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[1] An experimental campaign, based on particle image velocimetry (PIV) measurements
of free-surface velocities, forms the basis for an analysis of the mixing processes which
occur in a compound-channel flow. The flow mixing is characterized in terms of Lagrangian
statistics (absolute dispersion and diffusivity) and of the related mean flow characteristics.
Mixing properties strongly depend on the ratio rh between the main channel flow depth
(h�mc) and the floodplain depth (h�fp), and three flow classes can be identified, namely
shallow, intermediate, and deep flows. In the present study the large time asymptotic
behavior of the mixing characteristics is analyzed in terms of the absolute diffusivity in
order to characterize typical values of longitudinal and transversal diffusivity coefficients.
Various sets of experiments, which cover a wide range of the governing physical
parameters, have been performed and the asymptotic values of the absolute diffusivity have
been evaluated. The results are then compared with several studies of flow dispersion for
both the longitudinal diffusivity coefficient and the transversal turbulent mixing coefficient.
The present results highlight a stronger dependence of such coefficients with the flow-depth
ratio than with the flow regime (Froude number).
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1. Introduction
[2] In riverine and watercourse management it is very

important to be able to understand and, possibly, predict
the transport and mixing processes of contaminants,
nutrients and, eventually, fine sediments. The preservation
and the defense of wildlife and environmental values in
natural streams is strongly dependent on the capability of
modeling and analyzing the ecological impact of accidental
spills or industrial dumping. These predictions, despite the
many field and laboratory observations available, cannot be
performed with a high level of confidence, even if recent
rapid developments in water quality modeling enable a bet-
ter description and a deeper understanding of pollutant
behavior. The latter is, usually, modeled by a standard
advection-diffusion equation for the concentration C. Such
an equation enables an adequate description of the evolu-
tion of the passive tracers once the diffusivity tensor is pro-
vided. Modeling transverse and longitudinal mixing is
limited by the inaccuracy and uncertainty in the prediction
of coefficients typical of the mixing processes, such as the
longitudinal and transverse dispersion. In general, mixing
coefficients cannot be evaluated univocally by means of

mathematical modeling. Usually, it is necessary to perform
either field measurements or detailed and extensive labora-
tory experiments in order to obtain reliable figures of mix-
ing coefficients to be used in numerical models. Great
efforts have been made, during the last decades, to improve
the reliability of the estimates of longitudinal and trans-
verse mixing coefficients in rectangular open channels
[Fischer, 1967; Sayre, 1968; Sullivan, 1968; Prych, 1970]
[see Fischer et al., 1979, and reference therein] [Cotton
and West, 1980; Webel and Schatzmann, 1984; Holly,
1985]. Much work has also been devoted to the mixing
occurring in straight uniform channels, and, subsequently,
to understand and analyze the effects of both stream longi-
tudinal curvature and width, either due to natural causes
(e.g., river meandering, bottom erosion) or anthropic inter-
ventions (e.g., canalization, groins) [Fischer, 1969; Holley
and Abraham, 1973; Yotsukura and Sayre, 1976; Smith,
1983; Rutherford, 1994; Kashefipour and Falconer, 2002;
Boxall and Guymer, 2003]. Moreover, natural rivers not
only commonly exhibit an irregular planar configuration, but
they also are often characterized by complex cross-stream
sections composed of a deep channel and shallow flood-
plains. These types of channels are commonly referred to as
‘‘compound channels’’ and their geometry is often artificially
created by river engineers to restore a natural-like cross
shape. In the last decades various works have been devoted
to the analysis of the mixing processes and the effects of the
presence of floodplains on the mixing coefficients [Arnold
et al., 1989; Wood and Liang, 1989; Spence et al., 1997;
Rowinski et al., 2005; Wallis and Manson, 2005; Fraselle
et al., 2008; Zeng et al., 2008; Guymer and Spence, 2009].

[3] Mixing and transport processes of solutes in com-
pound channels are mainly controlled and regulated by the
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exchange of mass and momentum between the main chan-
nel and the lateral floodplains. The main agents controlling
these phenomena are the quasi-two-dimensional (2-D)
macrovortical structures, which arise at the main-channel/
floodplains transition region, owing to the strong genera-
tion of vorticity at the flow-depth jump. As suggested by
Nezu et al. [1999] and verified by Stocchino and Brocchini
[2010], the dynamics of the flow field and, hence, of the
vorticity, strongly depends on the flow characteristics in
terms of the flow-depth ratio rh, between the depth in the
main channel (h�mc) and the depth in the floodplains (h�fp) as
first introduced by Shiono and Knight [1991] and later
modified by Nezu et al. [1999]. In a more recent contribu-
tion, Stocchino et al. [2011] investigated the different dis-
persion regimes occurring in compound channel flows and
highlighting the dependence of mixing both on the depth
ratio rh and on the subcritical/supercritical character of the
flow, i.e., on the Froude number (Fr).

[4] The present paper follows and extends the studies of
the previous contribution by Stocchino and Brocchini
[2010] and Stocchino et al. [2011]. In particular, Stocchino
and Brocchini [2010] was dedicated to the study of the
characteristics of the Eulerian turbulent flow, also in rela-
tion to the still open question: Can compound channels
flows be described as free mixing layers? Stocchino and
Brocchini [2010] demonstrated that the specific geometry
of the compound channels, in particular the flow-depth
jump between the main channel and the floodplains, is a
source of vorticity that induces the formation of quasi-2-D
macrovortices that, once generated, preserve their size
while being convected downstream. At that stage, the
Lagrangian properties of the flow were completely ignored.
Stocchino et al. [2011] analyzed the latter aspect in detail,
studying both the single- and multiple-particle statistics,
with the aim to describe the mixing regimes associated
with the different flow conditions (sub- and supercritical
regimes; deep, intermediate, and shallow flows). An impor-
tant outcome was the demonstration that in all cases a
Brownian regime exists, even if some differences have
been clearly observed between the deep and the shallow
flow conditions. This is important since it allows for an esti-
mate of the asymptotic mixing coefficients. However, this
aspect was not investigated by Stocchino et al. [2011]. In the
present contribution, which can be thought as a natural
extension of Stocchino and Brocchini [2010] and Stocchino
et al. [2011], the scope is the evaluation of the longitudinal
and transversal mixing coefficients and their dependence on
the main physical parameters (the Froude number Fr and the
flow-depth ratio rh). To this end, the experimental data set
has been significantly extended covering a wider range of
the controlling parameters. The present study shares with
Stocchino et al. [2011] the method used to compute the
absolute statistics. However, the absolute dispersion is here
needed for the estimate of the longitudinal and transversal
mixing coefficients for compound channel flows, the main
aim being that of contributing to the knowledge of the pa-
rameters to be used in mixing analyses.

2. Mixing: Single-Particles Statistics
[5] Mixing processes in straight compound channels can

be analyzed from a Lagrangian point of view, i.e., studying

material particle (passive tracers) trajectories during the
flow motion [Provenzale, 1999; Boffetta et al., 2001].
Lagrangian statistics involve averages of particle positions,
in terms of single or pairs or groups of particles (absolute
and relative statistics, respectively). Trends in absolute and
relative diffusivities can reveal the presence of different
dispersion regimes as shown by Stocchino et al. [2011].
Given an Eulerian velocity field it is possible to compute
the trajectories of material particles by integrating the
equation

dx�ðt�Þ
dt�

¼ u�ðx�; t�Þ; (1)

where x� ¼ ðx�; y�; z�Þ is the position at time t� of the given
particle and u�ðx�; t�Þ is the Eulerian velocity at point x�

and time t�. Hereinafter stars denote dimensional quanti-
ties. Particle trajectories form the basis for the Lagrangian
analysis of the mixing process and for the computation of
absolute dispersion and diffusivity. The absolute dispersion
tensor A�ð2Þ can be written as

A�ð2Þij ðt�; t�0Þ ¼
1

M

XM
m¼1

f½x�mi ðt�Þ � x�mi ðt�0Þ�½x�mj ðt�Þ � x�mj ðt�0Þ�g;

