Shear and shearless Lagrangian structures in compound channels

Enrile F.*, Besio G., Stocchino A.

DICCA, Dipartimento di Ingegneria Civile, Chimica e Ambientale, Università degli Studi di Genova, Italia

A R T I C L E I N F O

Keywords:
Shear Lagrangian Structure
Shearless Lagrangian Structure
Ridges
Trenches
FTLE
Shearlines
River dynamics

A B S T R A C T

Transport processes in a physical model of a natural stream with a composite cross-section (compound channel) are investigated by means of a Lagrangian analysis based on nonlinear dynamical system theory. Two-dimensional free surface Eulerian experimental velocity fields of a uniform flow in a compound channel form the basis for the identification of the so-called Lagrangian Coherent Structures. Lagrangian structures are recognized as the key features that govern particle trajectories. We seek for two particular class of Lagrangian structures: Shear and shearless structures. The former are generated whenever the shear dominates the flow whereas the latter behave as jet-cores. These two type of structures are detected as ridges and trenches of the Finite-Time Lyapunov Exponents fields, respectively. Besides, shearlines computed applying the geodesic theory of transport barriers mark Lagrangian Coherent Structures. So far, the detection of these structures in real experimental flows has not been deeply investigated. Indeed, the present results obtained in a wide range of the controlling parameters clearly show a different behaviour depending on the shallowness of the flow. Shear and Shearless Lagrangian Structures detected from laboratory experiments clearly appear as the flow develops in shallow conditions. The presence of these Lagrangian Structures tends to fade in deep flow conditions.

1. Introduction

Natural rivers and, quite often, artificial channels are characterized by cross-sections composed by a deeper main channel and shallower floodplains. For this reason they are usually referred as “compound channels”. Flows of these streams are defined as predominantly horizontal since their horizontal dimensions greatly exceed the vertical one (Jirka, 2001).

The analysis of mixing processes in natural streams is not a simple task as flow dynamics is strongly affected by channel irregularities. Flow velocity in the floodplains is lower than the one of the main channel, due to the water shallowness and to bed roughness typically higher than the main channel. As a result of the velocity gradient, shear occurs at the interface between the main channel and the floodplains. The presence of various Eulerian flow patterns most of which are characterized by large-scale vortical structures with horizontal axes, i.e. macro-vortices, is well-known (Socolofsky and Jirka, 2004; Stocchino et al., 2011; Stocchino and Brocchini, 2010). The generation of these vortical structures can be described by two main approaches (Rowiński and Radecki-Pawlik, 2015): either as a shear instability at the junction of two streams (van Prooijen et al., 2005) or as an outcome of differential energy dissipation of shallow-water currents interacting with submerged obstacles (Soldini et al., 2004). The former approach casts an analogy between the transitional region of the compound channel and a free mixing layer. The latter identifies the driving mechanism for the generation and sustenance of the Eulerian macro-vortices in the vorticity generation owing to the depth jump across the cross-section. Stocchino and Brocchini (2010) showed that the shear layer thickness remains constant in compound channels. Such a condition is a peculiar consequence of the topographic forcing, i.e. the depth jump, generating the Eulerian macro-vortices. On the contrary, the shear layer generated by the junction of two streams on an even bottom tends to grow linearly. In order to clarify strengths and shortcomings of both, a detailed comparison between the approaches pursued by van Prooijen et al. (2005) and Soldini et al. (2004) should be carried out and the outcome of the numerical simulations compared. However, the issues raised by these two different approaches are not considered in the present work. Indeed, we aim to analyse experimental surface velocity fields under a Lagrangian perspective disregarding the Eulerian approach. Note that it is well-known that Eulerian and Lagrangian patterns do not always correspond (Haller, 2015).

An experimental investigation on the mixing processes, in terms of Lagrangian statistics of single and multiple particles, was presented by Stocchino et al. (2011). However, the role of flow inhomogeneity was disregarded in that study. This aspect is the main subject of the present work, where we aim to detect coherent patterns from Lagrangian measures in order to seek structures that characterise the compound channel. Key structures are located at the transition from the main...
channel to the lateral channels (floodplains) and approximately along
the axis of the main channel. Therefore, we focus on Lagrangian
structures that shape trajectory patterns.

The present analysis mainly relies on the computations of the Finite
Time Lyapunov Exponents (FTLE) fields along with related trenches
(Beron-Vera et al., 2010) and ridges (Shadden et al., 2005), as a first
diagnostic tool. However, FTLE trenches and ridges are not always a
signature of the presence of material lines. Despite such a shortcoming,
they are still a valuable tool to understand the dynamics of the flow. In
particular, ridges are able to reveal the regions of motion that are
kinematically the most active (Allshouse and Peacock, 2015a). We then
manage to isolate two types of heuristic structures that are mostly
disregarded in previous studies: Jet-Cores (JC), i.e. shearless structures,
and Shear Lagrangian Structures (SLS), respectively. JC were studied by
Beron-Vera et al. (2010) and Farazmand et al. (2014). In the present
work we apply the methodology detailed in the former study based on
FTLE trenches. Besides, we characterise the behaviour of heuristic JC
resulting from FTLE trenches by applying the methodology described
by Allshouse and Peacock (2015b). The same method is also applied to
ridges of FTLE fields that mark heuristic SLS. Such a conclusion is
proven by testing heuristic SLS against their shear properties.

A further characterization of shear is carried out upon the rigorous
definitions of Lagrangian Coherent Structures (LCS) (Haller, 2011;
Haller and Beron-Vera, 2012). Among the general family of LCS, SLS
are features dominated by a bulk shear typical of parallel flows. Herein,
SLS are detected in order to mark the fundamental geometry of shear
patterns. Note that SLS and JC are usually defined and studied on the
basis of analytical velocity fields, whereas the main goal of the present
study is to deeply investigate realistic flow conditions in a laboratory
model of a typical river configuration. Heuristic SLS calculated as FTLE
ridges and rigorous SLS calculated from the geodesic theory of transport
barriers are compared and a nice agreement is found.

