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The effect of coupling or decoupling bed and flow dynamics is analyzed in the framework of a linear
analysis of the stability of a uniform, rotational, two-dimensional flow in an infinitely wide channel
with a bed composed by incoherent sediments. It is shown that results obtained with the coupled
analysis in term of instability of slow sediment waves of the dune/antidune kind are quite similar to
the results obtained making use of the “quasisteady hypothesis,” which forms the basis of most of
the existing linear stability analyses of bedforms and formally justifies the decoupling procedure.
Small differences can be observed, for Froude numbers ofOs1d, in the surroundings of the marginal
curves that bound the instability regions, mainly due to the removal of the artificial resonance that
is introduced in the analysis when the quasisteady hypothesis is enforced. The decoupled approach,
however, completely wipes out a mode of instability associated with fast-moving sediment waves,
which appear at high Froude numbers in connection with the formation of roll waves on the free
surface. This mode of instability, characterized by large wavelengths, is shown to coexist with the
slower, shorter antidune mode. ©2005 American Institute of Physics. fDOI: 10.1063/1.1848731g

I. INTRODUCTION

Starting from the seminal work of Kennedy,1 stability
analyses proved to be a powerful tool to investigate the for-
mation mechanism of bedforms, represented as periodic
sediment waves traveling upstream or downstream while am-
plifying in time.2–8

In a linear context, information is gathered about the
existence of unstable regions in the parameter space and on
the wavelength of the most unstable mode. A satisfactory
agreement of the theoretical predictions with the experimen-
tal observations is found, thus confirming that the basic
mechanism of bedform formation is indeed an instability
mechanism, which is necessarily associated with the pres-
ence of a phase lag between sediment transport and bed to-
pography. Nevertheless, criticism towards the latter approach
has been leveled9,10 regarding the way information coming
from a linear theory, which assumes infinitesimal amplitude
of the disturbances, can be transferred to the dynamics of
finite amplitude bedforms. Indeed, a few weakly nonlinear
stability theories11–13 showed that, at least for some class of
bedforms, finite amplitude solutions can be predicted with a
sufficient degree of accuracy.

In the formulation of his work, Kennedy1 also intro-
duced the idea of decoupling bed and flow dynamics. This
hypothesis was made under the realistic assumption that the
bed evolves on a time scale that is much slower than the
characteristic time scale of the flow. Following this approach,
the problem can be decoupled, i.e., split into two parts:sid
the determination of the “forced” steady response of the flow
to a given bottom perturbation;sii d the determination of the

time evolution of the bed driven by the latter flow response.
The above assumption strongly simplifies the linear analysis,
since the resulting eigenrelation is invariably linear, thus
leading to the determination of just one eigenvalue associ-
ated with the amplification and propagation of bed perturba-
tions. For its simplicity, this assumption was adopted in al-
most any subsequent linear stability analysis of bedforms.
Nevertheless, the above hypothesis completely rules out any
mode of instability associated with the flow, possibly leading
to incomplete predictions.4,10,14 The consequences of this
choice become evident when the instability of the complete
flow-bed system, which will be formally derived in the fol-
lowing, is analyzed. It suffices here to state that the above
decoupling procedure produces an unrealistic resonant be-
havior in the region where quasisteady flow disturbances oc-
cur and the disappearance of a mode of instability associated
to the formation of roll waves at high Froude numbers.

The main goal of the present contribution is to assess the
role of flow unsteadinesssand thus of coupling or decoupling
bed and flow dynamicsd in the framework of a linear stability
of a uniform flow in an infinitely wide open channel with
erodible bed. This will be accomplished in the following by
means of a direct comparison between the results of coupled
and decoupled solutions obtained adopting the same flow
model. A two-dimensional rotational flow model is em-
ployed, which provides a good description of the phase lag
between flow and bed topography that drives the whole in-
stability process. Only equilibrium bedload transport is con-
sidered and the analysis is therefore restricted to coarse sedi-
ments, neglecting the role of particle inertia.

