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Abstract Saccadic eye rotations induce a flow in the
vitreous humor of the eye. Any such flow is likely to have
a significant influence on the dispersion of drugs injected
into the vitreous chamber. The shape of this chamber devi-
ates from a perfect sphere by up to 10–20% of the radius,
which is predominantly due to an indentation caused by the
lens. In this paper we investigate theoretically the effect of
the domain shape upon the flow field generated by saccades
by considering an idealized model. The posterior chamber
geometry is assumed to be a sphere with a small indentation,
undergoing prescribed small-amplitude sinusoidal torsional
oscillations, and, as an initial step towards understanding the
problem, we treat the vitreous humor as a Newtonian fluid
filling the chamber. The latter assumption applies best in
the case of a liquefied vitreous or a tamponade fluid intro-
duced in the vitreous chamber after vitrectomy. We find the
flow field in terms of vector spherical harmonics, focusing
on the deviation from the flow that would be obtained in
a perfect sphere. The flow induced by the departure of the
domain geometry from the spherical shape has an oscillating
component at leading order and a smaller-amplitude steady
streaming flow. The oscillating component includes a circu-
lation cell formed every half-period, which migrates from the
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indentation towards the center of the domain where it disap-
pears. The steady component has two counter-rotating circu-
lations in the anterior part of the domain. These findings are
in good qualitative agreement with the experimental results
of Stocchino et al. (Phys Med Biol 52:2021–2034, 2007). Our
results predict a significant reduction in the expected time for
drug dispersal across the eye compared with the situation in
which there is no fluid flow present.

Keywords Eye biomechanics · Vitreous humor motion ·
Asymptotic expansion

1 Introduction

The posterior chamber of the eye has an approximately
spherical shape, and is filled with vitreous humor, a trans-
parent material with viscoelastic properties (Lee et al. 1992).
Besides providing an unhindered path for light to reach the
retina, the vitreous has the important mechanical roles of
supporting the eye shape, promoting the adherence between
the retina and the choroid (the vascular layer between the
retina and the sclera), and also acting as a diffusion bar-
rier between the anterior and posterior segments of the eye
(Lund-Andersen 2003). In some cases the posterior cham-
ber may be filled with a fluid with almost Newtonian prop-
erties. This may happen after vitrectomy (removal of the
vitreous humor) and refilling of the posterior chamber with
silicone oil, which is an increasingly routine surgical proce-
dure (Heimann et al. 2006). Alternatively, during the aging
process, the vitreous often undergoes a liquefaction process
called synchysis (Lund-Andersen 2003), whereby it progres-
sively loses its elastic properties.

In this article we focus on fluid motion in the vitreous
chamber induced by saccades, rapid movements of the eyeball
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that have several physiological causes, for example redirect-
ing the line of sight. After vitreous liquefaction or vitrectomy,
fluid motion relative to the eye wall is characterised by higher
velocities, since the vitreous chamber contains a purely vis-
cous fluid, with no elastic behavior.

A potentially important clinical implication of fluid mo-
tion in the posterior chamber relates to mass transport there.
Intra-vitreal drug injection is often used to deliver large quan-
tities of a drug to the retina (Xu et al. 2000). Subsequent trans-
port of the drug particles occurs due to both diffusive and
advective processes. Drug diffusion has been studied by sev-
eral authors (e.g. Xu et al. 2000; Maurice 2001; Cunha-Vaz
2004), but any fluid motion present in the posterior cham-
ber will also give rise to advective effects. Xu et al. (2000)
studied the advection induced by a bulk flow in the poster-
ior chamber, although no attempt has so far been made to
account for advective transport due to saccades.

Another medical condition that may be affected by fluid
motion in the posterior chamber is retinal detachment, in
which the retina separates from the choroid. Retinal detach-
ment is more frequent in the middle-aged or elderly popu-
lation with rates of around 20 in 100,000 per year and the
lifetime risk in normal eyes is about 1 in 300 (Li 2003).
The mechanisms controlling its incidence and progression
are poorly understood; however there are clinical indica-
tions that mechanical stresses exerted by the vitreous
humor on the retina play a fundamental role in the process
(Sebag 1989). Moreover, when a retinal tear has formed,
induced for any possible reason, the motion of the liquefied
vitreous is likely to play a fundamental role in the mecha-
nism of rhegmatogenous retinal detachment, which consists
of progressive infiltration of the vitreous through the retinal
break.

There are a few previous studies on flow in spherical mod-
els of the posterior chamber undergoing a prescribed periodic
angular displacement about a fixed diameter of the sphere.
David et al. (1998) modeled the vitreous humor as a visco-
elastic fluid, and found the leading-order flow analytically in
the limit of small-amplitude sinusoidal oscillations. Repetto
et al. (2005) used a perspex model filled with a Newtonian
fluid to obtain PIV flow measurements during both idealized
sinusoidal oscillations and models of real saccades. Repetto
et al. (2008) showed experimentally and analytically that, in
addition to a leading-order oscillatory flow, a Newtonian fluid
undergoing small-amplitude sinusoidal oscillations also has
a steady streaming component that appears at second order
and consists of two counter-rotating toroidal vortices, one
in each hemisphere. The leading-order flow component is
oscillatory, which, over a whole period, does not give rise to
particle drift. On the other hand, the steady streaming flow
induces a particle drift over long time scales.

