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Barriers to transport induced by periodic oscillations in a physical model of the
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Understanding mixing processes that occur in the human vitreous chamber is of fundamental importance
due to the relevant clinical implications in drug delivery treatments of several eye conditions. In this article we
rely on experimental observations (which demonstrated that dispersion coefficients largely dominate diffusive
coefficients) on a physical model of the human eye to perform an analysis based on Lagrangian trajectories. In
particular, we study barriers to transport in a particularly significant two-dimensional section of the eye model
by using nonlinear dynamical systems theoretical and numerical tools. Bifurcations in the system dynamics are
investigated by varying the main physical parameters of the problem.

DOI: 10.1103/PhysRevE.83.036311 PACS number(s): 47.63.−b, 05.45.−a, 47.51.+a, 87.85.gf

I. INTRODUCTION

The posterior chamber of the eye represents most of the
volume of the human eye and is filled with vitreous humor,
an incompressible, transparent, and either viscoelastic or
Newtonian fluid which accomplishes several mechanical and
physiological tasks [1]. The shape of the vitreous chamber
is mostly spherical except for an indentation in the anterior
part (due to the presence of the lens), whose size can be
approximately 10%–30% of the eye globe mean radius. The
human vitreous can be set in motion by different kinds of
eye rotations. The main eye movements occur with a vertical
axis of rotation and are usually termed as saccades. The
saccades are characterized by a wide range of amplitude
and duration and have several physiological causes, for
example, redirecting the line of sight. Metrics of saccadic
eye movements are reported in detail in Ref. [2]. In the
same reference, measurements of the human eye movements
are reported in different circumstances and in many cases
saccadic movements possess a strong periodicity. Based on
these observations, in the present analysis, saccades, as a first
approximation, are reproduced with periodic sinusoidal tor-
sional oscillations ε(t) = A sin(ωt), where A is the oscillation
amplitude and ω the angular frequency.

A potentially important clinical implication of vitreous
humor dynamics is its effect on mass transport in the posterior
chamber. Indeed, several eye conditions (age-related macular
degeneration, glaucoma, diabetic retinopathy) are treated by
intravitreal delivery of drugs using different techniques [3]
and, moreover, several drugs are effective only inside a narrow
range of concentrations and for a prescribed length of time [4].
Thus, an understanding of mixing processes in the vitreous
humor is extremely important to obtain the desired perfor-
mances of the medical treatment. In the literature many studies
(theoretical and numerical) are reported regarding exclusively
diffusive transport in the vitreous humor (see Ref. [5] for
a comprehensive bibliography), disregarding completely the
role of the vitreous motion due to saccades. On the contrary,
the dynamical processes that the vitreous undergoes during
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typical eye movements can dramatically influence the mass
transport within the vitreous chamber. Recent studies [6,7]
showed experimentally and analytically that, in addition to a
leading-order oscillatory flow, a Newtonian fluid undergoing
torsional sinusoidal oscillations also has a steady streaming
component that appears at second order and consists of two
counter-rotating toroidal vortices, one in each hemisphere for
a perfect sphere and in a more complicated flow pattern in
a deformed domain as in the present case. The leading-order
flow component is purely oscillatory, thus, it does not produce
a net particle drift after each period. On the contrary, the
steady streaming flow induces a particle drift over long time
scales whose consequences on the mass transport have been
described in Ref. [7]. The main result of the analysis in the
latter study was that the dispersion coefficients are four orders
of magnitude larger than the molecular diffusion coefficient.
In the same reference a brief outline of the role of flow
inhomogeneity, known to be relevant in mass transport [8],
was given. In fact, since the mentioned study was based on
Lagrangian absolute statistics, the effect of spatially distributed
flow structures was by definition disregarded due to the
fact that Lagrangian statistics involve averages over many
particles. In particular, particles displacements near energetic
structures, like vortices, are averaged together with others
in quiescent regions, concealing the possibility to detect
Lagrangian material structures.

