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The effect of coupling or decoupling bed and flow dynamics is analyzed in the framework of a linear
analysis of the stability of a uniform, rotational, two-dimensional flow in an infinitely wide channel
with a bed composed by incoherent sediments. It is shown that results obtained with the coupled
analysis in term of instability of slow sediment waves of the dune/antidune kind are quite similar to
the results obtained making use of the “quasisteady hypothesis,” which forms the basis of most of
the existing linear stability analyses of bedforms and formally justifies the decoupling procedure.
Small differences can be observed, for Froude numbe® b, in the surroundings of the marginal
curves that bound the instability regions, mainly due to the removal of the artificial resonance that
is introduced in the analysis when the quasisteady hypothesis is enforced. The decoupled approach,
however, completely wipes out a mode of instability associated with fast-moving sediment waves,
which appear at high Froude numbers in connection with the formation of roll waves on the free
surface. This mode of instability, characterized by large wavelengths, is shown to coexist with the
slower, shorter antidune mode. )05 American Institute of PhysidDOIl: 10.1063/1.1848731

I. INTRODUCTION time evolution of the bed driven by the latter flow response.
The above assumption strongly simplifies the linear analysis,
Starting from the seminal work of Kennebistability — since the resulting eigenrelation is invariably linear, thus
analyses proved to be a powerful tool to investigate the forieading to the determination of just one eigenvalue associ-
mation mechanism of bedforms, represented as periodiated with the amplification and propagation of bed perturba-
sediment waves traveling upstream or downstream while antions. For its simplicity, this assumption was adopted in al-
plifying in time 28 most any subsequent linear stability analysis of bedforms.
In a linear context, information is gathered about theNevertheless, the above hypothesis completely rules out any
existence of unstable regions in the parameter space and emode of instability associated with the flow, possibly leading
the wavelength of the most unstable mode. A satisfactoryo incomplete prediction$%!* The consequences of this
agreement of the theoretical predictions with the experimenehoice become evident when the instability of the complete
tal observations is found, thus confirming that the basidlow-bed system, which will be formally derived in the fol-
mechanism of bedform formation is indeed an instabilitylowing, is analyzed. It suffices here to state that the above
mechanism, which is necessarily associated with the prestecoupling procedure produces an unrealistic resonant be-
ence of a phase lag between sediment transport and bed toavior in the region where quasisteady flow disturbances oc-
pography. Nevertheless, criticism towards the latter approacbur and the disappearance of a mode of instability associated
has been leveléd® regarding the way information coming to the formation of roll waves at high Froude numbers.
from a linear theory, which assumes infinitesimal amplitude  The main goal of the present contribution is to assess the
of the disturbances, can be transferred to the dynamics able of flow unsteadinegand thus of coupling or decoupling
finite amplitude bedforms. Indeed, a few weakly nonlinearbed and flow dynamigsn the framework of a linear stability
stability theorie5' 3 showed that, at least for some class ofof a uniform flow in an infinitely wide open channel with
bedforms, finite amplitude solutions can be predicted with zerodible bed. This will be accomplished in the following by
sufficient degree of accuracy. means of a direct comparison between the results of coupled
In the formulation of his work, Kenne&yalso intro- and decoupled solutions obtained adopting the same flow
duced the idea of decoupling bed and flow dynamics. Thignodel. A two-dimensional rotational flow model is em-
hypothesis was made under the realistic assumption that tH#oyed, which provides a good description of the phase lag
bed evolves on a time scale that is much slower than théetween flow and bed topography that drives the whole in-
characteristic time scale of the flow. Following this approach stability process. Only equilibrium bedload transport is con-
the problem can be decoupled, i.e., split into two paiits: ~sidered and the analysis is therefore restricted to coarse sedi-
the determination of the “forced” steady response of the flownents, neglecting the role of particle inertia.

to a given bottom perturbatior(ii) the determination of the The rest of the paper proceeds as follows. The differen-
tial system that governs the evolution of the flow-bed system

