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Three-dimensional river bed forms
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Genova, via Montallegro 1, 16145 Genova, Italy

(Received 4 October 2011; revised 4 October 2011; accepted 15 December 2011;
first published online 7 February 2012)

The linear stability of a uniform flow in an infinitely wide erodible channel is
investigated with respect to disturbances of the bed that are periodic in both the
transverse and the longitudinal directions. A rotational flow and sediment transport
model, originally developed to study the formation of two-dimensional dunes and
antidunes, is straightforwardly extended to cover variations in the lateral direction.
Sediment is assumed to be transported as bed load, disregarding the role of suspension.
Following a standard linearization procedure, a dispersion relationship is obtained
that expresses the growth rate and the celerity of the sand wave as a function of
the streamwise and spanwise wavenumbers and of the relevant flow and sediment
parameters. Regions of instabilities in the space of the parameters are found, which
can be associated with bed forms of different kinds, spanning from dunes and
antidunes to alternate bars. Therefore, the present theory allows for a unified view
of the formation of two- and three-dimensional bed forms in rivers in terms of the
relevant flow and sediment parameters.
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1. Introduction
River bed forms are commonly classified in terms of their characteristic longitudinal

scales: the sediment grain size for ripples; the flow depth for dunes and antidunes;
the channel width for bars. The distinction of bed patterns into micro-, meso- and
macro-forms dates back to the first geomorphological observations (see Allen 1982 for
a comprehensive review) and guided both experimental and theoretical researches in
this field in the last century. Thus notwithstanding, it is clear that the formation of
river patterns is driven by the same basic mechanism so that such a neat separation
among different bed forms should not always be expected to hold when the relevant
flow and sediment parameters are varied continuously. Moreover, though laboratory
experiments are carefully designed to isolate a single type of bed form from the
others, bed patterns often arise that are not easily classified in terms of the above
schematic categories. The situation is even more complex when three-dimensionality
is considered, since several transverse modes can be identified, depending on the
integer ratio between the channel width and (half) the transverse wavelength. A typical
example involves alternate and central bars, which are associated with the first and the
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second transverse modes, respectively. Note, however, that a similar behaviour can be
expected also for three-dimensional dunes, the first transverse mode of which being
associated with a diagonal pattern that can be easily confused with alternate bars.

For these reasons, predicting which particular bed pattern will arise, for any given
set of the relevant flow and sediment parameters, among the variety of possible
configurations, is indeed a challenging task. In this regard, linear analyses are known
to provide a deep insight into the mechanism that drives bed form instability, being
able to identify regions in the space of the parameters where bed forms are expected
to form and to show how the onset of the instability is controlled by some relevant
parameters (e.g. the width-to-depth ratio for bars, the Froude number for dunes and
antidunes). Moreover, the role of some parameters in inducing a transition between
different types of bed forms can be made evident. Despite this fact, the formation
of meso- (e.g. dunes and antidunes) and macro-forms (e.g. bars) has been seldom
investigated in the past in the same framework of linear instability.

Indeed, as a simple glance at the linearized form of the Exner equations reveals,
instability is the result of a subtle balance between the effect of the bed shear
stress, which may be either destabilizing or stabilizing depending on its lag with
respect to the bed profile, and the stabilizing effect of gravity, which acts in both
the streamwise and spanwise directions. Several effects can be added to this basic
mechanism (e.g. suspension, sorting, sediment inertia), which, however, stands out
for its simplicity and effectiveness in describing flow–bed interactions. Therefore, in
the following, attention is focused on the simple case of a well-sorted sediment
mixture, characterized by its median diameter and moving as bedload only. Moreover,
hydraulically rough conditions are assumed for the turbulent flow, so that ripple
formation (Colombini & Stocchino 2011) is excluded by the present analysis, and
the quasisteady approximation is adopted, whereby time derivatives are neglected in
flow equations. It is clear that, under these conditions, the ability of the flow model to
predict the ‘correct’ lag becomes crucial.

In the decade that followed the work of Kennedy (1963), the formation of two- and
three-dimensional bed forms was extensively investigated by means of linear stability
analyses. On the basis of the flow model used, these works were grouped by Reynolds
(1976) into three main categories: potential-flow, shallow-water (or ‘hydraulic’) and
rotational solutions. Although these analyses were successful in describing some of the
features that characterize the formation of bed forms, a comprehensive view of the
process was lacking, mainly due to the intrinsic limitation of the flow models adopted.
On one hand, potential-flow models provide no bed shear stress, so that a lag must
be introduced to give rise to instability, either artificially or by invoking the presence
of suspension, which is, however, negligible at low values of the Shields parameter.
On the other hand, shallow-water models, which account for friction, are limited in
application to processes which occur over streamwise distances many times greater
than the flow depth. As a result, they can successfully describe alternate bar formation
(Callander 1969; Blondeaux & Seminara 1985; Colombini, Seminara & Tubino 1987;
Tubino, Repetto & Zolezzi 1999; Hall 2006) but cannot handle the dynamics of
dunes and antidunes, the wavelength of which scales with flow depth, equally well.
In particular, long two-dimensional waves are found to be unstable only for Froude
numbers larger than 2, a condition that corresponds to the formation of roll waves over
a fixed plane bed (Gradowczyk 1968). Shallow-water models have also been used to
study the formation of tidal sand banks in shallow seas (Idier & Astruc 2003; Roos
et al. 2004).
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Rotational flow models can, in principle, encompass the above limitations, thus
providing a more accurate description of the bed shear stress. Making use of a simple
rotational flow model, based on a constant eddy viscosity and on a slip-velocity
approach, Engelund (1970) and Fredsøe (1974b) were able to provide the first stability
theories for dune and antidune formation. With the same flow model, they also
investigated the development of three-dimensional ‘oblique’ dunes (Engelund 1974;
Fredsøe 1974a). However, in their analyses, the transition from lower- to upper-regime
bed forms is shown to be controlled by a delicate balance between suspended load and
bedload (Engelund & Fredsøe 1974). In the limiting case of negligible bedload only
antidunes form, whereas with negligible suspended load dunes form, but no stabilizing
mechanism is present to damp antidune instability in the short-wavelength range, the
effect of gravity being relevant only for low values of the Shields parameter. Since
the transition from dunes to antidunes is likely to be controlled by the Froude number
alone, a consistent picture of dune and antidune formation was still lacking. More
recently, Colombini (2004) showed that such a picture is indeed contained in the
simple framework of instability considered, provided the bedload layer thickness is
accounted for in the analysis. The latter theory is here extended to the third dimension,
aiming at the investigation of the effects associated with three-dimensionality in the
formation of bed forms. In this regard, the analyses of Besio, Blondeaux & Vittori
(2006) and Blondeaux & Vittori (2011), who adopted a three-dimensional model to
study the formation of tidal sand waves and sand banks in shallow seas and of dunes
and bars in tidal channels, are worth noting.