The shape of the anterior part of the vitreous chamber
deviates from a sphere mainly due to the presence of the

lens, which causes an indentation there. Stocchino et al.
(2007) modeled the vitreous chamber as a sphere with a small
indentation in their experiments. They applied prescribed
sinusoidal oscillations, and showed that a complicated flow
field develops that includes circulation cells formed close
to the indentation every half-period. The cells then migrate
to the center of the domain, where they disappear. For low
Womersley numbers the circulation cells approximately
migrate along the straight line joining the apex of the inden-
tation to the center of the eye, and, as the Womersley number
is increased, significant deviations from this path appear.
The indentation also has a large influence on the wall shear
stress distribution, and the highest stresses are achieved there.
In addition Stocchino et al. (2007) investigated the particle
transport, which strongly depends upon the steady streaming
flow. The particle paths obtained were not closed after one
period of oscillation, meaning that the flow induces mixing,
and therefore has potential clinical importance. The particle
paths have two circulation cells that are reflections of one
another in the vertical plane of symmetry passing through
the center of the indentation. The rotation sense of the cells
causes a drift from the indentation apex to the center of the
domain (see Fig. 5 of that paper).

In this paper, we consider an idealized model of the fluid
motion in the posterior chamber during saccades of the eye.
We treat the chamber as a weakly deformed sphere filled with
a Newtonian fluid, and calculate the flow during prescribed,
small-amplitude, sinusoidal torsional oscillations about a ver-
tical diameter. We assume the deformation takes the form
of an indentation having the shape of a spherical cap, and
consider in particular the effect of the indentation upon par-
ticle transport and the stress on the retina induced by the
flow.

This work extends upon that by Repetto (2006), who
assumed the limit of high Reynolds number, corresponding
to a low-viscosity fluid and short-duration eye rotations, lead-
ing to a simplified system, which is the only previous similar
numerical work known to the authors that accounts for the
non-spherical shape of the vitreous chamber.

2 Model formulation

We consider a domain defined in spherical coordinates by its
bounding surface

r∗ = R∗(ϑ, ϕ), (1)

where r∗, ϑ and ϕ are respectively the radial, zenithal and
azimuthal coordinates, as shown in Fig. 1a (superscript stars
indicate dimensional variables that will later be made
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Fig. 1 (a) Sketch of
the coordinate system,
(b) cross-section through
the domain, illustrating
the definition of δ
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dimensionless). It is subject to prescribed periodic torsional
oscillations with angular displacement

β = −ε cos
(
ω0t∗

)
, (2)

about the vertical axis, where t∗ is time, ε the amplitude
(assumed small), and ω0 their angular frequency.

The domain is filled with a Newtonian fluid of constant
density ρ and viscosity µ. The dimensionless Navier-Stokes
equations with no-slip boundary conditions at the wall are

α2
(

∂

∂t
− ε sin t

∂

∂ϕ

)
u + α2 (u · ∇) u

+∇ p − ∇2u = 0, (3a)

∇ · u = 0, (3b)

u = v = 0, w = εR sin ϑ sin t [r = R(ϑ, ϕ)], (3c)

where the coordinates (r, ϑ, ϕ) rotate with the domain (that
is ϕ = φ − β(t), where φ is the azimuthal coordinate fixed
in space), and the following nondimensionalisation has been
used:

u = u∗

ω0 R0
, t = t∗ω0, (r, R) = (r∗, R∗)

R0
, p = p∗

µω0
.

(4)

In the above equations u = (u, v, w) represents the veloc-
ity components in the directions of the respective coordinates
(r, ϑ, ϕ), p represents the dynamic pressure, and R0 is the
radius of a sphere with the same volume, that is

R0 =



 1
4π

2π∫

0

π∫

0

R∗3 sin ϑ dϑ dϕ




1/3

. (5)

There are two dimensionless parameters in the system
(3), namely the amplitude, ε, and the Womersley number,

α =
√

ρω0 R2
0/µ (see also the list of variables in Table 1).

We write

R(ϑ, ϕ) = 1 + δR1(ϑ, ϕ), (6)

where δ is chosen so that the maximum absolute size of R1
is unity, see Fig. 1b. In this paper, we construct the domain
from two intersecting spheres with equal radii, following the
approach used by Stocchino et al. (2007). The fluid is
contained in the space that is inside one of the spheres but
outside the other, and the surface near the intersection is also
smoothed using a moving average filter to avoid artefacts. In
the real eye as the focal distance changes, the lens shape will
also change; an analysis of real eye cross-sections suggests
that δ has a significant range, varying between approximately
0.1 and 0.2. Throughout this paper we assume that δ is small,
and, where needed, we take δ = 0.15 as a representative
value.