The experimental measurements were conducted mainly
on the equatorial plane, being a plane of symmetry for the
domain, on which the flow is perfectly two-dimensional (2D).
A smaller set of measurements were also conducted on the
vertical plane containing the centers of both the sphere and
the lens, which is in turn a plane of symmetry for the domain.
Here, we present an extensive analysis of the mixing processes
occurring within a physical model of the vitreous chamber
during periodic oscillations, with the aim of investigating the
presence of barriers to transport (also known as Lagrangian
coherent structures or LCSs) and their dependence on the main
physical parameters. These structures were not investigated at
all in Ref. [7].

Since LCSs are, by definition, material structures of the
flow, they act as barriers to mass transport, inhibiting in some
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circumstances an efficient mixing; see Refs. [9–14] among
many others.

II. EXPERIMENTAL SETUP

The experimental model we used for the 2D particle image
velocimetry (2D-PIV) measurements [7] is sketched in Fig. 1,
where the vitreous chamber is modeled as a sphere of radius
R0 with an indentation of size L on one side, representing
the human lens. Typically the human eye globe radius is
about 10–12 mm and the lens produces an indentation that
may vary from 10% to 30% of the mean radius, depending
on the age and healthiness of the subject [1]. In the same
reference the characteristic value of the vitreous viscosity
can be found, which can assume values ranging from 7×
10−4 m2 s−1 (healthy vitreous) down to a value similar to
the water viscosity. The latter case is true when the vitreous is
completely liquefied or replaced with tamponade fluids.

In the present analysis, we treat the vitreous as a Newtonian
fluid and, therefore, the physical model is filled with an
incompressible Newtonian fluid, namely an aqueous solutions
of glycerol at concentrations between 70% and 98%. The
dynamic viscosity of the working solution was measured at
the beginning of each experimental run using a falling ball
viscometer, and care was taken to maintain a constant room
temperature during each experimental run so the viscosity
remained constant.

The Eulerian flow resulting by setting in oscillation the
model around the z axis is governed by three dimensionless

parameters: the Womersley number α =
√

R2
0ω/ν (where ν is

the kinematic viscosity of the fluid), the torsional oscillation
amplitude A, and a geometrical parameter, namely the indenta-
tion size δ = L/R0. The Womersley number can be physically
interpreted as the ratio between the characteristic dimension of
the domain (R0) and the thickness of the Stokes-type boundary
layer at the wall. During typical eye movements, A can take
any value up to π/4, whereas the value of α may take a
wide range of values spanning many orders of magnitude from
order 1 up to around 104 in the case of microsaccades [2]. In
particular, eye movements can be generated by different causes
and for different tasks. Many studies have been devoted to
analyze the characteristics of several kinds of eye movements,
in addition to the single saccades. For example, the eye globe
movements during reading have been extensively studied by
the authors of Refs. [15,16] and they found that, on average,

FIG. 1. Sketch of the domain under investigation.

TABLE I. Parameters and planes of measurement used for the
experiments.

Expt. No. of Plane of
series runs A (rad) α δ measurement

s1–s28 305 0.07–0.35 2.5–50.4 0.1–0.3 Equatorial
s29–s31 36 0.174 3.5–17.6 0.1–0.3 Vertical

the amplitude of the saccades required to read was about 0.16
rad with a corresponding angular frequency ω around 50–
60 s−1. Therefore, using the typical dimension of the human
eye and different values for the effective vitreous viscosity
(healthy vitreous or liquefied vitreous) it is easy to show that in
the case of reading movements the corresponding Womersley
number may vary from about 3 to 40.

In the present analysis, we have employed a magnified
physical model of the eye with a scale ratio of about 4. There-
fore, scale effects need to be properly accounted for. In order
to ensure similitude between the model and the prototype,
we need to preserve all dimensionless parameters that matter
for the problem. The parameters A and δ are preserved by
rotating the eye model with the same amplitude as in real eye
movements and scaling up the vitreous chamber geometry.
Conservation of the dimensionless parameter α implies that the
frequency of the eye movements shall be scaled accordingly.

