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Ripple and dune formation in rivers
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A linear stability analysis for dune and ripple formation is presented that implements
a rotational two-dimensional flow model valid in the smooth as well as in the
transitional and rough flow regimes. Sediment is assumed to be transported as
bedload, disregarding the role of suspension. Therefore, the main mechanism driving
instability, for both ripples and dunes, is the phase lag between bed shear stress and
bed elevation. Ripples are shown to be confined to relatively low values of the Shields
parameter and of the particle Reynolds number. For higher values of the Shields
parameter and of the particle Reynolds number (and thus of the Froude number
and of the roughness Reynolds number), ripples are replaced by dunes. The present
analysis ultimately allows for a successful unification of the theories of dune and ripple
formation and for a clarification of the debated role of ripples on the formation of
dunes. A good agreement between predicted and observed wavelengths for both
ripples and dunes is found.
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1. Introduction
A variety of sediment waves develops from an initially flat bed when a uniform flow

over an erodible bed is considered. They can be classified in terms of the characteristics
of the bedforms (e.g. wavelength, shape, upstream or downstream propagation) and in
terms of the characteristics of the flow (e.g. subcritical or supercritical, hydraulically
smooth or rough regime, free-surface waves associated with the bed waves) or of the
sediment transport (e.g. bed versus suspended load). In general, more than one aspect
is needed to mark the distinction.

Among transverse bedforms, for instance, we can distinguish between dunes
and anti-dunes, which possess similar wavelengths, by means of the flow regime
(subcritical and supercritical, respectively) and of the amplitude and phase of free-
surface undulations with respect to bed undulations (smaller and out of phase for
dunes, larger and in phase for anti-dunes).

If we now consider dunes and ripples, they both appear in the subcritical regime
and propagate downstream, but it is possible to discriminate ones from the others
in terms of their characteristic wavelengths, ripples typically being about one order
of magnitude shorter than dunes. It may be useful to report here the definition of
dunes given by Guy, Simons & Richardson (1966) in their remarkable experimental
work: ‘Dunes are bed features larger than ripples that are out of phase with any
water-surface gravity waves that accompany them. Dunes generally form at larger
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flow and sediment transport rates than do ripples; however, ripples often form on
the upstream slopes of dunes at smaller rates of flow’. About half a century later,
this distinction, albeit being evident to the experimenters, is still debated. Indeed,
as Raudkivi (2007) writes: ‘the change from ripples to dunes is terra incognita’.
Nonetheless, when attempting to distinguish dunes from ripples, the only strong
argument available is that of the different wavelengths, which persists also when both
bedforms appear together.

From the theoretical point of view, we restrict our attention to linear stability
analyses, which have proved to be a formidable tool to predict the existence regions
of bedforms in the space of the relevant physical parameters and their characteristic
wavelengths. However, no information can be gathered on bedform amplitudes at a
linear level.

The first attempt to describe ripple formation by means of a linear stability
analysis, dates back to Richards (1980), who developed a rotational flow model under
hydraulically rough conditions, showing that, at the same value of the Froude number,
two separate modes of instability exist. The first mode, characterized by wavelengths
scaling with the flow depth, was easily associated with dunes, while the second mode,
with typical wavelengths scaling with the bed roughness, was postulated to correspond
to ripples. Following Engelund & Fredsøe (1982), who suggested that ripples should
be associated with the hydraulically smooth flow regime, Sumer & Bakioglu (1984)
carried out a linear theory specifically formulated to investigate ripple formation. In
particular, the flow model was developed to handle smooth as well as transitional
flow regimes, whereas the role of the flow depth was disregarded. One of the major
outcomes of their analysis was that the ripple wavelength should scale with the
thickness of the viscous sublayer rather than with the bed roughness. However, both
the above analyses predicted a wavelength of maximum amplification for ripples that
were one or two orders of magnitude shorter than those observed in the laboratory.
It is worth noting that Richard’s analysis was restricted to the hydraulically rough
regime, while Sumer & Bakioglu’s theory was developed in the limit of vanishing
Froude number (infinite flow depth).