We seek a series solution to (3) by expanding in ascending
powers of the small parameters ε and δ:

u = ε (u10 + δu11 + · · · ) + ε2 (u20 + δu21 + · · · ) + . . . ,

(7a)

p = ε (p10 + δp11 + · · · ) + ε2 (p20 + δp21 + · · · ) + . . . .

(7b)

The terms un0, pn0 constitute the flow in a sphere, and
u10, p10 and the steady components of u20, p20 were found
by Repetto et al. (2008), and the rest of the terms account
for the effect of the indentation. It is important to note that
we expect this expansion to be valid only for small to mod-
erate values of the Womersley number α. This is because at
large values of α a boundary layer of thickness 1/α forms at
the wall, so that, upon increasing α, when 1/α becomes as
small as δ the terms in the above expansion that are premul-
tiplied by high powers of δ grow too rapidly with increasing
α, and the series is not expected to converge. Therefore we
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Table 1 Variables appearing in
the problem and approximate
corresponding value

Symbol Description Typical physiological value

ν Kinematic viscosity 10−6 m2/s (liquefied vitreous)
7 × 10−4 m2/s (normal vitreous, from Lee et al. 1992)
1 − 5 × 10−3 m2/s (silicone oil)

ρ Density 103 kg/m3

R∗ Bounding surface of vitreous chamber 1.1 cm

δ Maximum fractional departure
of R∗ from a constant value

0.1–0.2 cm

ε Maximum angular displacement π/4

ω0 Oscillation angular frequency Wide range of values, for example actively turning eyes
5 Hz, reading 63 Hz, monophasic square wave
intrusions 12000 Hz, rapid eye movements 530 Hz,
slow eye movements 270 Hz (taken from Dyson et al.
2004)

α Womersley number Varies in a wide range of values

focus our attention on small to moderate values of α, which
is representative of many physiologically significant condi-
tions (see for instance Dyson et al. 2004; Stocchino et al.
2007). In this paper we find the leading-order perturbations
to the flows found by Repetto et al. (2008) caused by the
indentation, which correspond to the terms u11, p11 and the
steady components of u21, p21.

3 Flow at order ε

3.1 Leading-order flow

Repetto et al. (2008) showed that the leading-order flow, u10,
is purely azimuthal:

u10 = v10 = 0, w10 = g1(r)eit sin ϑ + c.c.,

p10 = constant, (8)

where c.c. denotes the complex conjugate, and

g1(r) = − i
2r2

(
sin kr − kr cos kr

sin k − k cos k

)
, k = e−iπ/4α. (9)

3.2 Perturbation due to the indentation: order εδ

The leading-order effects of the indentation upon the flow
appear at this order. The order εδ components of Eqs. (3) are

∂

∂t
u11 + 1

α2

(
∇ p11 − ∇2u11

)
= 0, (10a)

∇ · u11 = 0, (10b)

u11 = v11 = 0(r = 1). (10c)

The order εδ component of the boundary condition w =
ε(1 + δR1) sin θ sin t at r = 1 + δR1 becomes

R1
∂w10

∂r
+ w11 = R1 sin θ sin t (r = 1), (11)

which simplifies to

w11 = /R1 sin(ϑ)eit + c.c. (r = 1),

where / = − i
2

k
J5/2(k)

J3/2(k)
, (12)

and Jn is the Bessel function of the first kind of order n.
We expand the pressure field as a sum of spherical har-

monics, Y m
n (ϑ, ϕ), and the velocity field in terms of the vector

spherical harmonics, Pm
n , Bm

n and Cm
n (see Quartapelle and

Verri, 1995, for their definition), as follows:

u11 =
∞∑

n=0

n∑

m=−n

[
U mn

11 (r)Pm
n + V mn

11 (r)Bm
n

+ W mn
11 (r)Cm

n
]

eit + c.c., (13a)

p11 =
∞∑

n=0

n∑

m=−n

pmn
11 (r)Y m

n (ϑ, ϕ)eit + c.c. (13b)

Note that for any pair m and n, the vectors Pm
n , Bm

n and Cm
n

are mutually orthogonal; Pm
n is radial, while Bm

n and Cm
n span

the zenithal and azimuthal components, (and B0
n and C0

n are
a zenithal and azimuthal vector, respectively). The orthogo-
nality relations satisfied by Pm

n , Bm
n and Cm

n are described in
detail by Quartapelle and Verri (1995).
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Substituting the above sums into Eqs. (10a, b) we obtain

d2

dr2 U mn
11 + 2

r
d
dr

U mn
11 − U mn

11

[
1
r2

(
s2

n + 2
)

+ iα2
]