The rest of the paper proceeds as follows. The differen-
tial system that governs the evolution of the flow-bed system
is formulated in Sec. II and linearized in the following sec-
tion where the resulting eigenvalue problem is obtained. Re-
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sults of the decoupled analysis are briefly discussed and
compared with experimental results in Sec. IV. The effect of
coupling is discussed in Sec. V through a comparison of the
behavior of the three eigenvalues that characterize the
coupled solution with the corresponding decoupled eigenval-
ues. Some brief conclusions follow.

II. FORMULATION OF THE PROBLEM

Let us consider uniform turbulent free-surface flow of an
incompressible fluid of densityr in a wide straight channel.
In the following, variables with a star superscript are to be
intended as dimensional variables. A generic quantity has
been made nondimensional using the friction velocityuf

* and
the depthD* of the unperturbed uniform flow and the fluid
densityr. Moreover, we define the friction coefficientC as-
suming that, for uniform flow condition, the friction velocity
uf

* and the depth-averaged velocityU* are related to the
slopeS and the Froude number Fr by the following law:

C =
uf

*

U*
=

S1/2

Fr
. s1d

The unsteady Reynolds equations in dimensionless form are
written as

U,t + UU,x + VU,y + P,x − 1 −Txx,x − Txy,y = 0, s2ad

V,t + UV,x + VV,y + P,y + S−1 − Txy,x − Tyy,y = 0, s2bd

U,x + V,y = 0, s2cd

whereU=sU ,Vd is the local velocity vector averaged over
turbulence,P is the mean pressure, andT =hTijj is the 2D
Reynolds stress tensor.

Figure 1 shows a sketch of the flow domain referred to a
Cartesian coordinate systemsx,yd. The flow is bounded by
the curvesy=Rsx,td andy=Rsx,td+Dsx,td in a way thatD
represents the local flow depth. The kinematic and dynamic
boundary conditions to be associated withs2d then read

− R,t + Un = 0, Ut = 0 s3d

at the lower boundary, while at the upper boundary we have

− sR+ Dd,t + Un = 0, tt = 0, tn = 0, s4d

whereUt andUn are the tangential and normal components
of velocity at the boundaries. In analogy,tt and tn are the
tangential and normal components of the stress acting on
each boundary. Furthermore, we set the lower boundary of
the flow domain at a predefined reference level, which con-
ventionally represents the zero-velocity plane for the loga-
rithmic profile. If we denote byks the nondimensional rough-

ness height and byk the Kármán constant, set equal to 0.4,
the law of the wall can be written as

U =
1

k
lnS y

ks
D + Br =

1

k
lnS y

yr
D , s5d

where the constantBr is commonly set equal to 8.5, which
corresponds to a value ofyr of abouts1/30dth of the rough-
ness height. Typically, the latter is assumed to be around 2.5
times the grain size, leading toyr =ds/12, whereds is the
nondimensional sediment diameter. Moreover, the origin of
the vertical axis is set at the average bed level, which falls at
a distance ofds/6 below the top of the grains.

A transformation of variables of the kind

h =
y − Rsj,td

Dsj,td
, j = x, t = t s6d

is then employed to map the domain shown in Fig. 1 into a
rectangular domain.

In order to close the above formulation a Boussinesq
closure is used, which reads

Tij = nTsUi,j + Vj ,id. s7d

The eddy viscositynT has been evaluated by means of the
mixing length approach

nT = l2U,y l = DLshd, s8d

where the algebraic function

Lshd = ksh + hrds1 − hd1/2 s9d

produces, for a uniform flow, a parabolic profile of eddy
viscosity and, consequently, the logarithmic laws5d. Accord-
ingly to the above considerations, the quantityhr in s9d has
been set tods/12.