It has been recently questioned (Fourrière, Claudin & Andreotti 2010) whether
dunes and ripples are the result of an independent process of instability or ripples
have to be considered as simple precursors of dunes, the latter being only produced
by a mechanism of nonlinear pattern coarsening. Indeed, small amplitude sediment
waves have been observed to lengthen as they grow (Coleman & Melville 1996). In
the present work, the theory of Colombini (2004) is extended to cover the case of
smooth and transitional flow regimes, aiming at the description of the process of both
ripple and dune formation in the same framework of instability. In this regard, the
work of Kobayashi & Madsen (1985) is also worth mentioning, who first attempted
to follow this line of thought without succeeding to improve the prediction of ripple
wavelength, probably due to the lack of a suitable sediment transport model.

2. Experimental observations on ripples and dunes
The most comprehensive collection of flume experiments concerning finite-

amplitude bedforms is the Fort Collins data set of Guy et al. (1966), which covers a
relatively wide range of grain sizes, flow depths and Froude numbers.

As already discussed by Colombini & Stocchino (2008), the comparison of the
results of the stability analysis with experimental observations requires evaluation of
the shear stress acting on a plane bed, thus eliminating the contributions due to the
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form resistance and sidewalls. Hence, an equivalent uniform flow has been sought
relating the friction coefficient of the bed region fb, or equivalently the conductance
coefficient C, to the corresponding hydraulic radius r∗

b through the following equation
valid for the transitional regime:
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where U ∗ is the area velocity, u∗
b is the bed friction velocity, Re is the Reynolds

number of the flow, ν is the kinematic viscosity of the fluid and κ is the Von Kármán
constant, taken as 0.4. Note that, here and in the following, variables with a star
superscript are to be intended as dimensional. The constants as and ar , which are
representative of the behaviour in the smooth and rough regime in infinitely wide
channels, are set equal to 3.41 and 11.09, respectively (ASCE Task Committee 1963).
Finally, the weighting factor β varies from 0 to 1 as the flow regime changes from
hydraulically rough to hydraulically smooth. Following Cheng (2008) we set

β = exp
[
−0.11(ln Rek)

5
2

]
, Rek =

u∗
bk

∗
s

ν
=

√
fb

8
Re

k∗
s

4r∗
b

, (2.2)

where k∗
s is the roughness height and Rek is the roughness Reynolds number.

The above procedure allows for the implicit determination of the hydraulic radius
of the bed region r∗

b and, in turn, of all the quantities appearing in (2.1)–(2.2). Note
that, as far as the bed shear stress is concerned, r∗

b takes the role of the characteristic
vertical length scale of the flow. Among the parameters that are relevant for the
sediment transport, we recall here the Shields parameter θ and the particle Reynolds
number Rep:

θ =
u∗2

b

(s − 1)gd∗ , Rep =

√
(s − 1)gd∗d∗

ν
, (2.3)

where s is the relative density of the sediment, g is the gravitational acceleration
and d∗ is the median diameter of the sediment mixture used in the experiments. The
roughness Reynolds number Rek may be related to the above parameters as follows:

Rek =
√

θRep

k∗
s

d∗ , (2.4)

where k∗
s has been set equal to 2.5d∗.

In figure 1(a) the experiments of Guy et al. (1966) that are relevant for the present
analysis are presented in the classical Shields diagram. The experimental data span
about a decade in the particle Reynolds number and in the Shields parameter. The
dotted lines represent curves at values of Rek equal to 5 and 70, thus bounding the
transitional regime from the smooth and the rough regimes, respectively. The solid
line represents the critical value of the Shields parameter θc for incipient motion of
the sediment, here expressed in terms of Rep through the relationship (Brownlie 1981)

θc = 0.22Re−0.6
p + 0.06 exp

(
−17.73Re−0.6

p

)
. (2.5)