Finally, it must be noted that several investigations have recently been conducted on
the formation of two- and three-dimensional bed forms under laminar flow conditions.
Although laminar-flow analogues of turbulent-flow morphologies cannot and should
not be expected to satisfy dynamic similarity in terms of all relevant dimensionless
parameters (Lajeunesse et al. 2010), yet similar configurations of the bed morphology
are often observed, irrespective of the turbulent or laminar character of the flow, thus
suggesting that they may have a common physical ground. In particular, we would
like to mention the recent work of Devauchelle et al. (2010), who investigated the
role of three-dimensionality in the formation of laminar-flow bed forms and described
a ripple–bar transition which presents strong similarities with the dune–bar transition
described in the following.

2. Experimental observations
Before entering into the details of the present theoretical analysis, it may be useful

to discuss experimental observations on two- and three-dimensional bed forms in order
to enlighten their main morphological features, namely the streamwise and spanwise
characteristic wavenumbers, and the role played by the relevant flow and sediment
parameters.

To this end, the collection of flume experiments concerning dunes and antidunes
of Guy, Simons & Richardson (1966), denoted in the following as GSR, has been
integrated with a data set, denoted as JSM, composed by the sand experimental runs
extracted from Sukegawa (1971), Muramoto & Fujita (1978) and Jaeggi (1984). These
runs have been selected among others since a clear distinction was made between
alternate and diagonal bars, the latter being shorter bars that develop for low values
of the width-to-depth ratio, when the Froude number is close to unity. Later on, this
distinction will be discussed in more detail, since we argue that diagonal bars should
be considered as the first transverse mode of instability of three-dimensional dunes.
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Following a well-established procedure, results from both data sets, which have
been collected at the end of the experiments and are therefore relative to mature
bed forms, have been processed to eliminate the effects of form resistance and
sidewalls, by searching for the equivalent uniform flow that exerts the same shear
stress on the bed and is characterized by the same depth-averaged velocity U∗ (a star
superscript identifies dimensional variables). A non-dimensional Chézy coefficient C
is then introduced that relates U∗ to the friction velocity of the bed region u∗b and
to the corresponding hydraulic radius r∗b through the Keulegan equation (ASCE, Task
Committee 1963) valid for the rough regime:

C = U∗

u∗b
= 1
κ

ln
(

11.09r∗b
2.5d∗

)
, (2.1)

where κ is the Von Kármán constant, taken as 0.4, and the roughness height has
been set equal to 2.5 times the sediment diameter d∗. The above procedure allows
for the implicit determination of the conductance coefficient C and, in turn, of u∗b
and r∗b , the latter being equivalent to the uniform flow depth D∗ in the infinitely wide
configuration considered herein.

Among the relevant flow and sediment parameters, we recall the Froude number Fr ,
the Shields parameter θ , the non-dimensional grain size ds and the width-to-depth ratio
β, here defined with the half-width of the channel W∗h as in previous studies on bar
formation:

Fr = U∗√
gD∗

, θ = u∗2b

(s− 1)gd∗
, ds = d∗

D∗
, β = W∗h

D∗
, (2.2)

where g is the gravitational acceleration and s is the relative density of the sediment,
taken as 2.65. It is worth noting that, by virtue of (2.1), C can be considered as an
alias of ds and, accordingly, θ,Fr and C are interrelated:

θ = Fr2

(s− 1)dsC2
' 0.14Fr2 eκC

C2
. (2.3)

Moreover, for a uniform flow, the bed slope S is related to C and Fr by the well-
known relationship

S= Fr2

C2
. (2.4)