As far as bed dynamics is concerned, only bedload trans-
port is considered and the perturbation approach adopted by
Colombini8 to study dune and antidune formation in the de-
coupled framework is followed. It is convenient at this point
to briefly summarize some of the salient concepts of this
approach. For a more complete analysis the reader may refer
to Ref. 8.

In the work of Bagnold,15 which can be considered as
the first mechanistic approach to sediment transport, “the rate
of work done in pushing the bedload along the bed against
frictional resistance” was related to “the power in the flow
available to move the sediment,” leading to a relationship
between the sediment discharge per unit width and the bed
shear stress. Most of the equilibrium relationship available in
the literature for estimating the bedload transport intensity
are based on the same approach, which can be essentially
reduced to a force balance over a thin layer, often referred to
as bedload or saltation layer, which bounds the region of
fluid where sediments move by small jumps.

The clear fluid flowing above this bedload layer is prac-
tically unaffected by the sediment motion, which is felt by
the fluid itself only as a slight change of roughness. There-
fore, the shear stress acting on the top of the bedload layer
can be assumed to be identical to that occurring, at the same

FIG. 1. Sketch of flow configuration.
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height above the reference level, in a uniform flow over a
fixed bed characterized by the same roughness.

The thickness of the saltation layer scales with the sedi-
ment grain sizeds, e.g., is of the order ofs1/100dth to
s1/1000dth of the flow depth, and depends on the flow stage
in terms of some power of the difference between the shear
stress acting on the top of the bedload layertb and the criti-
cal stress for sediment motiontc. We can then write

hb = F1 + AbS tb − tc

tc
DmGds, tb ù tc, s10d

where the value of the constantAb and of the exponentm
have been set equal to 1.13 and to 0.57, respectively, on the
basis of a regression on experimental data.8

Due to the smallness ofhb, the difference in modulus
between the shear stresstb and the shear stress evaluated at
the reference leveltr is quite small, so that apparently this
difference can be ignored. However, the phase of the bed
shear stress with respect to bed elevation, which plays a fun-
damental role in the stability process, varies quite rapidly in
the neighborhood of the reference level and the resulting
stability picture is significantly altered by this seemingly mi-
nor simplification.8 Therefore, in the following we will keep
distinct the reference levelR, at which the boundary condi-
tion of vanishing velocity is set, from levelB, at which the
shear stress is evaluated in order to determine bed evolution.
It is assumed that the two levels are kept at the same distance
hb as the bed evolves in time.

Based on the above considerations, the Exner equation
of sediment mass conservation takes the form

B,t = − Q0F,x, s11d

where

Q0 =
Q̂

Cs1 − lpd
s12d

and

Q̂ =
ds

*Îss− 1dgds
*

D * U*
s13d

is the ratio between the scale of sediment discharge and the
flow rate; ds

* , s, and lp are diameter, relative density, and
porosity of the sediment, respectively, whileg is gravita-
tional acceleration.

Finally, in order to close the problem, a suitable relation-
ship between the dimensionless sediment discharge per unit
width

F =
qs

*

ds
*Îss− 1dgds

*
s14d

and the flow must be introduced. Several formulations for
the functionF are available in the literature, all exhibiting a
dependence by some power of a dimensionless form of the
bed shear stress, known as the Shields stressub.

ub =
tb

*

rss− 1dgds
* . s15d

Results of the linear stability theory are only moderately
affected by the choice of a particular form of the functionF.
In the following, the Meyer–Peter and Müller formula

F = 8sub − ucd3/2 s16d

has been employed, whereuc is the critical Shields stress for
incipient motion. When only bedload transport is considered,
as in the present case, gravity favors the downhill motion of
the grains and conversely opposes to the uphill motion. Fol-
lowing Fredsøe,5 this effect has been accounted for setting
the critical Shields stressuc to

uc = uch − msS− B,xd, s17d

whereuch has been set equal to the conventional value for
horizontal beds0.047d andm is a dimensionless constant that
reads

m =
uch

tanC
s18d

having denoted byC the friction angle. An appropriate esti-
mate form ranges5 about 0.1.