The measurements were performed with the parameter
values and planes of measurement shown in Table I. The
three-dimensional flow (as well as the flow on the equatorial
plane) is time dependent. In our analysis, we focus on the
steady-streaming component of the flow on the equatorial
plane, which is not time dependent. Note that the dynamics
on the equatorial plane is not incompressible, i.e., the vertical
(along the z axis) component of the velocity is identically
zero but its derivative with respect to z is not. This has
important implications for the transport barriers. The experi-
ments cover a fairly wide range of the physical parameters;
in fact, the Womersley number ranges from about 2 to a
value of approximately 50, the oscillation amplitude was
varied in the range [0.07,0.35] rad, which contains the most
common physiological values, excluding microsaccades, and
the indentation size is varied between 0.1 and 0.3.

Finally, note that in order to directly measure the steady
streaming and filter out the oscillatory component of the flow
with the 2D PIV system adopted, we set the pulse separation
for image pairing, i.e., the time interval between two successive
frames, to be a multiple of the oscillation period T .

III. METHODS

On the equatorial plane, starting from the Eulerian fields,
Lagrangian particle trajectories can be numerically computed
by integrating the equations:

ẋ = f (x), (1)

where x(t) is the particle position at time t and f (x) is
the velocity field at point x, starting from a uniform grid
of initial conditions. In a 2D system with time-independent
and a not-incompressible velocity field, we cannot have
chaos or Kolmogorov-Arnold-Moser tori. Moreover, due to
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(a) (b) (c)

FIG. 2. Measured 2D velocity fields for A = 0.0873 rad, δ = 0.3, and α = 12.06 (a); α = 23.55 (b); and α = 29.37 (c).

the Poincaré-Bendixson theorem [17], the (complete) barriers
to transport are limit cycles (either attracting or repelling
periodic orbits) and multiple closed heteroclinic connections,
whereas stable and unstable manifolds of saddle points are
partial barriers to transport. Since we are analyzing only the
steady-streaming component of the flow, we can detect these
manifolds by numerically integrating the system forward and
backward in time, starting from initial conditions very close to
each saddle point.

Figure 2 shows three examples of velocity fields on the
equatorial plane taken for different values of the Womersley
number α, keeping the oscillation amplitude and indentation
size fixed. For any value of the Womersley number the flow
is dominated by the presence of intense circulation structures
located in the anterior part of the domain close to the lens,
whereas the posterior part seems not to be affected by the
presence of the lens. In this region the flow is mainly radial
toward the center of the domain as in the case of the steady
streaming observed in a perfect sphere [6]. Increasing α, at
fixed oscillation amplitude and geometry, several changes in
the Eulerian fields can be observed, which lead to the appear-
ance of different recirculations with different sense of rotation.

Since we intend to investigate the LCSs associated to the
Eulerian fields, the starting point of our analysis are the
Lagrangian trajectories, solutions of the dynamical system
(1). We analyzed several system configurations by varying the
three parameters (A, δ, and α) and we found that the dynamics
of the system and therefore the location of the LCSs are
mainly influenced by the Womersley number. This parameter
is responsible for important bifurcations in the dynamical
system.

IV. ANALYSIS

Figures 3 and 4 show results corresponding to some values
of α. The saddle points are plotted as empty red circles and
the other equilibrium points as green dots (if stable) or red
crosses (if unstable). The dashed green and solid red curves are
respectively the stable and unstable manifolds of the saddles,
while the light gray ones are some trajectories of the drug
particles. By looking at the stability of the equilibria and of the
manifolds, it is straightforward to understand the direction of
the particles. All the results have been obtained by considering
an oscillation amplitude A = 0.0873 rad and an indentation
δ = 0.3.

The equilibrium points have been numerically located by
finding the minima of the squared Euclidean norm of the
velocity field by focusing on the equatorial plane regions
where this function ranges between 0 and an upper limit. In
our case, this limit is fixed as 1% of the maximum of the
squared Euclidean norm over the whole domain. The stability
properties of the detected points have been analyzed by
evaluating the eigenvalues of the Jacobian matrix numerically
computed in these points.