JAuthor to whom correspondence should be addressed. Electronic maii._S formulated in Sec-_ Il and linearized in the_fOHOWi_ng Sec-
col@diam.unige.it tion where the resulting eigenvalue problem is obtained. Re-
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»Vv R+D(3) ness height and by the Karman constant, set equal to 0.4,
| the law of the wall can be written as
Beo U=EIn<X>+B,=EIn(X), (5)
R, . K Ks K Yr
* where the constarB, is commonly set equal to 8.5, which
FIG. 1. Sketch of flow configuration. corresponds to a value gf of about(1/30th of the rough-

ness height. Typically, the latter is assumed to be around 2.5
] ) ) times the grain size, leading @ =d/12, whereds is the

sults of the decoupled analysis are briefly discussed anfondimensional sediment diameter. Moreover, the origin of
compared with experimental results in Sec. IV. The effect ofihe vertical axis is set at the average bed level, which falls at
coupling is discussed in Sec. V through a comparison of thg, gistance ofl/6 below the top of the grains.
behavior of the three eigenvalues that characterize the A transformation of variables of the kind
coupled solution with the corresponding decoupled eigenval-
ues. Some brief conclusions follow. _Y-R(7)

_—D(§,T)’ E=x, 7=t (6)

Il. FORMULATION OF THE PROBLEM . ) o )

is then employed to map the domain shown in Fig. 1 into a
Let us consider uniform turbulent free-surface flow of anrectangular domain.

incompressible fluid of density in a wide straight channel. In order to close the above formulation a Boussinesq

In the following, variables with a star superscript are to beclosure is used, which reads

intended as dimensional variables. A generic quantity has

been made nondimensional using the friction velogjtand Tij = vr(Ui; + V). (7

the depthD* of the unperturbed uniform flow and the fluid

densityp. Moreover, we define the friction coefficie@t as-

suming that, for uniform flow condition, the friction velocity

The eddy viscosityy; has been evaluated by means of the
mixing length approach

u: and the depth-averaged velocity* are related to the VT:|2U,y | =DL(7), (8)
slopeS and the Froude number Fr by the following law:
* 12 where the algebraic function
b s~ .
U TR @) L(n) = x(z+ 7) (1= )2 (©)
The unsteady Reynolds equations in dimensionless form afgroduces, for a uniform flow, a parabolic profile of eddy
written as viscosity and, consequently, the logarithmic |&é&y. Accord-
. : _ ingly to the above considerations, the quantityin (9) has
Ut UL VU + Pum 1= To ™ Ty =0, (2a) been set taly/12.
1 _ _ As far as bed dynamics is concerned, only bedload trans-
Vit UVt Wy Py + S5 Ty = Tyyy =0, (2b) port is considered and the perturbation approach adopted by
Uy +V,y =0, (20 Colombinf to study dune and antidune formation in the de-

coupled framework is followed. It is convenient at this point
whereU=(U,V) is the local velocity vector averaged over to briefly summarize some of the salient concepts of this
turbulence,P is the mean pressure, afc={T;} is the 2D  approach. For a more complete analysis the reader may refer
Reynolds stress tensor. to Ref. 8.

Figure 1 shows a sketch of the flow domain referred toa In the work of Bagnold?® which can be considered as
Cartesian coordinate systefw,y). The flow is bounded by the first mechanistic approach to sediment transport, “the rate
the curvesy=R(x,t) andy=R(x,t)+D(x,t) in a way thatD of work done in pushing the bedload along the bed against
represents the local flow depth. The kinematic and dynamiérictional resistance” was related to “the power in the flow
boundary conditions to be associated w(i@ then read available to move the sediment,” leading to a relationship

“R.+U.=0. U.=0 3) between the sediment dischz_a_rgg per unifc widt_h and_the b_ed