Moreover, hollow markers denote ‘transitional’ bed configurations, i.e. runs in which
the experimenters detected the simultaneous presence of both ripples and dunes or
of isolated ripples over an otherwise plane bed. This specification allows for the
identification of the ripple existence region as

θc < θ < 3.5θc ∪ Rek < 25, (2.6)
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Figure 1. Ripples and dunes experiments of Guy et al. (1966) in a Shields diagram (a) and
(b) corresponding wavelengths scaled with the sediment diameter d∗ (upper panel) and with
the bed hydraulic radius r∗

b (lower panel).

the border of which is represented as a dashed line in the plot.
It is worth noting that ‘dune–ripple’ data have been classified as ‘dune’ by Guy

et al. (1966), who accordingly provided just one measured wavelength, the presence of
ripples being only acknowledged in the detailed notes accompanying each experiment.
Moreover, the coarsest data set (d∗ = 0.93 mm) of the experiments of Guy et al. (1966)
has been excluded from the analysis, since no ripples have been observed in this set
of experiments regardless of the value of the Shields parameter.

The experimental values of dune and ripple wavelengths are presented in figure 1(b),
scaled with the sediment diameter d∗ and with the bed hydraulic radius r∗

b , in the
upper and lower panels, respectively. For the experimental range of Rep considered,
ripple wavelengths seem better correlated with the sediment diameter, since their
ratio is found to attain an almost constant value of about 1000, as predicted by
Yalin (1977), although a fairly large scatter is present. The opposite is true for dune
wavelengths, which better scale with the bed hydraulic radius with a value of the
ratio of about 10. It must be pointed out that, irrespective of the scaling adopted,
in both panels the characteristic wavelengths for dunes and ripples are separated by
about one decade. Since our purpose was to investigate the transition from ripples to
dunes, our choice for the scaling fell naturally on the bed hydraulic radius r∗

b .

3. Formulation of the problem
The formulation follows closely the one adopted by Colombini (2004) and by

Colombini & Stocchino (2005, 2008), which is briefly summarized in the following.
The interested reader is referred to the above works for the details of the flow and
the sediment transport models.

A uniform turbulent free-surface flow in an infinitely wide straight channel is
considered. The triplet composed of the fluid density ρ, the mean friction velocity
u∗

f and the depth D∗ of the unperturbed uniform flow has been used for non-
dimensionalization. Note that by formally setting D∗ equal to r∗

b , u∗
f devolves to

u∗
b and all the relationships introduced in the previous section remain valid in the

infinitely wide configuration adopted herein. In particular, the wavelength-to-depth
ratio is adopted in the following to set ripples apart from dunes.
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Figure 2. Sketch of flow configuration.

In the sloping Cartesian coordinate system (x, y), sketched in figure 2, the
dimensionless unsteady Reynolds and continuity equations read

U,t +UU,x +V U,y +P,x −SC2/F 2 − Txx,x − Txy,y = 0, (3.1)

V,t +UV,x +V V,y +P,y +C2/F 2 − Txy,x − Tyy,y = 0, (3.2)

U,x +V,y = 0, (3.3)

where U = (U, V ) is the velocity vector averaged over turbulence, P is the pressure,
T = {Tij } is the total (viscous plus Reynolds) two-dimensional stress tensor, F =
U ∗/

√
gD∗ is the Froude number and S is the mean bed slope.

The above system is complemented by the Exner equation imposing mass
conservation of sediments, which takes the dimensionless form:

R,t −QΦ,x = 0, Q =
d

√
θ0

(1 − ps)
, θ0 =

F 2

C2(s − 1)d
, (3.4)

where R is the bed elevation, Φ is the sediment transport capacity per unit width,
d is the sediment grain size, assumed as uniform, ps is the sediment porosity and θ0

is the Shields parameter for the base uniform flow. It may be worth noting that the
latter is proportional to the square of the Froude number F .