III. LINEARIZATION

The problem formulated in the preceding section is then
solved in terms of normal modes, so that a generic perturbed
variableF can be written as

Fsj,h,td = F0shd + eF1sj,h,td, s19ad

F1sj,h,td = fshdexpfiasj − Vtdg + c.c., s19bd

wheree is a small parameter,a is the wave number of the
perturbation, andV the complex growth rate.

By substituting the above expansion into the governing
equations, boundary conditions, and turbulence closure, we
are left with a sequence of problems at various orders of
approximation ine. In the following, we avoid the details of
the above procedure and simply present its main results.

A. O„e0
…

At leading order, integration of the system of differential
equations

Tt08 = − 1, Tn08 = − S−1, s20ad

Tt0 = nT0U08, Tn0 = − P0, s20bd

where primes stand for] /]h and

nT0 = kshr + hds1 − hd s21d

together with the boundary conditions

uU0uh=0 = 0, s22ad

uTt0uh=1 = 0, uTn0uh=1 = 0, s22bd

yield the classic rough logarithmic law for the velocity and
the hydrostatic distribution for pressure

U0 =
1

k
lnSh + hr

hr
D , s23ad
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P0 = S−1s1 − hd. s23bd

Integrating once more the vertical profile of velocity, we
obtain

U*

uf
* =

1

C
=

1

k
FlnS1 + hr

hr
D − 1G , s24d

which relates the friction coefficientC to hr.
At the leading order, the Exner’s equations11d does not

produce any additional information, since under uniform
flow conditions the bed neither experiences aggradation nor
degradation. It may just be worth mentioning the fact that

R0 = h0 =
ks

30
=

ds

12
, B0 − R0 =

ds

12
+ hb. s25d

B. O„e1
…

We introduce two new variables to represent the ampli-
tudes of the perturbed tangential stressesTt and the perturbed
normal stressesTn with respect to a surface at constanth,
which read

Tt = nT0Su8 − U08d + iav +
nT

nT0
U08D , s26ad

Tn = − p − 2ianT0u, s26bd

whereu,v are the longitudinal and vertical components of
the perturbed velocity, whilep and d are the amplitudes of
the pressure and flow depth perturbation, respectively. Fi-
nally, the mixing length formulations8d allows us to write
the rationT/nT0 as follows:

nT

nT0
=

u8

U08
+ d. s27d

After some manipulation a system of ordinary differential
equations is eventually obtained that can be written in the
general form

LZ = dD + rR, s28d

whered is treated as a parameter to be determined andr is
the amplitude of the perturbation of the reference level. The
vectorZ of the unknowns is

Z = su,v,Tt,TndT. s29d

The linear differential operatorL in s28d reads

L =1
d/dh ia/2 − 1/s2nT0d 0

ia d/dh 0 0

A − 4a2nT0 − U08 d/dh ia

0 A ia d/dh
2 , s30d

while the vectorD andR are, respectively,

D =1
0

iaU08h

U08Ah + iaS−1h − 2a2s1 − hdh − 1

S−1 + iah − 2ias1 − hd
2 s31d

and

R =1
0

iaU08

U08A + iaS−1 − 2a2s1 − hd
ia

2 . s32d

In the above relationships, the quantityA is equal to
−isaU0−Vd.