In figure 1(a), the experimental runs of the JSM and GSR data sets are presented in
the plane (C, θ/θC), where θC is the critical value for incipient motion of the sediment.
Even though the two data sets do not completely overlap (there is a small gap around
C = 15 or ds = 0.01), for relatively low values of the Shields parameter a clear
tendency is shown for dunes to be replaced by bars as the conductance coefficient
is lowered (and so for either shallower flows or coarser sediments). On the contrary,
antidune runs are less sensitive to variation in C, being consistently present in both
data sets down to a value of C of ∼10. The solid line in the plot is given by (2.3) with
Fr = 1 and marks the boundary between the sub- and supercritical regimes for a long
wave. It should be noted that the region bounded by this curve and the no-transport
threshold, which represents subcritical flows with active transport, tends to contract
as C is decreased. Moreover, dunes and antidunes are shown to belong to the sub-
and supercritical regimes, respectively, indicating that the Froude number controls the
onset of both instabilities. On the contrary, bars are shown to be quite insensitive to
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FIGURE 1. Experiments from JSM and GSR data sets: (a) the Shields parameter θ/θC versus
the conductance coefficient C; the longitudinal (b) and transverse (c) wavenumbers kx and kz
versus C; (d) Jaeggi’s (1984) criterion for alternate bar formation.

the value of the Froude number, thus suggesting that another parameter (namely the
width-to-depth ratio) should be considered as the relevant one for bar formation.

Bars can be better distinguished into alternate and diagonal in terms of the
longitudinal and transverse wavenumbers, defined as

kx = 2πD∗

L∗x
, kz = 2πD∗

L∗z
= 2πD∗

4W∗h
= π

2β
, (2.5)

where L∗x and L∗z are the wavelengths in the streamwise and spanwise directions,
respectively. Note that alternate and diagonal bars are both characterized by a
transverse wavelength that is twice the channel width, so that kz is inversely
proportional to the width-to-depth ratio β.

In terms of the longitudinal wavenumber kx, presented in figure 1(b), diagonal bars
are shown to be much shorter than alternate bars, their characteristic wavenumber
(∼0.2) being about one order of magnitude larger than the one for alternate bars
(∼0.02), while still smaller than the one for dunes and antidunes (∼1). Diagonal
bars are also consistently shorter than alternate bars in the lateral direction, as shown
in figure 1(c), being characterized by larger transverse wavenumbers kz (and so by
smaller width-to-depth ratios β) than alternate bars.

The distinction between diagonal and alternate bars was firstly proposed by Einstein
& Shen (1964), who observed that diagonal bars are: “a special case of the diagonal
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dune pattern, which occurs when the Froude number of the flow is nearly unity,
at certain depth-to-width ratios. This pattern probably results from the water surface
disturbance, since the diagonal bars oscillated transversely with the wave velocity of
water depth and the entire bed pattern travels rapidly downstream with the flow”.

In his experimental work, Jaeggi (1984) remarked that diagonal bars did not satisfy
his proposed criterion for alternate bar formation, namely

2.93 log
(
θ

θC
2β
)

>
θ

θC
+ 3.13Z0.15

B , (2.6)

where ZB is the ratio between the channel width and the grain diameter. This is
shown in figure 1(d), which is a remake of the original figure 3 of Jaeggi (1984).
The solid line in the plot represents the threshold that bounds the alternate bar region
as provided by (2.6). Enlightening the distinction between these two similar bed
morphologies, he also observed that: “a grouping of three-dimensional mesoforms, in
which the fronts of the mesoforms were diagonally aligned over the channel width,
was responsible for the appearance of this feature”. Note that, in the context of the
paper, the word ‘mesoform’ was used to distinguish bed forms scaling with flow depth
(i.e. dunes and antidunes) from those scaling with channel width (i.e. bars).

Therefore, experimental observations suggest that diagonal bars can be considered as
intermediate bed forms associated with the transition of dunes from two- to three-
dimensional configurations. Alternatively, diagonal bars can be thought of as the
results of the influence of the flow depth (and thus of the Froude number) on alternate
bars.

In the following, it will be shown that the present analysis satisfactorily accounts
for most of the experimental observations presented above, namely: (i) the transition
from two-dimensional dunes to alternate bars as the conductance coefficient is lowered
at low values of the Shields parameter; (ii) the coexistence of bars and antidunes
as the Shields parameter is raised at low values of the conductance coefficient; (iii)
the interpretation of diagonal bars as three-dimensional oblique dunes, distinct from
alternate bars.

3. Formulation of the problem
Let us consider a uniform turbulent free-surface flow in an infinitely wide channel.

The triplet composed by the fluid density ρ, the bed friction velocity u∗b and the flow
depth D∗ is used for non-dimensionalization.

In the sloping Cartesian coordinate system (x, y, z), sketched in figure 2, the
dimensionless steady Reynolds and continuity equations read

UU,x + VU,y +WU,z + P,x − SC2/Fr2 − Txx,x − Txy,y − Txz,z = 0, (3.1)

UV,x + VV,y +WV,z + P,y + C2/Fr2 − Txy,x − Tyy,y − Tyz,z = 0, (3.2)
UW,x + VW,y +WW,z + P,z − Txz,x − Tyz,y − Tzz,z = 0, (3.3)

U,x + V,y +W,z = 0, (3.4)

where U = (U,V,W) = {ui} is the velocity vector averaged over turbulence, P is the
pressure and T = {Tij} is the Reynolds stress tensor.

