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A B S T R A C T

Transport processes in a physical model of a natural stream with a composite cross-section (compound channel)
are investigated by means of a Lagrangian analysis based on nonlinear dynamical system theory. Two-dimen-
sional free surface Eulerian experimental velocity fields of a uniform flow in a compound channel form the basis
for the identification of the so-called Lagrangian Coherent Structures. Lagrangian structures are recognized as
the key features that govern particle trajectories. We seek for two particular class of Lagrangian structures: Shear
and shearless structures. The former are generated whenever the shear dominates the flow whereas the latter
behave as jet-cores. These two type of structures are detected as ridges and trenches of the Finite-Time Lyapunov
Exponents fields, respectively. Besides, shearlines computed applying the geodesic theory of transport barriers
mark Shear Lagrangian Coherent Structures. So far, the detection of these structures in real experimental flows
has not been deeply investigated. Indeed, the present results obtained in a wide range of the controlling para-
meters clearly show a different behaviour depending on the shallowness of the flow. Shear and Shearless
Lagrangian Structures detected from laboratory experiments clearly appear as the flow develops in shallow
conditions. The presence of these Lagrangian Structures tends to fade in deep flow conditions.

1. Introduction

Natural rivers and, quite often, artificial channels are characterized
by cross-sections composed by a deeper main channel and shallower
floodplains. For this reason they are usually referred as “compound
channels”. Flows of these streams are defined as predominantly hor-
izontal since their horizontal dimensions greatly exceed the vertical one
(Jirka, 2001).

The analysis of mixing processes in natural streams is not a simple
task as flow dynamics is strongly affected by channel irregularities.
Flow velocity in the floodplains is lower than the one of the main
channel, due to the water shallowness and to bed roughness typically
higher than the main channel. As a result of the velocity gradient, shear
occurs at the interface between the main channel and the floodplains.
The presence of various Eulerian flow patterns most of which are
characterized by large-scale vortical structures with vertical axes, i.e.
macro-vortices, is well-known (Socolofksy and Jirka, 2004; Stocchino
et al., 2011; Stocchino and Brocchini, 2010). The generation of these
vortical structures can be described by two main approaches
(Rowiński and Radecki-Pawlik, 2015): either as a shear instability at
the junction of two streams (van Prooijen et al., 2005) or as an outcome
of differential energy dissipation of shallow-water currents interacting
with submerged obstacles (Soldini et al., 2004). The former approach
casts an analogy between the transitional region of the compound

channel and a free mixing layer. The latter identifies the driving me-
chanism for the generation and sustainment of the Eulerian macro-
vortices in the vorticity generation owing to the depth jump across the
cross-section. Stocchino and Brocchini (2010) showed that the shear
layer thickness remains constant in compound channels. Such a con-
dition is a peculiar consequence of the topographic forcing, i.e. the
depth jump, generating the Eulerian macro-vortices. On the contrary,
the shear layer generated by the junction of two streams on an even
bottom tends to grow linearly. In order to clarify strengths and short-
comings of both, a detailed comparison between the approaches pur-
sued by van Prooijen et al. (2005) and Soldini et al. (2004) should be
carried out and the outcome of the numerical simulations compared.
However, the issues raised by these two different approaches are not
considered in the present work. Indeed, we aim to analyse experimental
surface velocity fields under a Lagrangian perspective disregarding the
Eulerian approach. Note that it is well-known that Eulerian and La-
grangian patterns do not always correspond (Haller, 2015).

An experimental investigation on the mixing processes, in terms of
Lagrangian statistics of single and multiple particles, was presented by
Stocchino et al. (2011). However, the role of flow inhomogeneity was
disregarded in that study. This aspect is the main subject of the present
work, where we aim to detect coherent patterns from Lagrangian
measures in order to seek structures that characterise the compound
channel. Key structures are located at the transition from the main
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channel to the lateral channels (floodplains) and approximately along
the axis of the main channel. Therefore, we focus on Lagrangian
structures that shape trajectory patterns.

The present analysis mainly relies on the computations of the Finite
Time Lyapunov Exponents (FTLE) fields along with related trenches
(Beron-Vera et al., 2010) and ridges (Shadden et al., 2005), as a first
diagnostic tool. However, FTLE trenches and ridges are not always a
signature of the presence of material lines. Despite such a shortcoming,
they are still a valuable tool to understand the dynamics of the flow. In
particular, ridges are able to reveal the regions of motion that are ki-
nematically the most active (Allshouse and Peacock, 2015a). We then
manage to isolate two types of heuristic structures that are mostly
disregarded in previous studies: Jet-Cores (JC), i.e. shearless structures,
and Shear Lagrangian Structures (SLS), respectively. JC were studied by
Beron-Vera et al. (2010) and Farazmand et al. (2014). In the present
work we apply the methodology detailed in the former study based on
FTLE trenches. Besides, we characterize the behaviour of heuristic JC
resulting from FTLE trenches by applying the methodology described
by Allshouse and Peacock (2015b). The same method is also applied to
ridges of FTLE fields that mark heuristic SLS. Such a conclusion is
proven by testing heuristic SLS against their shear properties.

A further characterization of shear is carried out upon the rigorous
definitions of Lagrangian Coherent Structures (LCS) (Haller, 2011;
Haller and Beron-Vera, 2012). Among the general family of LCS, SLS
are features dominated by a bulk shear typical of parallel flows. Herein,
SLS are detected in order to mark the fundamental geometry of shear
patterns. Note that SLS and JC are usually defined and studied on the
basis of analytical velocity fields, whereas the main goal of the present
study is to deeply investigate realistic flow conditions in a laboratory
model of a typical river configuration. Heuristic SLS calculated as FTLE
ridges and rigorous SLS calculated from the geodesic theory of transport
barriers are compared and a nice agreement is found.

Summing up, experimental data of time-dependent, two-dimen-
sional Eulerian velocity fields (Stocchino et al., 2011; Stocchino and
Brocchini, 2010) are employed to calculate numerical trajectories upon
which JC and SLS are estimated against their shear properties. Rigorous
SLS are also calculated as shearlines that minimize their geodesic de-
viation.

The paper proceeds with Section 2 devoted to the definition and
formulation of the LCS identification techniques. Then, in Section 3 we
describe the velocity fields employed and we asses their two-di-
mensionality. Section 4 describes in details the LCS that can be detected
in shallow, intermediate, and deep flow conditions. Finally, Section 5 is
devoted to the conclusions and closes the paper.