The following transformation of variables:

η =
y − R(ξ, τ )

D(ξ, τ )
, ξ = x, τ = t, (3.5)

is then employed to map the domain shown in figure 2 into a rectangular domain.
In order to extend the flow model to cover the smooth and transitional regimes, a

modified mixing length structure along the vertical is adopted:

l = κ(η + 
η)D

[
1 − exp

(
−η + 
η

A
D

Rek

ks

)]
(1 − η)

1
2 , (3.6)

where D and ks are the dimensionless local flow depth and bed roughness, respectively.
The exponential correction appearing in (3.6) accounts for the existence of a viscous
and buffer layer in the hydraulically smooth regime, the damping factor A taking a
value of 27 (van Driest 1956). Moreover, a shift 
η is introduced as suggested by
Rotta (1962), who recognized that the velocity profiles for smooth and rough wall
can be similar provided that the vertical coordinate is suitably displaced.

The displacement 
η has been computed, as in Sumer & Bakioglu (1984), in terms
of Rek by means of the relation, in wall coordinates, suggested by Cebeci & Chang
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(1978):


η+ = 0.9

[√
Rek − Rek exp

(
−Rek

6

)]
. (3.7)

Note that, by means of numerical integration of the velocity vertical profile for
a uniform flow, a link can be established between the displacement 
η and the
conductance coefficient C given by (2.1)–(2.2), as is usually done in fully rough flows,
where 
η should become formally equivalent to the roughness height z0 (Rotta 1962).
In other words, in the smooth and transitional regimes, (3.7) can be obtained from
(2.1) and (2.2) and vice versa.

Finally, a dependence of the critical Shields stress on Rep through (2.5) has been
included in the analysis. This enters directly in the evaluations of the sediment
transport capacity Φ and of the level ηb at which the shear stress must be evaluated,
the latter being a crucial quantity in the estimate of the phase lag between the bed
shear stress and the bed elevation that, ultimately, drives the process of instability. We
recall here that ηb is related to the ratio θ0/θc by means of an empirical relationship
which allows for the determination of the average saltation height of the sediments
and, in turn, of the bedload layer thickness. The inclusion of the θc dependence on
Rep is certainly the simplest way to introduce a viscous scale in the sediment transport
model. Unfortunately, the lack of experimental observations on the behaviour of the
saltation height in the smooth and transitional regimes did not allow for a more
accurate modelling of sediment dynamics.

4. Linear analysis
The problem is solved in terms of normal modes, expanding a generic quantity G

as

G(ξ, η, τ ) = G0(η) + εG1(η) exp[ik(ξ − ωτ )] exp(Ωτ ) + c.c., (4.1)

where ε is a small parameter and k, ω and Ω are wavenumber, celerity and growth
rate of the perturbation, respectively.

Substituting the above expansion into the governing equations, boundary conditions
and turbulence closure and collecting terms of the same order of magnitude in ε, a
sequence of differential problems arises.

At leading order, a velocity vertical profile is obtained that, as expected,
asymptotically devolves to the classical logarithmic distributions valid for the
hydraulically smooth and rough regimes.

At the linear level, an eigenvalue problem is recovered, which yields a dispersion
relation of the kind

Ω = QBk2

(
Tt1b

k
− µ

θ0

)
, (4.2)

where Tt1b is the imaginary part of the perturbation of the shear stress evaluated at
the level ηb, µ is the gravity correction coefficient taken as 0.1 (Fredsøe 1974) and
B is a parameter that depends solely on the sediment transport parameters of the
base uniform flow. In particular, (4.2) shows that instability is recovered when the
perturbed bed shear stress leads the bed perturbation (Tt1b > 0). The stabilizing role
of gravity is also shown to decrease as θ0 increases.

Once again, this result is formally equivalent to the one reported by Colombini &
Stocchino (2008). The novelty of the present formulation is contained in the
perturbation of the bed shear stress, which now displays a dependence on the
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Figure 3. Stability plot in the rough regime, Rep = 700: (a) z0 = 10−4; (b) z0 = 5 × 10−4.
Solid white lines indicate marginal curves.

roughness Reynolds number Rek , thus extending the previous analysis to cover the
case of smooth and transitional regimes, as required to investigate ripple formation.
To simplify the analysis we have restricted our attention to the decoupled case, thus
disregarding time derivatives in the flow equations, so that only one eigenvalue is
obtained from (4.2).