thEnT t shear stress. Most of the equilibrium relationship available in
at the lower boundary, while at the upper boundary we hav¢he literature for estimating the bedload transport intensity
_ _ _ are based on the same approach, which can be essentially
~(R*¥D)#Un=0, 7=0, 7=0, @) reduced to a force balance over a thin layer, often referred to
whereU; and U, are the tangential and normal componentsas bedload or saltation layer, which bounds the region of
of velocity at the boundaries. In analogy, and 7, are the  fluid where sediments move by small jumps.
tangential and normal components of the stress acting on The clear fluid flowing above this bedload layer is prac-
each boundary. Furthermore, we set the lower boundary dfcally unaffected by the sediment motion, which is felt by
the flow domain at a predefined reference level, which conthe fluid itself only as a slight change of roughness. There-
ventionally represents the zero-velocity plane for the logafore, the shear stress acting on the top of the bedload layer
rithmic profile. If we denote bk the nondimensional rough- can be assumed to be identical to that occurring, at the same
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height above the reference level, in a uniform flow over a  Results of the linear stability theory are only moderately
fixed bed characterized by the same roughness. affected by the choice of a particular form of the functibn
The thickness of the saltation layer scales with the seditn the following, the Meyer—Peter and Muller formula
ment grain sizeds, e.g., is of the order of1/100th to ® = 8(6, - 632 (16)
(1/1000th of the flow depth, and depends on the flow stage TUb e
in terms of some power of the difference between the shedras been employed, wheégis the critical Shields stress for
stress acting on the top of the bedload laygand the criti-  incipient motion. When only bedload transport is considered,
cal stress for sediment moticr. We can then write as in the present case, gravity favors the downhill motion of
m the grains and conversely opposes to the uphill motion. Fol-
hy = [1 +Ab<u> }ds, To = Te, (10) lowing Fredsgé, this effect has been accounted for setting
Tc the critical Shields stresg. to

where the value of the constaAt, and of the exponentn 0c= Ocn— n(S—B,), (17)

have been set equal to 1.13 and to 0.57, respectively, on the i
basis of a regression on experimental data. where 6, has been set equal to the conventional value for

Due to the smallness df,, the difference in modulus horizontal bed0.047 andu is a dimensionless constant that

between the shear stregsand the shear stress evaluated atreads
the reference levet; is quite small, so that apparently this _ ben
difference can be ignored. However, the phase of the bed #~ tan'¥ (18)

shear stress with respect to bed elevation, which plays a fun-

damental role in the stability process, varies quite rapidly inhaving denoted by# the friction angle. An appropriate esti-
the neighborhood of the reference level and the resultingnate foru ranges about 0.1.

stability picture is significantly altered by this seemingly mi-

nor simplification? Therefore, in the following we will keep ||1. LINEARIZATION
distinct the reference levé®, at which the boundary condi- ) ) o
tion of vanishing velocity is set, from leve, at which the The problem formulated in the preceding section is then

shear stress is evaluated in order to determine bed evolutiofio/ved in terms of normal modes, so that a generic perturbed
It is assumed that the two levels are kept at the same distan¥@'iableF can be written as

h, as the bed evolves in time._ _ _ F(& n,t) = Fo(n) + eF1(&, 1), (199
Based on the above considerations, the Exner equation
of sediment mass conservation takes the form Fi(&nt) =f(pexdia(é- Q)] +c.c., (19b)
Bi=~Qu®P (11)  wheree is a small parameter is the wave number of the
where perturbation, and) the complex growth rate.
By substituting the above expansion into the governing
(g equations, boundary conditions, and turbulence closure, we
Qo:m (12) are left with a sequence of problems at various orders of
P approximation ine. In the following, we avoid the details of
and the above procedure and simply present its main results.
x [ . x
Q _ d,v(s—1)gd, (13) A. O(€°
D* U*

At leading order, integration of the system of differential

is the ratio between the scale of sediment discharge and treguations
flow rate; dg, s, and\, are diameter, relative density, and Ty=-1, T,=-S1 (209
porosity of the sediment, respectively, whilgis gravita-
tional acceleration.

Finally, in order to close the problem, a suitable relation-
ship between the dimensionless sediment discharge per unithere primes stand fa#/ 9» and
width

To= VTOU61 Tho=—Po, (20b)

vro=k(m + 7)(1 - 7) (21)
P = ﬁ (14)  together with the boundary conditions
(s~ Dod, Ugl,20=0, (229
and the flow must be introduced. Several formulations for
the function®d are available in the literature, all exhibiting a Tiol=1=0,  Trol,=1=0, (22b)

gesenhdence by sokme power t?f Zf?deensionless form of thﬁeld the classic rough logarithmic law for the velocity and
ed shear stress, known as the Shields stpss the hydrostatic distribution for pressure