2. Theoretical background

A fluid is usually studied applying the well-known results of con-
tinuum mechanics and we follow this approach. A fluid bodyB is made
of elements called particles ξ. In order to describe the position of these
particles we establish a one-to-one correspondence between the parti-
cles and the coordinates of a reference system, i.e. a triple of real
numbers. We introduce Lagrangian coordinates =ξ ξ ξ ξ( , , )1 2 3 as a
material coordinate system that label fluid particles. Since any two
systems of coordinates are related by a continuously differentiable
transformation we can introduce Eulerian coordinates as

=x Φ ξt t( ; , )0 (1)

where Φ is the flow map. The Eulerian coordinates denote the position
of a point fixed in what can be called the laboratory frame
(Thiffeault and Boozer, 2001). The transformation showed in equation
(1) can be inverted in the neighbour of a point provided that the Ja-
cobian exists and does not vanish (Aris, 1962).

The study of fluid flows cannot be carried out disregarding velocity
fields. Indeed, velocity fields are the core of fluid mechanics and time-
dependent velocity fields are generally written as v(x, t). The trajectory

of particles are curves solutions of

=
x v xd

dt
t( , )

(2)

with initial conditions =x ξ ξt( , )0 .
We can regard Eq. (2) as a set of ordinary differential equations and

evaluate on a finite time interval = −T t t( )1 0 the distance that two
initial close particles can experience. Therefore, if we consider as initial
conditions ξ0 and +ξ ϵ0 we can evaluate the final distance between the
two particles applying a linearisation (Allshouse and Peacock, 2015b):

= − + ≈ ∇x Φ ξ Φ ξ ϵ Φ ξ ϵδ t t t t t t t( ) ( ; , ) ( ; , ) ( ; , )1 1 0 0 1 0 0 1 0 0 (3)

where ∇Φ(t1; t0, ξ0) is called the flow map gradient and it is a tensor
represented by a matrix the entries of which are ∇ = ∂ ∂x ξΦ /j

i i j. We
impose two restrictions on ∇Φ. Firstly, an infinitesimal material ele-
ment dx must not split along its evolution and coalescence of two
material elements is not allowed. This is the physical interpretation of
the condition on the Jacobian of Eq. (1). The second restriction imposes
that the deformation must preserve orientation, i.e. three right-handed
material elements dx, dy and dz satisfying dx∧dy · dz > 0 are
transformed into three material elements satisfying

∧ = ∇ ∧ ∇ ∇ = ∇ ∧ >x y z Φ x Φ y Φ z Φ x y zd t d t d t d d d d d d( ) ( )· ( ) ( ) ( )·( ) det( ) · 0. By
writing ∇Φdx we denote the product between the matrix ∇Φ and the
vector dx, i.e. a contraction that results in a vector. Scalar product
between vectors is indicated as ( · ). The second restriction implies that
the Jacobian of Eq. (1) must satisfy the following condition:

= ∇ >ΦJ det( ) 0 (4)

The magnitude of the final distance can be evaluated as
(Shadden et al., 2005):

= = ∇ ∇ =

= =

x x x Φ x Φ x

x C x ϵ Cϵ

δ t δ t δ t δ t δ t

δ t δ t

( ) ( )· ( ) [ ( )]·[ ( )]

( )·[ ( )] ·( )
1 1 1 0 0

0 0 (5)

where C is the Cauchy-Green tensor defined as = ∇ ∇C Φ Φ( )T where
( · )T denotes the transpose. It is possible to prove that matrix C is po-
sitive definite and symmetric. Since we analyse 2D velocity fields, C has
two eigenvectors e1 and e2 associated with two eigenvalues
0 < λ1≤ λ2, respectively.

Maximum stretching occurs when δx(t0) is chosen such that it is
aligned with the eigenvector associated with the maximum eigenvalue
of C, i.e.:

=x xδ t λ δ tmax ( ) ( )1 2 0 (6)

where (·) indicates alignment with the eigenvector associated with the
maximum eigenvalue λ2 of the Cauchy–Green tensor. Since =x ϵδ t( ) ,0
Eq. (6) can be recast to obtain

=x ϵδ tmax ( ) eσ T
1 t

t
0
1 (7)

where

=σ
T

λ1 logt
t

20
1

(8)

represents the (maximum) Finite-Time Lyapunov Exponent (FTLE)
calculated on a finite integration time T.

The eigenvectors of C define directions of initial separations for
which neighbouring particles are converging or diverging. Since we are
interested in the most active regions of the fluid flow from a kinematic
point of view, we define the FTLE in Eq. (8) as a function of the max-
imum eigenvalue. Panel a) of Fig. 1 shows the deformation in the
neighboured of a point under the action of the flow map. Computation
of FTLE can be carried out in forward time, i.e. from t0 to +t T,0 or in
backward time, i.e. from +t T0 to t0. Identification and classification of
the main features of these scalar fields is the subject of the next para-
graphs.

Eckmann and Ruelle (1985) showed how λ2 tends asymptotically to
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a single value λ∞ as time tends to infinity for ergodic systems. The
following results are strictly applicable to autonomous systems (Osse-
ledec theorem):

=∞
→∞

λ
λ

T
lim

log( )
2T

2
(9)

Tang and Boozer (1996) showed that at times ≫
∞

T λ
1 the averaged

FTLE takes the form:

= + + ∞λ A
T

B
T

λ
(10)

where A and B are constants. Analogously, the standard deviation be-
haves as:

∝σ
T
1

λ (11)

The probability density function must behave in agreement with the
previous theoretical results, i.e. as the integration time increases the pdf
must narrow, converging to a delta function. Abraham and
Bowen (2002) showed the consistency of these last theoretical results in
an analysis carried out on the basis of surface velocity fields of a region
of the East-Australian Current. Lapeyre (2002) found narrowing pdfs as
T increases, due to the decrease of the standard deviation, and a shift of
the peaks towards smaller values due to the decaying turbulent field in
time he analysed.

2.1. Detection and classification of the FTLE features: Ridges and trenches

Lagrangian Coherent Structures have been broadly recognised as
the main features that characterise transport in fluid flows. FTLE scalar
fields have been largely adopted in order to seek for heuristic
Lagrangian Coherent Structures. In particular, ridges have been asso-
ciated with the concept of stable and unstable manifolds: ridges cal-
culated in forward time are considered as a signature of repelling
structures whereas ridges calculated in backward time as attracting
structures (Shadden et al., 2005). However, such a representation is
undermined by some known issues (Haller and Yuan, 2000). In parti-
cular, ridges of FTLE fields can mark heuristic SLS. This applies to the
present case: the transition region between the main channel and the
floodplains is marked by such features, as discussed in the following.

JC can be detected at the center of the main channel. They mark
absence of shear and inhibit cross-channel transport: Such shearless
barriers were found to strongly separate the fluid environment pre-
venting exchange between the regions divided by them (Rypina et al.,
2007; Samelson, 1992). Such structures were classified as invariant-
tori-like LCS that are often present in geophysical flows (Beron-
Vera et al., 2010). Since infinite-time Lyapunov exponents of invariant-
tori are zero and invariant-tori computed in forward time coincide with
invariant-tori computed in backward time, the heuristic identification
of JC relies on trenches of FTLE fields that coincide in forward and
backward time.

