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Finite-amplitude river dunes
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The linear and weakly nonlinear stability of a uniform flow in an infinitely wide open
channel with erodible bottom is studied. Under suitable conditions the flow is found
to be unstable, leading to the formation of dunes and antidunes. At a linear level, the
corresponding regions of existence are presented and compared with experimental
data. A weakly nonlinear analysis is then performed in a neighbourhood of the critical
conditions for dune and antidune formation. The analysis shows that, for values of
the ratio of the shear velocity to the depth-averaged velocity of practical interest,
dune bifurcation is supercritical, whereas antidune bifurcation is subcritical. The latter
result suggests a possible interpretation of the plane–antidune transition, where plane
bed and antidune configurations are observed to coexist for the same values of the
flow and the sediment parameters. The supercritical behaviour of the dune bifurcation
allows for the prediction of an equilibrium amplitude that successfully compares with
the amplitudes measured in laboratory experiments.

1. Introduction
Dunes are, by far, the most common bedforms encountered in rivers, and their

dynamics is crucial in many environmental and river engineering problems (ASCE
2002). Antidunes are of lesser practical importance, though of similar conceptual
relevance. This justifies the great effort that has been dedicated to the understanding
of the physical processes that eventually lead to the formation of these bedforms,
even though many questions still remain open (ASCE 2002).

Dunes appear in the so-called lower flow regime (i.e. for small values of the Froude
number) and are characterized by downstream propagation and by being almost out
of phase with respect to water-surface gravity waves. On the contrary, antidunes occur
in the upper flow regime (i.e. for values of the Froude number close to unity) and
typically propagate upstream, being almost in phase with free-surface oscillations. In
both cases, the main geometrical characteristics of the bedforms scale with the mean
flow depth.

The first theoretical contributions on the problem of dune and antidune formation
date back to the early 1960s, when the seminal studies of Kennedy (1963) and
Reynolds (1965) were published. In these works, the idea that bedforms are the
result of a process of instability of the system composed by a uniform flow
over an erodible bed was exploited, opening the way to a conspicuous field of
research, soon extending from dunes to other river bedforms (e.g. Callander 1969;
Sumer & Bakioglu 1984), from altimetric to plano-altimetric morphodynamics (e.g.
Ikeda, Parker & Saway 1981; Blondeaux & Seminara 1985), from rivers to lagoon,
coastal and marine environments (e.g. Blondeaux 1990; Besio, Blondeaux & Vittori
2006).
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Making use of techniques imported from the field of hydrodynamic stability, several
analyses were developed in a linear context with the aim of identifying the mechanism
that controls dune and antidune instability, thus, defining the region of their existence
in the space of the relevant physical parameters (see e.g. Engelund 1970; Smith 1970;
Fredsøe 1974; Richards 1980; Coleman & Fenton 2000).

This mechanism is already detectable in the linearized form of the Exner sediment
continuity equation, which reveals that a phase-lag between sediment transport and
bed topography is required in order to achieve instability. Whether this phase-lag is
generated by the flow or the sediment transport or both, has long been discussed.

Regarding the flow, a rotational two-dimensional model is required for the bed
shear stress to lead with respect to bed topography (Engelund 1970), even though
Coleman & Fenton (2000) have shown that a lag is found also in irrotational models
if time derivatives are retained in the momentum equations. Moreover, suspension
and sediment inertia are known to produce a further lag between the bottom shear
stress and the sediment load (see Parker 1975, and the related discussion).

All these analyses provide a similar overall picture of instability: for given sediment
characteristics, as the Froude number F , the instability parameter, is increased above
the critical threshold for sediment motion, dunes appear and are then washed out as
F is further increased above a second threshold value; antidunes appear when a third
threshold is exceeded.