*

— Tb 1 nt
= 3 15 N A
s Dod o UO_Kln( 7 ) (23
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Po=S(1- 7). (23b) 0
Integrating once more the vertical profile of velocity, we D= iaUgn (31)
obtain UAn+iaSty-2a%1-n)n-1
St+ian-2ia(l-
U* _l_1[|n<1+77r) 1:| (24) an a( 77)
u C « m ’ and
: - . 0
which relates the friction coefficier@ to 7. U
At the leading order, the Exner’s equati@til) does not R= lalo (32)
produce any additional information, since under uniform UpA+iaS™ - 201~ 7)
flow conditions the bed neither experiences aggradation nor i

degradation. It may just be worth mentioning the fact that _ ) o
In the above relationships, the quanti# is equal to

ke dg _dg ~i(aUp=Q).
Ro=m=3,=17, Bo~Ro=T,+hs. (25 Linearizing the boundary conditior(8) and (4) we ob-
tain, at the reference levéh=0)
B. O(€Y) u=0, v=-i0r, (33
We introduce two new variables to represent the ampliwhile at the free surfacén=1)
tudes of the perturbe_zd tangential streskeand the perturbed v=i(aUg- Q)(r+d), T,=0, T,=0. (34)
normal stresse3,, with respect to a surface at constapt
which read The solution of the linear differential syste(®8) can be
written in the form
T, = VTO(u' —u5d+iau+ﬂug,>, (269 Z=CZ1+CZy+dZy+rZ,. (35)
VY10

ThusZ is expressed as a linear combination of two linearly

independent solutions of the homogeneous initial value prob-
lem, which satisfy the boundary conditions at the lower

boundary

Tn:—p—ZiavTou, (26b)

whereu,v are the longitudinal and vertical components of
the perturbed velocity, whil@ andd are the amplitudes of LZ,,=0 (36)

the pressure and flow depth perturbation, respectively. Fi- . ] ] .
nally, the mixing length formulatiori8) allows us to write plus particular solutions of the nonhomogeneous differential

the ratiov/ vy as follows: systems
’ L£Z4=D, LZ,=R (37)
R . 2
v Uy (27) again satisfying the lower boundary conditions.

Using the splitting(35) on the boundary conditions at

After some manipulation a system of ordinary differential the free surfac€34), a set of three algebraic equations in the
equations is eventually obtained that can be written in thdour unknownscy, ¢,, d, andr is found, which, by replacing

general form r with b, can be written as
L£Z=dD+rR (28) Q1 A2 A3 Qg 0
Q1 A A3 Ay | X=|0], (383
whered is treated as a parameter to be determined raisd Az Az Agz Ay 0

the amplitude of the perturbation of the reference level. Th%v

vectorZ of the unknowns is here

X =(cy,C5,d,b)T. (38b)
Z=(uo,T,T)". (29) - _ _ _
In obtaining(38), the two linearly independent solutions
The linear differential operatof in (28) reads of the homogeneous proble(86) have been chosen so that
the unknowng; andc, are the values of the perturbation of
didy i/2 -1(2vy) O the ta}ngential and normgl stress at the reference level, re-
i didy 0 0 spectively. Furthermord is the amplitude of the perturba-
L= 5 . _ , (30)  tion of the surfacds, which is identical ta since bothB and
A-da‘vry —Uy  didy i R are proportional to the uniform sediment grain diameter
0 A 1e% didy and thus kept at a constant distance from one another as the
bed evolves.
while the vectorD andR are, respectively, Linearization of the sediment continuity equation yields
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Qb-Qa¢p=0, (39

where the amplitudep of the perturbation of the bedload
discharged defined by(16) can be expanded as if85)
leading to

@
P = (P1C1 + PpoCyr+ Ppyd + Ppb) = & - X, (40) _§
where q=> UNSTABLE
s oD 36, b Ib -g (Roll-waves)
"51:[_} {__b*__c] (41 £
acy o Ldbydc,  96.dc, 1o

and the suffix 0 stands for “evaluated at base condition.”
Analogous relationships hold fab,, ¢4, and ¢,,.
Expanding also the perturbed shear strégs we then

STABLE (Uniform flow)

readily obtain 0.1 0.2 0.3 0.4
A wavenumber
& =A| Tint, Tz, Tiod + 70y Tror — la =) (42)
r0 FIG. 2. Roll-wave instability: comparison with the experiments of Brock

(Ref. 16: O, finite amplitude roll waves( ], small amplitude roll waves.
whereTy1, T, Tivgs aNd Ty, are evaluated afy, and P P

b
A= {_} bro- (43 If we now setb=0 and drop the last line of47) (the
aab 0 1, - H H
Exner’s equationwe obtain the eigensystem
Making use of(40) and(42), we can rewritg39) obtain-

ing the dispersion relationship G Gz A3) (G 0
ab X =0 44 Q1 A a3 | |C2[=|0], (48)
Qoah X =0. “4 a3 Az Aagz d 0