+2sn

r2 V mn
11 − d

dr
pmn

11 = 0, (14a)

d2

dr2 V mn
11 + 2

r
d
dr

V mn
11 − V mn

11

(
s2

n

r2 + iα2
)

+ 2sn

r2 U mn
11

− sn

r
pmn

11 = 0, (14b)

d2

dr2 W mn
11 + 2

r
d
dr

W mn
11 − W mn

11

(
s2

n

r2 + iα2
)

= 0, (14c)

d
dr

U mn
11 + 2

r
U mn

11 − sn

r
V mn

11 = 0, (14d)

where sn = √
n(n + 1). The solution is fully three-dimen-

sional, and, eliminating irregularities at r = 0, is given by

U mn
11 = b1rn−1 + b2

Jn+1/2(kr)

r3/2 , (15a)

V mn
11 = b1

sn

n
rn−1 − b2

n
sn

Jn+1/2(kr)

r3/2

+ b2
k
sn

Jn−1/2(kr)

r1/2 , (15b)

W mn
11 = b3

Jn+1/2(kr)

r1/2 , (15c)

pmn
11 = b1

k2

n
rn . (15d)

The boundary conditions (10c) and (12) become

u11 =
∞∑

n=0

n∑

m=−n

(
V̂ mn

11 Bm
n + Ŵ mn

11 Cm
n

)
eit

+ c.c. (r = 1), (16)

where the constants V̂ mn
11 and Ŵ mn

11 depend on the domain
shape (given by R1) and can be determined numerically.
Applying these yields

b2 = V̂ mn
11

(k/sn)Jn−1/2(k) − ((2n + 1)/sn)Jn+1/2(k)
, (17a)

b1 = −b2 Jn+1/2(k), (17b)

b3 = Ŵ mn
11

Jn+1/2(k)
. (17c)

3.3 Results

In this section we present plots of u11 and p11, which are
given by Eqs. (13), (15) and (17), and represent the
leading-order perturbation of the flow due to the indentation.
For convenience we also introduce a Cartesian coordinate
system (x, y, z) where the z-axis is vertical and coincides

with the axis of rotation and the positive x-axis goes through
the center of the indentation.

Figure 2 shows plots of u11 for two different values of the
Womersley number at t = 0, which is the time at which the
angular velocity is zero. Both plots clearly show a similar
structure to that reported in the experiments by Stocchino
et al. (2007), and the two flow fields are qualitatively simi-
lar, even though the leading-order flow, u10, changes signif-
icantly.

The model also allows us to obtain information about the
three-dimensionality of the flow. Figure 3 shows the three
components of u11 with α = 1 on two different horizontal
planes. On the plane z = 0.2 the circulation cell is still visible
(Fig. 3a), although on z = 0.5 it is no longer apparent. For
symmetry reasons there is no vertical flow on the plane z = 0,
but on z = 0.2 (Fig. 3b) there is an upward flow upstream
of the indentation and a downward flow on the downstream
side, which occurs since the indentation tends to sweep the
fluid around it as it moves. The flow on z = 0.5 (Fig. 3c, d)
has a similar vertical component, while the horizontal flow
is predominantly in the y-direction.

The circulation cells found in the experiments by
Stocchino et al. (2007) migrated towards the center of the
domain before being annihilated, and, for the range of
Womersley numbers of interest, we find a similar behavior.
Figure 4 shows u10 + δu11 during the first half-period, and
we see that a circulation cell forms close to the indentation
at t ≈ 0 and progresses to the center of the eye, where it van-
ishes, in agreement with the experimental findings. During
the second half-period another cell is created with the oppo-
site sense of rotation. In their experiments, Stocchino et al.
(2007) also found that as α is raised the circulation cells devi-
ated increasingly from the straight path joining the apex of
the lens to the center of the domain. We are unable to repro-
duce this effect, and anticipate that it occurs in higher-order
terms that were neglected in this analysis.

For small δ the center of the circulation is located at points
where the primary velocity, u10, equals zero. Thus calcula-
tion of its radial velocity is straightforward, and the high-
est nondimensional speeds are attained for small values of
α. The dimensional velocity of migration of the circulation
cell is obtained by multiplying the dimensionless value by
(µ/(ρR0))α

2, and increases as α increases.
In Fig. 5, we plot p11 and the wall shear stress distribution

arising due to u11 with α = 1 at t = 0, in a region around
the indentation (the time is chosen to coincide approximately
with the maxima of the respective quantities). Both the pres-
sure and the shear stress are largest close to the indentation;
the pressure is anti-symmetric about the indentation, while
the shear stress is symmetric about it. The extrema in the
pressure occur just in front of (maximum) and behind (min-
imum) the indentation (see Fig. 5a). Note that these result
predict that the size of the spatial pressure variation due to
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Fig. 2 Horizontal components of the flow vectors associated with u11,
the flow at order εδ (which represents the leading-order flow pertur-
bation due to the indentation), shown on the plane z = 0 at t = 0.
(a) α = 1, (b) α = 5. The center of the indentation is at the point
(1, 0), and the scales of the vectors in the two plots are different (see
also Fig. 6a). On this plane the vertical component of the flow equals
zero due to symmetry. Maximum vector length (a) 0.20, (b) 3.35

the indentation is small compared with the intraocular pres-
sure.