Linearizing the boundary conditionss3d and s4d we ob-
tain, at the reference levelsh=0d

u = 0, v = − iVr , s33d

while at the free surfacesh=1d

v = isaU0 − Vdsr + dd, Tt = 0, Tn = 0. s34d

The solution of the linear differential systems28d can be
written in the form

Z = c1Z1 + c2Z2 + dZd + rZ r. s35d

ThusZ is expressed as a linear combination of two linearly
independent solutions of the homogeneous initial value prob-
lem, which satisfy the boundary conditions at the lower
boundary

LZ1,2= 0 s36d

plus particular solutions of the nonhomogeneous differential
systems

LZd = D, LZ r = R s37d

again satisfying the lower boundary conditions.
Using the splittings35d on the boundary conditions at

the free surfaces34d, a set of three algebraic equations in the
four unknownsc1, c2, d, andr is found, which, by replacing
r with b, can be written as

1a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34
2 ·X = 10

0

0
2 , s38ad

where

X = sc1,c2,d,bdT. s38bd

In obtainings38d, the two linearly independent solutions
of the homogeneous problems36d have been chosen so that
the unknownsc1 andc2 are the values of the perturbation of
the tangential and normal stress at the reference level, re-
spectively. Furthermore,b is the amplitude of the perturba-
tion of the surfaceB, which is identical tor since bothB and
R are proportional to the uniform sediment grain diameter
and thus kept at a constant distance from one another as the
bed evolves.

Linearization of the sediment continuity equation yields
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Vb − Q0af = 0, s39d

where the amplitudef of the perturbation of the bedload
dischargeF defined by s16d can be expanded as ins35d
leading to

f = sf1c1 + f2c2 + fdd + fbbd = f ·X , s40d

where

f1 = F ]F

]c1
G

0
= F ]F

]ub

]ub

]c1
+

]F

]uc

]uc

]c1
G

0
s41d

and the suffix 0 stands for “evaluated at base condition.”
Analogous relationships hold forf2, fd, andfb.

Expanding also the perturbed shear stressTtb, we then
readily obtain

f = ASTtb1,Ttb2,Ttbd + hb,Ttbr − ia
m

ur0
DT

, s42d

whereTtb1, Ttb2, Ttbd, andTtbr are evaluated athb and

A = F ]F

]ub
G

0
ur0. s43d

Making use ofs40d ands42d, we can rewrites39d obtain-
ing the dispersion relationship

Vb − Q0af ·X = 0. s44d

Equations44d provides the fourth equation to be associ-
ated withs38d so that a linear 434 algebraic homogeneous
system is eventually obtained in the form

AsVd ·X = 0. s45d

The above system admits a nontrivial solution for the
particular values ofV that satisfy the eigenrelation

detA = 0. s46d

The choice of different flow modelssi.e., rotational vs
irrotational flowd or the choice of coupling/decoupling flow
and bed dynamics, only affect the values of the coefficients
of the matrix A, their dependence onV and the physical
meaning of the constantc1 andc2. The mathematical asset of
the problem remains unchanged and ultimately the eigen-
value problem described bys46d has to be solved.

IV. DISCUSSION OF RESULTS: DECOUPLED FLOW
AND BED EIGENVALUES

A more detailed analysis of the eigenvalue problems46d
may help to enlighten the role of flow unsteadiness in the
present problem and ultimately investigate the significance
and well posedness of the hypothesis of decoupling flow and
bed dynamics.

Let us writes45d as follows:

1
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

2 ·1
c1

c2

d

b
2 =1

0

0

0

0
2 . s47d

If we now setb=0 and drop the last line ofs47d sthe
Exner’s equationd we obtain the eigensystem

1a11 a12 a13

a21 a22 a23

a31 a32 a33
2 ·1c1

c2

d
2 = 10

0

0
2 , s48d

the solution of which provides the eigenvalues associated
with the stability of a uniform flow over a flat, unerodible
bed. Two eigenvalues are obtained, one associated to slower
waves, always characterized by a negative growth rate, the
other to faster waves that become unstable at high Froude
numbers leading to roll-wave formation.

In Fig. 2 the stability diagram of the unstable eigenvalue
is shown. In this and in all the subsequent stability plots, the
complex quantityV has been rescaled with the uniform
depth-averaged flow velocityU* and its imaginary part has
been multiplied by the wave numbera to produce the growth
rate, which is displayed in shades of gray, lighter colors cor-
responding to higher values. Moreover, the marginalsvanish-
ing growth rated curve is represented by a solid black line,
while maximum growth rate is represented by a dashed black
line.