Equation(44) provides the fourth equation to be associ-
ated with(38) so that a linear %X 4 algebraic homogeneous
system is eventually obtained in the form

the solution of which provides the eigenvalues associated
with the stability of a uniform flow over a flat, unerodible
bed. Two eigenvalues are obtained, one associated to slower
A(Q)-X=0. (450  waves, always characterized by a negative growth rate, the
other to faster waves that become unstable at high Froude
numbers leading to roll-wave formation.

In Fig. 2 the stability diagram of the unstable eigenvalue

detA =0. (46) is shown. In this and in all the subsequent stability plots, the

) ) ] ) complex quantity(Q) has been rescaled with the uniform

_ The choice of dn‘ferent. flow model_e.e., rotathnal VS depth-averaged flow velocity* and its imaginary part has
irrotational fIOV\)_or the choice of coupling/decoupling _fI(_)w been multiplied by the wave numbetto produce the growth
and bed dynamics, only affect the values of the coefficient$aie \which is displayed in shades of gray, lighter colors cor-
of the matrix A, their dependence oft and the physical regnonding to higher values. Moreover, the margiaahish-
meaning of the constawt andc,. The mathematical asset of ing growth raté curve is represented by a solid black line,

the problem remains unchanged and ultimately the eigengpiie maximum growth rate is represented by a dashed black
value problem described Ky6) has to be solved. line.

This mode of instability is characterized by high wave
celerities[O(1)], large Froude number&r>2) and small

The above system admits a nontrivial solution for the
particular values of) that satisfy the eigenrelation

IV. DISCUSSION OF RESULTS: DECOUPLED FLOW wave numbers. In the simulation, the value of the nondimen-
AND BED EIGENVALUES sional roughness has been set equal to 0.0015, corresponding
to a value of the friction coefficien©=0.05.
A more detailed analysis of the eigenvalue problei® The experimental data of Brotkare also reported in

may help to enlighten the role of flow unsteadiness in thesjg. 2. All the measured points follow in the unstable region
present problem and ultimately investigate the significancenq are characterized by wave numbers falling within a nar-
and well posedness of the hypothesis of decoupling flow angyy hand(0< o< 0.06. The wave number of maximum am-

bed dynamics. plification selected by the normal mode analysis seems to
Let us write(45) as follows: overestimate the experimental values. This discrepancy may
Ay Ay Az A c 0 l?e asc_ribed tq the linearity of the present analysis, §ince non-
B Br Ao @ c 0 linear interactions have been shown to produce an increase in
21 “22 923 “24 | [ 2 ) - (47)  the wavelengths of roll waves as they reach finite
a3 Az A3 Ay d 0 amplitudes:” The wave numbers of small amplitude roll
Ay A 3 8 b 0 waves in the initial stage of developmeshown as squares
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the problem(48) is zero or, in other words, if perturbations
W of the flow do exist that are both neutral and stationary. If
PROPAGATION this is the case, a resonant problem is obtained since the
e system(49) is indeterminate producing an infinite response
\ of the flow to bed perturbations and thus an infinite growth
rate. This situation is exactly recovered only for the case of
inviscid (irrotationa)) flow. However, when both celerity and
growth rate of the slowest flow eigenvalue are small, the
! decoupled solution is strongly distorted by the quasiresonant
DOWNSTREAM behavior of the system, as it can be clearly seen in Fig. 3,
PROPAGATION ipe - . .
where the artificial resonance introduced by the quasisteady
hypothesis produces the dark region surrounding the dashed
line of vanishing celerity.
We point out that the complete flow-bed systédv)

Froude number

05 1.0 1.5 does not exhibit any kind of resonance. Indeed, this is physi-
wavenumber cally sound since no external forcing is present in this prob-
FIG. 3. Dune and antidune instability: comparison with the experiments oljem that could pOSSIny lead to resonance if some natural

Guy, Simons, and RichardsdRef. 21. response (_)f the system were excited. The ext_e_rnal forcing is
artificially introduced when steady flow conditions are en-
forced according to the decoupling hypothesis.