The shear stress amplitude is maximized at the center of
the indentation, which is in agreement with the experimental
findings of Stocchino et al. (2007).

In Fig. 6, the effect of the value of α is investigated; Fig. 6a
gives the maximum size of the velocity components u10 and
u11 and Fig. 6b shows the maximum size of the wall shear
stress arising due to these components, which is nondimen-
sionalised on the same scale as the pressure. Both appear to
show that there is an approximately linear dependence on α

as α increases. In fact the wall shear stress arising from the

u10 component (solid curve in Fig. 6b) exactly equals the
maximum modulus of u11 (dashed curve in Fig. 6a). This is
because max(|u11|) is achieved at r = 1, and at this point
point u11 is set by the boundary condition (12), which relates
it to the radial gradient of u10, which also equals the shear
stress there. Since max(|u10|) is constant while max(|u11|)
increases with α the asymptotic solution found here is un-
likely to converge for large α, consistent with the comments
in Sect. 2.

4 Problem at order ε2

As shown by Repetto et al. (2008) the flow at order ε2δ0

consists of streaming components that are independent of
time, and periodic components with angular frequency 2.
This is also true for the solution at order ε2δ; thus velocity
and pressure can be expanded in the form:

u21 = u(0)
21 + u(2)

21 e2i t + u(2)
21 e−2i t ,

(18)
p21 = p(0)

21 + p(2)
21 e2i t + p(2)

21 e−2i t .

The steady streaming flow, u(0)
21 , induces particle displace-

ments over long times, which is particularly relevant for the
application to mass transport in the vitreous chamber of the
eye. Hence, at order ε2δ, we solve only for the steady stream-
ing components, u(0)

21 , and neglect the frequency-two compo-
nents.

The steady streaming in a sphere at order ε2δ0 was ana-
lyzed in detail by Repetto et al. (2008) using both experiments
and theory. It is axisymmetric, and is separable in r and ϑ .
The dependence on ϑ can be found in closed form, while the
dependence upon r takes the form of an integral of known
functions, which can be evaluated numerically (at much less
cost than a fully numerical solution). Analytical expressions
for the integrals were presented in the two limiting cases of
large and small α. The flow takes the form of two axisym-
metric toroidal circulations, one in each hemisphere, and the
particle paths are closed. A particle starting close to the equa-
torial plane moves radially towards the center of the sphere,
then along the axis of rotation towards the poles and back
towards the equatorial plane close to the wall. We refer the
reader to Repetto et al. (2008) for further details.

Here we extend this work and examine the perturbation in
the steady streaming due to the indentation, which is given
by u(0)

21 and p(0)
21 . The details of the solution are given in

Appendix.

4.1 Results

In this section we present plots of u(0)
21 and p(0)

21 , which are
calculated in Appendix, and represent the leading-order
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Fig. 3 Plot of u11, the flow at
order εδ, shown on the planes
(a, b) z = 0.2 and (c, d) z = 0.5
with t = 0 and α = 1 in all
plots. (a, b) Horizontal flow
components, (b, d) contours of
the z-component of the flow
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perturbation of the steady streaming flow due to the inden-
tation. Figure 7 gives flow vectors on the equatorial plane
for two different values of α, which show two large circula-
tion structures that are reflections of each other in the verti-
cal plane through the center of the indentation (ϕ = 0, π ).
The flow in y > 0 is clockwise, and therefore particles
close to the indentation are advected towards the center of
the domain. This agrees with the experimental results of
Stocchino et al. (2007), who integrated the experimentally
measured flow fields to find particle paths. After filtering out
the leading-order oscillatory behavior, particles close to the
indentation were advected towards the center (note however
that any experimental measurements include the time-
average flow at all orders of ε and δ). The order ε2δ0 streaming
solution is axisymmetric and purely radial on the equatorial
plane z = 0, so the circulation described above accounts for
the leading-order non-radial time-averaged flow, which, as
discussed by Stocchino et al. (2007), is of great importance
for mass transport. This flow tends to sweep particles away
from the back of the indentation towards the center of the
domain, and back round towards the indentation.

Figure 8a and b shows plots of respectively the horizontal
and vertical components of u(0)

21 on the plane z = 0.2 for
α = 5. There is a complex three-dimensional structure, and
the circulation cells have a considerable vertical extent. The

vertical velocity has a significant negative region near ϕ = 0
and a positive region near ϕ = π/4. This is also apparent
from Fig. 9, which shows the flow on vertical planes passing
through these regions.