(2)

where M is the number of particles, x�ðt�Þ is the position of
the mth particle at time t�, and x�mðt0Þ is its initial position.
The trace of A�ðmÞ gives the mean square displacement,
defined as the ‘‘total absolute dispersion’’

a�2 ¼ Trace A�ð2Þ
h i

¼ A�ð2Þxx þ A�ð2Þyy (3)

in which A�ð2Þxx is the absolute dispersion in the x direction
and A�ð2Þyy is the absolute dispersion in the y direction. The
time derivative of the absolute dispersion is the absolute
diffusivity K�ð1Þ,

K�ð1Þ ¼ 1

2

d

dt�
Trace

�
A�ð2Þ

�h i
(4)

which can be written as

K�ð1Þ ¼ K�ð1Þx þ K�ð1Þy : (5)

Under a variety of conditions, for short times after particle
deployment, the absolute dispersion increases quadratically
in time and then, for larger times, typically greater than the
Lagrangian integral scale T �L , a�2 increases linearly within
the so-called ‘‘Brownian regime.’’ The theoretical behavior
of the absolute dispersion based on Taylor’s theory is sys-
tematically observed for nonhomogeneous oceanic and
atmospheric velocity fields. This suggests that the asymp-
totic behavior of the absolute dispersion is somehow inde-
pendent from the restrictive hypothesis of homogeneity
[LaCasce, 2008, and references therein]. Equations (3) and
(4) are strictly valid when the cross dispersion terms, i.e., the
nondiagonal elements of the tensors A�ð2Þ and K�ð1Þ, vanish.
This condition is usually attained for times larger than the
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Lagrangian time scale. The latter is evaluated as the time in-
tegral of the normalized velocity autocorrelation Rð��Þ over
the time ��, as already shown by Stocchino et al. [2011]:

T �L ¼
Z 1

0
Rð��Þd��: (6)

[6] The absolute dispersion and the absolute diffusivity
have been made dimensionless by means of the Lagrangian
integral time scale (T �L ) and the time-averaged Lagrangian
kinetic energy (E�L). With the above scaling it is easier to
distinguish among the different dispersive regimes, as
discussed in detail by Stocchino et al. [2011]. However,
the purpose of the present study is the computation of the
diffusivity coefficients and possibly the comparison of the
present data with previous contributions. To this end, a dif-
ferent scaling is preferable because it is the most commonly
used in this field of research. In particular, the diffusivity
coefficients can be made dimensionless choosing a typical
length scale and a typical velocity scale, representative of
the intensity of the turbulent flow. Here we choose the hy-
draulic radius R� as the relevant length scale and the bot-
tom shear velocity u�S as the velocity scale: Unless the
channel can be assumed as infinitely wide, the hydraulic ra-
dius is a more correct length scale than the flow depth
(more details on this can be found in section 5), hence u�S
reads

u�S ¼
ffiffiffiffiffiffiffiffiffiffiffi
gif R�

p
; (7)

where if is the bottom slope.

3. Previous Laboratory Experiments and State of
the Art

[7] Calculations of pollutant concentration in water bodies
(e.g., rivers, reservoirs, estuaries, and oceans) are based on
the solution of the advection-diffusion equation which in its
three-dimensional form reads

@C�

@t�
þ u�

@C�

@x�
þ v�

@C�

@y�
þ w�

@C�

@z�
¼ @

@x�
D�Tx

@C�

@x�

� �

þ @

@y�
D�Ty

@C�

@y�

� �
þ @

@z�
D�Tz

@C�

@z�

� �
;

(8)

where u� ¼ ðu�; v�;w�Þ is the Eulerian three-dimensional
vector field, D�Tx , D�Ty , and D�Tz are the turbulent diffusion
coefficients [see Taylor, 1921]. However, in most applica-
tions a simplified version of equation (8) is employed. In
particular, whenever the shallow-water approximation
holds, 2-D or 1-D advection-diffusion equations can be
derived by integrating (8) along the vertical and the trans-
versal direction, respectively. For depth-integrated compu-
tations, streamwise and spanwise mass fluxes can be
written, on the basis of a Fickian approach, in terms of the
product of the gradients of the mean concentration times the
following coefficients:

K�x þ D�Tx and K�y þ D�Ty ; (9)

where K�x and K�y , respectively, account for the dispersion
effects due to the nonuniformity of the vertical profile of
the longitudinal and transversal velocity, whereas D�Tx and

D�Ty are the vertically averaged turbulent diffusion coeffi-
cients. By further integrating along the transversal direction
a 1-D advection-diffusion equation is obtained, in which
the longitudinal mass flux is the product between the
streamwise gradient of the area-averaged concentration and
the following coefficient :

K�L þ K�x þ D�Tx ; (10)

where K�x is the dispersion coefficient due to the vertical

flow/concentration disuniformity, D�Tx is the area-averaged
turbulent diffusion coefficient, and K�L accounts for the lon-
gitudinal dispersive effects.

[8] The accuracy of the solution of equation (8) and of
its simplified versions strongly depends on the chosen dif-
fusivity and dispersive coefficients. For this reason major
efforts have been devoted to the estimation of such coeffi-
cients; in the following we briefly recall the most relevant
results, some of which are compared with our findings.

3.1. Transverse Mixing Coefficient

[9] The value of the transverse dispersion coefficient is
often assumed to be a function of the bottom shear velocity
and of the mean water depth as

K�y þ D�Ty ¼ Au�Sh�; (11)

where A is a factor depending on the width-to-depth ratio
and on the bottom friction factor.

[10] If, on the one hand, it is possible to directly measure
the turbulent diffusivity D�Ty separately from the dispersive
term K�y , by limiting the effects of secondary flows, on the
other hand, whenever secondary flows play a relevant role,
it is impossible to separate the two contributions.

[11] In order to evaluate D�Ty , Elder [1959] performed an
experimental investigation on a uniform open-channel flow
in a flume characterized by a rectangular section. In partic-
ular he measured the depth-integrated concentration distri-
bution of a tracer and by comparison with an analytical
solution he was able to estimate a constant A of about 0.17.
With a similar experimental setup Okoye [1970] found
0:1 � A � 0:2.

[12] However, natural river flows very often differ from
those evolving in rectilinear rectangular channels. Because of
this, several experiments have been performed to investigate
the effects of (1) cross-section variation, (2) sidewall irregu-
larities, and (3) channel curvature. In the present context, we
restrict our attention to the results obtained for straight chan-
nels that represent the closest configuration to the one
employed in the present study, disregarding any curvature
effects. Holley and Abraham [1973] studied how transverse
mixing in a straight rectangular flume of constant depth was
influenced by the presence of lateral groins. The authors
found that 0:16 � A � 0:4, thus concluding that secondary
flows induced by groins strongly enhance lateral mixing. In a
similar set of experiments, Lau and Krishnappan [1977]

W12517 BESIO ET AL.: TRANSVERSAL AND LONGITUDINAL MIXING IN COMPOUND CHANNELS W12517

3 of 15



investigated the variation of the transverse dispersion coeffi-
cient depending on different values of the friction factor and
width-to-depth ratio, obtaining values of about 0:15 � A
� 0:25. Moreover, Webel and Schatzmann [1984] described
an experimental study, performed in a 20-m-long rectangular
flume, and the dependence of the mixing coefficient on dif-
ferent properties of the channel flow (Reynolds number,
Froude number, width-to-depth ratio, and roughness), finding
0:13 � A � 0:24. Moreover, a residual dependence on the
friction coefficient remains when the flow evolves in smooth
conditions. Rutherford [1994] in his book collected results
from many studies resulting in an extended range for the
transversal mixing coefficient equal to 0:1� 0:15 < A
< 0:3� 0:4. More recently, Chau [2000] proposed data on
transverse mixing in an open, rectangular channel under dif-
ferent flow and bottom roughness conditions and, in agree-
ment with previous works, found 0:13 � A � 0:14.