This mode of instability is characterized by high wave
celerities fOs1dg, large Froude numberssFr.2d and small
wave numbers. In the simulation, the value of the nondimen-
sional roughness has been set equal to 0.0015, corresponding
to a value of the friction coefficientC=0.05.

The experimental data of Brock16 are also reported in
Fig. 2. All the measured points follow in the unstable region
and are characterized by wave numbers falling within a nar-
row bands0,a,0.06d. The wave number of maximum am-
plification selected by the normal mode analysis seems to
overestimate the experimental values. This discrepancy may
be ascribed to the linearity of the present analysis, since non-
linear interactions have been shown to produce an increase in
the wavelengths of roll waves as they reach finite
amplitudes.17 The wave numbers of small amplitude roll
waves in the initial stage of developmentsshown as squares

FIG. 2. Roll-wave instability: comparison with the experiments of Brock
sRef. 16d: s, finite amplitude roll waves;h, small amplitude roll waves.
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in Fig. 2d are closer to the line of maximum amplification
than those of mature roll wavessshown as circles in the same
figured.

Finally, the marginal curve and consequently the line of
maximum amplification predicted by the present theory are
found to be closer to the experimental points when compared
to the results of existing shallow-water linear theories.17–20

Therefore, the use of a more refined flow model is shown to
improve the description of the instability process leading to
roll-wave formation.

Bed-flow decoupling is obtained dropping time deriva-
tives in the flow systems28d so that the coefficients of the
first three rows ofs47d are no longer functions ofV. In this
case the eigenrelationships46d becomes linear and thesonlyd
eigenvalue can be obtained solving first the linear algebraic
system

1a11 a12 a13

a21 a22 a23

a31 a32 a33
2 ·1c1

c2

d
2 = − 1a14

a24

a34
2b, s49d

which provides the forced response of the flow to a bed
perturbation of amplitudeb, and second substituting the so-
lution into s44d. Most of the existing linear stability theories
on bedform formation are based on the latter procedure,
which dates back to the original work of Kennedy1 and is
often referred to as the “quasisteady hypothesis.” This hy-
pothesis relies on the fact that the ratio of the characteristic

bed and flow time scales, i.e.,Q̂, is typically very smallse.g.,
of the order 10−3d.

The decoupled case has been extensively discussed in
Colombini8 and therefore only the comparison of the model
results with the experimental measurements of Guy, Simons,
and Richardson21 is reported in Fig. 3 for completeness. The
dashed white curves in the plot represent the lines of vanish-
ing celerity.

The above formulation enlightens the real nature of the
decoupling hypothesis: the coefficients of the two algebraic
systemss48d and s49d coincide if one of the eigenvalues of

the problems48d is zero or, in other words, if perturbations
of the flow do exist that are both neutral and stationary. If
this is the case, a resonant problem is obtained since the
systems49d is indeterminate producing an infinite response
of the flow to bed perturbations and thus an infinite growth
rate. This situation is exactly recovered only for the case of
inviscid sirrotationald flow. However, when both celerity and
growth rate of the slowest flow eigenvalue are small, the
decoupled solution is strongly distorted by the quasiresonant
behavior of the system, as it can be clearly seen in Fig. 3,
where the artificial resonance introduced by the quasisteady
hypothesis produces the dark region surrounding the dashed
line of vanishing celerity.

We point out that the complete flow-bed systems47d
does not exhibit any kind of resonance. Indeed, this is physi-
cally sound since no external forcing is present in this prob-
lem that could possibly lead to resonance if some natural
response of the system were excited. The external forcing is
artificially introduced when steady flow conditions are en-
forced according to the decoupling hypothesis.