In Fig. 10 the dependence of the maximum speed of the
steady flow components u(0)

20 and u(0)
21 upon α is given. The

intensity of both flows increases as α increases, but
max(|u(0)

21 |) increases faster, which is also consistent with
the prediction in Sect. 2 that the asymptotic solution will
break down for large α.

5 Discussion and conclusions

We have developed a model of fluid flow in the vitreous
chamber of the eye induced by saccades that accounts for a
small departure from a spherical shape due to the lens. The
saccades are represented as small-amplitude sinusoidal tor-
sional oscillations about a vertical diameter. We found the
flow using a double asymptotic expansion in the oscillation
amplitude and geometrical perturbation, and focused on the
difference between the flow in this geometry, and that which
would be obtained in a perfect sphere.

We have made several idealizations in this study, and
we now discuss them briefly. Although we only presented
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Fig. 4 Streamlines of
u10 + δu11, the calculated flow
at order ε, on z = 0 (the
equatorial plane) with δ = 0.15,
α = 5, shown at four equally
spaced time points in the first
half-period (the streamlines in
the second half-period are the
same)
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Fig. 5 (a) Pressure distribution
p11 and (b) magnitude of wall
shear stress arising due to u11,
shown at the domain surface in a
region around the indentation at
ϑ = π/2, ϕ = 0 (both are
approximately zero over the rest
of the surface). In both plots
α = 1 and t = 0
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Fig. 6 Plots of the dependence
of the solutions upon the
Womersley number, α. (a) Flow
intensity (maximum flow speed)
at order ε, (b) wall shear stress
at order ε
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Fig. 7 Plot of u(0)
21 on the plane

z = 0, which is the perturbation
to the steady streaming flow
induced by the indentation.
(a) α = 2, (b) α = 5. Only
y > 0 is shown, since the whole
field is symmetric in the x-axis

−1 −0.5 0 0.5 1
0

0.5

1(a)

x

y

−1 −0.5 0 0.5 1
0

0.5

1(b)

x

y

Fig. 8 Steady component of
the order ε2δ flow, u(0)

21 (the
perturbation to the steady
streaming induced by the
indentation), on the plane
z = 0.2 with α = 5.
(a) Horizontal components,
(b) vertical component of the
velocity, shown in y > 0 only
(since the whole field is
symmetric)
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Fig. 9 Steady component of
the order ε2δ flow on the
vertical planes (a) ϕ = 0, π ,
(b) ϕ = π/4, 5π/4 (shown in
z > 0 only since symmetric)
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Fig. 10 Plots of the dependence of the flow intensity (maximum flow
speed) on the Womersley number α, at order ε2

results for an idealized vitreous chamber shape given by the
smoothed intersection of two spheres, our model is valid for
any small perturbation of a sphere. We used this shape since it
allows comparison with the experiments by Stocchino et al.
(2007), and also helps to isolate and understand the effect
of the indentation due to the lens, while neglecting effects

of minor importance. Indeed we also ran the model using
more realistic geometries, which yielded qualitatively similar
results to those presented here. We intend to investigate
different geometries in future work, including geometries
representing myopic eyes and eyes fixed with a scleral buckle.
The surface of the retina is not completely smooth, but since
the size of the wall roughness is much smaller than δ, we
expect it to have a minor influence on the solution.

A second assumption was that of a Newtonian fluid.
Although a viscoelastic model would be more faithful to the
real vitreous humor in physiological conditions, our model
is relevant after vitreous liquefaction or vitrectomy, and both
conditions are particularly important from the clinical point
of view. However, since we assume that the Womersley num-
ber is not large, our results are most appropriate for the sacc-
adic movements of eyes filled with silicone oils, following
a vitrectomy. Vitrectomy is becoming the method of pref-
erence to treat rhegmatogeneous retinal detachments, and,
in the study by Heimann et al. (2006), 15.8% of patients
had silicone oil as the tamponade fluid. Moreover, we
expect that the Newtonian problem will provide some insight
into the flow in the much more complex case of visco-elastic
fluid.
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We also represented the saccades by idealized sinusoidal
torsional oscillations. In their experimental work,
Stocchino et al. (2007) found that the flow becomes approxi-
mately periodic after a few periods, suggesting that the solu-
tions presented here are relevant even for relatively short
intervals of approximately sinusoidal motion, but we leave
the problem of non-sinusoidal oscillations for future work.
Finally, as mentioned in the Introduction, diffusion also plays
a role in dispersal, although such a study is beyond the scope
of the present paper.

This model has elicited a more detailed picture of the flow
structure than was previously available, in particular provid-
ing further insight into the three-dimensional nature of the
flow. We found that circulation structures form due to the
indentation in both the leading-order oscillatory flow and
also in the second-order steady streaming component. In the
leading-order flow a circulation is formed every half-period
just inside the indentation, which proceeds to migrate towards
the center of the domain, where it disappears. This is con-
sistent with observations in the experiments by Stocchino
et al. (2007). The steady streaming flow contains two counter-
rotating circulations, which have the effect of sweeping par-
ticles away from the indentation towards the center of the
domain, and then out to the sides before returning towards the
indentation. Again this is in good agreement with the exper-
imental results obtained by Stocchino et al. (2007) based on
the time integration of particle paths on the equatorial plane.