[13] The first attempt to analyze dispersion and diffusion
processes due to composite sections, such as those of com-
pound channels, has been made by Arnold et al. [1989]
who evaluated mixing coefficients using either a modified
version of the generalized change of moment analysis or a
variational method in conjunction with a finite element dis-
persion model. The results suggest a mean value A ¼ 0:45.
Wood and Liang [1989] employed the measures performed
for a rectangular channel by Nokes and Wood [1988] to
compare an eigenvalue-eigenfunction solution for the dis-
persion of effluent in a compound-like channel with some
experimental data of solute dispersion performed by Wood
and Liang [1989] themselves. The results of the analytical
model revealed that values of the lateral diffusivity for rec-
tangular channels were not in agreement with the experi-
mental data. The same kind of approach has been followed
by Spence et al. [1997] and Spence et al. [1998] who found
A � 0:32. A similar value has been obtained by an experi-
mental campaign by Fraselle et al. [2008], who suggested
a mean value (for the main channel and the floodplains)
A ¼ 0:21. Zeng et al. [2008], using the generalized method
of moments, and on the basis of data collected in a symmet-
ric trapezoidal compound channel found A � 0:26.

[14] All the above mentioned works do not analyze the
influence on the transverse mixing coefficient due to flow
characteristics such as the flow-depth ratio and the Froude
number.

3.2. Longitudinal Mixing Coefficient

[15] The longitudinal dispersion coefficient K�x was first
introduced by Taylor [1921] as a measure of the dispersion
process described by the advection-dispersion equation.
Elder [1959] extended Taylor’s theory for the dispersion in
pipe flows to an open channel of infinite width and he
derived an analytical solution for the longitudinal disper-
sion coefficient. Elder’s theory assumes (1) a logarithmic
vertical profile for the longitudinal velocity and (2) that the
turbulent transport coefficient of momentum and mass are
identical. Eventually, Elder [1959] derived the following
relationships:

K�x ¼ 5:93u�Sh�; (12)

D�Tx � ð2=3ÞD�Tz ¼ ð2=3Þ0:067 u�Sh�; (13)

in which h� is the water depth averaged in the transversal
direction.

[16] Once the 1-D advection-diffusion equation is derived
for the longitudinal direction (i.e., averaging over the depth
and width), the mixing coefficient to be determined
becomes the sum of three different contributions, see equa-
tion (10), where K�L is the longitudinal dispersion coeffi-
cient, which arises from the average along the transversal
direction of the convective terms. It is usually assumed that

K�L � K�x ;D
�T
x since it is observed that longitudinal disper-

sion dominates longitudinal mixing due to nonuniformity of
the vertical velocity profile and other geometrical nonuni-
formities (dead zones, curves, nonuniform depth, etc.).
Most of the estimates of K�L for natural streams have been
of empirical nature. By qualitative means Fischer [1975]
obtained an approximated formula for the dimensionless
dispersion coefficient K�L=h�u�S ,

K�L
h�u�S

¼ 0:011
U�

u�S

� �2 B�

h�

� �2

; (14)

where U� is the cross-sectional mean velocity and B� is the
width of the channel. The general form of dimensionless lon-
gitudinal dispersion coefficients proposed in the literature is

K�L
h�u�S

¼ � U�

u�S

� �� B�

h�

� ��
; (15)

where �, �, and � are noninteger constants. In particular,
Seo and Cheong [1998] analyzed previous empirical equa-
tions and derived the following values of the coefficients
� ¼ 5:915, � ¼ 0:620, and � ¼ 1:428. Finally Deng et al.
[2001], taking into account the irregularity of natural rivers
and directly integrating the Fischer’s triple integral, devel-
oped the following relationship for the longitudinal disper-
sion coefficient :

K�L
h�u�S

¼ 0:15

8�t0

U�

u�S

� �2 B�

h�

� �5=3

; (16)

where �t0 ¼ 0:145þ ð1=3520ÞðU�=u�SÞðB�=h�Þ1:38.
[17] For natural open channels, the strong nonuniformity

of the velocity profile between the two banks may lead to
values of K�L=h�u�S that range from 5 to 7000 [Fischer
et al., 1979].

4. Present Experimental Campaign
[18] The experimental apparatus used in the present study

consists of a straight compound channel 20 m long, 56 cm
wide with a trapezoidal cross section, composed of a central
main channel (W �

mc ¼ 20 cm), two lateral flat floodplains
(W �

fp ¼ 18 cm) and a transition region (W �
tr ¼ 2:5 cm). We

use a Cartesian coordinate system in which x� and y� are
aligned with the streamwise and spanwise direction of the
flow, respectively, as illustrated in Figure 1. The flume is
made of sheets of polyvinyl chloride (PVC) with a Manning
roughness of 0.009 s1 m�1/3. The measuring area is at a dis-
tance of 10 m downstream of the flume inlet and it is char-
acterized by fully developed flow conditions in terms of
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bottom boundary layer and transition shear layer evolution
[Stocchino and Brocchini, 2010; Stocchino et al., 2011].
About 70 experiments have been performed by changing
the main dimensionless experimental parameters rh and Fr,
defined as

rh ¼
h�mc

h�fp
; Fr ¼ U�mffiffiffiffiffiffiffiffi

gR�
p ; (17)

where h�mc is the main channel depth and h�fp is the flood-
plain depth, g is the gravity acceleration and U�m is the sur-
face peak velocity in the main channel. The main
characteristics of the experiments are grouped in Table 1
depending on the flow regimes, as suggested by Nezu et al.
[1999], i.e., dividing shallow flows (rh > 3) from the inter-
mediate flows (2 < rh < 3) and the deep flows (rh < 2). In
particular, in the present work several new experimental
runs (series 400, 500, 800, 900) have been performed in

order to investigate the behavior of the mixing processes
for values of the dimensionless parameters (rh and Fr) that
were not used in the previous experimental campaigns (se-
ries 0, 00, 200, [Stocchino et al., 2011]). Measurements of
two-dimensional velocity fields on the free surface have
been obtained by means of a 2-D PIV analysis. The PIV
system consists of a high-speed digital camera (IDT xS3)
with acquisition frequency between 100 and 250 Hz and an
illumination system composed of four white light incandes-
cent lamps of 500 W. Velocity measurements were made
using as tracers plastic particles with a mean diameter of
150 mm. The area of interest for the flow measurements has
dimensions about (1.2 � 0.6 m). The PIV technique has
been used to analyze the main features of the flow under
investigation and the Eulerian velocity fields are used as
the basis for the computation of the tracers’ trajectories and
the subsequent analysis of mixing processes.

[19] For high values of the Froude number, surface
waves may be generated that can possibly interfere with

Figure 1. Sketch of the cross section of the experimental compound channel used in the present laboratory
campaign.

Table 1. Main Experimental Parameters

Flow Exp. Series rh (–) Fr (–) Slope (–) Q� (L s�1) U�m (m s�1) Re 	 103 (–)

Shallow Series 00 3.05–3.69 0.63–0.73 0.0016 2.39–3.49 0.25-0.31 16.0–13.1
Series 00 3.40–4.42 1.12–1.26 0.0048 3.55–5.25 0.42–0.52 23.9–34.9
Series 0 3.10 1.31 0.0064 4.88–6.14 0.51–0.56 32.6–40.6

Series 200 3.08–4.16 0.89–0.93 0.0032 2.99–4.37 0.34–0.39 20.1–28.9
Series 400 3.15 1.64 0.0100 7.47–7.92 0.69–0.70 49.5–52.3
Series 500 3.10–3.94 1.89–1.94 0.0140 6.68–9.07 0.73–0.82 40.5–60.0
Series 800 3.50–4.08 1.52–1.59 0.0100 5.42–6.14 0.61–0.62 36.3–40.9
Series 900 3.01 1.14 0.0048 5.55 0.49 36.7