One of the major concerns about linear analyses was that, dealing with infinitesimal,
though exponentially growing, disturbances, their ability to predict dune geometry
should be limited to the very initial stage of formation (Coleman & Melville 1996).
Since nonlinearity is known to play a role in dune further development towards an
equilibrium amplitude, it was inferred that information pertaining to the initial stage
had little or nothing to do with the finite-amplitude development of dunes. Moreover,
the output of linear analyses is limited to the definition of an unstable region in the
parameter space and to an indication on the wavelength and celerity of the most
unstable disturbance of the bottom. No information is gathered on dune amplitude
at a linear level.

Although the results of most of these analyses compare satisfactorily with laboratory
and field observations, an uncomfortably high degree of uncertainty remained (ASCE
2002), in particular for the delicate transition between dunes, plane bed and antidunes.

For these reasons, the problem of flow over fixed (inerodible) bedform shapes
has received intense attention, through detailed flow measurements and numerical
simulations (see Best 2005, and references therein). In particular, near-bed turbulence
and flow separation on the lee side of dunes have been charged as the major agents
in determining dune geometry (Coleman et al. 2006), even though debate still exists
as to the nature and cause of river dunes with low-angle leesides, where separation is
likely to be absent (Best & Kostaschuk 2002). In addition, the numerical results by
Tjerry & Fredsøe (2005) suggest that streamline curvature could be as important as
flow separation in the prediction of the fully developed geometry of dunes. Further
contributions have concentrated on numerical models of flow over an erodible bed
based on more or less refined closures to simulate flow separation (Giri & Shimizu
2006).

Here, we attempt a different approach, hopefully able to clarify the role of
nonlinearity, at least for low-amplitude dunes. Colombini (2004) has proposed a
linear analysis of dune and antidune formation, showing how a careful modelling
of the flow field and of the sediment transport leads to a more reliable formulation
of the linear problem in the absence of suspension. Following ideas well-established
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in the field of hydrodynamic instability (Stuart 1971), a weakly nonlinear stability
theory based on the same flow and sediment transport model is formulated herein.

As opposed to other bedforms (e.g. bars, see Colombini et al. 1987; Schielen,
Doelman & de Swart 1993), few attempts at investigating the weakly nonlinear
regime of dune instability can be found in the literature. The role of second-order
interactions in defining the dune shape has been outlined by Fredsøe (1974), whereas
Ji & Mendoza (1997) have investigated the weakly nonlinear second-order correction
of the growth rate. In the following, it will be shown how, extending the analysis to
the third order, a Landau–Stuart amplitude equation is eventually recovered, which
describes the time evolution of a perturbation on a slow time scale at the onset of
instability.

Before entering into the details of our analysis, some further considerations on the
nature of the instability process that leads to dune and antidune formation may be
helpful. No formal proof has been provided yet to ascertain whether the character
of the instability is absolute or convective. We recall that instability is convective
provided an initial small perturbation localized in space is convected downstream,
whereas it is absolute if the perturbation spreads both upstream and downstream as
time grows.

The present weakly nonlinear analysis is definitely appropriate in the latter
case, since the Landau–Stuart equation describes well the evolution in time of
a monochromatic spatially periodic perturbation. If the process of instability is
convective, as in the case of bars (Federici & Seminara 2003), both spatial and
temporal modulations of the nonlinear solution have to be considered. Moreover, in
a neighbourhod of the critical conditions, a group of perturbations characterized by
wavenumbers close to the critical one is unstable and, owing to dispersion of this
wave group, a spatial modulation will occur.

It is well known that, if a slow spatial scale is introduced in the analysis in addition
to the slow time scale, then a Ginzburg–Landau amplitude equation is eventually
obtained. Before embarking on the derivation of the latter, we felt it necessary to
verify to what extent a weakly nonlinear approach may be suitable for interpreting
the gross features of the nonlinear dynamics of dunes and antidunes.

The paper proceeds as follows: in § 2, the problem of flow in an infinitely wide
channel with erodible bottom is formulated. Section 3 is devoted to the solution of
the linear problem and § 4 to a discussion of the main results of the linear analysis.
The weakly nonlinear analysis is performed in § 5 and the results on dune geometry
are analysed and compared with experimental measurements of dune amplitude in
§ 6. Section 7 concludes the paper with some final remarks.