Evaluation of the most influential structures in FTLE fields, i.e.
ridges and trenches, is pursued considering the dynamical properties of
these features (Green et al., 2007; Mathur et al., 2007). Ridges behave

as attractors of trajectories solution of the dynamical system

= ∇ ±x xd
ds

σ ( )t
t T
0
0

(12)

where s is the arclength along the gradient lines of ± xσ ( )t
t T
0
0 and the

right-hand side represents the spatial gradient of FTLE scalar fields.
This property is at the base of the extraction algorithm proposed by
Mathur et al. (2007) and here adopted. The reliability of such a pro-
cedure was strengthen by Peikert et al. (2013). Panel b) of Fig. 1 shows
the behaviour of ridges as attractors of trajectories solution of Eq. (12).
The detection of trenches is analogue: the computations are carried out
considering = −∇ ± xσ ( )xd

ds t
t T
0
0 . Since the methodology is the same, in

the following we refer only to ridges.
Once the ridges are detected, a hermite interpolation is adopted

(Rovenski, 2010) in order to locate (first attempt) ridges made of points
equally spaced between them. The advantage of Hermite cubic inter-
polation is twofold. Tangent vectors of the points that form the curve
can be chosen and monotony property of the function (curve) that is
interpolated is generally preserved. Given points P1 and P2 and nonzero
tangent vectors Q1 and Q2 the cubic Hermite curve r(s) is defined as

= − + + − + − + −r s s s P s s P s s Q s s Q( ) (1 3 2 ) (3 2 ) ( 1) ( 1)2 3
1

2
2

2
1

2
2

(13)

where 0≤ s≤ 1. However, the precision of the computed ridges is
insufficient to allow for an accurate advection of these structures.
Therefore, the procedure described by Allshouse and Peacock (2015b)
is applied in order to refine the ridges. Following the cited approach,
points belonging to a ridge are detected with a relative precision of
order −10 7 and their advection can be reliably computed. The refine-
ment process is schematically depicted in Fig. 2 and can be summarized
as follows. An initial ridge (depicted in red in Fig. 2, i.e. the curve
interpolated with the Hermite polynomial) is better approximated
placing a number of test points at incremental distances δ at either sides
of the ridge along the normal direction. FTLE values for all these points
normal to the initial ridge are then evaluated and the point with the
maximum FTLE value is taken as the refined position of the ridge (green
points in Fig. 2). In case of trenches, the revised position is chosen as
the corresponding minimum FTLE value.

This process is carried out recursively until a prescribed accuracy is
reached. Once the final (refined) ridge is calculated, it is possible to
define a tangential unit vector τ0 to the ridge at time t0 and a normal
unit vector n0, evaluated with Frenet–Serret formulas. By applying the
flow map gradient, we can evaluate the advected tangential vector
∇Φτ0 and the advected normal vector ∇Φn0.

In order to characterize the behaviour of ridges it is possible to
evaluate the quantities described by Allshouse and Peacock (2015b).
The magnitudes of the advected normal and tangential vectors, nl and
el, show stretching and contraction that occur to particles initially
aligned along the ridge and initially perpendicular to the ridge, re-
spectively, and can be written as:

= ∇Φnn log 0l (14)

= ∇Φe τlog 0l (15)

Fig. 1. Panel a) shows the deformation in the neighbour-
hood of a point under the flow map Φ. A circle of unit radius
is deformed as depicted. Panel b) shows the vector field∇σ ,t

t
0
1

a ridge, in red, and two solutions of Eq. (12), in black. (For
interpretation of the references to colour in this figure le-
gend, the reader is referred to the web version of this ar-
ticle.)
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Similarly, it is possible to compute the hyperbolic repulsion ρl and the
Lagrangian shear σl in order to characterize how the unit normal vector
n0 deforms, as:

= ∇n Φnρ log [ ·( )]t 0l (16)

= ∇Φnσ τlog [ ·( )]t 0l (17)

where nt and τt are unit normal and tangential vectors to the advected
ridge. Fig. 3 shows a pictorial representation of such quantities. Eqs.
(14)–(17) adopt a logarithmic scaling in order emphasize stretching. A
precise detection of the ridges is mandatory for a reliable computation
of the quantities expressed by Eqs. (14)–(17), in particular when the
flow map gradient is applied to τ0. Trenches of FTLE fields are char-
acterized adopting the same measures. The predominant shear char-
acter of ridges is confirmed if σl is greater than ρl along the majority of
their length. On the contrary, JC must present very small σl and van-
ishing ρl along the majority of their length.

2.2. Shear Lagrangian coherent structures

Recent developments in the field of Lagrangian Structures cleared
that not all FTLE ridges are material lines. Haller and Beron-
Vera (2012) developed a consistent theory in order do detect material
lines that act as transport barriers. Of particular interest are material
lines that attract or repel nearby fluid over a finite time interval. The
normal repulsion rate introduced in the previous section evaluates such
a condition (logarithmic scaling is not essential in the definition). Ne-
cessary and sufficient criteria for the existence of repelling and at-
tracting LCS over a finite time interval are described in terms of ei-
genvalues and eigenvectors of the Cauchy–Green tensor. Adopting a
variational argument, Haller and Beron-Vera (2012) showed that a
curve is a hyperbolic transport barrier whether it is a trajectory of the
autonomous differential equation:

′ =r e1 (18)

Such trajectories are defined strainlines after Haller and Beron-
Vera (2012). Considering a generic point P, the least-stretching geo-
desic at P under the Cauchy–Green tensor is the geodesic starting from P
with a unit tangent vector expressed by Eq. (18).