Intermediate Series 00 2.20–2.61 0.72–0.73 0.0016 4.32–5.89 0.33–0.37 28.3–37.9
Series 00 2.36 0.92 0.0048 6.54–10.75 0.45–0.63 42.4–68.7
Series 0 2.02–2.92 1.32–1.42 0.0064 6.68–13.54 0.57–0.75 44.0–86.1

Series 200 2.04–2.57 0.96–1.00 0.0032 5.85–9.44 0.44–0.53 38.2–60.1
Series 800 2.20–2.89 1.66–1.72 0.0100 8.51–13.94 0.72–0.87 56.1–89.6
Series 900 2.23–2.65 1.17–1.20 0.0480 6.79–9.44 0.53–0.60 44.4–60.8

Deep Series 00 1.77–1.97 0.73–0.75 0.0016 7.47–9.87 0.40–0.44 47.3–61.2
Series 00 1.82–1.85 1.21–1.36 0.0048 14.29–16.66 0.69–0.78 89.4–103.9
Series 0 1.85–1.96 1.43–1.45 0.0064 14.67–16.99 0.77–0.83 92.8–111.8

Series 200 1.68–1.89 1.01–1.05 0.0032 11.31–16.07 0.56–0.64 71.1–98.2
Series 500 1.77–1.99 2.10–2.16 0.0140 20.73–28.51 1.13–1.26 131.5–176.6
Series 800 1.77–1.91 1.79–1.82 0.0100 19.53–24.12 0.99–1.07 122.9–149.4
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the surface velocity measurements, object of the present
study. In particular, roll waves are known to form for
Froude numbers larger than 2. In order to avoid the genera-
tion of surface waves, we have placed at the flume inlet a
polystyrene sheet, free to float on the water surface, that
significantly dumps water surface oscillations of any kind.

4.1. Postprocessing of the Data

[20] In most of the experimental works discussed in
section 3 the transverse mixing coefficient has been eval-
uated using the so-called method of moments. In particular,
such a method assumes that the advection-diffusion equa-
tion for a uniform, straight-channel flow due to a continuous
point-source release of contaminant has a Gaussian-type
solution for the concentration. The moments of the latter
distribution, e.g., the variance, are then fitted against the
concentration measurements. From the time of spatial evo-
lution of the variance the transverse dispersive coefficient
is, eventually, evaluated.

[21] In the present analysis we have used a more direct
approach based on the theoretical background discussed in
section 2. In fact, once the 2-D Eulerian velocity fields
have been obtained, an ensemble of particle trajectories has
been computed by integrating equation (1), starting from a
uniform seeding over the whole flow domain. We have calcu-
lated particle trajectories using a fourth-order Runge-Kutta
algorithm with adaptive step size, which has a local accuracy
of order ð�tÞ4, where �t is the integration time step. In more
detail, for each flow field, we have seeded the experimental
flow with approximately O(5 � 103) numerical particles
(massless) on a regular grid (of constant size �x and �y)
and, subsequently, evaluated the tracers trajectories by inte-
grating (1) in time with the above Runge-Kutta algorithm
employing a bicubic spatial interpolation and a polynomial
time interpolation of the experimental Eulerian fields. From
the ensemble of particle trajectories the single particle sta-
tistics, dispersion, and diffusivity have been evaluated
[Stocchino and Brocchini, 2010; Stocchino et al., 2011].

[22] The evaluation of the single-particle statistics has
been performed after removal of a mean velocity profile
from the Eulerian fields. In particular, the ensemble-averaged
velocity along the y direction vanishes [V

�ðx�; y�Þ ¼ 0],
while along the x direction the ensemble-averaged velocity
U
�ðx�; y�Þ assumes a bell-like profile, with the maximum

located in the main channel and a velocity gradient at the
transition between the main channel and the floodplains
[Stocchino and Brocchini, 2010] which is stronger for shal-
lower flows. For each Eulerian velocity field the mean veloc-
ity U

�ðx�; y�Þ, varying along the longitudinal and the
transversal direction, has been subtracted from the instanta-
neous longitudinal velocity u�ðx�; y�; t�Þ. Based on the dis-
cussion of section 3 and operating the mentioned mean flow
removal, we are able to evaluate an equivalent transversal
mixing coefficient which takes into account the effects of the
turbulent diffusion and dispersion, as usually reported in the
literature [see, e.g., Rutherford, 1994, and references therein]

K�ð1Þy 
 K�y þ D�Ty ¼ ðfrom equation ð11ÞÞ ¼ Au�Sh�: (18)

[23] Two major mechanisms generally influence the lon-
gitudinal dispersion: (1) turbulent velocity fluctuations and

(2) lateral and vertical variation of the velocity in the cross
section. Because of the experimental approach (PIV meas-
ures of surface velocity) and because of the mentioned
mean flow removal from the Eulerian velocity fields, we
are able to provide an estimate of the turbulent diffusion
term D�Tx only, which is usually much smaller than the dis-
persion coefficient K�L . Hence, in the present study, the lon-
gitudinal absolute diffusivity evaluated by means of
equation (4) corresponds to the turbulent diffusion

K�ð1Þx 
 D�Tx : (19)

[24] The approach used to numerically calculate the par-
ticle trajectories starting from measured Eulerian fields is
that commonly adopted in studies of mixing [LaCasce,
2008]. Moreover, as already discussed by Stocchino et al.
[2011], the computation of the particle trajectories and,
therefore, of the absolute dispersion, suffers from small-
amplitude, high-frequency oscillations that ultimately gen-
erate a noisy time distribution of the absolute diffusivities,
which is the time derivative of a�2. In the present context,
where the aim is to quantify the values of the diffusivity
coefficients and their dependence on the main physical pa-
rameter, it has become crucial to eliminate the spurious
oscillations before computing K�ð1Þx and K�ð1Þy . In particular,
we have tested two methods. With the first approach we
have filtered the absolute dispersion distribution and then
we have computed the time derivative of the filtered signal
and the diffusivity coefficient is eventually evaluated where
its value is constant (i.e., for longer times). We have used
two different filters in our procedure. In particular, the
Savitzky-Golay filter, which is a generalized moving aver-
age with filter coefficients determined by an unweighted
linear least-squares regression and a polynomial model of
specified degree. The other filter is a local regression based
on weighted linear least squares and a second degree poly-
nomial model, where lower weight is assigned to outliers in
the regression. The method assigns zero weight to data out-
side six mean absolute deviations. Alternatively, we have
sought for the best linear regression of the filtered data,
using a least-square method, of the absolute dispersion in a
time range where this is meaningful, i.e., where a Brownian
regime is expected.

[25] The resulting linear coefficient is directly a measure
of the diffusivity coefficients. The coefficients computed
with both methods resulted to be very similar, however, af-
ter several tests, the second approach proved to be more ro-
bust and it was used to produce the results that we discuss
in the following.

5. Results
[26] Results obtained for single-particle statistics (absolute

dispersion and absolute diffusivities) are reported as func-
tions of time in Figures 2 and 3, for shallow and deep flow
conditions, respectively. For the sake of brevity, being the
proposed behavior robust over the whole set of runs, here we
focus on just two sample tests. As reported by Stocchino
et al. [2011], the dimensionless absolute dispersion a2 dis-
plays, for both shallow and deep flow conditions, an initial
ballistic regime with a quadratic growth in time (a2 propor-
tional to the dimensionless time t2 where t ¼ t�=T�L ).
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[27] After the initial stage of growth, the behavior of a2 is
different for shallow and deep flow conditions. In the former
case (rh > 3), after a period of time almost equal to the
Lagrangian time, we can observe local maxima of a2 at times
comparable with the typical time scale of the macrovortices
and can be related to particle trapping in coherent vortical
structures. For longer times, the absolute dispersion increases
following a power of about 5/4 and, finally, it reaches the
Brownian regime. On the contrary, for deep flows (rh < 2),
the growth of the absolute dispersion is mainly monotonic,
leading to a more regular transition from the initial ballistic
regime to the Brownian regime [Stocchino et al., 2011].