The flow domain is bounded by the curves y= R(x, z, t) and y= R(x, z, t)+D(x, z, t),
where D is the local flow depth. The lower boundary is set at the reference level R,
where the velocity is assumed to vanish. Having denoted as n, t and b the unit vectors
normal, tangential and binormal to each boundary, respectively, the kinematic and
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FIGURE 2. Sketch of a longitudinal section of the flow configuration. The z-axis extends out
of the page.

dynamic boundary conditions to be associated with (3.1)–(3.4) read

−R,t + U ·n= 0
U · t = 0
U · b= 0

 (y= R),

−(R+ D),t + U ·n= 0
n · T · t = 0
n · T ·n= 0
n · T · b= 0

 (y= R+ D). (3.5)

In order to close the above formulation, the Boussinesq closure is used, which reads

Tij = νT(ui,j + uj,i). (3.6)

The eddy viscosity νT is evaluated by means of the mixing length approach; hence,

νT = l2 [(ui,j + uj,i)ui,j]1/2, l= κ(y− R+ R0D)

(
D+ R− y

D

)1/2

. (3.7)

Equation (3.7) provides, for a uniform flow, a parabolic profile for the eddy viscosity
and, consequently, the logarithmic law of the wall, with R0 being the dimensionless
distance between the reference level and the average bed level.

The system (3.1)–(3.4) is complemented by the Exner equation imposing mass
conservation of sediments, which takes the dimensionless form

B,t − Q(ΦBx,x +ΦBz,z)= 0, Q= ds

(1− ps)
√
θ
, (3.8)

where B represents the interface between the clear fluid and the bed load layer and ps

is the sediment porosity.
The intensity of the sediment load is then related to the local value of the Shields

parameter through the classical Meyer-Peter & Müller (1948) formula

Φ = Am (θB − θC)
3/2, θB > θC, (3.9)

where θC is the critical Shields stress for incipient motion. The values of θC and
Am have been set equal to 0.0495 and 3.97, respectively, in accordance with the
corrections proposed by Wong & Parker (2006) in their revisitation of the work of
Meyer-Peter & Müller (1948). In addition, the effect of gravity in the longitudinal
direction is included by reducing the critical Shields stress by an amount proportional
to the local longitudinal slope:

θC = 0.0495− µx(S− R,x), (3.10)
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where µx is a dimensionless empirical constant set equal to 0.1 after Fredsøe (1974b).
Note that only a few data points fall below the dashed line that bounds the no-
transport region in figure 1(a), thus confirming the validity of this assumption for the
experimental data sets considered.

Furthermore, the local direction of the sediment load is associated with an averaged
direction of particles, which deviates from the direction of the local bed shear stress
under the action of gravity. Following Engelund (1981), this correction has been
assumed to be proportional to the local transverse slope and inversely proportional to
the square root of the local value of the Shields parameter:

(ΦBx, ΦBz)=ΦB(cos δ, sin δ), sin δ =
 TBxz√

T2
Bxy + T2

Bxz

− µz√
θB

R,z

 , (3.11)

where the coefficient µz has been set equal to 0.1. Note that a larger value (0.3) was
adopted in Colombini et al. (1987) for the study of bars. The present choice has
been found to slightly improve the comparison with experimental observations and can
be theoretically justified in terms of the increase of the gravity coefficient µz/

√
θB

associated with its evaluation at the top of the bedload layer (θB < θ ).
It must be stressed that the action of gravity has been modelled in a simplified way,

strictly valid only for small lateral and longitudinal slopes, a situation that, however,
pertains to the linear context analysed (Seminara, Solari & Parker 2002).

Indeed, the sediment transport model adopted is a straightforward extension to
the third dimension of the model first presented in Colombini (2004) for the study
of two-dimensional dunes and antidunes and slightly modified in subsequent works
(Colombini & Stocchino 2005, 2008).

It might be useful to recall here that, in this model, all the quantities relevant for
the sediment transport are evaluated at the interface B between the clear water and the
bedload layer. By definition, the distance between the surface B and the actual bed R
(where the flow velocity vanishes) is the thickness of the bedload layer L. The latter is
assumed equal to the averaged maximum saltation height of the sediment hs, which, in
turn, depends on the Shields parameter by an empirical relationship that reads

L= B− R= (1+ hs)ds + 0.2ds, hs = 1.42
[
θ(1− L)

θC
− 1
]0.64

. (3.12)

Note that a few modifications have been introduced in (3.12) with respect to the
analogous relationships of Colombini & Stocchino (2008). Firstly, the term 0.2ds,
which accounts for the distance between the top of the grains and the average bed
level for a three-dimensional packed set of spheres, was previously set equal to its
two-dimensional counterpart, namely ds/6. Secondly, the effective Shields stress used
for the computation of hs is set equal to θ(1 − L), which, for the base uniform flow,
corresponds to the Shields stress evaluated at the level B, consistently with the general
formulation of the sediment transport model. This ultimately results in an implicit
evaluation of the bedload layer thickness L through (3.12), which was not necessary in
the previous model.

Finally, the following transformation of variables:

η = y− R(ξ, ζ, τ )

D(ξ, ζ, τ )
, ξ = x, ζ = z, τ = t (3.13)

is employed to map the domain shown in figure 2 into a rectangular domain.
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4. Linear analysis
The problem is solved in terms of normal modes, expanding a generic quantity G as

G(ξ, η, τ )= G0(η)+ εG1(η) exp[ikx(ξ −Ωτ)] exp[ikzζ ] + c.c., (4.1)

where ε is a small parameter and Ω is the wave complex celerity.
Substituting the above expansion into the governing equations, boundary conditions

and turbulence closure and collecting terms of the same order of magnitude in ε, the
following differential problems arise. Note that, for convenience, the tangential (Tt),
binormal (Tb) and normal (Tn) components of the stress acting on surfaces at constant
η are introduced below, the latter including the role of pressure.