5. Discussion of results
We start our discussion by focusing on the rough regime, where the present analysis

recovers the results of Richards (1980). Our purpose is to show how the instability
associated with ripples in the latter work was indeed generated by the inability of the
flow model to predict the correct bed shear stress for values of the wavenumber that
are of the order of the roughness height. To do so, we simply set the displacement

η to be equal to the roughness height z0 (Rotta 1962):


η = z0 � ks

30
=

d

12
. (5.1)

Stability plots in the (kz0, θ0/θc) plane are shown in figure 3 as contours of the
growth rate Ω for values of z0 equal to 10−4 and 5 × 10−4, respectively. The growth
rate is shown in shades of grey, lighter colours corresponding to higher values in a
logarithmic scale. Marginal curves are shown as solid white lines.

The stability diagram shown in figure 3(a) has been obtained with the same value
of z0 of Richards (1980) to allow for a direct comparison with the results presented
in figure 5 of his work. The largest region of instability for values of kz0 of order
O(10−5) can be easily associated with dune instability, whereas ripples were postulated
by Richards (1980) to be represented by the second region of instability, characterized
by larger O(10−2) wavenumbers. Increasing z0, i.e. considering coarser sediment, as in
figure 3(b), the region of instability for dunes contracts, the anti-dune mode appears
for higher values of θ0, whereas the instability region at higher wavenumbers remains
almost unchanged. These results clearly show that the latter mode of instability
cannot be associated either with ripples or with any actual physical instability of the
bed.
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Figure 4. Stability plots in the hydraulically smooth and transitional regimes: (a) Rep = 20;
(b) Rep = 14; (c) Rep = 12; (d ) Rep = 5. Markers denote the experimental runs of Guy et al.
(1966) (see figure 1). The colourmap is the same as in figure 3.

Note that the values of kz0 of O(10−2) correspond to wavenumbers scaled with
the bed roughness of O(1), z0 being about 1/30th of ks . Therefore, the appearance
of this spurious mode of instability simply reveals that the flow model is incapable
of resolving scales of the order of the bed roughness. This can be considered as an
intrinsic limit of the representation of rough turbulent flows by Reynolds-averaged
models, such as Richard’s and the present one, as well as by more sophisticated flow
models (Fourrière et al. 2010).

We now proceed to analyse the case of smooth and transitional flow regimes,
with the purpose of showing how ripple instability can indeed be described by the
present model, hence providing a unified linear framework for both ripple and dune
formation.

In figure 4 the stability plots for several values of Rep are presented as a function
of the wavenumber k, built upon the wavelength-to-depth ratio, together with the
experimental observations of Guy et al. (1966) pertaining to either dunes or ripples (i.e.
disregarding the mixed dune–ripple data, for which only one measured wavelength
was available). For the highest value of Rep (a), only one region of instability is
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found, which can be associated with dunes (k = O(1)). Decreasing Rep down to 14
(b), a second region of instability appears in the large wavenumber range (k = O(10)),
which can be related to ripples. As the particle Reynolds number is further decreased
(c) the two regions merge. Two separate maxima in the growth rate persist down to
a value of Rep of about 10, below which a single maximum exists (d ). Therefore,
the present theory predicts that, for intermediate Rep , two distinct wavenumbers
of maximum amplification exist, which can be associated with ripples and dunes,
respectively. Although no information can be gathered at a linear level on which
mode of instability, if one, would eventually prevail on the other, we regard this result
as an important confirmation of our analysis, since the experimental observations of
Guy et al. (1966) enlighten that ripples and dunes may coexist. Finally, note that, for
very small grain sizes, the wavenumber of maximum amplification varies continuously
from values typical of ripples to the ones of dunes as θ0 is increased.