[28] Once the asymptotic trend of the absolute dispersion
is reached, the corresponding absolute diffusivity Kð1Þ can

be obtained by directly differentiating in time a2ðtÞ and,
not surprisingly, this shows a rather irregular time depend-
ence, with large fluctuations caused by the high-frequency
oscillation discussed in the section 4. In Figures 2 and 3 the
gray horizontal lines represent the linear regressions for fil-
tered data obtained for times larger than T �L . Such a behav-
ior has been observed for the whole set of experiments.

[29] A summary of the results obtained for the asymp-
totic values of the dimensionless absolute diffusivity coeffi-
cients for large times is reported in Table 2. All quantities
have been made dimensionless using the hydraulic radius
R� and the bottom shear velocity u�S of the uniform flow:
Though these parameters may vary in a nonmonotone way
with the flow depth in compound channels, they represent

Figure 2. Single-particle statistics for experiment 503,
shallow-flow conditions: (a) Absolute dispersion and (b)
absolute diffusivity.

Figure 3. Single-particle statistics for experiment 509,
deep-flow conditions: (a) Absolute dispersion and (b) abso-
lute diffusivity.
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the most suited pair of variables to produce dimensionless
quantities comparable throughout all geometric and flow
conditions.

[30] As stated in section 1 the main physical parameters
that control the dynamics of a uniform flow in a compound
channel and, consequently, the Lagrangian mixing processes,
are the flow-depth ratio rh and the Froude number Fr, which
discriminates the flow regimes between sub- and supercriti-
cal. For this reason, the absolute diffusivity coefficients have
been analyzed in terms of their dependence on rh and Fr. In
the following we show the results for the dimensionless
absolute diffusivity components in the x and y directions,
Kð1Þx ¼ K�ð1Þx =R�u�S and Kð1Þy ¼ K�ð1Þy =R�u�S , respectively.

5.1. Transversal and Longitudinal Diffusivities

[31] Results on diffusivities are proposed to satisfy both
theoretical and practical modeling purposes, i.e., those of (i)
collecting information to be compared with recent theoreti-
cal studies that focus on the differences existing in mixing
processes between the main channel and the floodplains,
with diffusivities depending on flow regimes and transversal
location, i.e., main channel and floodplains [Manson and
Wallis, 2004] and (ii) producing synthetic data to be used in
practical, simplified computations of mixing that make use
of one single overall value of diffusivity for the entire flow
cross section. The latter approach is still very much used
once numerical simulation and evaluation for practical
problems, such those faced by environmental engineering,
are performed.
5.1.1. Zonal Diffusivities for Main Channel and
Floodplains

[32] Results are proposed for the dependence of longitu-
dinal and transversal zonal diffusivities on both the relative
flow depth ðrhÞ and flow intensity ðFrÞ. Zonal diffusivities
have been computed by a region-specific analysis that con-
sists in seeding and tracking particles either in the main
channel or on the floodplains. An attempt is also made to
compare these results with available literature results for the
dependence of Kð1Þx with the flow intensity [Manson and
Wallis, 2004].

[33] Figures 4 and 5 show that the dependence of both
Kð1Þx and Kð1Þy on rh is robust, in the sense that both zonal
diffusivities (left panels, those derived for the main channel
flow and right panels those for the floodplain flows) monot-
onically increase with the shallowness parameter rh and
with comparable growth velocities in the main channel and
floodplains for Kð1Þx (Figure 5) and a faster growth in the
floodplains of Kð1Þy (essentially due to the shallow flows,
Figure 4).

[34] This is not true when considering the dependence on
the flow intensity, here described by Fr (see Figures 6
and 7). In fact, while the main-channel zonal Kð1Þy is

directly proportional to Fr (see left panels of Figure 6), an
inverse proportionality characterizes the dependence of the
floodplain zonal Kð1Þy on Fr (see right panel of Figure 6).
Similarly, the floodplain zonal longitudinal diffusivity
Kð1Þx is almost independent from Fr (see the right panel of
Figure 7). Although these results may be interpreted in sim-
ilarity with those of Manson and Wallis [2004], who find
an inverse proportionality of the longitudinal diffusivity
with the flow rate for floods that give rise to overbank
flows, care must be used because all the present results per-
tain to overbank flows with diffusivities computed by the
mentioned zonal analysis.

[35] Zonal sowing and tracking of tracers may also give
rise to problems in characterizing the role of large-scale
eddies that span over the transition region, i.e., extend from
the main channel to the floodplains. In this case it is virtu-
ally impossible to remove the influence of such coherent
structures on the zonal diffusivities, hence leading to uncer-
tainties in the values of the computed diffusivities. Because
of this type of problem and due to the wish of providing
values of diffusivities to be used for practical modeling
purposes, i.e., valid over the entire flow cross section, we

Table 2. Experimental Measurements of Absolute Diffusivity
Coefficients

Flow rh (–) Fr (–) K�ð1Þx =u�SR� K�ð1Þy =u�SR�

Shallow 3.01–4.42 0.63–1.94 0.035–0.441 0.060–0.481
Intermediate 2.02–2.92 0.72–1.72 0.013–0.473 0.021–0.341
Deep 1.68–1.97 0.73–2.16 0.014–0.094 0.020–0.230

Figure 4. Dependence of the dimensionless absolute dif-
fusivity K�ð1Þy =u�SR� on rh for data collected in the (a) main
channel and (b) floodplains. Lines indicate linear regression
of the data.
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focus our attention of global values of diffusivities,
obtained seeding the flow over the whole compound chan-
nel cross section (i.e., main channel and floodplains).
5.1.2. Global Diffusivities for the Whole Channel

[36] Figures 8 and 9, respectively, illustrate the distribu-
tions of globally computed (i.e., over the entire cross sec-
tion) diffusivities Kð1Þx and Kð1Þy in the (rh; FrÞ-parameter
space. Despite a relatively large residual scatter in the esti-
mated values, which derives from the fitting procedure
described in section 4.1, the results suggest that in the
(rh; FrÞ plane, Kð1Þx and Kð1Þy increase with both the flow-
depth ratio, i.e., for shallower flows, and the Froude number,
i.e., for supercritical flows. The range of the experimental
parameters covers a rather large interval: The Froude num-
ber spans from 0.6 to 2.2 and rh from about 1.1 to 4.4.

[37] In Figure 10 the values of Kð1Þy have been reported
as function of the flow-depth ratio rh and of the Froude
number Fr separately, in Figures 10(a) and 10(b), respec-
tively. The dimensionless transversal absolute diffusivity
seems to monotonically increase with rh from the deep
flows toward the shallow flows, regardless of the values of
the Froude number, see Figure 10(a). Despite a significant
scatter of the measurements, due to the superposition of

errors generated at each step (data collection, data analysis,
etc.) of the complex procedure employed to estimate the
mixing coefficients, an almost linear dependence on rh can
be observed. Comparably large scatter in the data is always
found in similar studies [see Rutherford, 1994, and refer-
ence therein].

[38] The highest values of Kð1Þy are found for the shal-
low-flow conditions. However, if we analyze the results as
function of the Froude number Fr, see Figure 10(b), the
distinction between the two limiting cases (deep and shal-
low flows) appears more clearly. In fact, despite an increase
of Kð1Þy with Fr, two distinct trends can be easily recognized
depending on the values of rh, revealing that shallow flows
(hollow markers) lead to greater values of Kð1Þy than deep
flows (solid markers). Results for the intermediate flows
nicely accommodate between the deep and shallow flow
cases (cross markers).

[39] Analogous results for the streamwise coefficients
Kð1Þx are shown in Figures 11(a) and 11(b), respectively. A
behavior similar to that observed for the transverse

Figure 5. Dependence of the dimensionless absolute dif-
fusivity K�ð1Þx =u�SR� on rh for data collected in the (a) main
channel and (b) floodplains. Lines indicate linear regression
of the data.