At low Womersley number [α = 12.06; see Fig. 3(a)] all the
drug particles on the equatorial plane are attracted by the two
stable foci on the anterior part. Being the fluid incompressible,
such foci must repel the mass particles along a direction which
is transverse to the equatorial plane, i.e., considering the full
3D motion, the equilibria must be saddle foci. Similarly, the
two unstable foci close to the boundary must attract trajectories
along a direction transverse to the plane. We can notice that
there is a separation between the left and right sides of the

(a) (b) (c)

FIG. 3. (Color online) Streamlines obtained on the equatorial plane for α = 12.06 (a) and corresponding forward (b) and backward
(c) FTLEs fields.
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(a) (b)

(c) (d)

FIG. 4. (Color online) Streamlines obtained on the equatorial
plane for α = 12.63 (a), α = 15.58 (b), α = 23.55 (c), and α = 29.37
(d) at fixed A = 0.0873 rad and δ = 0.3.

plane and the separatrix is the stable manifold of the central
saddle point. Such a manifold, in the anterior part of the eye,
coincides almost exactly (there is a negligible difference due
to measure and numerical errors) with the unstable manifold
of the anterior saddle point, forming a heteroclinic orbit. The
stable manifold of this point and also the unstable manifolds
of the other two saddle points in the anterior part are on the
boundary of the domain, where the measures of the vector
field are less accurate. This situation remains the same for
all the considered parameter configurations. For comparison,
the same figure shows also the fields of finite-time Lya-
punov exponents (FTLEs) σ tf (x), obtained by forward-time
[Fig. 4(b)] and backward-time [Fig. 4(c)] integrating system
(1) according to the following definition [18]:

σ tf (x) = 1

|tf | ln
√

λmax(
), (2)

where tf is the integration time and λmax(
) is the largest
eigenvalue of matrix


(x) = J T (x)J (x), (3)

where J (x) is the Jacobian matrix of the numerically computed
flow map. The interested reader is referred to Ref. [18] for
further details.

In Figs. 4(b) and 4(c), low FTLE values are represented
in blue (light tones of gray), whereas high FTLE values
are represented in red (dark gray). The latter evidence the
presence of ridges in the scalar FTLE field, corresponding to
the stable [Fig. 4(b)] and unstable [Fig. 4(c)] manifolds of
the saddle points. It is evident that [Fig. 4(a)] summarizes the
information of both Figs. 4(b) and 4(c).

An increase of the Womersley number to α = 12.63 does
not affect the dynamics of mixing within the eye in the anterior
part [see Fig. 4(a)]. In the central part, on the contrary, we can
notice that the saddle point undergoes a pitchfork bifurcation,

thus becoming a stable point and originating two new saddle
points around it. In this new situation it is no longer true that
all the drug particles lying on the equatorial plane wrap around
the stable foci: Some of them are attracted in the middle by
this new stable node. Obviously, this equilibrium point must
be a saddle-node for the complete 3D motion.

In [Fig. 4(b)] we show the streamlines for α = 15.58. In this
case all changes happen in the anterior part, where the stable
foci become unstable through a supercritical Hopf bifurcation
and two stable periodic orbits appear around them: the (solid
red) unstable manifolds of the central saddle points overlap
the stable periodic orbits. These periodic orbits define two
closed regions in the plane, which trap particles inside them.
We remark that the periodic orbits are very close to the stable
manifolds of the central saddle points; by further increasing
the Womersley number, the periodic orbits collide with the
manifolds, thus inducing a homoclinic bifurcation which leads
to the destruction of the periodic orbits [Fig. 4(c)]. In this
situation all the drug particles in the equatorial plane are
attracted by the central stable node (all other equilibria are
unstable) and there is a separation between the anterior and
the posterior parts of the plane.

A further increase of α leads to the result shown in Fig. 4(d).
The two central saddle points move toward the anterior part
and the stable node disappears. Moreover, a new saddle point
and two stable foci are generated in the anterior part. In this
region of the plane we can see four distinct closed regions in
which the drug particles (lying on the plane) are trapped, while
all the particles which are in the posterior region are attracted
by the two new stable foci. This situation is similar to the first
one we described, with the stable manifold separating the left
and right side of the plane (the manifold changes direction
near the center due to measure and numerical errors); the main
difference is that the sense of rotation of the particles around
the foci is opposite with respect to the previous situation with
low Womersley number.