Summing up, experimental data of time-dependent, two-dimen-
sional Eulerian velocity fields (Stocchino et al., 2011; Stocchino and
Brocchini, 2010) are employed to calculate numerical trajectories upon
which JC and SLS are estimated against their shear properties. Rigorous
SLS are also calculated as shearlines that minimize their geodesic de-

The paper proceeds with Section 2 devoted to the definition and
formulation of the LCS identification techniques. Then, in Section 3 we
describe the velocity fields employed and we assess their two-di-

2. Theoretical background

A fluid is usually studied applying the well-known results of con-
tinuum mechanics and we follow this approach. A fluid body \mathcal{B} is
made of elements called particles ξ. In order to describe the position of
these particles we establish a one-to-one correspondence between the
particles and the coordinates of a reference system, i.e. a triple of real
numbers. We introduce Lagrangian coordinates $\xi = (\xi^1, \xi^2, \xi^3)$ as
a material coordinate system that label fluid particles. Since any two
systems of coordinates are related by a continuously differentiable
transformation we can introduce Eulerian coordinates as

$$x = \Phi(t, t_0, \xi)$$

(1)

where Φ is the flow map. The Eulerian coordinates denote the position
of a point fixed in what can be called the laboratory frame (Thiffeault
and Boozer, 2001). The transformation showed in equation (1) can be
inverted in the neighbour of a point provided that the Jacobian
of particles are curves solutions of

$$\frac{dx}{dt} = v(x, t)$$

(2)

with initial conditions $x(t_0, \xi) = \xi$.

We can regard Eq. (2) as a set of ordinary differential equations and
evaluate on a finite time interval $T = (t_0 - t)$ the distance that two
initial close particles can experience. Therefore, if we consider as initial
conditions ξ_0 and $\xi_0 + \varepsilon$ we can evaluate the final distance between
the two particles applying a linearisation (Allshouse and Peacock, 2015b):

$$\Delta x(t) = \Phi(t; t_0, \xi_0) - \Phi(t; t_0, \xi_0 + \varepsilon) \approx \nabla \Phi(t; t_0, \xi_0)\varepsilon$$

(3)

where $\nabla \Phi(t; t_0, \xi_0)$ is called the flow map gradient and it is a tensor
represented by a matrix the entries of which are $\nabla \Phi = \frac{\partial \Phi}{\partial x}$. We impose two restrictions on $\nabla \Phi$. Firstly, an infinitesimal material element dx must not split along its evolution and coalescence of two
material elements is not allowed. This is the physical interpretation of
the condition on the Jacobian of Eq. (1). The second restriction imposes
that the deformation must preserve orientation, i.e. three right-handed
material elements dx, dy and dz satisfying $dx \cdot dy \cdot dz > 0$ are
transformed into three material elements satisfying $dx' \cdot dy' \cdot dz' > 0$.
By writing $\nabla \Phi dx$ we denote the product between the matrix $\nabla \Phi$ and the vector dx, i.e. a contraction that results in a vector. Scalar product
between vectors is indicated as \cdot. The second restriction implies that
the Jacobian of Eq. (1) must satisfy the following condition:

$$J = \det(\nabla \Phi) > 0$$

(4)

The magnitude of the final distance can be evaluated as (Shadden et al., 2005):

$$|\Delta x(t)| = \sqrt{|\nabla \Phi|^{0}(t_0)|\Delta x(t_0)|} = \sqrt{|\nabla \Phi|^{0}(t_0)|\Delta \Phi|^{0}(t_0)} = \sqrt{|C^0|}$$

(5)

where C is the Cauchy–Green tensor defined as $C = (\nabla \Phi)^T \nabla \Phi$ where $(\cdot)^T$ denotes the transpose. It is possible to prove that matrix C is po-
itive definite and symmetric. Since we analyse 2D velocity fields, C has
two eigenvectors e_1 and e_2 associated with two eigenvalues

$$0 < \lambda_1 \leq \lambda_2$$

(6)

Maximum stretching occurs when $\Delta x(t_0)$ is chosen such that it is
aligned with the eigenvector associated with the maximum eigenvalue
of C, i.e.:

$$\max|\Delta x(t_0)| = \sqrt{\lambda_2} |\Delta x(t_0)|$$

(6)

where (\cdot) indicates alignment with the eigenvector associated with the
maximum eigenvalue λ_2 of the Cauchy–Green tensor. Since $\Delta x(t_0) = \varepsilon$,
Eq. (6) can be recast to obtain

$$\max|\Delta x(t_0)| = e^{\varepsilon_0} |\varepsilon|$$

(7)

where

$$\varepsilon_0 = \frac{1}{\log \sqrt{\lambda_2}}$$

(8)

represents the (maximum) Finite-Time Lyapunov Exponent (FTLE)
calculated on a finite integration time T.

The eigenvectors of C define directions of initial separations for
which neighbouring particles are converging or diverging. Since we are
interested in the most active regions of the fluid flow from a kinematic
point of view, we define the FTLE in Eq. (8) as a function of the max-

imum eigenvalue. Panel a) of Fig. 1 shows the deformation in the
neighboored of a point under the action of the flow map. Computation
of FTLE can be carried out in forward time, i.e. from t_0 to $t_0 + T$, or
in backward time, i.e. from $t_0 + T$ to t_0. Identification and classification of the
main features of these scalar fields is the subject of the next para-

Eckmann and Ruelle (1985) showed how λ_2 tends asymptotically to
a single value λ_∞ as time tends to infinity for ergodic systems. The following results are strictly applicable to autonomous systems (Osseledec theorem):

$$\lambda_\infty = \lim_{t \to \infty} \frac{\log(\lambda_t)}{2T}$$ \hspace{1cm} (9)

Tang and Boozer (1996) showed that at times $T \gg \lambda_\infty$ the averaged FTLE takes the form:

$$\langle \lambda \rangle = \frac{A}{T} + \frac{B}{\sqrt{T}} + \lambda_\infty$$ \hspace{1cm} (10)

where A and B are constants. Analogously, the standard deviation behaves as:

$$\sigma_\lambda \propto \frac{T}{\sqrt{T}}$$ \hspace{1cm} (11)

The probability density function must behave in agreement with the previous theoretical results, i.e. as the integration time increases the pdf must narrow, converging to a delta function. Abraham and Bowen (2002) showed the consistency of these last theoretical results in an analysis carried out on the basis of surface velocity fields of a region of the East-Australian Current. Lapeyre (2002) found narrowing pdfs as T increases, due to the decrease of the standard deviation, and a shift of the peaks towards smaller values due to the decaying turbulent field in time he analysed.