4.1. O(ε0)

At leading order, integration of the system of differential equations yields a linear
distribution of the shear stress and the classical velocity logarithmic law:

U0 = 1
κ

ln
(
η + R0

R0

)
(4.2)

and, by direct integration, the depth-averaged speed is obtained:

U0 = U∗

u∗f
= C = 1

κ

[
ln
(

1+ R0

R0

)
− 1
]
, (4.3)

which can be used to relate the coefficient C to R0. Consistently with (2.1), the
distance R0 of the reference plane from the average bed elevation is found to be
roughly equal to one-thirtieth of the non-dimensional roughness height or, alternatively,
to one-twelfth of the non-dimensional sediment diameter ds.

The eddy viscosity associated with the base flow reads

νT0 = l2
0U′0, l0 = κ(η + R0) (1− η)1/2, (4.4)

where primes stand for derivatives with respect to η.
The Exner equation (3.8) does not provide any additional information, since, under

uniform flow conditions, the bed experiences neither aggradation nor degradation. The
following relationships hold:

θ0 = C2

(s− 1)dsFr
2 , θB0 = θ0(1− L0), θC0 = 0.0495− µ C2

Fr2 , (4.5)

ΦB0 = 3.97 (θB0 − θC0)
3/2, Q= ds

(1− ps)
√
θ0
, (4.6)

where the bedload layer thickness L0 is obtained implicitly from (3.12):

L0 = B0 − R0 = (1+ hs0)ds + 0.2ds, hs0 = 1.42
[
θ0(1− L0)

θC0
− 1
]0.64

. (4.7)

Finally, the following quantities, to be used later on, are introduced:

Ax0 = 3
2
ΦB0θ0

θB0 − θC0
, Az0 = ΦB0θ0

θB0
, AL0 = 0.64hS0ds

θB0 − θC0
. (4.8)

4.2. O(ε1)

At the linear level, after some manipulations, a system of ordinary differential
equations for the unknown vector Z1 = (U1,V1,W1,Tt1,Tn1,Tb1)

T is eventually
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obtained and can be written in the general form

L Z1 = D1D1 + R1R1, (4.9)

where D1 and R1 represent the amplitudes of the perturbations of the flow depth and of
the bed, respectively.

The linear differential operator L in (4.9) reads

L =



d/dη ikx 0 −1/(2νT0) 0 0
ikx d/dη ikz 0 0 0
0 ikz d/dη 0 0 1/νT0

L41 −U′0 −3kxkzνT0 d/dη ikx 0
0 −ikxU0 0 ikx d/dη ikz

−3kxkzνT0 0 L63 0 ikz d/dη


, (4.10)

where

L41 =−ikxU0 − (4k2
x + k2

z )νT0, L63 =−ikxU0 − (k2
x + 4k2

z )νT0. (4.11)

The vectors D1 and R1 are, respectively,

D1 =



0
ikxU

′
0η

0
−ikxU0U′0η − (2k2

x + k2
z )η(1− η)− 1

ikxη − 2ikx(1− η)
−kxkzη(1− η)


, (4.12)

R1 =



0
ikxU

′
0

0
−ikxU0U′0 − (2k2

x + k2
z )(1− η)

ikx

−kxkz(1− η)


. (4.13)

The general solution of the linear differential system (4.9) reads

Z1 = c(1)1 Z(1)1 + c(2)1 Z(2)1 + c(3)1 Z(3)1 + D1Z
(D)
1 + R1Z

(R)
1 . (4.14)

Thus, Z1 is expressed as the superposition of three linearly independent solutions of
the homogeneous problem

L Z(1,2,3)1 = 0, (4.15)

which satisfy the boundary conditions at the lower boundary, plus particular solutions
of the non-homogeneous differential systems

L Z(D)1 = D1, L Z(R)1 = R1, (4.16)

again satisfying the lower boundary conditions. Without loss of generality, the
constants c(1)1 , c(2)1 and c(3)1 are chosen so as to represent the amplitudes of the
perturbed tangential, normal and binormal stresses at the reference level, respectively.
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Using the splitting (4.14) in the linearized boundary conditions at the free surface
(3.5), the following complex algebraic non-homogeneous system in the four unknowns:

C1 = (c(1)1 , c(2)1 , c(3)1 ,D1)
T
, (4.17)

is found in the form

F1 ·C1 =−R1 f1, (4.18)

where the matrix F1 and the vector f1 read

F1 =


V (1)

1 V (2)
1 V (3)

1 V (D)
1 − ikxU0

T (1)t1 T (2)t1 T (3)t1 T (D)t1

T (1)n1 T (2)n1 T (3)n1 T (D)n1 + S−1

T (1)b1 T (2)b1 T (3)b1 T (D)b1


η=1

, f1 =


V (R)

1 − ikxU0

T (R)t1

T (R)n1 + S−1

T (R)b1


η=1

. (4.19)

The solution of the system (4.18) is proportional to R1 so that Z1 can be set equal
to R1X1, the vector X1 providing the forced response of the flow to a unit bed
perturbation.

Substituting the solution X1 into the linearized sediment continuity equation (3.8)
yields the following dispersion relationship:

Ω(1+ L1)= Qkx

[
Ax0

(
Tt1B

kx
− i
µx

θ0

)
+ Az0

k2
z

k2
x

(
Tb1B

kz
− i
µz
√
θB0

θ0

)]
, (4.20)

where Tt1B and Tb1B are the perturbations of the tangential and binormal shear stresses
evaluated at the level B0, respectively. Moreover, the term L1, which represents the
perturbation of the bedload layer thickness, is obtained by linearization of (3.12) and
reads

L1 = AL0θB0(Tt1R − ikxµx/θC0)

1+ AL0θ0
. (4.21)

Note that, in our previous works, L was not perturbed, since the correction of the
growth rate associated with L1 was minimal. When moving to larger values of ds, we
found that this correction assumed an increased importance, ultimately leading to the
disappearance of the antidune mode for very low values of the conductance coefficient
C, in line with experimental observations. On the contrary, bar and dune modes are
almost unaffected by this correction, since hs0, and thus AL0, tends to vanish for low
values of the Shields parameter.