V. DISCUSSION OF RESULTS: COUPLED FLOW AND
BED EIGENVALUES

The procedure followed in the present work to solve the
different eigenvalue problems which arise as particular cases
of the complete eigensystems45d is that described in Sec. III.

In particular, since the differential operatorL parametri-
cally depends on the complex growth rateV, each coefficient
of the arrayA is in general a function ofV and eventually
three eigenvalues are found for any fixed value of the param-
eters. The search for the eigenvalues has been done numeri-
cally by means of a minimization of the determinant of the
arrayA, with an a posteriori check that an absolute minimum
was actually found. The eigenvalues obtained by means of
the decoupled flow and bed solutions were set as initial val-
ues of the above search procedure.

In the right column of Fig. 4, the three eigenvalues of the
coupled solution are shown, while the corresponding eigen-
values of the decoupled solutions are reported in the left
column. It may help the reader to recall at this point that the
“flow-fastest” sad and “flow-slowest”scd eigenvalues follow
from an analysis of flow instability over a flat fixed bed,
while the “bed” eigenvaluesed follows from the decoupled
analysis of bed instability.

A comparison between the two lowermost rows of pic-
tures in Figs. 4scd–4sfd shows that the flow-slowest eigen-
value and the bed eigenvalue are clearly affected by the de-
coupling procedure. However, a distinction between flow and
bed eigenvalues is no longer meaningful in the coupled case
since they are just different eigenvalues of the unique flow-
bed system. In particular, across the line describing steady
flow perturbations the flow-slowestsdd and the bedsfd eigen-
values switch role, so that the unstable region associated
with antidunes appears now in plotsdd. It is important to note
that the above mentioned deep valley associated to pseu-
doresonance disappears in the complete coupled solution,
thus confirming that this effect is artificially introduced in the

FIG. 3. Dune and antidune instability: comparison with the experiments of
Guy, Simons, and RichardsonsRef. 21d.
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analysis when the hypothesis of decoupling bed and flow
dynamics is enforced.

In the framework of potential flow analyses, the reso-
nance between bed and flow waves of the same celerity has
been often invoked in the past as a possible instability
mechanism.10,22 Therefore, it may be worth to stress once
more that a true resonance is obtained only if an external

forcing excites some natural frequency of the system. The
system at hand is a free oscillating system; it is the quasi-
steady hypothesis that introduces an external forcing since
steady flow disturbances resonate with thesalmost steadyd
bed “forcing” configuration. When a coupled analysis is per-
formed, independently from the flow model adopted, reso-
nance in its commonly accepted meaning disappears so it can

FIG. 4. Stability plot: comparison of decoupledsleft columnd and coupledsright columnd solutions. The solid white curves are lines of equal celerity. The
dashed white lines appearing in plotssdd and sfd represent steady flow disturbances.
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be misleading to talk about the existence of a bed-wave-
water-surface-wave resonance mechanism of instability.10

Indeed, in their potential flow coupled analysis, Coleman
and Fenton10 found instability for a narrow band of wave
numbers falling in a neighborhood of the line describing
steady flow perturbation. On the contrary, in the present ro-
tational theory, the uniform flow is found to be stable in that
region, in agreement with the experimental observations that
the formation of dune and antidune occurs in subcritical and
supercritical regimes, respectively, while a flat bed is ob-
served for Fr.1.1,23

Regardless the resonance problem, the marginal curves
for dunes and antidunes appear to be practically unaffected
by the coupling, thus suggesting that the dynamics of dune
and antidune can be safely investigated in the simpler frame-
work of the decoupled theory, at least for Fr,2.