2.1. Detection and classification of the FTLE features: Ridges and trenches

Lagrangian Coherent Structures have been broadly recognised as the main features that characterise transport in fluid flows. FTLE scalar fields have been largely adopted in order to seek for heuristic Lagrangian Coherent Structures. In particular, ridges have been associated with the concept of stable and unstable manifolds: ridges calculated in forward time are considered as a signature of repelling trajectories as attractors of trajectories solution of the dynamical system

$$\frac{dx}{ds} = \nabla \sigma^{0 \pm T}(x)$$ \hspace{1cm} (12)

where s is the arclength along the gradient lines of $\sigma^{0 \pm T}(x)$ and the right-hand side represents the spatial gradient of FTLE scalar fields. This property is at the base of the extraction algorithm proposed by Mathur et al. (2007) and here adopted. The reliability of such a procedure was strengthened by Peikert et al. (2013). Panel b) of Fig. 1 shows the behaviour of ridges as attractors of trajectories solution of Eq. (12). The detection of trenches is analogue: the computations are carried out considering $\frac{dx}{ds} = -\nabla \sigma^{0 \pm T}(x)$. Since the methodology is the same, in the following we refer only to ridges.

Once the ridges are detected, a hermite interpolation is adopted (Rovenski, 2010) in order to locate (first attempt) ridges made of points equally spaced between them. The advantage of Hermite cubic interpolation is twofold. Tangent vectors of the points that form the curve can be chosen and monotonity property of the function (curve) that is interpolated is generally preserved. Given points P_1 and P_2 and nonzero tangent vectors Q_1 and Q_2, the cubic Hermite curve $r(s)$ is defined as

$$r(s) = (1 - 3s^2 + 2s^3)P_1 + s^2(3 - 2s)P_2 + s(s - 1)^2Q_1 + s^2(s - 1)Q_2$$ \hspace{1cm} (13)

where $0 \leq s \leq 1$. However, the precision of the computed ridges is insufficient to allow for an accurate advection of these structures. Therefore, the procedure described by Allshouse and Peacock (2015b) is applied in order to refine the ridges. Following the cited approach, points belonging to a ridge are detected with a relative precision of order 10^{-5} and their advection can be reliably computed. The refinement process is schematically depicted in Fig. 2 and can be summarized as follows. An initial ridge (depicted in red in Fig. 2, i.e. the curve interpolated is generally preserved. Given points P_1 and P_2 and nonzero tangent vectors Q_1 and Q_2, the cubic Hermite curve $r(s)$ is defined as

$$r(s) = (1 - 3s^2 + 2s^3)P_1 + s^2(3 - 2s)P_2 + s(s - 1)^2Q_1 + s^2(s - 1)Q_2$$ \hspace{1cm} (13)

Fig. 1. Panel a) shows the deformation in the neighbourhood of a point under the flow map Φ. A circle of unit radius is deformed as depicted. Panel b) shows the vector field $V^{T}_{\Phi(t_0)}\lambda$, a ridge, in red, and two solutions of Eq. (12), in black. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Evaluation of the most influential structures in FTLE fields, i.e. ridges and trenches, is pursued considering the dynamical properties of these features (Green et al., 2007; Mathur et al., 2007). Ridges behave as attractors of trajectories solution of the dynamical system

$$\frac{dx}{ds} = \nabla \sigma^{0 \pm T}(x)$$ \hspace{1cm} (12)

where s is the arclength along the gradient lines of $\sigma^{0 \pm T}(x)$ and the right-hand side represents the spatial gradient of FTLE scalar fields. This property is at the base of the extraction algorithm proposed by Mathur et al. (2007) and here adopted. The reliability of such a procedure was strengthened by Peikert et al. (2013). Panel b) of Fig. 1 shows the behaviour of ridges as attractors of trajectories solution of Eq. (12). The detection of trenches is analogue: the computations are carried out considering $\frac{dx}{ds} = -\nabla \sigma^{0 \pm T}(x)$. Since the methodology is the same, in the following we refer only to ridges.

Once the ridges are detected, a hermite interpolation is adopted (Rovenski, 2010) in order to locate (first attempt) ridges made of points equally spaced between them. The advantage of Hermite cubic interpolation is twofold. Tangent vectors of the points that form the curve can be chosen and monotonity property of the function (curve) that is interpolated is generally preserved. Given points P_1 and P_2 and nonzero tangent vectors Q_1 and Q_2, the cubic Hermite curve $r(s)$ is defined as

$$r(s) = (1 - 3s^2 + 2s^3)P_1 + s^2(3 - 2s)P_2 + s(s - 1)^2Q_1 + s^2(s - 1)Q_2$$ \hspace{1cm} (13)

where $0 \leq s \leq 1$. However, the precision of the computed ridges is insufficient to allow for an accurate advection of these structures. Therefore, the procedure described by Allshouse and Peacock (2015b) is applied in order to refine the ridges. Following the cited approach, points belonging to a ridge are detected with a relative precision of order 10^{-5} and their advection can be reliably computed. The refinement process is schematically depicted in Fig. 2 and can be summarized as follows. An initial ridge (depicted in red in Fig. 2, i.e. the curve interpolated with the Hermite polynomial) is better approximated placing a number of test points at incremental distances d at either sides of the ridge along the normal direction. FTLE values for all these points normal to the initial ridge are then evaluated and the point with the maximum FTLE value is taken as the refined position of the ridge (green points in Fig. 2). In case of trenches, the revised position is chosen as the corresponding minimum FTLE value.

This process is carried out recursively until a prescribed accuracy is reached. Once the final (refined) ridge is calculated, it is possible to define a tangential unit vector ν_0 to the ridge at time t_0 and a normal unit vector n_0, evaluated with Frenet–Serret formulas. By applying the flow map gradient, we can evaluate the advected tangential vector $V^{T}_{\Phi(t_0)}\nu$ and the advected normal vector $V^{T}_{\Phi(t_0)}n$.