In the framework of this work, the predominant features of the flow
are characterised by shear. The material lines, shear LCS, that maximize
Lagrangian shear = ∇Φnσ τ ·( )t 0 are curves everywhere tangent to the
shear vector field η ± (Hadjighasem et al., 2013; Haller and Beron-

Vera, 2012) defined as:

=
+

±
+

±η e e
λ

λ λ
λ

λ λ
2

1 2
1

1

1 2
2

(19)

Open curves tangent to the shear vector field of Eq. (19) are shear LCS,
i.e. a shear transport barrier is a trajectory of the autonomous differ-
ential equation:

′ = ±r η (20)

Such trajectories are defined shearlines after Haller and Beron-
Vera (2012). Positive Lagrangian shear signals clockwise deformation
while negative Lagrangian shear signals counterclockwise deformation
in the local coordinate frame (e1, e2). The most prominent shear LCS are
shearlines that minimize the geodesic shear deviation (Hadjighasem
et al., 2013; Haller and Beron-Vera, 2012) along their length. The
pointwise closeness of shear LCS to least-stretching geodesics can be
computed in terms of invariants of the Cauchy-Green tensor. The geo-
desic deviation evaluates the difference of tangents plus the difference
of curvatures of a shear LCS from the least-stretching geodesic of the
Cauchy-Green tensor. Haller and Beron-Vera (2012) provide an explicit
formula in order to evaluate the geodesic deviation, which reads:

=
+ −

+
+

∇

+

∓
∇ + −

+

∓
+ − +

+
+

+

± e

e

d
λ λ

λ
λ

λ λ

λ λ λ
λ λ

κ λ λ λ
λ λ

κ
λ

1
1

·
2 1

, ( 1 )
2 1

[ (1 ) 1 ]
1 1

g
η 2 2

2

2 1

2 2

2 2 2
3

2
5

2
3

2
3

1 2
5

2
2

2

2
2

2

2

2 (21)

with e2 denoting the eigenvector associated with λ2, κ1 the curvature of
the strainline and κ2 the curvature of e2 vector field. The predominant
shear LCS is chosen as the shearline whose average geodesic deviation

∫

∫
=

′

′
±

± r
r

d
d ds

ds
avg( )g

η g
η

(22)

is the least among all. Computations of FTLE fields and shear LCS are
carried out following Onu et al. (2015) and Farazmand and
Haller (2012). A MATLAB toolbox was made publicly available by these
authors and it has been here exploited.

Fig. 2. The refinement process adopted from Allshouse and Peacock
(2015b). The true ridge is depicted in blue. Initial guess ridge is
depicted in red on the left. New maximum FTLE positions are circled
in green. After recursively applying the refinement process, as shown
on the right, the ridge is better approximated. (For interpretation of
the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 3. Pictorial representation of unit normal and tangential vectors and of
hyperbolic repulsion and Lagrangian shear. Note that logarithmic scaling is not
applied to this picture.
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3. Experimental flow field

The present analysis is based on the experimental measurements of
the free-surface Eulerian velocity fields described in Stocchino and
Brocchini (2010) and Stocchino et al. (2011). Herein, we briefly recall
the main characteristics of the apparatus and of the measuring system.
The flume was 20m long, 60 cm wide and the trapezoidal cross-section
was composed by a central main channel ( =Wmc 20 cm), two lateral flat
floodplains ( =Wfp 18 cm) and a transition region ( =Wtr 2.5 cm). Fig. 4
shows the cross section of the flume.

Velocity measurements have been performed by means of a two-
dimensional Particle Image Velocimetry system on a field of view of
(1.2 × 0.6) m2. The acquisition rate was between 100 Hz and 250 Hz,
depending on the flow velocity. Each acquisition was made of a number
of frames between 2000 and 4000. Several series of experiments have
been carried out spanning a quite large range of values of the main
physical parameters. In Table 1 we summarize the experimental con-
ditions, providing the values of the ratio between the main channel
water depth (hmc) and that of the floodplains (hfp), =r h h/ ,h mc fp and the
Froude number, =Fr U gR/ ,m where R is the hydraulic radius, g is
gravity and Um is the peak velocity in the main channel. Moreover, S
represents the longitudinal bed slope.

We keep the same distribution of the flow regimes depending on rh
introduced in Nezu et al. (1999) and used in Stocchino et al. (2011). As
pointed out by Nezu et al. (1999) three different flow regimes can be
identified depending on the value of rh. For rh > 3 the flow is defined
as “Shallow”. In this case, intense velocity gradients occur at the tran-
sition between the main channel and the floodplains, leading to a strong
shearing and a generation of vorticity associated with the flow depth
jump Soldini et al. (2004). For values of rh < 2, the flow is defined as
“Deep”, characterized by a weaker shear in the transition region. The
flow depth jump, in this case, is unable to greatly influence the free-
surface flow. Finally, “Intermediate flows” are defined when
2 < rh < 3. In the framework of their analysis Stocchino et al. (2011)
evaluated single and multiple particles statistics. Since a constant mean
velocity causes the absolute dispersion to increase quadratically in
time, and thus the diffusivity to increase linearly in time, their analysis

was carried out removing a constant mean from the velocity field. In the
case of compound channel flows, a mean motion does exist in the
stream-wise direction and it is non-homogeneous over the cross-section.
The mean stream-wise velocity assumes a bell-like distribution as
shown in Stocchino and Brocchini (2010) and its shape depends
strongly on the flow depth ratio rh. As a result, for a 2D flow evolving in
the plane the residual velocity reads as

′ = −u u Ux y t x y t x y( , , ) ( , , ) ( , ) (23)

where U(x, y) indicates the velocity averaged over the duration of the
single realization. This method is adequate to handle flows that are
inhomogeneous, like in the present case or in oceanographic applica-
tions, while the classical results of Taylor were obtained assuming

=U x y( , ) 0, i.e. for homogeneous flows. The analysis is then carried out
upon such velocity field in agreement with Stocchino et al. (2011).

SLS and JC have been computed on the entire dataset. However, for
the sake of clarity, we will discuss in details one run of each class,
showing the recurrent features of every corresponding class.

3.1. Assessment of two-dimensionality

In the framework of the present work, the fluid flow is considered
two-dimensional. Indeed, the measurements presented in Stocchino and
Brocchini (2010) and Stocchino et al. (2011) were taken on the free
surface assuming that the flow is mainly two dimensional. This ex-
perimental approach based on the free surface velocity measurement is
often used in many experimental works with primary focus on quasi-2D
vortical structures (see Jirka, 2001; Nikora et al., 2007; Socolofksy and
Jirka, 2004, among others). This approach is valid as long as the sec-
ondary flows can be considered negligible in the formation of the quasi-
2D vortical structures with vertical axis of rotation and confined in a
layer close to the bottom. However, in order to verify this hypothesis
the Lagrangian divergence is here evaluated. In particular,
Mathur et al. (2007) define Lagrangian divergence as:

Fig. 4. Sketch of the cross section of the flume.

Fig. 5. Lagrangian divergence evaluated on a time interval of 1s for EXP 201.

Table 1
Main experimental parameters.