Equation (4.20) allows for the determination of the growth rate ΩG and wave
celerity ΩC of the bed perturbation as a function of the longitudinal and transverse
wavenumbers kx and kz and of two parameters, one chosen among θ0 and Fr , the other
among C and ds. In fact, the former are related by (2.3) and the latter by (2.1).

In particular, we have

ΩG = kx
Im(Ω)

C
, ΩC = Re(Ω)

C
, (4.22)

where a division by C has been introduced to scale with the flow time scale D∗/U∗.
Finally, note that if kz is set equal to zero in (4.20), the classical balance between

the streamwise bed shear stress and the stabilizing effect of gravity that leads to dune
and antidune formation is recovered. The term proportional to Az0, which displays a
similar structure, is thus to be held responsible for three-dimensional effects.
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5. Discussion of results
We start our discussion by focusing on two ideal experiments that are performed

in order to explain the appearance (and disappearance) of two- and three-dimensional
bed forms as the relevant flow and sediment parameters are changed. In all the
configurations analysed, the bed is assumed to be composed by sediments of the same
dimensional grain size.

In the first ideal experiment, we aim at the transition from two-dimensional dunes
to alternate bars, which is observed as the conductance coefficient C is lowered for a
constant, relatively low, value of the Shields parameter. Moreover, antidunes will be
shown to appear as the Shields parameter is increased at constant values of C. To
this end, we first explore the stability maps obtained for several decreasing values
of the conductance coefficient C at the same θ . Secondly, for the lowest value of C
considered, the Shields parameter is increased, which corresponds to an increase of the
Froude number.

Note that, by this choice, the dimensional flow depth is constant in each map,
so that variations in the transverse wavenumber kz, which, by definition, is inversely
proportional to the width-to-depth ratio β, correspond to a change of the channel
width.

The stability maps relative to this first ideal experiment are shown in figure 3, where
the growth rate ΩG is plotted in shades of grey in the space of the streamwise and
spanwise wavenumbers, lighter colours corresponding to (positive) larger values. The
contour lines are chosen on a logarithmic scale, so that

ΩG = {0,±10−6,±10−5.5,±10−5,±10−4.5, . . .}. (5.1)

The white solid lines indicate marginal stability, i.e. ΩG = 0, and bound the regions of
instability.

Moving from panel (a) to panel (d), it can be seen how the most unstable mode,
which initially lies on the horizontal axis, becomes three-dimensional as C decreases.
This is related to the fact that two-dimensional dunes become stable as C is lowered.
Moreover, the longitudinal wavenumber of maximum amplification decreases from
values of O(1), typical of dunes, to values of O(10−2), typical of alternate bars (see
figure 1b). Note that, owing to (2.1), a decrease in C corresponds to an exponential
decrease of flow depth. Moreover, in order to keep constant the value of the Shields
parameter, the area velocity must decrease as well, whereas the Froude number
increases following (2.3).

The stability plots shown in figure 3(d–f ) have been obtained for the same value of
C but with increasing values of the Shields parameter and thus of the Froude number.
By comparison, it can be seen how Fr has a limited influence on the bar mode, which
only slightly contracts, thus confirming the observation that alternate bars are quite
insensitive to variations of the flow regime. On the contrary, an increase in the Froude
number leads to the appearance of the antidune mode, which progressively becomes
the most unstable. A tendency to form three-dimensional antidunes is also shown in
the last panel.

It can be concluded that, accordingly with observations, the parameter that controls
the transition from two-dimensional dunes to alternate bars is the conductance
coefficient C or else the non-dimensional grain size ds. Although, owing to (2.3),
the Froude number increases as C is lowered, its role in this regard is subordinate. On
the contrary, for any given value of C, an increase in the Froude number leads to the
appearance of the antidune mode associated with the transition from the sub- to the
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FIGURE 3. Stability plots at θ/θC = 2: (a) C = 19, (b) C = 15.5, (c) C = 15 and at C = 10:
(d) θ/θC = 2, (e) θ/θC = 3, (f ) θ/θC = 4.

supercritical regime. Note that the regions of instability of bars and antidunes remain
distinct. Hence, antidunes and bars do linearly coexist, the former being dominant over
the latter at high values of the Shields parameter and vice versa.
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FIGURE 4. Stability plots in the (k, ϕ) plane for θ/θC = 2 and: (a) C = 16.5; (b) C = 15.5;
(c) C = 15.185.

We remark that the above considerations cannot be drawn in the framework of
shallow-water flow models previously adopted for the study of alternate bar formation,
since the dynamics of dunes and antidunes, which are typically much shorter than bars,
is not correctly grasped by depth-averaged models (Reynolds 1976).