in Fig. 2) are closer to the line of maximum amplification

than those of mature roll wavéshown as circles in the same

figure). V. DISCUSSION OF RESULTS: COUPLED FLOW AND
Finally, the marginal curve and consequently the line ofBED EIGENVALUES

maximum amplification predicted by the present theory are )

found to be closer to the experimental points when compared 1€ procedure followed in the present work to solve the

to the results of existing shallow-water linear theofieg? different e|genvalye problems whlch arise as pa.rtlcular cases

Therefore, the use of a more refined flow model is shown t&f the complete eigensyste@5) is that described in Sec. |II.

improve the description of the instability process leading to [N particular, since the differential operatGrparametri-
roll-wave formation. cally depends on the complex growth r&leeach coefficient

Bed-flow decoupling is obtained dropping time deriva- of the arrayA is in general a function of) and eventually

tives in the flow systeni28) so that the coefficients of the three eigenvalues are found for any fixed value of the param-
first three rows 0f47) are no longer functions d®. In this eters. The search for the eigenvalues has been done numeri-

case the eigenrelationshi@6) becomes linear and thenly) cally by means of a minimization of the determinant of the

eigenvalue can be obtained solving first the linear algebrai@ ™A, With an a posteriori check that an absolute minimum
was actually found. The eigenvalues obtained by means of

system . e
the decoupled flow and bed solutions were set as initial val-
A1 A2 A3 C1 Qa4 ues of the above search procedure.
Q1 @y Az || Cr|=—|am |b, (49) In the right column of Fig. 4, the three eigenvalues of the
d coupled solution are shown, while the corresponding eigen-
d31 Az az3 Ay

values of the decoupled solutions are reported in the left

which provides the forced response of the flow to a bectolumn. It may help the reader to recall at this point that the
perturbation of amplitudé, and second substituting the so- “flow-fastest” () and “flow-slowest’(c) eigenvalues follow
lution into (44) Most of the existing linear Stabl'lty theories from an ana|ysis of flow |nstab|||ty over a flat fixed bed,
on bedform formation are based on the latter procedureyhile the “bed” eigenvalude) follows from the decoupled
which dates back to the original work of Kennédynd is analysis of bed instability.
often referred to as the “quasisteady hypothesis.” This hy- A comparison between the two lowermost rows of pic-
pothesis relies on the fact tbat the ratio of the characteristig;res in Figs. 4c)—4(f) shows that the flow-slowest eigen-
bed and flow time scales, i.®), is typically very smalle.g., value and the bed eigenvalue are clearly affected by the de-
of the order 10°). coupling procedure. However, a distinction between flow and

The decoupled case has been extensively discussed loed eigenvalues is no longer meaningful in the coupled case
Colombinf and therefore only the comparison of the modelsince they are just different eigenvalues of the unique flow-
results with the experimental measurements of Guy, Simondied system. In particular, across the line describing steady
and Richardsdft is reported in Fig. 3 for completeness. The flow perturbations the flow-sloweéd) and the bedf) eigen-
dashed white curves in the plot represent the lines of vanishralues switch role, so that the unstable region associated
ing celerity. with antidunes appears now in pl@). It is important to note

The above formulation enlightens the real nature of thehat the above mentioned deep valley associated to pseu-
decoupling hypothesis: the coefficients of the two algebraidoresonance disappears in the complete coupled solution,
systems(48) and (49) coincide if one of the eigenvalues of thus confirming that this effect is artificially introduced in the
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FIG. 4. Stability plot: comparison of decoupléléft column and coupledright column solutions. The solid white curves are lines of equal celerity. The
dashed white lines appearing in plgth and(f) represent steady flow disturbances.