EXP Series No. of runs rh (-) Fr (-) S (-) Re×104 (-)

100 12 1.28 – 3.70 0.14 – 1.12 0.0064 2.8 – 14.2
200 13 1.68 – 4.16 0.60 – 0.82 0.0032 2.0 – 13.0
E0 10 1.82 – 3.69 0.87 – 1.13 0.0064 2.8 – 13.1
E00 9 1.77 – 3.69 0.44 – 0.57 0.0016 1.3 – 5.2
E00 9 1.82 – 4.42 0.73 – 0.99 0.0048 1.2 – 9.9
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∫= ∇x vL dt( ) [ · ]Φ ξ
t

t
t t( ; , )

0

1
0 (24)

where = ′v u in the present case. The Lagrangian divergence is com-
puted along particle paths and should be zero for purely 2D flows. It
represents the factor by which infinitesimal areas are magnified. Fig. 5
shows a typical snapshot of L(x) for a shallow flow case. The Lagrangian
divergence presents a quite flat distribution with the only exception of
few peaks located at the transition region. The overall values are well
below unity and much smaller than the ones found by
Mathur et al. (2007) in a rotating water tank where the flow is con-
sidered manly two-dimensional. This measure is also employed by
Wilson et al. (2013) in a turbulent boundary layer in order to quantify
its two-dimensionality. They found a mean value of exp(L) close to 1.2

over their entire domain, arguing that stretching along one direction is
balanced by convergence in another direction. Further considerations
led them to accept the flow as two-dimensional.

Besides, divergence-free flows have FTLE fields non-negative
(Arnold, 1992; Lipinski and Mohseni, 2010). Therefore, an indirect
proof of the low three-dimensionality of the flow can be obtained in-
specting FTLE fields. As showed in the following Sections negative FTLE
values are very few. Therefore, the assumption of two-dimensionality
can be fully accepted.

4. Results

Four experimental cases are reported in detail as prototypical ex-
amples of the respective flow conditions: shallow flows, intermediate
flows and deep flows. In the case of intermediate flows, two regimes
have been further investigated, namely flow in subcritical and super-
critical conditions. The integration time is set to one second in order to
let particle stay inside the computational domain. Furthermore, such an
integration time has the same order of magnitude of the Lagrangian
decorrelation time evaluated by Stocchino et al. (2011) on the same
dataset.

It is worthy to recall the theoretical analysis reported in Haller and
Beron-Vera (2012), where the authors studied a parallel shear flow as a
benchmark case. In particular, the velocity field of the shear flow in-
vestigated takes the form

=x u y t˙ ( , ) (25)

=y v y˙ ( ) (26)

on a planar domain with non-vanishing and non-linear time-averaged
shear ( ∫= ≠a y u y τ dτ( ) ( , ) 0t

t
0

and da(y)/dy≠ 0). One of the main
conclusions of the work by Haller and Beron-Vera (2012) was that, in
such a framework, any horizontal line is a shear LCS. Despite several
important differences, it is possible to cast an analogy between the
above flow and the compound channel flows here discussed. Indeed,
although both velocity components are time dependent in the case of
compound channels, the shear pattern heuristically conforms to the
parallel shear flow described by Eqs. (25) and (26), since shear LCS do
develop in the stream-wise direction and are advected in the same di-
rection.

In particular, the expected pattern must be symmetric with respect
to the axis of the channel because the residual velocity, Eq. (23), upon

Fig. 6. Pictorial representation of the shear LCS of the compound channel, in red and
blue. At the center of the main channel a JC is present, in magenta. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 7. FTLE average and standard deviation as a function of integration time for 12
different initial conditions. The close up helps in identifying the different curves.

Fig. 8. Probability density function for FTLE fields.

Fig. 9. Forward and backward FTLE ridges for EXP 201, shallow flow conditions. Letters
identify predominant FTLE ridges. Trenches are marked in red. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this
article.)
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which Eq. (2) is solved determines a flow direction of the main channel
reversed with respect to the floodplains. Fig. 6 shows a pictorial re-
presentation of shear LCS marking positive and negative shear, which
can be detected in compound channels at the transition between the
main channel and the floodplains. Indeed, the bottom region of the
Figure shows positive shear whereas the top region negative shear,
defined in agreement with the convention adopted for Eq. (20).

A shearless structure is present along the axis of the main channel
marking a JC. The main channel is characterized by low values of FTLE
fields and trenches can be detected. This is the typical configuration
resulting from a bell-shaped velocity profile.

In the following, we present the main results obtained starting from
a general description of the behaviour of the FTLE fields and then go
forward with a detailed description of the Lagrangian structures de-
pending on the flow regime.

4.1. General behaviour of FTLE fields

Coherent patterns are firstly detected through FTLE fields and they
are found to behave in agreement with Eqs. (10) and (11). By choosing

12 different initial conditions and evaluating FTLE fields with integra-
tion times varying from 0.1 to 5.7 s, we can obtain the results plotted in
Fig. 7. This Figure shows two bundles of 12 curves representing the
average and the standard deviation of the values of FTLE fields as a
function of the integration time. Note that the different curves are so
closed to each other that can be hardly identified separately. The trends
of both quantities, average and standard deviation, are in agreement
with the expected theoretical results for ergodic systems, showing a
monotonic decay in time as predicted by Abraham and Bowen (2002).

Moreover, the probability density function (pdf) of the FTLE are
expected to behave accordingly. In particular, as the integration time
increases the pdf tends to a Dirac delta centered at the limit FTLE value,
see Fig. 8. Owing to the two-dimensionality of the flow at hand, it is
reasonable to expect that FTLE values are mainly positive, leading to
positively skewed pdfs.

4.2. Shear and shearless structures in shallow conditions

Experiment 201 is considered as a prototypical case of shallow
conditions since it was carried out with a ratio =r 4.16h . Note that the

Fig. 10. Forward FTLE ridges normal and tangential
advected unit vector magnitudes, el and nl on the left,
and hyperbolic repulsion and Lagrangian shear, σl
and ρl on the right. Black, red and blue colors refer to
ridges A, B and C of Panel a) of Fig. 9, respectively.
(For interpretation of the references to colour in this
figure legend, the reader is referred to the web ver-
sion of this article.)

Fig. 11. Backward FTLE ridges normal and tangen-
tial advected unit vector magnitudes, el and nl on the
left, and hyperbolic repulsion and Lagrangian shear,
σl and ρl on the right. Black, red and blue colors refer
to ridges A, B and C of Panel b) of Fig. 9, respectively.
(For interpretation of the references to colour in this
figure legend, the reader is referred to the web ver-
sion of this article.)

Fig. 12. Quantification of repelling and shear
properties of JC. Panel a) shows nl and el for for-
ward and backward trenches of Fig. 9, in red and
black respectively. Panel b) shows ρl and σl with the
same color coding. (For interpretation of the refer-
ences to colour in this figure legend, the reader is
referred to the web version of this article.)
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flow for this case is in subcritical regime ( =F 0.60r ). Fig. 9 shows ty-
pical Lagrangian patterns of shallow flow conditions. Panel a) and b)
depict a snapshot of the forward and backward FTLE fields evaluated at
t= 5.0 s, respectively. Both forward and backward fields show struc-
tures at the transition from the main channel to the lateral floodplains.
Upon each field, three main structures depicted in black are identified
and their ridges isolated. At the center of the main channel trenches are
identified and depicted in red. In order to prove the predominant shear
character of ridges, the magnitude of the advected unit normal and
tangential vectors are computed taking advantage of Eqs. (14) and (15).
Besides, repulsion and Lagrangian shear are evaluated applying Eqs.
(16) and (17). Figs. 10 and 11 show such quantities as a function of the
curvilinear coordinated s along forward and backward ridges, respec-
tively.