2. Formulation of the problem
Let us consider a uniform turbulent free surface flow in a infinitely wide straight

channel. The triplet composed by the fluid density ρ, the mean friction velocity u∗
f and

depth D∗ of the unperturbed uniform flow has been used for non-dimensionalization.
In the following, a star superscript denotes a dimensional variable.

In the sloping Cartesian coordinate system (x, y) sketched in figure 1, the
dimensionless unsteady Reynolds and continuity equations are:

U,t +UU,x +V U,y +P,x −gD∗ sinα/(u∗
f )2 − Txx,x − Txy,y = 0, (2.1)

V,t +UV,x +V V,y +P,y +gD∗ cos α/(u∗
f )2 − Txy,x − Tyy,y = 0, (2.2)

U,x +V,y = 0, (2.3)
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Figure 1. Sketch of flow configuration.

where U = (U, V ) is the local velocity vector averaged over turbulence, P is the
pressure, T = {Tij } is the two-dimensional Reynolds stress tensor, g is the acceleration
due to gravity and α is the angle formed by the x-axis with respect to the horizontal.

Moreover, we define a non-dimensional conductance coefficient C as the ratio

between the unperturbed depth-averaged velocity U
∗

and the mean friction velocity
u∗

f , which can be related to the flow depth and the sediment diameter d∗
s through the

Keulegan equation (ASCE 1963) for fully rough turbulent flow:

C =
U

∗

u∗
f

=
1

κ
ln

(
11.09D∗

2.5d∗
s

)
, (2.4)

where κ is the von Kármán constant, taken as 0.4, and the roughness height has
been set as 2.5d∗

s after Engelund & Hansen (1967). Note that C is related to the
dimensional Chézy coefficient χ and to the non-dimensional Darcy–Weisbach friction
coefficient f through the following relathionships:

C =
χ

√
g

=

√
8

f
, (2.5)

Assuming the mean bed slope S = tan α to be small, we can safely set:

sin α � tan α = S, cos α � 1, (2.6)

so that the gravity terms in the momentum equations (2.1)–(2.2) become, respectively:

gD∗ sinα/(u∗
f )2 = SC2/F 2, gD∗ cosα/(u∗

f )2 = C2/F 2, (2.7)

where F = U
∗
/
√

gD∗ is the Froude number.
The flow domain is bounded by the curves y = R(x, t) and y = R(x, t) + D(x, t),

with D the local flow depth. The lower boundary is set at the reference level R, where
the velocity is assumed to vanish.

Having denoted as n and t the unit vectors normal and tangential to each boundary,
respectively, the kinematic and dynamic boundary conditions to be associated with
(2.1)–(2.3) are:

−R,t +U · n = 0, U · t = 0 (y = R), (2.8)

−(R + D),t +U · n = 0, n · T · t = 0, n · T · n = 0 (y = R + D). (2.9)

The following transformation of variables:

η =
y − R(ξ, τ )

D(ξ, τ )
, ξ = x, τ = t, (2.10)

is then employed to map the domain shown in figure 1 into a rectangular domain.
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In order to close the above formulation the Boussinesq closure is used, which is:

Tij = νT (Ui,j + Vj,i). (2.11)

The eddy viscosity νT is evaluated by means of the mixing-length approach, hence:

νT = l2U,y , l = DL(η), L(η) = κ(η + ηr )(1 − η)1/2. (2.12)

For a uniform flow, the algebraic function L(η) produces a parabolic profile for the
eddy viscosity and, consequently, the logarithmic law of the wall, with ηr being the
dimensionless distance between the reference level and the average bed level.

Sediments are assumed to be transported as bedload only, following the approach
adopted by Colombini (2004). Hence, sediment transport is confined within a thin
saltation layer adjacent to the bottom, such that the flow above is the same as if the
bed were fixed. Hence, the intensity of the sediment transport is determined by the
shear stress acting at the interface between the saltation layer and the clear water.