analysis when the hypothesis of decoupling bed and floworcing excites some natural frequency of the system. The
dynamics is enforced. system at hand is a free oscillating system; it is the quasi-
In the framework of potential flow analyses, the reso-steady hypothesis that introduces an external forcing since
nance between bed and flow waves of the same celerity haseady flow disturbances resonate with thémost steady
been often invoked in the past as a possible instabilityped “forcing” configuration. When a coupled analysis is per-
mechanismt®?? Therefore, it may be worth to stress once formed, independently from the flow model adopted, reso-
more that a true resonance is obtained only if an externatance in its commonly accepted meaning disappears so it can
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be misleading to talk about the existence of a bed-wave-
water-surface-wave resonance mechanism of instality. -
Indeed, in their potential flow coupled analysis, Coleman g}g
and Fentof’ found instability for a narrow band of wave o
numbers falling in a neighborhood of the line describing 3 e
steady flow perturbation. On the contrary, in the present ro- E 0008
tational theory, the uniform flow is found to be stable in that (a) o 15 0000
region, in agreement with the experimental observations that '3
the formation of dune and antidune occurs in subcritical and w 1]
supercritical regimes, respectively, while a flat bed is ob- ’
served for Fr=1.123
Regardless the resonance problem, the marginal curves 0.5
for dunes and antidunes appear to be practically unaffected T T
by the coupling, thus suggesting that the dynamics of dune 0.5 1.0 15
and antidune can be safely investigated in the simpler frame- wavenumber

work of the decoupled theory, at least for<.

As the Froude number increases above this threshold, in
fact, also disturbances associated to the first eigenvalue be-
come unstabléFig. 4(b)], leading to the appearance of fast
sediment waves that propagate downstream associated with
the formation of roll waves. The existence of this mode of
instability has been firstly discovered by Needﬁ%tmsing a (b)
coupled analysis based on a depth-averaged flow model. Due
to the limitations of the shallow-water approach to small
wave numbers, Needhafrwvas unable to extend its analysis
to cover also the case of dune and antidune formation, the
characteristic wavelength of these bedforms scaling with the 05
uniform flow depth. On the other hand, all the analyses based | ,
on the quasisteady approach clearly conceal the onset of 05 10 15
sediment waves associated to the roll-wave formation.
Present results confirm the appearance of fast-moving sedi-
ment waves at high Froude numbers, which are shown t5IG_. 5. Co‘ntours_ _of the ratio of bed and free-;urface amplitudes inside the
coexist with slow-moving bedforms of the antidune kind in "€9'ons of instability(a roll-wave mode (b) antidune mode.
the same framework of analysis.

It may be useful at this point to briefly analyze the dif- S ) ] ]
ferences between these two modes of instability. In the folP€te, with similar growth rates, with antidunes, which are
lowing, we will refer to them as “antidune” and “roll-wave” much shorter, slcleer,.and characterized by Iarger bed. am.pll-
modes for clarity. Antidune mode, as predicted by the preserf/des. Although in a linear context no further information is
analysis, is characterized by a small negative celgrgy ~ available on the competition of these two modes, the lack of
stream propagationwith a wavelength of maximum ampli- €xperimental evidence of roll-wave sediment waves may be
fication that ranges from 5 to 20 times the averaged flowexPlained through the nonlinear competition with the anti-
depth as the Froude number is increased. Roll-wave modéin€ mode, which can possibly prevail on the other. More-
propagates downstream with 1) celerity and is charac- OVer. the present analysis suggests that if it is the roll-wave
terized by wavelengths larger than 30 times the uniform flownstability that eventually prevails, it may be easily confused
depth. Regarding the phase shift between the free surface a¥dth flat-bed conditions, since the amplitude of bed oscilla-
the bed oscillations, both antidunes and roll waves are agions is small and their wavelength is large compared with
proximately in phase, with a positive lag for antidunes, co-antidunes. _ _
herently with their upstream migration, and a negative lag A fully or weakly nonlinear analysis of the process of
for roll waves, corresponding to downstream migration. ~ Instability that leads to the formation of roll waves and anti-

Another distinctive feature of the two modes regard free-dunes at high Froude numbers is required to shed some light
surface and bed oscillation amplitudes. As shown in Fig. 50N their reciprocal interactions.
roll-wave disturbances are characterized by small ratio of
bed over free-surche ampliFutﬂe.g.,Q(l(Tz)]. On the con-  \,, cONCLUSIONS
trary, the same ratio for antidunes is of the order 1. Results
for roll-wave amplitude and phase lag are in qualitative  The present contribution deals with the linear stability of
agreement with the analysis of Needh¥m. a uniform flow over an erodible bed in an infinitely wide

In summary, roll waves are therefore very long sedimenbpen channel and, in particular, with the effect on the results
waves, moving very fast and with very small bed amplitudesof coupling or decoupling flow and bed dynamics.
compared to the free-surface oscillations. They linearly com-  The main conclusions can be summarized as follows:

Froude number

wavenumber
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