In order to characterize the behaviour of ridges it is possible to evaluate the quantities described by Allshouse and Peacock (2015b). The magnitudes of the advected normal and tangential vectors, n_0 and ν_0, show stretching and contraction that occur to particles initially aligned along the ridge and initially perpendicular to the ridge, respectively, and can be written as:

$$n_t = \log [V^{T}_{\Phi(t_0)}n_0]$$ \hspace{1cm} (14)

$$\nu_t = \log [V^{T}_{\Phi(t_0)}\nu_0]$$ \hspace{1cm} (15)
Similarly, it is possible to compute the hyperbolic repulsion \(p_0 \) and the Lagrangian shear \(\sigma_l \) in order to characterize how the unit normal vector \(n_0 \) deforms, as:

\[
\rho_l = \log |[n_t (\nabla \Phi n_0)]| \\
\sigma_l = \log |[\tau_t (\nabla \Phi n_0)]|
\]

where \(n_t \) and \(\tau_t \) are unit normal and tangential vectors to the advected ridge. Fig. 3 shows a pictorial representation of such quantities. Eqs. (14)–(17) adopt a logarithmic scaling in order to emphasize stretching. A precise detection of the ridges is mandatory for a reliable computation of the quantities expressed by Eqs. (14)–(17), in particular when the flow map gradient is applied to \(n_0 \). Trenches of FTLE fields are characterized adopting the same measures. The predominant shear character of ridges is confirmed if \(\sigma_l \) is greater than \(p_0 \) along the majority of their length. On the contrary, JC must present very small \(\sigma_l \) and vanishing \(p_0 \) along the majority of their length.

2.2. Shear Lagrangian coherent structures

Recent developments in the field of Lagrangian Structures cleared that not all FTLE ridges are material lines. Haller and Beron-Vera (2012) developed a consistent theory in order to detect material lines that act as transport barriers. Of particular interest are material lines that attract or repel nearby fluid over a finite time interval. The normal repulsion rate introduced in the previous section evaluates such a condition (logarithmic scaling is not essential in the definition). Necessary and sufficient criteria for the existence of repelling and attracting LCS over a finite time interval are described in terms of eigenvalues and eigenvectors of the Cauchy–Green tensor. Adopting a variational argument, Haller and Beron-Vera (2012) showed that a curve is a hyperbolic transport barrier whether it is a trajectory of the autonomous differential equation:

\[
r' = \mathbf{e}_1
\]

(18)

Such trajectories are defined strainlines after Haller and Beron-Vera (2012). Considering a generic point \(P \), the least-stretching geodesic at \(P \) under the Cauchy–Green tensor is the geodesic starting from \(P \) with a unit tangent vector expressed by Eq. (18).

In the framework of this work, the predominant features of the flow are characterised by shear. The material lines, shear LCS, that maximize Lagrangian shear \(\sigma = \tau_t (\nabla \Phi n_0) \) are curves everywhere tangent to the shear vector field \(\eta = (\text{Hadjighasem et al., 2013; Haller and Beron-Vera, 2012}) \) defined as:

\[
\eta_l = \sqrt{\frac{\lambda_1}{\lambda_2}} \mathbf{e}_1 \pm \sqrt{\frac{\lambda_1}{\lambda_2}} \mathbf{e}_2
\]

(19)

Open curves tangent to the shear vector field of Eq. (19) are shear LCS, i.e. a shear transport barrier is a trajectory of the autonomous differential equation:

\[
r' = \eta_l
\]

(20)

Such trajectories are defined shearlines after Haller and Beron-Vera (2012). Positive Lagrangian shear signals clockwise deformation while negative Lagrangian shear signals counterclockwise deformation in the local coordinate frame \((\mathbf{e}_1, \mathbf{e}_2) \). The most prominent shear LCS are shearlines that minimize the geodesic shear deviation (Hadjighasem et al., 2013; Haller and Beron-Vera, 2012) along their length. The pointwise closeness of shear LCS to least-stretching geodesics can be computed in terms of invariants of the Cauchy-Green tensor. The geodesic deviation evaluates the difference of tangents plus the difference of curvatures of a shear LCS from the least-stretching geodesic of the Cauchy-Green tensor. Haller and Beron-Vera (2012) provide an explicit formula in order to evaluate the geodesic deviation, which reads:

\[
d^2_{\eta_l} = \left(\frac{1}{\lambda_1} + \frac{1}{\lambda_2} \right) \mathbf{e}_1^2 + \frac{\text{Tr} \left[\nabla \Phi n_0 \right] \mathbf{e}_1 \mathbf{e}_2}{\sqrt{\lambda_1 \lambda_2}} \left(\frac{1}{\lambda_2} + \frac{1}{\lambda_1} \right) + \frac{\mathbf{e}_2^2}{\lambda_2} \cdot \frac{\mathbf{e}_2}{\sqrt{\lambda_2}}
\]

(21)

with \(\mathbf{e}_2 \) denoting the eigenvector associated with \(\lambda_2 \), \(\mathbf{e}_1 \) the curvature of the strainline and \(k_2 \), \(k_1 \) the curvature of \(\mathbf{e}_2 \) vector field. The predominant shear LCS is chosen as the shearline whose average geodesic deviation

\[
\text{avg}(d^2_{\eta_l}) = \frac{\int_{C_{\eta_l}} d^2_{\eta_l} \mathbf{r}' \mathbf{r}' ds}{\int_{C_{\eta_l}} \mathbf{r}' \mathbf{r}' ds}
\]

(22)

is the least among all. Computations of FTLE fields and shear LCS are carried out following Onu et al. (2015) and Farazmand and Haller (2012). A MATLAB toolbox was made publicly available by these authors and it has been here exploited.
3. Experimental flow field

The present analysis is based on the experimental measurements of the free-surface Eulerian velocity fields described in Stocchino and Brocchini (2010) and Stocchino et al. (2011). Herein, we briefly recall the main characteristics of the apparatus and of the measuring system. The flume was 20 m long, 60 cm wide and the trapezoidal cross-section was composed by a central main channel \((W_{mc} = 20\,\text{cm})\), two lateral flat floodplains \((W_{fp} = 18\,\text{cm})\) and a transition region \((W_r = 2.5\,\text{cm})\). Fig. 4 shows the cross section of the flume.