In all cases the growth of the normal vectors is greater than the
growth of the tangential vectors, i.e. nl is greater then el. The growth of
the normal vector n0 is predominantly due to Lagrangian shear, since σl
is greater than ρl along each ridge for almost their entire length. Ridge C
belonging to the forward field of Fig. 9, panel a), shows some noisy
signal in the hyperbolic repulsion, depicted in Fig. 10. This behaviour is
all but surprising since it is encountered even from dataset resulting
from numerical simulations (Allshouse and Peacock, 2015b). These
quantitative results suggest that material elements initially aligned
along FTLE ridges will tend to move consistently without significant
elongations. On the contrary, material elements initially perpendicular
to the ridges will stretch because of shear.

Trenches of FTLE fields are identified at the center of the main
channel where low FTLE values appear. These trenches behave as JC
showing absence of shear. Panel a) of Fig. 12 shows that nl and el are
almost zero along the entire length of both JC evaluated from forward
and backward fields. This means that along JC unit normal and tan-
gential vectors are not significantly deformed. Panel b) show that ρl is

almost zero whereas σl is very small. This reflects the fact that unit
normal vectors do not deform and their projection along the tangential
direction to the ridge is negligible.

FTLE ridges are nicely in agreement with shearlines. Fig. 13 shows
positive shear vector field (in the lower part of the domain, in blue) and
negative shear vector field (in the upper part of the domain, in red).
Shear vector fields and shearlines are computed through Eqs. (19) and
(20), respectively. The corresponding positive and negative shearlines
are superimposed on the corresponding areas. This particular pattern is
due to the symmetry of the problem. Clockwise shear in the lower part
of the domain is reflected in counterclockwise shear in the upper part of
the domain (see for comparison Fig. 6). Fig. 14 shows the predominant
shear LCS (in black) that minimize the geodesic deviation. Forward
ridges of Fig. 9 are plotted in green and backward ridges in blue. They
are not perfectly aligned with shear LCS since the eigenvectors asso-
ciated with maximum eigenvalues differ from the shear vector field.
However, their alignment is remarkable. JC are depicted in red and are
located at the center of the main channel. They do not perfectly su-
perimpose. Increasing the integration time should lead to a better su-
perposition. However, this leads to an accumulation of particles to the
boundaries resulting in a splintering of the ridges. As a result, the in-
tegration time is kept to one second.

4.3. Shear and shearless structures in intermediate conditions - subcritical
case

Experiment 207 was carried out with a ratio =r 2.26h and it belongs
to intermediate and subcritical conditions ( =Fr 0.73). It is analyzed as
a reference configuration for this type of flows. FTLE fields show in
general a pattern comparable to shallow conditions even if high FTLE
regions protrude towards lateral channels. Fig. 15 shows the FTLE field
and represents the general configuration of interest for forward and
backward fields. Seven predominant ridges are identified in forward
time and two in backward time. Their behaviour is characterized with
the same procedure followed in the previous Section. Analogously to
the shallow case, Lagrangian shear is predominant to repulsion, as
depicted in Figs. 16 and 17, classifying these ridges as SLS. Compared to
the shallow case, higher values of FTLE are obtained in the floodplains.
Such values could reach peaks comparable to those of the transition
region, see panel a) of Fig. 15. At the center of the main channel
trenches of FTLE fields are identified. Fig. 18 quantifies shear properties

Fig. 13. Positive, in blue, and negative shear vector field, in red. Positive and negative
shear LCS are superimposed on the respective fields. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Predominant positive and negative shearlines, in black, superimposed on for-
ward FTLE field, EXP 201. Forward FTLE ridges, in green, and backward in blue. JC
resulting from forward and backward FTLE fields are depicted in red. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 15. Forward and backward FTLE ridges for EXP 207, intermediate flow conditions,
subcritical case. Letters identify predominant FTLE ridges. Trenches are marked in red.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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of such trenches and qualifies them as JC, showing results analogue to
those of Experiment 201. However, the extension of the region where
low FTLE values are present contracts.

Fig. 19 shows positive shear vector field (in the lower part of the
domain, in blue) and negative shear vector field (in the upper part of

the domain, in red) with a pattern analogous to the previous case.
Fig. 20 shows the shear LCS that minimize the geodesic deviation
alongside ridges and trenches. Shear LCS do align along longitudinal
FTLE ridges. JC identified in both forward and backward fields super-
impose much better than in the case of Experiment 201.

Fig. 16. Forward FTLE ridges normal and tangential
advected unit vector magnitudes, el and nl on the left,
and hyperbolic repulsion and Lagrangian shear, σl
and ρl on the right. Black, red, blue, yellow, green,
cyan and magenta colors refer to ridges A, B, C, D, E
and G of Panel a) of Fig. 15, respectively. (For in-
terpretation of the references to colour in this figure
legend, the reader is referred to the web version of
this article.)

Fig. 17. Backward FTLE ridges normal and tangen-
tial advected unit vector magnitudes, el and nl on the
left, and hyperbolic repulsion and Lagrangian shear,
σl and ρl on the right. Black and red colors refer to
ridges A and B of Panel b) of Fig. 15, respectively.
(For interpretation of the references to colour in this
figure legend, the reader is referred to the web ver-
sion of this article.)

Fig. 18. Quantification of repelling and shear
properties of JC. Panel a) shows nl and el for for-
ward and backward trenches of Fig. 15, in red and
black respectively. Panel b) shows ρl and σl with the
same color coding. (For interpretation of the refer-
ences to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 19. Positive, in blue, and negative shear vector field, in red. Positive and negative
shear LCS are superimposed on the respective fields. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 20. Predominant positive and negative shearlines, in black, superimposed alongside
with forward FTLE ridges, in green, and backward in blue. JC are depicted in red. (For
interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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4.4. Shear and shearless structures in intermediate conditions - supercritical
case

Experiment 105 was carried out with a ratio =r 2.15h belonging to
intermediate and supercritical conditions ( =Fr 1.05). FTLE fields show
in general a pattern comparable to intermediate and subcritical con-
ditions. Fig. 21 shows the FTLE field representing the general config-
uration of interest for forward and backward fields.

