimental velocity profiles along the radial direction
are reported at different times for experiments sac-12 and sac-11 which reproduce a small
amplitude (10◦) and a large amplitude (40◦) saccade. It appears that, starting from rest, fluid
motion is initially confined within a narrow region close to the wall and the thickness of such
a region increases with time. During the acceleration phase of duration tp, velocity profiles
have the same concavity and the velocity attains its maximum at the wall (solid lines). During
the phase of deceleration of the wall, the maximum of the velocity detaches from the boundary
and progressively moves towards the centre (dashed lines). At the time t = D the wall stops
and dissipations smooth down the velocity profile until the fluid is at rest again (the last profile
shown in figure 8 refers to a time lower than 2D and a complete stop of the motion has not
occurred yet). During the decay phase velocity profiles become more symmetrical because
the maximum velocity moves towards the point r = R/2.

In figures 8(c) and (d) the shear stress τrϕ , corresponding to velocity distributions shown
in figures 8(a) and (b), is reported. The shear stress is computed according to the relationship

τrϕ = µ

(
∂uϕ

∂r
− uϕ

r

)
, (15)

directly from the experimental data. In the above relationship µ represents the dynamic
viscosity of the fluid. It appears that, during a saccadic movement, the wall is subject both to
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Figure 8. Experimental profiles of the averaged circumferential velocity ((a) and (b)) along the
radius at different times with interval equal to 1/20 of the saccade duration D. Corresponding
profiles of the shear stress τrϕ along the radius at different times ((c) and (d)). (a) and (c): Run
sac-13 (D = 0.1018 s); (b) and (d): run sac-11 (D = 0.2470 s). Solid lines correspond to profiles
measured during the acceleration phase of the saccade (t � tp), while dashed lines to profiles
measured during the deceleration phase.

positive and negative shear stresses, though the maximum shear stress at the wall is invariably
positive. In other words, quite intuitively, the fluid acts at the boundary with stresses mainly
in the opposite direction with respect to the wall motion.

In figure 9(a) the maximum velocity scaled by the corresponding maximum velocity at the
wall �pR is plotted versus the dimensionless radial coordinate r/R. Each curve corresponds
to a saccade with a different amplitude. Continuous lines represent results obtained through
the theoretical solution (12). As for the case of sinusoidal motion the agreement is good for all
experiments, though the theory slightly overestimates the maximum velocities. In figure 9(a)
only a few experiments have been reported for the sake of clarity, the agreement with the
observations being good for the whole set. This figure suggests that the envelope of the
velocity profiles is thicker for larger saccades: small saccades induce in the interior part of
the domain a motion weaker than the motion driven by larger saccades. This is mainly due to
the fact that larger saccades are longer and the boundary layer starting at the wall has more
time to grow.
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Figure 9. (a) Dimensionless maximum value reached in time by the circumferential velocity uϕ

at each point in the radial direction for different experiments. (b) Dimensionless time tmax/D at
which the maximum tangential velocity is reached at each point in the radial direction for different
experiments. Symbols denote experimental data, lines theoretical predictions.

In figure 9(b) we report the dimensionless time tmax/D at which the maximum value of
velocity is attained, for each value of r/R. The agreement appears fairly good; the weak
irregularity of experimental data is due to the relatively coarse temporal discretization of the
saccadic movement (20 flow fields have been measured during a saccade duration). Note that
the agreement is less satisfactory in the inner part of the domain; this is due to the fact that in
such a region the velocity is very small and affected by a greater relative experimental error.
Obviously, at the wall (r/R = 1) the maximum velocity is attained at the acceleration time, so
that tmax = tp. It appears that the more one moves towards the centre of the sphere the larger
is the time when the maximum velocity occurs.