Velocity measurements have been performed by means of a two-dimensional Particle Image Velocimetry system on a field of view of \((1.2 \times 0.6)\,\text{m}^2\). The acquisition rate was between 100 Hz and 250 Hz, depending on the flow velocity. Each acquisition was made of a number of frames between 2000 and 4000. Several series of experiments have been carried out spanning a quite large range of values of the main physical parameters. In Table 1 we summarize the experimental conditions, providing the values of the ratio between the main channel water depth \((h_{mc})\) and that of the floodplains \((h_{fp})\), and the Froude number \(Fr = U_{fp}/\sqrt{gR}\), where \(R\) is the hydraulic radius, \(g\) is gravity and \(U_{fp}\) is the peak velocity in the main channel. Moreover, \(S\) represents the longitudinal bed slope.

We keep the same distribution of the flow regimes depending on \(r_h\) introduced in Nezu et al. (1999) and used in Stocchino et al. (2011). As pointed out by Nezu et al. (1999) three different flow regimes can be identified depending on the value of \(r_h\). For \(r_h > 3\) the flow is defined as “Shallow”. In this case, intense velocity gradients occur at the transition between the main channel and the floodplains, leading to a strong shearing and a generation of vorticity associated with the flow depth jump Soldini et al. (2004). For values of \(r_h < 2\), the flow is defined as “Deep”, characterized by a weaker shear in the transition region. The flow depth jump, in this case, is unable to greatly influence the free-surface flow. Finally, “Intermediate flows” are defined when \(2 < r_h < 3\). In the framework of their analysis Stocchino et al. (2011) evaluated single and multiple particles statistics. Since a constant mean velocity causes the absolute dispersion to increase quadratically in time, and thus the diffusivity to increase linearly in time, their analysis was carried out removing a constant mean from the velocity field. In the case of compound channel flows, a mean motion does exist in the stream-wise direction and it is non-homogeneous over the cross-section. The mean stream-wise velocity assumes a bell-like distribution as shown in Stocchino and Brocchini (2010) and its shape depends strongly on the flow depth ratio \(r_h\). As a result, for a 2D flow evolving in the plane the residual velocity reads as

\[
u'(x, y, t) = \mathbf{u}(x, y, t) - \mathbf{U}(x, y)
\]

where \(\mathbf{U}(x, y)\) indicates the velocity averaged over the duration of the single realization. This method is adequate to handle flows that are inhomogeneous, like in the present case or in oceanographic applications, while the classical results of Taylor were obtained assuming \(\mathbf{U}(x, y) = 0\), i.e. for homogeneous flows. The analysis is then carried out upon such velocity field in agreement with Stocchino et al. (2011).

SLS and JC have been computed on the entire dataset. However, for the sake of clarity, we will discuss in details one run of each class, showing the recurrent features of every corresponding class.

3.1. Assessment of two-dimensionality

In the framework of the present work, the fluid flow is considered two-dimensional. Indeed, the measurements presented in Stocchino and Brocchini (2010) and Stocchino et al. (2011) were taken on the free surface assuming that the flow is mainly two dimensional. This experimental approach based on the free surface velocity measurement is often used in many experimental works with primary focus on quasi-2D vortical structures (see Jirka, 2001; Nikora et al., 2007; Socolofsky and Jirka, 2004, among others). This approach is valid as long as the secondary flows can be considered negligible in the formation of the quasi-2D vortical structures with vertical axis of rotation and confined in a layer close to the bottom. However, in order to verify this hypothesis the Lagrangian divergence is here evaluated. In particular, Mathur et al. (2007) define Lagrangian divergence as:

\[
\frac{\partial \mathbf{u}}{\partial t} = \nabla \times \mathbf{U}
\]

where \(\mathbf{u}\) is the velocity field and \(\mathbf{U}\) is the mean velocity field. The Lagrangian divergence evaluated on a time interval of 1s for EXP 201.
Lagrangian divergence is computed along particle paths and should be zero for purely 2D flows. It represents the factor by which infinitesimal areas are magnified. Fig. 5 shows a typical snapshot of $L(x)$ for a shallow flow case. The Lagrangian divergence presents a quite flat distribution with the only exception of few peaks located at the transition region. The overall values are well below unity and much smaller than the ones found by Mathur et al. (2007) in a rotating water tank where the flow is considered mainly two-dimensional. This measure is also employed by Wilson et al. (2013) in a turbulent boundary layer in order to quantify its two-dimensionality. They found a mean value of $\exp(L)$ close to 1.2 over their entire domain, arguing that stretching along one direction is balanced by convergence in another direction. Further considerations led them to accept the flow as two-dimensional.

Besides, divergence-free flows have FTLE fields non-negative (Arnold, 1992; Lipinski and Mohseni, 2010). Therefore, an indirect proof of the low three-dimensionality of the flow can be obtained inspecting FTLE fields. As showed in the following Sections negative FTLE values are very few. Therefore, the assumption of two-dimensionality can be fully accepted.

4. Results

Four experimental cases are reported in detail as prototypical examples of the respective flow conditions: shallow flows, intermediate flows and deep flows. In the case of intermediate flows, two regimes have been further investigated, namely flow in subcritical and supercritical conditions. The integration time is set to one second in order to let particle stay inside the computational domain. Furthermore, such an integration time has the same order of magnitude of the Lagrangian decorrelation time evaluated by Stocchino et al. (2011) on the same dataset.

It is worthy to recall the theoretical analysis reported in Haller and Beron-Vera (2012), where the authors studied a parallel shear flow as a benchmark case. In particular, the velocity field of the shear flow investigated takes the form $u(x,y,t) = u_0(y,t)$ and $v(x,y,t) = v(y)$ on a planar domain with non-vanishing and non-linear time-averaged shear $\langle a(y) = \int_0^T u(y,\tau) d\tau \neq 0 \text{ and } da(y)/dy \neq 0 \rangle$. One of the main conclusions of the work by Haller and Beron-Vera (2012) was that, in such a framework, any horizontal line is a shear LCS. Despite several important differences, it is possible to cast an analogy between the above flow and the compound channel flows here discussed. Indeed, although both velocity components are time dependent in the case of compound channels, the shear pattern heuristically conforms to the parallel shear flow described by Eqs. (25) and (26), since shear LCS do develop in the stream-wise direction and are advected in the same direction.