Four predominant ridges are identified in forward time and two in
backward time. Higher FTLE values are located at the transition region.
However, some ridges do not completely align along the stream-wise
direction. In particular ridges C of panel a) and B of panel b) of Fig. 21
tend to align diagonally with respect to the stream-wise direction. As a
result, for these specific ridges, Lagrangian shear is not always pre-
dominant over hyperbolic repulsion. Figs. 22 and 23 show that the
magnitude of the advected normal is always greater than the magnitude
of the advected tangential vector for all the ridges. Such predominance
is due to Lagrangian shear except for the ridges with diagonal align-
ment. Therefore, we do not classify these ridges as SLS since they show
for a non-negligible length a hyperbolic behaviour. Very well defined
trenches are detected at the center of the main channel. Fig. 24 shows
the shear properties of these trenches that qualify as JC with negligible
shear.

Fig. 25 shows positive shear vector field (in the lower part of the
domain, in blue) and negative shear vector field (in the upper part of
the domain, in red) with a pattern analogous to the previous case.
Fig. 26 shows the shear LCS that minimize the geodesic deviation.
These shear LCS align with ridges of FTLE fields except for ridges C of
panel a) and B of panel b) of Fig. 21. This explains why hyperbolic
repulsion is predominant over Lagrangian shear along some portions of
these ridges. On the contrary, JC are very well superimposed.

4.5. Shear and shearless structures in deep conditions

Experiment 213 was carried out with a ratio =r 1.68h and in sub-
critical conditions ( =Fr 0.82). It is analysed as a reference configura-
tion for deep flow conditions. FTLE fields show in general a pattern
with the absence of persistent structures. Fig. 27 shows the FTLE field
representing the general configuration of interest for forward and
backward fields. In deep conditions the FTLE field is less readable and
regions with high FTLE values protrude towards the inner of the main

Fig. 21. Forward and backward FTLE ridges for EXP 105, intermediate flow conditions,
supercritical case. Letters identify predominant FTLE ridges. Trenches are marked in red.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 22. Forward FTLE ridges normal and tangential
advected unit vector magnitudes, el and nl on the left,
and hyperbolic repulsion and Lagrangian shear, σl
and ρl on the right. Black, red, blue and yellow colors
refer to ridges A, B, C and D of Panel a) of Fig. 21,
respectively. Hyperbolic repulsion of ridge C is
comparable and even predominant over Lagrangian
shear. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web
version of this article.)

Fig. 23. Backward FTLE ridges normal and tangen-
tial advected unit vector magnitudes, el and nl on the
left, and hyperbolic repulsion and Lagrangian shear,
σl and ρl on the right. Black and red colors refer to
ridges A and B of Panel b) of Fig. 21, respectively.
Hyperbolic repulsion of ridge B is predominant over
Lagrangian shear along a significant portion of its
length. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web
version of this article.)
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channel. Four predominant ridges are identified in forward time and
two in backward time. Their behaviour is characterized with the same
procedure followed in the previous Sections. Analogously to the pre-
vious cases, Lagrangian shear is predominant to repulsion, as depicted
in Fig. 28, for ridges that are mainly longitudinal, i.e A and C of the
forward field (panel a) of Fig. 27). Transverse ridges, B and D, show, on
the contrary, comparable Lagrangian shear and repulsion strength and,
consequently, cannot be classified as a SLS. Such a behaviour, showed
in Fig. 29, characterizes even ridge B belonging to the backward field
(panel b) of Fig. 27). Trenches are located at the center of the main
channel. However, the width of the low FTLE region has shrunk sig-
nificantly compared to the previous cases. As a result, trenches tend to
be interrupted by higher values of FTLE. Fig. 30 quantifies the shear
properties of these trenches that can be consequently classified as JC.

Fig. 31 shows positive shear vector field (in the lower part of the
domain, in blue) and negative shear vector field (in the upper part of
the domain, in red) with a pattern analogous to the previous case.
Fig. 32 shows the shear LCS that minimize the geodesic deviation.
These shear LCS do align along longitudinal FTLE ridges. JC do

superimpose as expected.
As a general comment of such a flow condition it is possible to argue

a strong independence of the surface flow from the depth jump. Indeed,
transition region from the main channel to the floodplains is not clearly
marked by high FTLE regions as in the previous cases. Furthermore, the
presence of JC is not continuous along the stream-wise direction.

5. Discussion and concluding remarks

This work aims to detect Shear and Shearless Lagrangian Coherent
Structures in compound channels. Finite-Time Lyapunov Exponent
fields are calculated on the basis of Eulerian velocity fields measured
via PIV (Stocchino et al., 2011; Stocchino and Brocchini, 2010) and
they unveil the most active regions of the fluid flow from a kinematic
point of view. From a methodological perspective, ridges and trenches
of FTLE fields are obtained combining the best methods found in lit-
erature: algorithm proposed by Mathur et al. (2007), Hermite inter-
polation by Haller (2011) (recovered in a simplified version from
Rovenski (2010) owing to a predominant linearity of ridges and tren-
ches along the stream-wise direction), refinement process proposed by
Allshouse and Peacock (2015b). Note that the Eulerian velocity fields
were collected during an experimental campaign whereas most appli-
cations concern analytical or numerical models. This reinforce the idea
that this Lagrangian measure is a robust tool that can be applied to

Fig. 24. Quantification of repelling and shear
properties of JC. Panel a) shows nl and el for for-
ward and backward trenches of Fig. 21, in red and
black respectively. Panel b) shows ρl and σl with the
same color coding. (For interpretation of the refer-
ences to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 25. Positive, in blue, and negative shear vector field, in red. Positive and negative
shear LCS are superimposed on the respective fields. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 26. Predominant positive and negative shearlines, forward FTLE ridges in green,
backward in blue and JC in red. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 27. Forward and backward FTLE ridges for EXP 213, deep flow conditions. Letters
identify predominant FTLE ridges. Trenches are marked in red. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this
article.)
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realistic and complex flow fields.
The main parameters controlling the flow under investigation are

the depth ratio rh, i.e. the ratio between the depth of the main channel
and the depth of the floodplains, and the Froude number. The first
parameter defines the shallowness of the flow whereas the second the
critical conditions.

The results suggest a strong influence of the depth ratio on the es-
tablishment of persistent Lagrangian patterns, whereas the Froude
number do not seem to be an important controlling parameter.
However, our dataset does not present supercritical flows for the
shallow conditions and the highest Froude number is 1.07 for the in-
termediate conditions. Therefore, the relevance of our results mainly
concerns the influence of the depth ratio.

In shallow flow conditions, FTLE fields show active regions at the
transition from the main channel to the lateral floodplains marked by
high FTLE values. Regions of small FTLE values at the center of the
main channel are also present. The former are associated with ridges
whereas the latter with trenches. Ridges mark Shear Lagrangian
Structures that maximize Lagrangian shear and trenches Shearless

Lagrangian Structures that behave as Jet-Cores.
Such a configuration is kept even in intermediate conditions.