It is also interesting to note that the transition from two- to three-dimensional dunes
is characterized by a single maximum. In fact, having defined the wave-vector norm k
and its angle ϕ with respect to the longitudinal axis as

k =
√

k2
x + k2

z , tanϕ = kz

kx
(5.2)

it can be proved that, for any finite k,

lim
ϕ→0

∂ΩG

∂ϕ
= 0, (5.3)

so that the most unstable two-dimensional mode, which is characterized by a vanishing
derivative of the growth rate in the k-direction and lies on the horizontal axis, is, in the
ϕ-direction, either a maximum, as shown in figure 4(a), or a minimum, as shown in
figures 4(b) and 4(c), the last one corresponding to the peculiar situation of marginal
instability for the two-dimensional disturbance.

As a consequence, the transition from two-dimensional dunes to alternate bars is
also characterized by a single maximum, so that it can be concluded that, opposite to
the antidune-bar case, alternate bars and dunes never coexist at a linear level.

An important theoretical result is displayed in figure 4(b,c): in these configurations,
three-dimensional disturbances are more unstable than their two-dimensional
counterparts. Therefore, as argued by Seminara (2010), no ‘Squire theorem’ analogy
can be cast for the linear stability of dunes, as opposite to the classical result obtained
for purely hydrodynamic stability. We strongly believe that this result is of more
general value and can be extended to any morphodynamic problem.
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FIGURE 5. Stability plots at θ/θC = 2.2: (a) narrower channel, ZB = 800; (b) wider channel,
ZB = 1600. Symbols denote experimental runs of alternate (hollow) and diagonal (solid) bars
from the JSM data set.

The second ideal experiment aims at the distinction between alternate and diagonal
bars. We intend to show that diagonal bars are indeed to be considered as
three-dimensional dunes, thus explaining their different observed behaviours and
wavelengths with respect to alternate bars. To this end, we consider the stability
maps for two channels, one half as wide as the other, for the same value of the Shields
parameter. The flow depth is also halved, so that the width-to-depth ratio β remains
unchanged. Note that, by this choice, the dimensional flow depth linearly increases
in each map with kz, whereas ds decreases (and so C increases). Note also that the
double-periodic perturbation (4.1) can be thought of as representative of the flow in
a channel of width equal to one-half of the transverse wavelength, provided that the
width-to-depth ratio β is large enough to allow for neglecting the effect of the wall
layers at the channel banks.

Considering the results for the narrower configuration, shown in figure 5(a), it
appears that the unstable region can be associated with alternate bars. In fact, most of
the corresponding experimental runs (hollow markers) fall inside the region, following
quite closely the line of maximum amplification. Indeed, if turned upside down, the
classical U-shaped marginal stability curve for bar instability is recovered (Blondeaux
& Seminara 1985; Colombini et al. 1987, among others), showing how the width-to-
depth ratio β controls the onset of instability. In fact, a ‘critical’ value of β, which
corresponds to the maximum in kz of the marginal curve in figure 5(a), is easily
detected.

Increasing the channel width, as shown in figure 5(b), leads to a modification
of the marginal curve, which extends to cover shorter longitudinal and transverse
wavelengths, nicely including most of the experimental observations on diagonal bars,
reported in the plot as solid markers.

Therefore, the present results suggest that increasing the channel width, while
keeping constant the Shields parameter and the sediment grain size, leads to the
formation of diagonal bars. This is consistent with the criterion for alternate bar
formation introduced by Jaeggi (1984), given by (2.6). In fact, the stability diagrams
shown in figure 5 represent two configurations whereby, for each value of β, ZB
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doubles in moving from the narrower to the wider channel, whereas all the other
quantities appearing in (2.6) remain constant. As a consequence, the left-hand side of
(2.6) increases, leading to the appearance of diagonal bars, as predicted by the present
theory.

For both alternate and diagonal bars, a fairly good agreement is found between
the wavenumbers of maximum amplification and the experimental observations. We
point out that all the experimental runs considered were relative to mature bed forms.
Hence, as in the case of two-dimensional dunes and antidunes, linear analyses seem
to be able to correctly grasp the information on wavelengths, thus suggesting that
bed form wavelengths settle during the linear phase. Coarsening phenomena that have
been observed during the initial phase of formation for both bars and dunes remain
unexplained by the present analysis. However, the recent work of Camporeale &
Ridolfi (2011) might provide an explanation of this apparent contradiction, whereby
coarsening is associated with the appearance of shorter transient features, still in the
linear regime, which disappears at longer times when the wavelengths selected by the
normal analysis are recovered.

6. Conclusions

In the present contribution, a linear stability analysis is presented, whereby the flow
and the sediment transport models previously developed to study the formation of
two-dimensional bed forms have been extended to cover variations in the transverse
direction. Depending on the values of the relevant flow and sediment parameters,
several regions of instability appear that can be associated with a variety of bed forms,
spanning from two-dimensional dunes and antidunes to alternate bars through diagonal
bars and three-dimensional dunes and antidunes.

At low values of the Shields parameter, the most unstable pattern, corresponding
to two-dimensional dunes for larger depths, is shown to progressively lose stability
towards three-dimensional configurations as the flow becomes shallower. If the depth
is further decreased, two-dimensional disturbances become linearly stable and bars are
left as the only unstable pattern. For higher values of θ , the formation of two- and
three-dimensional antidunes is predicted.

A comprehensive picture of the formation of two- and three-dimensional bed forms
emerges from the present analysis, showing the role of two relevant parameters: the
conductance coefficient and the Froude number. The former controls the transition
from two- to three-dimensional dunes and, then, to alternate bars, the latter the
transition from bars and dunes to antidunes.

Under suitable conditions, three-dimensional configurations are found to be more
unstable than their two-dimensional counterparts, thus proving that, in contrast with
a classical result for hydrodynamic instability, a morphodynamic Squire theorem does
not hold.