Figure 6. Dependence of the dimensionless absolute dif-
fusivity K�ð1Þy =u�SR� on Fr for data collected in the (a) main
channel and (b) floodplains. Lines indicate linear regression
of the data.
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Figure 7. Dependence of the dimensionless absolute dif-
fusivity K�ð1Þx =u�SR� on Fr for data collected in the (a) main
channel and (b) floodplains. Lines indicate linear regression
of the data.

Figure 8. Distribution of the dimensionless absolute dif-
fusivity K�ð1Þx =u�SR� in the ðrh; FrÞ-parameter space.

Figure 9. Distribution of the dimensionless absolute dif-
fusivity K�ð1Þy =u�SR� in the ðrh; FrÞ-parameter space.

Figure 10. Dependence of the dimensionless absolute
diffusivity K�ð1Þy =u�SR� on (a) rh and (b) Fr. Lines indicate
linear regression of the data.
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coefficient is recovered: The longitudinal turbulent diffu-
sivity monotonically increases with the flow-depth ratio rh

(Figure 11(a)), and shallow and deep flows are remarkably
different for the same flow conditions in terms of Froude
number (Figure 11(b)). Moreover, the longitudinal turbu-
lent mixing is, not surprisingly, much less intense for the
deep-flow conditions compared with the shallow cases. In
fact, as described in section 4.1, Kð1Þx only accounts for the
turbulent fluctuations disregarding dispersive effects. For
this reason the velocity fluctuations are less intense for the
deep flows, where the two-dimensional free surface veloc-
ity fields are more uniform than for the shallow flow condi-
tions, see Stocchino and Brocchini [2010] and Stocchino
et al. [2011].

6. Discussion
[40] The main conclusions drawn in our previous similar

studies [Stocchino and Brocchini, 2010; Stocchino et al.,
2011] help to explain the differences in the mixing coeffi-
cients among the all the flow conditions investigated (sub-
and supercritical flows; shallow, intermediate, and deep
flows).

[41] For low values of rh (deep flows), the free-surface
velocity fields are characterized by a very weak cross-flow
shearing at the transition regions; there almost no two-
dimensional coherent macrovortices are observed, leaving
only a low content of boundary vortices, caused by the
shearing at the flume sidewalls [Stocchino and Brocchini,
2010]. In this case, the topographic forcing at the transition
region is not effective in injecting a sufficient vorticity for
the generation of the macrovortices. From a Lagrangian
point of view, the deep flows adapt to the classical Taylor
regimes more easily than shallow and intermediate flow: A
Brownian regime follows immediately after an initial bal-
listic regime. The energy spectra show two distinct behav-
iors depending on Fr : Subcritical flows are characterized
by direct energy cascade while a direct enstrophy cascade
characterizes supercritical flows.

[42] Both Eulerian and Lagrangian characteristics of in-
termediate flow are somehow closer to the ones observed
for shallow flows. The surface velocity fields are dominated
by both transitional vortices (as for the shallow flows) and
boundary vortices (as for the deep flows), the latter ones
disappearing as rh grows, i.e., moving toward the shallow
conditions. Intermediate flows are also characterized by a
strong shearing at the transition region, with an intense
peak of the time and x-averaged Reynolds stresses at that
location [Stocchino and Brocchini, 2010], like the shallow
flows and differently from the deep flows. An important
transition occurs from an inverse energy cascade for sub-
critical flows to a direct enstrophy cascade for supercritical
flows also. This feature is common to both intermediate
and shallow flows and implies complex mechanisms, like
vortex merging and elongation [Stocchino and Brocchini,
2010; Stocchino et al., 2011]. For Fr > 1 the large-scale
shearing dominates over the previous mechanisms leading
to a change in the energy transfer. The shallow-flow transi-
tional macrovortices are elongated vorticity patches almost
aligned with the mean flow (the major axis having, on aver-
age, an angle of about 30� with the streamwise direction),
which in the case of intermediate flows lose their preferen-
tial orientation [Stocchino and Brocchini, 2010].

[43] In the present analysis we have consistently
observed that both the longitudinal and the transversal mix-
ing coefficients increase with the flow-depth ratio. This can
be explained, on the basis of the aforementioned flow char-
acteristics, with the increase of the macrovortices content
as the flow becomes shallower, see Figures 10 and 11. The
action of the macrovortices, that in some cases also are
modified by merging processes, results in an increase of the
mass transport coefficients in both directions. Moreover,
the longitudinal coefficient Kð1Þx displays a more pronounced
difference from deep to shallow flows (see Figure 11). In
this case, the regularity of the free-surface velocity fields,
which leads to flatter spanwise profiles of the mean stream-
wise velocity [see Figure 2 of Stocchino and Brocchini,
2010], results in a low intensity of the turbulent fluctuations
and, thus, in a smaller Kð1Þx .

[44] More information can be gained by plotting the ratio
between the longitudinal and transversal coefficients
(Kð1Þx =Kð1Þy ) as function of rh (see Figure 12). The shaded
area indicates the region of intermediate flows. The figure
shows that deep flows, regardless the sub- or supercritical

Figure 11. Dependence of the dimensionless absolute
diffusivity K�ð1Þx =u�SR� on (a) rh and (b) Fr. Lines indicate
linear regression of the data.
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regime, are characterized by a longitudinal turbulent diffu-
sion always smaller than its transversal counterpart. On
increasing rh we find the range of intermediate flows (2 < rh

< 2:5) in which Kð1Þx =Kð1Þy displays a behavior similar to that
characterizing the deep flows. However, moving toward
shallower conditions (2:5 < rh < 3) a different behavior,
depending on the Froude number, is observed. In fact, sub-
critical flows statistically lead to higher transversal coeffi-
cients, whereas for Fr > 1 the opposite occurs, i.e.,
Kð1Þx =Kð1Þy > 1. The latter trend is also found for shallow
flows (rh > 3). The dominance of the longitudinal coeffi-
cient for the supercritical flows can be ascribed to the shear-
ing of the anisotropic mean flow that having streamwise
size/intensity larger than the cross-flow ones dominates over
the processes occurring at scales comparable to the macro-
vortex size (i.e., cross-flow size of the mean flow). In fact, as
we have discussed above, the turbulent energy balance of
supercritical flows is characterized by a direct enstrophy cas-
cade, rather than an inverse energy cascade typical of the
subcritical flows [Stocchino et al., 2011].

[45] The present measurements can also be compared
with previous experimental campaigns, already described
in section 3. In Figures 13 and 14 the present results for
Kð1Þx and Kð1Þy are directly compared with several data from
previous experimental campaigns.

[46] Regarding Kð1Þx , as explained in the section 5, in the
streamwise direction we are able to measure only the con-
tribution due to turbulent diffusion. In Figure 13 only the
data of Miller and Richardson [1974] are reported together
with the theoretical prediction by Elder [1959]. Unfortu-
nately, experimental data on the longitudinal turbulent dif-
fusion are quite rare: As far as the authors are aware the
data of Miller and Richardson [1974] are the only ones
available. Even if the present experiments have been per-
formed with a different geometrical configuration (compos-
ite section rather than rectangular cross section) and with a
different roughness, much smoother than by Miller and
Richardson [1974], the order of magnitude of the present
measurements of Kð1Þx compares well with that of the
measurements by Miller and Richardson [1974], but sur-
prisingly only for the shallow-flow cases. We expected the
contrary to occur since a rectangular flume cannot generate
macrovortices like in the case of shallow flows in a com-
pound channel. A possible reason for the high values pro-
posed by Miller and Richardson [1974] can be found in the
roughness employed for the experiments, which may gener-
ate three-dimensional structures strongly affecting turbulent
diffusion. The theoretical values predicted by Elder [1959]
fall in between the values of shallow and deep flows, being
anyway closer to the latter flow conditions.

Figure 12. Dependence of the ratio K�ð1Þx =K�ð1Þy on the flow-depth ratio rh. Gray shaded zone indicates
intermediate flow conditions.