As the agreement between theoretical predictions and experimental results has proved to
be satisfactory for all the experiments we now proceed to employ the theoretical model to obtain
some information on problems which are of potential clinical relevance. Let us first consider
the dependence of the maximum shear stress at the wall τmax from the saccade amplitude.
In figure 10(a) the dimensional value of τmax is plotted versus the saccade amplitude A.
All quantities refer to the prototype, i.e. to the real scale eye. The three curves are relative
to different values of the kinematic viscosity of the fluid. In all cases it appears that the
maximum shear stress at the wall does not strongly depend on the amplitude of eye rotations.
This result, which is not obvious, bears some practical importance. Indeed, small amplitude
saccadic movements are, by far, more frequent than large ones. Therefore, according to the
present results, small amplitude eye rotations stress the retina more than large movements and
should be regarded as the most potentially dangerous.

Finally, in figure 10(b) the dependence of the maximum shear stress at the wall τmax is
plotted versus the viscosity of the fluid for different saccade amplitudes. Kinematic viscosity
ν ranges between 10−6 (approximatively the viscosity of the completely liquefied vitreous)
and 5×10−3 (relative to the most viscous silicon oil employed during vitrectomy). The figure
shows that τmax significantly increases with the fluid viscosity up to a value, for the most
viscous case, which is more than twice than that reached in the physiological case (ν ∼ 10−4).
Thus, from a purely mechanical point of view, in order to minimize the stresses on the retina
it would be preferable to employ low viscosity tamponade fluids.
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Figure 10. (a) Dependence of the maximum shear stress at the wall τmax from saccade amplitude
A for different fluid viscosities (water ν = 10−6 m2/2, vitreous ν = 1.4 × 10−4 m2/2, silicon
oil ν = 10−3 m2/2). (b) Maximum shear stress at the wall τmax as a function of the kinematic
viscosity of the fluid ν for different saccade amplitudes.

7. Conclusions

The present work represents the first attempt to measure the flow field induced by saccadic
eye movements on a model of the vitreous chamber. Mechanical problems related to
vitreous dynamics are extremely complicated, but certainly worth being studied, especially
in connection with the occurrence of retinal detachment. As it often happens in attempting
to model biological systems it is necessary to resort to fairly idealized approaches and then
eventually proceed to progressively complicate the scenario. This was the aim of the present
work which is based on the following main simplifying assumptions: the vitreous chamber has
been considered a rigid spherical cavity and the vitreous body has been modelled as a purely
viscous homogeneous fluid. Even in the quite simple conditions considered here, information
which are potentially relevant from the clinical point of view have been obtained.

The second set of experiments, in which real saccadic movements were reproduced,
provides a useful insight into the flow field within the vitreous chamber. In particular, it has
been shown how fluid motion is generated at the wall, how it spreads towards the centre of
the domain and, finally, how it is dissipated. Shear stresses have also been evaluated from
the experimental data. It has also been shown that the maximum shear stress at the wall
is not strongly dependent on the saccade amplitude. This implies that small amplitude eye
rotations, being by far more frequent than large ones, are mainly responsible for the generation
of stresses on the retina. Moreover, it has been found that the maximum shear stress at the
wall significantly increases with the fluid viscosity; thus, from a purely mechanical point of
view, low viscosity tamponade fluids should be adopted after vitrectomy, in order to minimize
the stresses on the retina.

Future research should, in our opinion, account for the further complicating effects listed
below.

(i) The real shape of the vitreous chamber is not perfectly spherical because, typically, the
antero-posterior axis is shorter than the others and particularly due to the presence of the
lens in the anterior part. From the fluid dynamical point of view the non-sphericity of
the domain may significantly modify the flow field characteristics. This topic has been
recently addressed theoretically by Repetto (2005) in the limit of low viscosity fluid but
the problem remains open.
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(ii) The vitreous in physiological conditions is a visco-elastic fluid. Even if indications exist
that the elastic component plays a fairly minor role with respect to the viscous one it
would be worthwhile performing experiments employing visco-elastic fluids.

(iii) Strongly myopic eyes, which are most frequently subject to retinal detachment, are
elongated in the antero-posterior direction. From the analysis of some echographies of
human myopic eyes, we have observed that the antero-posterior axis can be larger than
the other axes by 30–40%. The intensities of the tangential stress along the boundary, i.e.
the retina, may be significantly affected by the ellipsoidal shape of the eye. Investigation
of the flow field within a domain so deformed may provide a sound interpretation of the
most frequent occurrence of retinal detachments in myopic eyes.
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