Note that if we change the values of A and δ and vary
again the Womersley number, we obtain the same sequence of
bifurcations but for slightly different α values. For instance,
if we decrease the eye indentation, by keeping the oscillation
amplitude fixed, the system undergoes the bifurcations at lower
values of the Womersley number.

V. DISCUSSION

Although we considered a fairly simplified description of
the eye movements, our analysis reveals interesting dynamics
in the equatorial plane. The presented results are relevant
in their own right and do not require a full 3D analysis in
order to validate their importance. Moreover, they allow some
preliminary considerations on the complete 3D dynamics; in
the 3D domain, barriers will be surfaces whose intersections
with the equatorial plane are the curves shown in the previous
figures. Moreover, other barriers and more complex structures
could be present. The first development of this work will
concern the analysis of the 3D dynamics in this simplified
model; then, more realistic scenarios (viscoelastic fluid, more
complicated eye movements) will be considered. However, by
combining the measurements on the equatorial plane with the
ones on the vertical plane, it is already possible to get some
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FIG. 5. (Color online) Some 3D trajectories for α = 12.06.

insights about the 3D dynamics. An example of 3D trajectories
obtained from an experimentally measured 3D velocity field is
shown in Fig. 5 for a value of α close to 12.06 [see Fig. 3(a) for
comparison of the trajectories on the equatorial plane]. Three
trajectories are shown (with three different gray tones) in the
upper half of the eye model. In the left sector two trajectories
are plotted, which describe a vortex above one of the two saddle
foci on the corresponding half of the equatorial plane. The
presence of two further saddle foci can be guessed, one on the
vertical plane (indeed we detected it in the 2D measurements
on the vertical plane for similar parameter configurations) and
one with unstable manifold between the two trajectories. In
the right sector a trajectory is plotted, which initially shrinks
around the stable manifold of a saddle focus on the equatorial
plane and eventually tends to the unstable manifold of the
same equilibrium. These samples, even if insufficient to get a
complete idea of the dynamics within the eye, are consistent
with the streamlines on the analyzed 2D sections and evidence
the possible presence of complex behaviors.

VI. CONCLUSIONS

In this article, we have applied tools for the analysis of
nonlinear dynamical systems to detailed experimental data sets

reproducing a process of great importance for the treatment of
common eye diseases. The existence of Lagrangian material
structures might influence the success of these treatments,
interfering with the delivery of drugs, and they have to be
considered in order to optimize the position of commonly
used release devices [3]. In particular, intravitreal delivery
through direct injection of the drugs is one of the most used
techniques of eye diseases treatment. Direct injections are
usually performed through the transplana pathway (anterior
part of the eye) and the drug is released 2–3 mm from the
retina inside the vitreous chamber. In this case the drug is
initially confined in a small volume in the anterior part of
the vitreous chamber close to the lens. Note that very often
the target of the treatment are segments of the retina located
in the posterior half of the vitreous chamber, where retina
breaks or detachments are most commonly observed. The
presented results suggest that the anterior part of the chamber is
dominated by the presence of Lagrangian structures that might
confine mass (drug) in this part of the domain preventing its
transport toward the posterior segment of the vitreous chamber.

The experiments discussed cover a wide range of param-
eters that represent many real eye movements (e.g., saccades
and reading). In all cases the measured Eulerian flow fields
have been found to be laminar. Turbulence is very unlikely
to be generated for realistic values of the physical parameters
(amplitude and Womersley numbers). In fact, only in the case
of microsaccades the angular frequency can assume very high
values, up to 103–104 s−1 (corresponding to high values of the
Womersley number), but in this case the oscillation amplitudes
are extremely small, leading to relatively small velocities in
the vitreous body.

Finally, the methodology of Lagrangian analysis of experi-
mental data here adopted represents an innovative and power-
ful approach to a variety of biomedical research problems.
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