In particular, the expected pattern must be symmetric with respect to the axis of the channel because the residual velocity, Eq. (23), upon
which Eq. (2) is solved determines a flow direction of the main channel reversed with respect to the floodplains. Fig. 6 shows a pictorial representation of shear LCS marking positive and negative shear, which can be detected in compound channels at the transition between the main channel and the floodplains. Indeed, the bottom region of the Figure shows positive shear whereas the top region negative shear, defined in agreement with the convention adopted for Eq. (20).

A shearless structure is present along the axis of the main channel marking a JC. The main channel is characterized by low values of FTLE fields and trenches can be detected. This is the typical configuration resulting from a bell-shaped velocity profile.

In the following, we present the main results obtained starting from a general description of the behaviour of the FTLE fields and then go forward with a detailed description of the Lagrangian structures depending on the flow regime.

4.1. General behaviour of FTLE fields

Coherent patterns are firstly detected through FTLE fields and they are found to behave in agreement with Eqs. (10) and (11). By choosing 12 different initial conditions and evaluating FTLE fields with integration times varying from 0.1 to 5.7 s, we can obtain the results plotted in Fig. 7. This Figure shows two bundles of 12 curves representing the average and the standard deviation of the values of FTLE fields as a function of the integration time. Note that the different curves are so closed to each other that can be hardly identified separately. The trends of both quantities, average and standard deviation, are in agreement with the expected theoretical results for ergodic systems, showing a monotonic decay in time as predicted by Abraham and Bowen (2002). Moreover, the probability density function (pdf) of the FTLE are expected to behave accordingly. In particular, as the integration time increases the pdf tends to a Dirac delta centered at the limit FTLE value, see Fig. 8. Owing to the two-dimensionality of the flow at hand, it is reasonable to expect that FTLE values are mainly positive, leading to positively skewed pdfs.

4.2. Shear and shearless structures in shallow conditions

Experiment 201 is considered as a prototypical case of shallow conditions since it was carried out with a ratio \(r_4 = 4.16 \).
flow for this case is in subcritical regime ($F_r = 0.60$). Fig. 9 shows typical Lagrangian patterns of shallow flow conditions. Panel a) and b) depict a snapshot of the forward and backward FTLE fields evaluated at $t = 5.0$ s, respectively. Both forward and backward fields show structures at the transition from the main channel to the lateral floodplains. Upon each field, three main structures depicted in black are identified and their ridges isolated. At the center of the main channel trenches are identified and depicted in red. In order to prove the predominant shear character of ridges, the magnitude of the advected unit normal and tangential vectors are computed taking advantage of Eqs. (14) and (15). Besides, repulsion and Lagrangian shear are evaluated applying Eqs. (16) and (17). Figs. 10 and 11 show such quantities as a function of the curvilinear coordinate s along forward and backward ridges, respectively.

In all cases the growth of the normal vectors is greater than the growth of the tangential vectors, i.e. n_3 is greater than e_3. The growth of the normal vector n_3 is predominantly due to Lagrangian shear, since e_1 is greater than n_1 along each ridge for almost their entire length. Ridge C belonging to the forward field of Fig. 9, panel a), shows some noisy signal in the hyperbolic repulsion, depicted in Fig. 10. This behaviour is all but surprising since it is encountered even from dataset resulting from numerical simulations (Allshouse and Peacock, 2015b). These quantitative results suggest that material elements initially aligned along FTLE ridges will tend to move consistently without significant elongations. On the contrary, material elements initially perpendicular to the ridges will stretch because of shear.

Trenches of FTLE fields are identified at the center of the main channel where low FTLE values appear. These trenches behave as JC showing absence of shear. Panel a) of Fig. 12 shows that n_3 and e_2 are almost zero along the entire length of both JC evaluated from forward and backward fields. This means that along JC unit normal and tangential vectors are not significantly deformed. Panel b) show that n_1 is almost zero whereas e_1 is very small. This reflects the fact that unit normal vectors do not deform and their projection along the tangential direction to the ridge is negligible.

FTLE ridges are nicely in agreement with shearlines. Fig. 13 shows positive shear vector field (in the lower part of the domain, in blue) and negative shear vector field (in the upper part of the domain, in red). Shear vector fields and shearlines are computed through Eqs. (19) and (20), respectively. The corresponding positive and negative shearlines are superimposed on the corresponding areas. This particular pattern is due to the symmetry of the problem. Clockwise shear in the lower part of the domain is reflected in counterclockwise shear in the upper part of the domain (see for comparison Fig. 6). Fig. 14 shows the predominant shear LCS (in black) that minimize the geodesic deviation. Forward ridges of Fig. 9 are plotted in green and backward ridges in blue. They are not perfectly aligned with shear LCS since the eigenvectors associated with maximum eigenvalues differ from the shear vector field. However, their alignment is remarkable. JC are depicted in red and are located at the center of the main channel. They do not perfectly superimpose. Increasing the integration time should lead to a better superposition. However, this leads to an accumulation of particles to the boundaries resulting in a splintering of the ridges. As a result, the integration time is kept to one second.

4.3. Shear and shearless structures in intermediate conditions - subcritical case

Experiment 207 was carried out with a ratio $n_3 = 2.26$ and it belongs to intermediate and subcritical conditions ($F_r = 0.73$). It is analyzed as a reference configuration for this type of flows. FTLE fields show in general a pattern comparable to shallow conditions even if high FTLE regions protrude towards lateral channels. Fig. 15 shows the FTLE field and represents the general configuration of interest for forward and backward fields. Seven predominant ridges are identified in forward time and two in backward time. Their behaviour is characterized with the same procedure followed in the previous Section. Analogously to the shallow case, Lagrangian shear is predominant to repulsion, as depicted in Figs. 16 and 17, classifying these ridges as SLS. Compared to the shallow case, higher values of FTLE are obtained in the floodplains. Such values could reach peaks comparable to those of the transition region, see panel a) of Fig. 15. At the center of the main channel trenches of FTLE fields are identified. Fig. 18 quantifies shear properties...
of such trenches and qualifies them as JC, showing results analogue to those of Experiment 201. However, the extension of the region where low FTLE values are present contracts.

Fig. 19 shows positive shear vector field (in the lower part of the domain, in blue) and negative shear vector field (in the upper part of the domain, in red) with a pattern analogous to the previous case. Shear LCS do align along longitudinal FTLE ridges. JC identified in both forward and backward fields superimpose much better than in the case of Experiment 201.