The streaming flow component u(0)
20 does not induce any

mixing between the anterior and posterior regions, while
the circulations of u(0)

21 are largely confined to the anterior
segment. Therefore we anticipate that there is likely to be
relatively little particle exchange between the anterior and
posterior halves of the posterior chamber. Thus it may be
important to ensure that drugs intended for delivery to the
retina are injected into the posterior half.

We now compare the relative importance of advective and
diffusive effects by estimating the Péclet number, Pe, during
reading. It is given by U L/D, where L is a typical length-
scale, U is a typical velocity, and D is the diffusion coefficient
of interest. As described in the Introduction the steady flow
component has a dominant effect on mass transport.

Here we consider flows that are dominated by advective
effects. In the limit of zero diffusion, flows consisting of
closed streamlines cannot induce mixing, since mass can only
be transported around the streamlines, and will always return
to its starting position. The flow components u10, u11 and u(0)

20
each consist of closed streamlines, and thus the component
u(0)

21 is the first component that can induce mixing. We take
ε ≈ 0.16 andω0 ≈ 63 s−1 (Dyson et al. 2004). The kinematic
viscosity of the real vitreous humor is approximately 7 ×
10−4 m2s−1 (silicone oils, commonly used as tamponade flu-
ids after vitrectomy, have a higher viscosity, approximately
1–5 × 10−3m2 s−1, and the completely liquefied vitreous

humor has a lower viscosity, similar to water). Using this
estimate and a typical eye radius R0 = 0.012 m gives α ≈
3.6, which means, using the solutions found in this paper, that
max(|u(0)

21 |) ≈ 2×10−2. For δ = 0.15 we therefore obtain the
velocity scale U = ε2δ max(|u(0)

21 |)ω0 R0 ≈ 6 × 10−5 m/s.
Fluoroscein, a commonly used diagnostic tool in ophthal-
mology, has D ≈ 6 × 10−6 cm2 s−1 (Kaiser and Maurice
1964), which leads to

Pe = U R0/D ≈ 1200. (19)

Since max(|u(0)
21 |) depends strongly on the Womersley

number (see Fig. 10) the predicted Péclet number will vary
significantly too. In addition there is probably typically less
saccadic activity than this on average. However, the Péclet
number is nevertheless likely to be large, and so we pre-
dict that advection will dominate strongly over diffusion,
and therefore particle transport should not be neglected in an
analysis of drug dispersion.

Xu et al. (2000) also attempted to estimate the Péclet num-
ber in the vitreous chamber. In their model they accounted for
advection induced by a steady, permeating flow through the
vitreous, driven by a pressure drop between the anterior and
the posterior surfaces of the vitreous chamber. Their estimate
of the magnitude of such a velocity was 10−8 m/s, which is
approximately 103 times smaller than the streaming velocity
induced by eye rotations predicted by our model. This led the
authors to estimate a Péclet number of approximately 0.4.

We may also use these results to estimate the timescale for
advection across the eye during reading, which is given by
2R0/U ≈ 7 min, corresponding to over 4,000 cycles. Even
though there is probably typically less saccadic activity than
this, this timescale does suggest that particle transport across
the eye will take at most a few hours. On the other hand the
diffusion timescale across the eye is much longer, approxi-
mately (2R0)

2/D ≈ 11 days.
Atluri and Mitra (2003) investigated residence times of

chemicals injected into the vitreous humor in anesthetized
rabbits (in that case R0 ≈ 0.008 m). Figure 2a of Atluri
and Mitra (2003) shows the half-life of the chemical con-
centration, which increases rapidly with the number of car-
bon atoms. For molecules with six carbons the half-life is
around two hours, meaning that for fluoroscein for exam-
ple (which has 20 carbon atoms) the half-life is expected
to be many hours. This time scale, however, is likely to be
smaller than that of diffusion within the vitreous chamber
(4R2

0/D ≈ 5 days for a rabbit eye). Therefore, either an
additional mixing process takes place (e.g. advection) or the
initial distribution of the chemical in the vitreous chamber
crucially affects the efficiency of the treatment. If, for exam-
ple, the chemical is initially injected close to the retina, it is
likely that a significant amount of it exits the vitreous cham-
ber into the retina before complete mixing in the chamber
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has occurred, meaning it is improbable that all parts of the
retina receive similar concentrations. However, if there is
also advection then the time scale for mixing dramatically
decreases (it is a few minutes according to our estimate of
the streaming velocity in the case of liquefied vitreous). Of
course, for non-liquefied vitreous the advection time scale
is expected to be significantly larger. However, the pres-
ent results give a strong indication that it is vital to account
for advection due to flow of the vitreous humor induced by
saccades when studying transport processes in the vitreous
chamber.
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Appendix: Details of the calculation of the steady
streaming component at order ε2δ