The crucial role of the width-to-depth ratio β for the formation of alternate bars,
already outlined by previous theories based on the shallow-water approximation, is
confirmed. Moreover, the present theory, which accounts for the role of flow depth,
is able to well describe the linear competitions among the dune, antidune and bar
modes and provides an explanation of the different observed behaviours of alternate
and diagonal bars, the latter being identified as three-dimensional dunes expressing a
single alternating diagonal front. These aspects could not be adequately described in
the framework of shallow-water models.
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Finally, we remark that the present work, although limited to a linear framework,
might provide a first answer to the ‘urgent need to understand the complex
relationships between bed form three-dimensionality and the associated flow field,
and the role of three-dimensionality in modulating both flow and sediment transport’
expressed by Best (2005) in his state-of-the-art review of the fluid dynamics of river
dunes.

R E F E R E N C E S

ALLEN, J. R. L. 1982 Sedimentary Structures: Their Character and Physical Basis – Vol. 1.
Elsevier.

ASCE, TASK COMMITTEE, 1963 Friction factors in open channels. J. Hydraul. Div. ASCE 89
(HY2), 97–143.

BESIO, G., BLONDEAUX, P. & VITTORI, G. 2006 On the formation of sand waves and sand banks.
J. Fluid Mech. 557, 1–27.

BEST, J. 2005 The fluid dynamics of river dunes: a review and some future research directions.
J. Geophys. Res. – Earth Surface 110, F04S02.

BLONDEAUX, P. & SEMINARA, G. 1985 A unified bar-bend theory of river meanders. J. Fluid Mech.
157, 449–470.

BLONDEAUX, P. & VITTORI, G. 2011 Dunes and alternate bars in tidal channels. J. Fluid Mech.
670, 558–580.

CALLANDER, R. A. 1969 Instability and river channels. J. Fluid Mech. 36, 465–480.
CAMPOREALE, C. & RIDOLFI, L. 2011 Modal versus nonmodal linear stability analysis of river

dunes. Phys. Fluids 23 (10), 104102.
COLOMBINI, M. 2004 Revisiting the linear theory of sand dune formation. J. Fluid Mech. 502,

1–16.
COLOMBINI, M., SEMINARA, G. & TUBINO, M. 1987 Finite-amplitude alternate bars. J. Fluid

Mech. 181, 213–232.
COLOMBINI, M. & STOCCHINO, A. 2005 Coupling or decoupling bed and flow dynamics: fast and

slow sediment waves at high Froude numbers. Phys. Fluids 17 (3), 9.
COLOMBINI, M. & STOCCHINO, A. 2008 Finite-amplitude river dunes. J. Fluid Mech. 611,

283–306.
COLOMBINI, M. & STOCCHINO, A. 2011 Ripple and dune formation in rivers. J. Fluid Mech. 673,

121–131.
DEVAUCHELLE, O., MALVERTI, L., LAJEUNESSE, È., LAGRÈE, P.-Y., JOSSERAND, C. & NGUYEN

THU-LAM, K.-D. 2010 Stability of bedform in laminar flows with free-surface: from bars to
ripples. J. Fluid Mech. 642, 329–348.

EINSTEIN, H. A. & SHEN, H. W. 1964 A study on meandering in straight alluvial channels.
J. Geophys. Res. 69, 5239–5247.

ENGELUND, F. 1970 Instability of erodible beds. J. Fluid Mech. 42, 225–244.
ENGELUND, F. 1974 The development of oblique dunes. Prog. Rep. 1–2. Technical University of

Denmark, Institute of Hydrodynamics and Hydraulic Engineering.
ENGELUND, F. 1981 The motion of sediment particles on an inclined bed. ISVA Prog. 53. Technical

University of Denmark, Institute of Hydrodynamics and Hydraulic Engineering.
ENGELUND, F. & FREDSØE, J. 1974 Transition from dunes to plane bed in alluvial channels.

Series paper 4. Technical University of Denmark, Institute of Hydrodynamics and Hydraulic
Engineering.

FREDSØE, J. 1974a The development of oblique dunes. Prog. Rep. 3–4. Technical University of
Denmark, Institute of Hydrodynamics and Hydraulic Engineering.

FREDSØE, J. 1974b On the development of dunes in erodible channels. J. Fluid Mech. 64, 1–16.
GRADOWCZYK, M. H. 1968 Wave propagation and boundary instability in erodible-bed channels.

J. Fluid Mech. 33, 93–112.
GUY, H. P., SIMONS, D. B. & RICHARDSON, E. V. 1966 Summary of alluvial channel data from

flume experiments 1956–61. Prof. paper 462-I. US Geological Survey.



80 M. Colombini and A. Stocchino

HALL, P. 2006 Nonlinear evolution equations and the braiding of weakly transporting flows over
gravel beds. Stud. Appl. Maths 117, 27–69.

IDIER, D. & ASTRUC, D. 2003 Analytical and numerical modelling of sandbanks dynamics.
J. Geophys. Res. – Oceans 108, 3060–3074.

JAEGGI, M. 1984 Formation and effects of alternate bars. J. Hydraul. Engng. ASCE 110, 142–156.
KENNEDY, J. F. 1963 The mechanism of dunes and antidunes in erodible-bed channels. J. Fluid

Mech. 16, 521–544.
LAJEUNESSE, E., MALVERTI, L., LANCIEN, P., ARMSTRONG, L., MÉTIVIER, F., COLEMAN, S.,
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