However, it is possible to observe that FTLE ridges protrude more in the

Fig. 28. Forward FTLE ridges normal and tangential
advected unit vector magnitudes, el and nl on the left,
and hyperbolic repulsion and Lagrangian shear, σl
and ρl on the right. Black, red, blue and yellow colors
refer to ridges A, B, C and D of Panel (a) of Fig. 27,
respectively. Ridges B and D show hyperbolic repul-
sion and Lagrangian shear of comparable strength.
(For interpretation of the references to colour in this
figure legend, the reader is referred to the web ver-
sion of this article.)

Fig. 29. Backward FTLE ridges normal and tangen-
tial advected unit vector magnitudes, el and nl on the
left, and hyperbolic repulsion and Lagrangian shear,
σl and ρl on the right. Black and red colors refer to
ridges A and B of Panel (b) of Fig. 27, respectively.
Ridge B shows hyperbolic repulsion and Lagrangian
shear of comparable strength. (For interpretation of
the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 30. Quantification of repelling and shear
properties of JC. Panel a) shows nl and el for for-
ward and backward trenches of Fig. 27, in red and
black respectively. Panel (b) shows ρl and σl with
the same color coding. (For interpretation of the
references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 31. Positive, in blue, and negative shear vector field, in red. Positive and negative
shear LCS are superimposed on the respective fields. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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floodplains. The analysis performed on the resulting ridges in order to
assess whether hyperbolic repulsion or Lagrangian shear are pre-
dominant suggests that ridges aligned along the stream-wise direction
show predominance of Lagrangian shear over hyperbolic repulsion. On
the contrary, ridges that are aligned diagonally with respect to the
stream-wise direction show portions of their length where hyperbolic
repulsion is predominant over Lagrangian shear.

The clear separation between the main channel and the floodplains
shades by decreasing the flow depth ratio and reaching deep flow
conditions. As a result, the presence of Shear and Shearless Lagrangian
Structures detected from FTLE fields is less readable. It is still possible

to recover some features but their persistence is less evident.
The peculiar pattern of shallow and intermediate conditions

strongly influences transport as Fig. 33 exemplifies. Green dots re-
present tracers advected by the flow. Panels (a), (c), (e) and (g) re-
present initial conditions of particles superimposed on forward FTLE
fields. Panels (b), (d), (f) and (h) represent final conditions resulting
from the advection process superimposed on corresponding forward
FTLE fields. Note that, forward FTLE fields are usually associated with
repelling structures. However, a negligible hyperbolic repulsion was
detected for ridges aligned along the stream-wise direction in the pre-
vious paragraphs. Panels (a)–(f) refer to shallow and intermediate
conditions. These clearly show the shear character of ridges at the
transition region due to the fact that the initial distance between par-
ticles is not kept constant by the advection process. By decreasing rh the
shear character persists but with less strength. Jet-Cores at the centre of
the main channel preserve the initial spacing between the particles.
Panels (g) and (h) refer to deep conditions and they show that the shear
strength tends to be lost.

This analysis gives an integrated point of view over a finite time
interval of the previous work carried out by Stocchino and
Brocchini (2010) and Stocchino et al. (2011). The influence of the
Eulerian macrovortices that develop mainly in shallow conditions (cf.
Fig. 4 of Stocchino et al., 2011) can be directly observed in the
meandering pattern that particles show in such a flow (see panel b) of
Fig. 33. However, Eulerian and Lagrangian diagnostics are conceptually
different (Haller, 2015) since the former refer to an instantaneous time
instance whereas the latter to a finite time interval. Therefore, a direct

Fig. 32. Predominant positive and negative shearlines, in black, superimposed on for-
ward FTLE field, EXP 213. Forward FTLE ridges in green, backward in blue and JC in red.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 33. Advection of particles (green dots)
superimposed on corresponding forward
FTLE fields (tones of grey). Left panels
show initial conditions, right panels final
conditions. Panel (a) and (b) refer to
shallow conditions (EXP. 201). Panels
(c)–(f) to intermediate conditions (EXP.
207 and EXP. 105, respectively). Panels (g)
and (h) refer to deep conditions (EXP.
213). (For interpretation of the references
to colour in this figure legend, the reader is
referred to the web version of this article.)
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matching is impossible to reach.
Ridges of FTLE fields marking heuristic SLS conform to rigorous SLS

calculated adopting the geodesic theory of transport barriers
(Haller and Beron-Vera, 2012). Such SLS are aligned along the stream-
wise direction with a symmetric pattern. Positive SLS are located in the
bottom part of the domain and negative SLS are located in the upper
part of the domain. However, SLS are always aligned along the stream-
wise direction.

Decreasing rh down to a value typical of deep flow conditions, SLS
conform to shallow and intermediate conditions. However, the results
should be considered jointly with the fact that FTLE fields are less
significant and do not show strong persistent patterns. This fact reflects
the different velocity profiles that are recovered in the different depth
flow conditions along a cross-section. Fig. 2 of Stocchino and
Brocchini (2010) shows that peak velocities in the main channel and in
the floodplains are comparable at deep flow conditions.

Therefore, FTLE fields prove to be once again a valuable tool in
order to assess the behaviour of a fluid flow giving an immediate un-
derstanding of the strength of the mixing pattern and the most active
regions of the domain. However, these active areas need to be well
characterized by the evaluation of the Lagrangian shear and the hy-
perbolic repulsion. To further understand the dynamics, SLS are de-
tected in order to depict the shear pattern. The joint analysis of FTLE
fields and SLS manage to unveil the mixing pattern thoroughly since the
shortcomings of one measure are balanced by strengths of the other.
Besides, the presence of JC at the center of the main channel impacts on
tracer advection. These results are of evident importance in riverine and
estuarine analysis since these structures mark regions where particles
undergo different fates. For example, evaluation of concentration dis-
tributions employed in the advection-diffusion equation must carefully
take into account the inhomogeneity resulting from SLS and JC. As a
result, turbulent diffusivity can vary on the spatial domain (Besio et al.,
2012) especially across regions delimited by SLS and JC. Natural
streams or estuaries usually show several regions that adapt to the
framework of this work. The presence of analogue structures is quite
likely. Therefore, LCS should mark the natural boundaries along which
diffusivities could dramatically change their magnitude. Further re-
search is needed to clearly connect the Eulerian properties of the flow
with its intrinsic Lagrangian features. Indeed, the compound channel
geometry leads to the generation of Eulerian vortical structures, the
appearance of which is strongly dependent on the flow depth ratio. The
present results suggest that a similar relationship is found when La-
grangian Coherent Structures are studied. A link between the two fra-
meworks based on the spectral properties of Eulerian velocity fields and
FTLE fields would then be desirable.

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at 10.1016/j.advwatres.2018.01.006.
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