Fig. 20 shows the shear LCS that minimize the geodesic deviation alongside ridges and trenches. Shear LCS do align along longitudinal FTLE ridges. JC identified in both forward and backward fields superimpose much better than in the case of Experiment 201.

Fig. 19. Positive, in blue, and negative shear vector field, in red. Positive and negative shear LCS are superimposed on the respective fields. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 20. Predominant positive and negative shear lines, in black, superimposed alongside with forward FTLE ridges, in green, and backward in blue. JC are depicted in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
4.4. Shear and shearless structures in intermediate conditions - supercritical case

Experiment 105 was carried out with a ratio \(\frac{r}{h} = 2.15 \) belonging to intermediate and supercritical conditions (\(Fr > 1.05 \)). FTLE fields show in general a pattern comparable to intermediate and subcritical conditions. Fig. 21 shows the FTLE field representing the general configuration of interest for forward and backward fields. Four predominant ridges are identified in forward time and two in backward time. Higher FTLE values are located at the transition region. However, some ridges do not completely align along the stream-wise direction. In particular, ridges C of panel a) and B of panel b) of Fig. 21 tend to align diagonally with respect to the stream-wise direction. As a result, for these specific ridges, Lagrangian shear is not always predominant over hyperbolic repulsion. Figs. 22 and 23 show that the magnitude of the advected normal is always greater than the magnitude of the advected tangential vector for all the ridges. Such predominance is due to Lagrangian shear except for the ridges with diagonal alignment. Therefore, we do not classify these ridges as SLS since they show for a non-negligible length a hyperbolic behaviour. Very well defined trenches are detected at the center of the main channel. Fig. 24 shows the shear properties of these trenches that qualify as JC with negligible shear.

Fig. 25 shows positive shear vector field (in the lower part of the domain, in blue) and negative shear vector field (in the upper part of the domain, in red) with a pattern analogous to the previous case. Figs. 22 and 23 show that the magnitude of the advected normal is always greater than the magnitude of the advected tangential vector for all the ridges. Such predominance is due to Lagrangian shear except for the ridges with diagonal alignment. Therefore, we do not classify these ridges as SLS since they show for a non-negligible length a hyperbolic behaviour. Very well defined trenches are detected at the center of the main channel. Fig. 24 shows the shear properties of these trenches that qualify as JC with negligible shear.

4.5. Shear and shearless structures in deep conditions

Experiment 213 was carried out with a ratio \(\frac{r}{h} = 1.68 \) and in subcritical conditions (\(Fr < 0.82 \)). It is analysed as a reference configuration for deep flow conditions. FTLE fields show in general a pattern with the absence of persistent structures. Fig. 27 shows the FTLE field representing the general configuration of interest for forward and backward fields. In deep conditions the FTLE field is less readable and regions with high FTLE values protrude towards the inner of the main channel.

For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.

Fig. 21. Forward and backward FTLE ridges for EXP 105, intermediate flow conditions, supercritical case. Letters identify predominant FTLE ridges. Trenches are marked in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 22. Forward FTLE ridges normal and tangential advected unit vector magnitudes, \(e_1 \) and \(n_1 \) on the left, and hyperbolic repulsion and Lagrangian shear, \(\sigma_1 \) and \(\rho_1 \) on the right. Black, red, blue and yellow colors refer to ridges A, B, C and D of Panel a) of Fig. 21, respectively. Hyperbolic repulsion of ridge C is comparable and even predominant over Lagrangian shear. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 23. Backward FTLE ridges normal and tangential advected unit vector magnitudes, \(e_1 \) and \(n_1 \) on the left, and hyperbolic repulsion and Lagrangian shear, \(\sigma_1 \) and \(\rho_1 \) on the right. Black and red colors refer to ridges A and B of Panel b) of Fig. 21, respectively. Hyperbolic repulsion of ridge B is predominant over Lagrangian shear along a significant portion of its length. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
channel. Four predominant ridges are identified in forward time and two in backward time. Their behaviour is characterized with the same procedure followed in the previous Sections. Analogously to the previous cases, Lagrangian shear is predominant to repulsion, as depicted in Fig. 28, for ridges that are mainly longitudinal, i.e A and C of the forward field (panel a) of Fig. 27). Transverse ridges, B and D, show, on the contrary, comparable Lagrangian shear and repulsion strength and, consequently, cannot be classified as a SLS. Such a behaviour, showed in Fig. 29, characterizes even ridge B belonging to the backward field (panel b) of Fig. 27). Trenches are located at the center of the main channel. However, the width of the low FTLE region has shrunk significantly compared to the previous cases. As a result, trenches tend to be interrupted by higher values of FTLE. Fig. 30 quantifies the shear properties of these trenches that can be consequently classified as JC.

Fig. 25. Positive, in blue, and negative shear vector field, in red. Positive and negative shear LCS are superimposed on the respective fields. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 26. Predominant positive and negative shearlines, forward FTLE ridges in green, backward in blue and JC in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 27. Forward and backward FTLE ridges for EXP 213, deep flow conditions. Letters identify predominant FTLE ridges. Trenches are marked in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

5. Discussion and concluding remarks

This work aims to detect Shear and Shearless Lagrangian Coherent Structures in compound channels. Finite-Time Lyapunov Exponent fields are calculated on the basis of Eulerian velocity fields measured via PIV (Stocchino et al., 2011; Stocchino and Brocchini, 2010) and they unveil the most active regions of the fluid flow from a kinematic point of view. From a methodological perspective, ridges and trenches of FTLE fields are obtained combining the best methods found in literature: algorithm proposed by Mathur et al. (2007), Hermite interpolation by Haller (2011) (recovered in a simplified version from Rovenski (2010) owing to a predominant linearity of ridges and trenches along the stream-wise direction), refinement process proposed by Allshouse and Peacock (2015b). Note that the Eulerian velocity fields were collected during an experimental campaign whereas most applications concern analytical or numerical models. This reinforce the idea that this Lagrangian measure is a robust tool that can be applied to
realistic and complex flow fields.

The main parameters controlling the flow under investigation are the depth ratio \(r_h \), i.e. the ratio between the depth of the main channel and the depth of the floodplains, and the Froude number. The first parameter defines the shallowness of the flow whereas the second the critical conditions.