As the Froude number increases above this threshold, in
fact, also disturbances associated to the first eigenvalue be-
come unstablefFig. 4sbdg, leading to the appearance of fast
sediment waves that propagate downstream associated with
the formation of roll waves. The existence of this mode of
instability has been firstly discovered by Needham12 using a
coupled analysis based on a depth-averaged flow model. Due
to the limitations of the shallow-water approach to small
wave numbers, Needham12 was unable to extend its analysis
to cover also the case of dune and antidune formation, the
characteristic wavelength of these bedforms scaling with the
uniform flow depth. On the other hand, all the analyses based
on the quasisteady approach clearly conceal the onset of
sediment waves associated to the roll-wave formation.
Present results confirm the appearance of fast-moving sedi-
ment waves at high Froude numbers, which are shown to
coexist with slow-moving bedforms of the antidune kind in
the same framework of analysis.

It may be useful at this point to briefly analyze the dif-
ferences between these two modes of instability. In the fol-
lowing, we will refer to them as “antidune” and “roll-wave”
modes for clarity. Antidune mode, as predicted by the present
analysis, is characterized by a small negative celeritysup-
stream propagationd, with a wavelength of maximum ampli-
fication that ranges from 5 to 20 times the averaged flow
depth as the Froude number is increased. Roll-wave mode
propagates downstream with anOs1d celerity and is charac-
terized by wavelengths larger than 30 times the uniform flow
depth. Regarding the phase shift between the free surface and
the bed oscillations, both antidunes and roll waves are ap-
proximately in phase, with a positive lag for antidunes, co-
herently with their upstream migration, and a negative lag
for roll waves, corresponding to downstream migration.

Another distinctive feature of the two modes regard free-
surface and bed oscillation amplitudes. As shown in Fig. 5,
roll-wave disturbances are characterized by small ratio of
bed over free-surface amplitudefe.g.,Os10−2dg. On the con-
trary, the same ratio for antidunes is of the order 1. Results
for roll-wave amplitude and phase lag are in qualitative
agreement with the analysis of Needham.14

In summary, roll waves are therefore very long sediment
waves, moving very fast and with very small bed amplitudes
compared to the free-surface oscillations. They linearly com-

pete, with similar growth rates, with antidunes, which are
much shorter, slower, and characterized by larger bed ampli-
tudes. Although in a linear context no further information is
available on the competition of these two modes, the lack of
experimental evidence of roll-wave sediment waves may be
explained through the nonlinear competition with the anti-
dune mode, which can possibly prevail on the other. More-
over, the present analysis suggests that if it is the roll-wave
instability that eventually prevails, it may be easily confused
with flat-bed conditions, since the amplitude of bed oscilla-
tions is small and their wavelength is large compared with
antidunes.

A fully or weakly nonlinear analysis of the process of
instability that leads to the formation of roll waves and anti-
dunes at high Froude numbers is required to shed some light
on their reciprocal interactions.

VI. CONCLUSIONS

The present contribution deals with the linear stability of
a uniform flow over an erodible bed in an infinitely wide
open channel and, in particular, with the effect on the results
of coupling or decoupling flow and bed dynamics.

The main conclusions can be summarized as follows:

FIG. 5. Contours of the ratio of bed and free-surface amplitudes inside the
regions of instability;sad roll-wave mode,sbd antidune mode.
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sid The coupled analysis leads to the same conclusions of
the decoupled analysis as far as the regions of instability for
dunes and antidunes are concerned.

sii d The artificial resonance introduced in the decoupled
analysis when the quasisteady hypothesis is enforced disap-
pears when bed and flow dynamics are coupled together.

siii d At high Froude numbers the existence of fast-
moving sediment waves associated with roll-wave instability
is found, confirming the results obtained in the framework of
shallow water theories.

The roll-wave and antidune modes have been shown to
be simultaneously unstable for sufficiently large values of the
Froude number. No further information can be gathered, in a
linear context, regarding their reciprocal interactions. An ex-
tension of the analysis to the weakly or fully nonlinear re-
gime is required in order to provide a mechanism of compe-
tition between roll-waves and antidune modes, possibly
leading to a transfer of energy between the two of them that
can justify the dominance of one mode over the other.
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