Figure 13. Dependence of K�ð1Þx =u�SR� on Fr, compared with available literature results.
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[47] The results on the dependence of Kð1Þy from Fr can
be compared with various experimental results presented
by several authors. Despite a noticeable scatter, all the liter-
ature values of Kð1Þy coming from experiments made in rec-
tangular flumes tend to be closer to the deep-flow cases of
the present campaign. The higher values measured in rec-
tangular-flume experiments might be due to the depend-
ence on other flow conditions, in fact, even in previous
experimental campaign it is possible to notice a quite large
scatter in the outcomes for Kð1Þy coefficient. The most evi-
dent influence on the results is due to the effect of the
roughness present in the channel. For example, data
obtained by Webel and Schatzmann [1984] and Lau and
Krishnappan [1977] are pretty different from each other
even if the value of the Froude number is almost the same.
We should stress the fact that the present experimental
campaign has been performed with a constant roughness,
and the employment of different values of the latter could
trigger different results as suggested by the range of the
results obtained in previous laboratory experiments. Other
differences in the magnitude of the transversal mixing coef-
ficient for previous campaign are due to different flow con-
ditions in terms of velocities, hence of Froude number [a.o.
Miller and Richardson, 1974], showing an increase in Kð1Þy

with Fr, as pointed out in the present analysis. It is interest-
ing to note that the few experiments concerning compound
channel flows [Wood and Liang, 1989; Spence et al., 1998;
Fraselle et al., 2008; Zeng et al., 2008] show a behavior
fairly similar to that observed in the present measurements.
In fact, values of Kð1Þy are smaller for deep flows [Wood
and Liang, 1989; Fraselle et al., 2008] compared with
shallow flows [Spence et al., 1998; Zeng et al., 2008], in
qualitative agreement with our observations, though the
values of Kð1Þy that we find span over a wider range of the
parameters than in the literature.

[48] Finally, the values of the dispersion/diffusion coeffi-
cients, fundamental for many applications in water quality
management, are consistent with the findings of Stocchino
et al. [2011]. We confirm that these coefficients are mainly
controlled by two physical parameters, namely the flow-depth

ratio and the Froude number. Based on the present measure-
ments we have derived regressions for Kð1Þx and Kð1Þy in the
(rh; FrÞ-parameter space, that read

K�ð1Þx

R�u�S
¼ �0:129� 0:065Fr þ 0:067rh þ 0:047Fr rh;

R2 ¼ 0:648; errvar ¼ 0:0060;

(20)

K�ð1Þy

R�u�S
¼ �0:188þ 0:131Fr þ 0:094rh � 0:023Fr rh;

R2 ¼ 0:386; errvar ¼ 0:0057;

(21)

where R2 is the coefficient of determination of the regres-
sion and errvar is an estimate of the error variance. Notwith-
standing the slightly low values of the R2, especially for
K�ð1Þy =R�u�S , which suggest a fairly variability in the data,
relationships (20) and (21) can be easily implemented in
2-D numerical models, taking into account the variations of
flow-depth ratio between the main channel and the flood-
plains and the overall flow regime.

7. Conclusions
[49] We have performed an extensive laboratory cam-

paign dedicated to the evaluation of the mixing coefficients
for uniform flows evolving in open compound channels.
The role of the main physical parameters, namely the
dimensionless flow-depth ratio rh and the Froude number
Fr, has been investigated. The experiments covered a wide
range of values for both rh and Fr, extending for the latter
the range commonly studied in previous works. The present
results complete the analysis discussed by Stocchino et al.
[2011], where a detailed description of the dispersion
regimes was presented, showing that deep and shallow
flows evolve following different temporal laws for both the
absolute and relative statistics. Moreover, different energy
transfer mechanisms have also been observed for the three
classes of flows. In particular, absolute statistics reveal that
transitional macrovortices, typical of shallow-flow conditions,

Figure 14. Dependence of K�ð1Þy =u�SR� on Fr, compared with available literature results. Gray markers:
previous works (empty for rectangular channel, fill for compound channels). Black markers: present
campaign.

W12517 BESIO ET AL.: TRANSVERSAL AND LONGITUDINAL MIXING IN COMPOUND CHANNELS W12517

13 of 15



strongly influence the growth in time of the total absolute dis-
persion, after the initial ballistic regime, leading to a nonmo-
notonic behavior. In deep-flow conditions, on the contrary,
the absolute dispersion displays a monotonic growth because
the generation of transitional macrovortices does not take
place. This seems to have a consequence on the large-time
(t� > T �L ) coefficients, as shown in the present study. How-
ever, in all cases an asymptotic diffusive regime is reached.

[50] The present analysis is based on the computation of
the absolute statistics (dispersion and diffusivity) starting
from the measurements of the horizontally 2-D free-surface
velocity fields. The diffusivity coefficients have been com-
puted from the long-term behavior of the absolute disper-
sion. A separate analysis has been performed in order to
investigate the role of local flow characteristics (i.e., main
channel flow and floodplains flow) on the mixing coeffi-
cient. The zonal mixing analysis is based on particle trajec-
tories computed starting from a regular seeding of part of
the cross section, the main channel, and the floodplains.

[51] Results show how zonal diffusivities for both Kð1Þx
and Kð1Þy monotonically increase with the flow-depth ratio
with a faster growth in the floodplains. On the contrary, the
main channel and the floodplains behave differently consid-
ering the dependence on Froude number.

[52] Regarding the global diffusivities, the results suggest
that both Kð1Þx and Kð1Þy monotonically increase with the
decrease of the flow depth, i.e., for increasing rh. This can be
associated with the generation of 2-D macrovortices that are
mainly observed at the transition region, where the flow-depth
jump between the main channel and the floodplains is located.
The macrovortices are responsible for an increased nonuni-
formity of the surface Eulerian velocity field and, thus, of the
Lagrangian particle trajectories, leading to higher mixing coef-
ficients. On the contrary, in the deep-flow condition the free-
surface velocity fields are more uniform, yielding lower values
of the coefficients. In particular, the longitudinal turbulent dif-
fusivity is much lower than the transversal coefficient. The an-
isotropy of the coefficient is, in this case, rather pronounced.

[53] Plotting the same results as function of the Froude
number, displays, again, a monotonic growth of the mixing
coefficients with Fr. However, deep and shallow flows are
clearly separated and the latter ones, for the same Froude
number, are always characterized by larger values of both
Kð1Þx and Kð1Þy . Intermediate flows are placed between the
two limiting cases.

[54] A comparison between the present results and sev-
eral previous data has been performed for the transversal
mixing coefficient and, whenever possible, also for the lon-
gitudinal turbulent coefficient. Regarding Kð1Þy , most of the
measurements have been obtained in flume experiments
with rectangular cross sections, which should be closer to
the deep-flow condition of the present analysis. Indeed, de-
spite a considerable scatter, on average the previous data fit
better with the deep flow cases. Coherently, the experi-
ments performed with nonrectangular cross sections show a
behavior similar to the one observed in the present experi-
mental campaign. In particular for shallow flows (see
Spence et al. [1998] and Zeng et al. [2008]) the previous
values are very close to the present observation. Only the
data of Fraselle et al. [2008], with rh close to 2, have a
value slightly higher than the present data.

[55] Regarding the longitudinal turbulent diffusivity
Kð1Þx , the results always show values smaller than the exper-
imental observations collected by Miller and Richardson
[1974] and are distributed around the theoretical value
derived by Elder [1959].

[56] Finally, regressions for the mixing coefficients Kð1Þx

and Kð1Þy have been provided, retaining the dependence on
both the flow-depth ratio and the Froude number. These rela-
tionship might be of interest for numerical simulations based
on the shallow-water advection diffusion equation applied to
several applications of water quality management.
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Genoa under the framework of the Research Project ‘‘Ateneo 2010’’.

References
Arnold, U., J. Hottges, and G. Rouv (1989), Turbulence and mixing mecha-

nisms in compound open channel flow, in Proc. 23rd IAHR Congress,
pp. A-133–A-140, IAHR, Ottawa, Canada.

Boffetta, G., G. Lacorata, G. Redaelli, and A. Vulpiani (2001), Detecting bar-
riers to transport: A review of different techniques, Physica D, 159, 58–70.