At this order the governing equations read:

∇2u21 − ∇ p21 − α2 ∂u21

∂t

= α2
(

u10 · ∇u11 + u11 · ∇u10 − sin t
∂u11

∂ϕ

)
, (20a)

∇ · u21 = 0, (20b)

u21 = 0, v21 = −∂v20

∂r
R1, w21 = 0 [r = 1],

(20c)

We neglect oscillating terms, and expand the steady com-
ponent of the right-hand side of (20a) in terms of vector
spherical harmonics:
(

u10 · ∇u11 + u11 · ∇u10 − sin t
∂u11

∂ϕ

)(0)

=
∞∑

n=0

n∑

m=−n

[
Gmn

P (r)Pm
n +Gmn

B (r)Bm
n +Gmn

C (r)Cm
n
]
+c.c.,

(21)

where the superscript (0) denotes the steady component.
We calculate the functions Gmn

P , Gmn
B and Gmn

C numerically
from the solutions u10 and u11, which are already found, by
employing the orthogonality properties of the vector spheri-
cal harmonics.

We then expand u(0)
21 and p(0)

21 as follows:

u(0)
21 =

∞∑

n=0

n∑

m=−n

×
[
U mn

21 (r)Pm
n + V mn

21 (r)Bm
n + W mn

21 (r)Cm
n
]
+ c.c., (22a)

p(0)
21 =

∞∑

n=0

n∑

m=−n

pmn
21 (r)Y m

n + c.c. (22b)

Substituting (21), (22a) and (22b) into (20a) and (20b),
for each values of m and n we obtain the following set of
ordinary differential equations:

d2

dr2 U mn
21 + 2

r
d
dr

U mn
21 − U mn

21

r2

(
s2

n + 2
)

+ 2sn

r2 V mn
21

− d
dr

pmn
21 = α2Gmn

P , (23a)

d2

dr2 V mn
21 + 2

r
d
dr

V mn
21 − s2

n

r2 V mn
21 + 2sn

r2 U mn
21

− sn

r
pmn

21 = α2Gmn
B , (23b)

d2

dr2 W mn
21 + 2

r
d
dr

W mn
21 − s2

n

r2 W mn
21 = α2Gmn

C , (23c)

d
dr

U mn
21 + 2

r
U mn

21 − sn

r
V mn

21 = 0, (23d)

which, enforcing regularity at r = 0, have solution

U mn
21 = a1rn−1 + a2rn+1 + rn−1 I mn

1 (r) + r−n I mn
2 (r)

+ rn+1 I mn
3 (r) + r−n−2 I mn

4 (r), (24a)

V mn
21 = 1

sn

[
a1(1 + n)rn−1 + a2(3 + n)rn+1

+ (1 + n)rn−1 I mn
1 (r) + (2 − n)r−n I mn

2 (r)

+ (3 + n)rn+1 I mn
3 (r) − nr−n−2 I mn

4 (r)
]
, (24b)

W mn
21 = a3rn + rn I mn

5 (r) + r−n−1 I mn
6 (r), (24c)

where

I mn
k (r) =

r∫

0

Fmn
k (r ′)dr ′, k = 1, . . . , 6, (25)

and

Fmn
1 (r) = − r−n+2

8n2 − 2
f mn(r), (26a)

Fmn
2 (r) = rn+1

8n2 − 2
f mn(r), (26b)

Fmn
3 (r) = r−n

8n2 + 16n + 6
f mn(r), (26c)

Fmn
4 (r) = − rn+3

8n2 + 16n + 6
f mn(r), (26d)

Fmn
5 (r) = α2r−n+1Gmn

C

2n + 1
, (26e)

Fmn
6 (r) = −α2rn+2Gmn

C

2n + 1
, (26f)

and

f mn(r) = α2
[

sn
d
dr

(
rGmn

B
)
− s2

nGmn
P

]
. (27)

123



76 R. Repetto et al.

We expand the boundary conditions, (20c), as a sum of
vector spherical harmonics:

u21 =
∞∑

n=0

n∑

m=−n

(
V̂ mn

21 Bm
n + Ŵ mn

21 Cm
n

)
(r = 1), (28)

where V̂ mn
21 and Ŵ mn

21 are constants, and enforcing the bound-
ary conditions yields

a1 = 1
2

[
Fmn

1 (1) + Fmn
2 (1) + Fmn

3 (1) + Fmn
4 (1) − sn V̂ mn

21

− 2I mn
1 (1) − (1 + 2n)I mn

2 (1) − (3 + 2n)I mn
4 (1)

]
,

(29a)

a2 = −a1 − I mn
1 (1) − I mn

2 (1) − I mn
3 (1) − I mn

4 (1), (29b)

a3 = Ŵ mn
21 − I mn

5 (1) − I mn
6 (1). (29c)
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