The stability diagrams shown in figure 4 have been obtained for a value of ks equal
to 0.003, which corresponds to a value of z0 = 10−4, representative of most of the
experimental runs regarding both ripples and dunes. Note that, by this choice, the
maximum value of k in the plots corresponds to a wavenumber scaled with the bed
roughness of O(10−1), hence on the safe side regarding the above discussion for the
rough regime. Nonetheless, the spurious instability persists also in the smooth and
transitional regimes, thus confirming that it is related to an intrinsic limitation of the
flow model. In each plot, as Rek increases along the vertical axis following (2.4), the
flow shifts from the smooth towards the transitional and rough regimes. The choice
of keeping Rep constant, instead of the more obvious one of fixing Rek , has been
made in order to make each plot representative of an ideal experiment in which the
dimensional grain size is fixed and so does the dimensional flow depth of the base
flow (since ks is fixed), whereas θ0, F and Rek vary as the dimensional average flow
velocity is increased.

It must be pointed out that the present results display a fairly good agreement
between observed and predicted (in terms of maximum amplification) ripple
wavenumbers, whereas the analyses of both Richards (1980) and Sumer & Bakioglu
(1984) failed to do so, their predictions on wavelengths being about one order of
magnitude too short. However, the upper limit of Rep for ripple instability predicted
by the present analysis is about 15, a value that underestimates the observed one by a
factor of about 2 (see figure 1a), whereas, in this regard, the work of Sumer & Bakioglu
(1984) provided an excellent agreement with observations. A possible explanation for
this discrepancy might be sought in the scarcity of information available on the
sediment transport (and in particular on the saltation height) in the smooth and
transitional regimes.

6. Conclusions
A linear stability analysis of dune and ripple formation has been presented, which

extends previous works on the subject to cover the case of smooth and transitional
flows. Results are shown to depend on two parameters that characterize the flow and
the sediment, namely the Shields parameter and the particle Reynolds number or,
equivalently, on the Froude number and the roughness Reynolds number. Both these
parameters are then relevant for the process of instability and this might explain why
previous theories, being developed in the limit of either vanishing Froude number or
large roughness Reynolds number, failed to predict the occurrence of both ripples
and dunes in the same framework of instability.
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By an analysis of the fully rough case, it is shown that care must be taken when
investigating the range of wavelengths of the order of bed roughness, where the flow
model fails. This led Richards (1980) to erroneously associate this spurious instability
with ripple formation.

Results obtained in the smooth and transitional regimes clearly indicate that both
ripples and dunes appear as a primary instability. This is in contrast with the
arguments sustained by Fourrière et al. (2010), who considered ripples as the only
form of primary instability, whereas dunes were obtained through a mechanism of
nonlinear pattern coarsening. In this regard, we also recall that modal analyses like
the present one are known to provide only the asymptotic response of the system in
time, whereas during the transient (from plane bed to small amplitude bedforms still
in the linear regime) shorter disturbances can develop that experience an increase in
wavelength (Camporeale & Ridolfi 2009).

The present results confirm the validity of the approach of Sumer & Bakioglu
(1984), whose analysis has been extended here to cover the effect of flow depth. It
is found that, although ripple formation is also controlled by the viscous scale, the
latter cannot be used alone in the determination of the characteristic wavelengths,
since, similarly to the case of dunes, flow depth plays a role as well.

As a final comment, we would like to recall the definition of dunes given by Guy
et al. (1996) and cited in § 1: dunes form at larger values of θ , whereas ripples form
at smaller values of θ . At intermediate values of θ , they may coexist. With a suitable
choice of Rep , the present analysis qualitatively reproduces all the above behaviours:
at lower values of θ ripples tend to dominate dunes, whereas the opposite is true for
higher values of θ . Dunes and ripples may also coexist (two maxima) for intermediate
values of θ . The quantitative agreement of the present results with observations in
terms of characteristic wavelengths is fairly good, whereas in terms of both θ and
Rep is not equally satisfactory.
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