Boxall, J. B., and I. Guymer (2003), Analysis and prediction of transverse
mixing coefficients in natural channels, J. Hydraul. Eng., 129(2), 129–
139, doi:10.1061/(ASCE)0733-9429 129: 2(129):2003.

Chau, K. (2000), Transverse mixing coefficient measurements in an open
rectangular channel, Adv. Environ. Res., 4(4), 287–294, doi:10.1016/
S1093-0191(00)00028-9.

Cotton, A., and J. West (1980), Field measurement of transverse diffusion
in unidirectional flow in a wide, straight channel, Water Res., 14(11),
1597–1604, doi:10.1016/0043-1354(80)90064-0.

Deng, Z., V. Singh, and L. Bengtsson (2001), Longitudinal dispersion coeffi-
cient in straight rivers, J. Hydraul. Eng., 127(11), 919–927, doi:10.1061/
(ASCE)0733-9429(2001)127:11(919).

Elder, J. (1959), The dispersion of marked fluid in turbulent shear flow,
J. Fluid. Mech., 5(04), 544–560, doi:10.1017/S0022112059000374.

Fischer, H., E. List, R. Koh, J. Imberger, and N. Brooks (1979), Mixing in
Inland and Coastal Waters, Academic, New York.

Fischer, H. B. (1967), The mechanics of dispersion in natural streams,
J. Hydraul. Div., 93, 187–216.

Fischer, H. B. (1969), The effect of bends on dispersion in streams, Water
Resour. Res., 5(2), 496–506, doi:196910.1029/WR005i002p00496.

Fischer, H. B. (1975), Discussion of ‘‘simple method for predicting disper-
sion in streams,’’ J. Environ. Eng. Div., 101(3), 453–455.

Fraselle, Q., T. Arnould, X. Lissoir, D. Bousmar, and Y. Zech (2008),
Investigating diffusion and dispersion in compound channels using low-
cost tracer, in Proc. River Flow 2008 Int. Conf. on Fluvial Hydraulics,
pp. 529–538, Cesme, Turkey.

Guymer, I., and K. Spence (2009), Laboratory study of transverse solute
mixing during over-bank flows, in Proc. of 33rd IAHR Congress: Water
Engineering for a Sustainable Environment, IAHR, Ottawa, Canada.

Holley, E. R., and G. Abraham (1973), Field tests of transverse mixing in
rivers, J. Hydraul. Div., 99(12), 2313–2331.

Holly, F. (1985), Dispersion in Rivers and Coastal Waters—1. Physical
Principles and Dispersion Equation, Developments in hydraulic engi-
neering, Elsevier Applied Science, Amsterdam.

Kashefipour, S. M., and R. A. Falconer (2002), Longitudinal dispersion coef-
ficients in natural channels, Water Res., 36(6), 1596–1608, doi:10.1016/
S0043-1354(01)00351-7.

LaCasce, J. (2008), Statistics from Lagrangian observations, Progr. Ocean-
ogr., 77, 129.

Lau, Y. L., and B. G. Krishnappan (1977), Transverse dispersion in rectan-
gular channels, J. Hydraul. Div., 103(10), 1173–1189.

Manson, J. R., and S. G. Wallis (2004), Fluvial mixing during floods,
Geophys. Res. Lett., 31(14), L14502, doi:10.1029/2004GL020452.

Miller, A. C., and E. V. Richardson (1974), Diffusion and dispersion in
open channel flow, J. Hydraul. Div., 100(1), 159–171.

Nezu, I., K. Onitsuka, and K. Iketani (1999) Coherent horizontal vortices in
compound open channel flows, in Hydraulic Modeling, edited by V. P.
Singh, I. W. Seo, and J. H. Sonu, pp. 17–32, Water Resources Pub.,
Littleton, Colo.

W12517 BESIO ET AL.: TRANSVERSAL AND LONGITUDINAL MIXING IN COMPOUND CHANNELS W12517

14 of 15



Nokes, R. I., and I. R. Wood (1988), Vertical and lateral turbulent disper-
sion: Some experimental results, J. Fluid. Mech., 187, 373–394,
doi:10.1017/S0022112088000473.

Okoye, J. K. (1970) Characteristics of transverse mixing in open-channel
flows, Tech. Rep., California Institute of Technology, Pasadena.

Provenzale, A. (1999), Transport by coherent barotropic vortices, Annu.
Rev. Fluid Mech., 31, 55–93.

Prych, E. A. (1970), Effects of density differences on lateral mixing in open
channel flows, Tech. rep., Rep. No. KH-R-21, California Institute of
Technology, Pasadena, California.

Rowinski, P., W. Czernuszenko, and M. Krukowski (2005), Water Quality
Hazards and Dispersion of Pollutants, pp. 121–141, Springer, Berlin.

Rutherford, J. C. (1994), River Mixing, Wiley, New York.
Sayre, W. W. (1968), A laboratory investigation of the open channel disper-

sion processes for dissolved, suspended, and floating dispersants, U.S.
Geol. Surv. Prof. Pap., 433-E, E1–E71.

Seo, I. W., and T. S. Cheong (1998) Predicting longitudinal dispersion coef-
ficient in natural streams, J. Hydraul. Eng., 124(1), 25–32, doi:10.1061/
(ASCE)0733-9429 124: 1(25):1998.

Shiono, K., and D. Knight (1991), Turbulent open-channel flows with vari-
able depth across the channel, J. Fluid Mech., 222, 617–646.

Smith, R. (1983), Longitudinal dispersion coefficients for varying channels,
J. Fluid. Mech., 130, 299–314, doi:10.1017/S002211208300110X.

Spence, K., R. Potter, and I. Guymer (1997) Transverse solute mixing
from river outfalls during overbank flows, in Proc. 3rd Int. Conf. on
River Flood Hydraulics, pp. 485–494, HR Wallingford Ltd, South
Africa.

Spence, K., I. Guymer, and J. R. B. Sander (1998), Transverse mixing of
solute and suspended sediment from a river outfall during over-bank
flow, in Proc. of 7th Int. Symp. on River Sedimentation and 2nd Int.
Symp. on Environmental Hydraulics, pp. 363–368, Hong Kong, China.

Stocchino, A., and M. Brocchini (2010), Horizontal mixing of quasi-
uniform, straight, compound channel flows, J. Fluid. Mech., 643, 425–435.

Stocchino, A., G. Besio, S. Angiolani, and M. Brocchini (2011), Lagrangian
mixing in straight compound channel, J. Fluid. Mech., 675, 168–198,
doi:10.1017/S0022112011000127.

Sullivan, P. J. (1968), Dispersion in a turbulent shear flow, Ph.D. thesis,
University of Cambridge, Cambridge, England.

Taylor, G. (1921), Diffusion by continuous movement, Proc. London Math.
Soc., 20, 196–212.

Wallis, S., and R. Manson (2005), Water Quality Hazards and Dispersion
of Pollutants, pp. 69–84, Springer, Berlin.

Webel, G., and M. Schatzmann (1984), Transverse mixing in open channel
flow, J. Hydraul. Eng., 110(4), 423, doi:10.1061/(ASCE)0733-9429
110: 4(423):1984.

Wood, I. R., and T. Liang (1989), Dispersion in an open channel with a step
in the cross-section, J. Hydraul. Res., 27(5), 587–601, doi:10.1080/
00221688909499112.

Yotsukura, N., and W. W. Sayre (1976), Transverse mixing in natural chan-
nels, Water Resour. Res., 12(4), 695–704, doi:197610.1029/WR012i004
p00695.

Zeng, Y., W. Huai, and I. Guymer (2008), Transverse mixing in a trapezoi-
dal compound open channel, J. Hydrodyn. Ser. B, 20(5), 645–649,
doi:10.1016/S1001-6058(08)60107-9.

W12517 BESIO ET AL.: TRANSVERSAL AND LONGITUDINAL MIXING IN COMPOUND CHANNELS W12517

15 of 15