The results suggest a strong influence of the depth ratio on the establishment of persistent Lagrangian patterns, whereas the Froude number do not seem to be an important controlling parameter. However, our dataset does not present supercritical flows for the shallow conditions and the highest Froude number is 1.07 for the intermediate conditions. Therefore, the relevance of our results mainly concerns the influence of the depth ratio.

In shallow flow conditions, FTLE fields show active regions at the transition from the main channel to the lateral floodplains marked by high FTLE values. Regions of small FTLE values at the center of the main channel are also present. The former are associated with ridges whereas the latter with trenches. Ridges mark Shear Lagrangian Structures that maximize Lagrangian shear and trenches Shearless Lagrangian Structures that behave as Jet-Cores.

Such a configuration is kept even in intermediate conditions. However, it is possible to observe that FTLE ridges protrude more in the

Fig. 28. Forward FTLE ridges normal and tangential advected unit vector magnitudes, \(e_i \) and \(n_i \) on the left, and hyperbolic repulsion and Lagrangian shear, \(\sigma_l \) and \(\rho_l \) on the right. Black, red, blue and yellow colors refer to ridges A, B, C and D of Panel (a) of Fig. 27, respectively. Ridges B and D show hyperbolic repulsion and Lagrangian shear of comparable strength. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 29. Backward FTLE ridges normal and tangential advected unit vector magnitudes, \(e_i \) and \(n_i \) on the left, and hyperbolic repulsion and Lagrangian shear, \(\sigma_l \) and \(\rho_l \) on the right. Black and red colors refer to ridges A and B of Panel (b) of Fig. 27, respectively. Ridge B shows hyperbolic repulsion and Lagrangian shear of comparable strength. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 30. Quantification of repelling and shear properties of JC. Panel a) shows \(n_l \) and \(e_l \) for forward and backward trenches of Fig. 27, in red and black respectively. Panel (b) shows \(\rho_l \) and \(\sigma_l \) with the same color coding. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 31. Positive, in blue, and negative shear vector field, in red. Positive and negative shear LCS are superimposed on the respective fields. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
The analysis performed on the resulting ridges in order to assess whether hyperbolic repulsion or Lagrangian shear are predominant suggests that ridges aligned along the stream-wise direction show predominance of Lagrangian shear over hyperbolic repulsion. On the contrary, ridges that are aligned diagonally with respect to the stream-wise direction show portions of their length where hyperbolic repulsion is predominant over Lagrangian shear.

The clear separation between the main channel and the floodplains shades by decreasing the flow depth ratio and reaching deep flow conditions. As a result, the presence of Shear and Shearless Lagrangian Structures detected from FTLE fields is less readable. It is still possible to recover some features but their persistence is less evident.

The peculiar pattern of shallow and intermediate conditions strongly influences transport as Fig. 33 exemplifies. Green dots represent tracers advected by the flow. Panels (a), (c), (e) and (g) represent initial conditions of particles superimposed on forward FTLE fields. Panels (b), (d), (f) and (h) represent final conditions resulting from the advection process superimposed on corresponding forward FTLE fields. Note that, forward FTLE fields are usually associated with repelling structures. However, a negligible hyperbolic repulsion was detected for ridges aligned along the stream-wise direction in the previous paragraphs. Panels (g) and (h) refer to deep conditions and they show that the shear strength tends to be lost.

This analysis gives an integrated point of view over a finite time interval of the previous work carried out by Stocchino and Broccini (2010) and Stocchino et al. (2011). The influence of the Eulerian macrovortices that develop mainly in shallow conditions (cf. Fig. 4 of Stocchino et al., 2011) can be directly observed in the meandering pattern that particles show in such a flow (see panel b) of Fig. 33. However, Eulerian and Lagrangian diagnostics are conceptually different (Haller, 2015) since the former refer to an instantaneous time instance whereas the latter to a finite time interval. Therefore, a direct
matching is impossible to reach.

Ridges of FTLE fields marking heuristic SLS conform to rigorous SLS calculated adopting the geodesic theory of transport barriers (Haller and Beron-Vera, 2012). Such SLS are aligned along the streamwise direction with a symmetric pattern. Positive SLS are located in the bottom part of the domain and negative SLS are located in the upper part of the domain. However, SLS are always aligned along the streamwise direction.

Decreasing r_f down to a value typical of deep flow conditions, SLS conform to shallow and intermediate conditions. However, the results should be considered jointly with the fact that FTLE conform to shallow and intermediate conditions. Hence, the results should be considered jointly with the fact that FTLE fields are less significant and do not show strong persistent patterns. This fact reflects the different velocity profiles that are recovered in the different depth flow conditions along a cross-section. Fig. 2 of Stocchino and Brocchini (2010) shows that peak velocities in the main channel and in the floodplains are comparable at deep flow conditions.

Therefore, FTLE fields prove to be once again a valuable tool in order to assess the behaviour of a fluid flow giving an immediate understanding of the strength of the mixing pattern and the most active regions of the domain. However, these active areas need to be well characterized by the evaluation of the Lagrangian shear and the hyperbolic repulsion. To further understand the dynamics, SLS are detected in order to depict the shear pattern. The joint analysis of FTLE fields and SLS manage to unveil the mixing pattern thoroughly since the shortcomings of one measure are balanced by strengths of the other. Besides, the presence of JC at the center of the main channel impacts on tracer advection. These results are of evident importance in riverine and estuarine analysis since these structures mark regions where particles undergo different fates. For example, evaluation of concentration distributions employed in the advection-diffusion equation must carefully take into account the inhomogeneity resulting from SLS and JC. As a result, turbulent diffusivity can vary on the spatial domain (Besio et al., 2012) especially across regions delimited by SLS and JC. Natural streams or estuaries usually show several regions that adapt to the framework of this work. The presence of analogue structures is quite likely. Therefore, LCS should mark the natural boundaries along which diffusivities could dramatically change their magnitude. Further research is needed to clearly connect the Eulerian properties of the flow with its intrinsic Lagrangian features. Indeed, the compound channel geometry leads to the generation of Eulerian vortical structures, the appearance of which is strongly dependent on the flow depth ratio. The present results suggest that a similar relationship is found when Lagrangian Coherent Structures are studied. A link between the two frameworks based on the spectral properties of Eulerian velocity fields and FTLE fields would then be desirable.

Supplementary material

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.advwatres.2018.01.006.

References