Based on the above considerations, the Exner equation imposing mass conservation
of sediments takes the form:

FR,t +Q0Φ,x = 0, Q0 = C
ds

√
(s − 1)ds

(1 − ps)
, (2.13)

where Φ is the dimensionless form of the sediment transport capacity per unit width
and s and ps are relative density and porosity of the sediment, respectively.

The function Φ is known to depend on a dimensionless form of the bed shear stress
acting on the bedload layer, namely the Shields stress θb. Results are only moderately
affected by the choice of a particular form for the function Φ . In the following, the
classical Meyer-Peter & Müller (1948) formula:

Φ = Am(θb − θc)
3/2 (θb � θc), (2.14)

has been employed, where θc is the critical Shields stress for incipient motion. The
values of θc and Am have been set equal to 0.0495 and 3.97, respectively, in accordance
with the corrections proposed by Wong & Parker (2006) in their revisitation of the
work of Meyer-Peter & Müller (1948). In addition, the effect of gravity on the grain
motion is included by setting the critical Shields stress θc equal to:

θc = 0.0495 − μ(S − R,x), (2.15)

where μ is a dimensionless constant set equal to 0.1 after Fredsøe (1974).
As for the saltation layer, its thickness is known to scale with the sediment grain

size ds and can be defined as:

hb = (1 + hs)ds, (2.16)

where hs is the average maximum saltation height of a grain positioned above the
bed, scaled by the grain diameter. The dependence of the latter on the flow intensity
is expressed by the relationship:

hs = Ab

(
θr − θc

θc

)m

(θr � θc), (2.17)

where θr is the value of the Shields stress evaluated at the reference level and the
constants Ab and m have been set equal to 1.42 and to 0.64, respectively, based on
a regression on the experimental data of Sekine & Kikkawa (1992) and Lee & Hsu
(1994). These values differ slightly from those adopted by Colombini (2004), since a
procedure similar to that suggested by Wong & Parker (2006) has been applied to
the experimental data in order to compensate for sidewall effects.
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Finally, the level at which the Shields stress θb is evaluated is:

y = B = R +

(
hb +

ds

12

)
D, η = ηb =

(
hb +

ds

12

)
, (2.18)

where the term ds/12 accounts for the distance between the reference level and the
top of the grains composing the bed.

3. Linear theory
The linearization procedure follows closely that described in Colombini (2004) and

Colombini & Stocchino (2005) and is only briefly summarized in the following for
the sake of clarity, since most of the notations introduced herein are later used in the
weakly nonlinear analysis.

The problem formulated in the previous section is solved in terms of normal modes,
so that a generic perturbed quantity G is written as:

G(ξ, η, τ ) = G0(η) + εG1(ξ, η, τ ), (3.1)

G1(ξ, η, τ ) = AG11(η) exp[ik(ξ − Ωτ )] + c.c., (3.2)

where ε is a small parameter, k and Ω are wavenumber and complex growth rate of
the perturbation, respectively, and c.c. stands for complex conjugate. The quantity A

represents, in the present context, an arbitrary factor.
Substituting the above expansion into the governing equations, boundary conditions

and turbulence closure and collecting terms of the same order of magnitude in ε,
the following differential problems arise. Note that, for convenience, the tangential
(Tt ) and normal (Tn) components of the stress acting on surfaces at constant η are
introduced below, the latter including the role of pressure.

3.1. O(ε0)

At leading order, integration of the system of differential equations yields a linear
distribution of shear stress and the classic velocity logarithmic law:

U0 =
1

κ
ln

(
η + ηr

ηr

)
, (3.3)

and, by direct integration, the depth-averaged speed is obtained:

U0 =
U ∗

u∗
f

= C =
1

κ

[
ln

(
1 + ηr

ηr

)
− 1

]
, (3.4)

which can be used to relate the coefficient C to ηr . Consistent with (2.4), the distance
ηr of the reference plane from the average bed elevation is found to be roughly equal
to one-thirtieth of the non-dimensional roughness height, or, alternatively, one-twelfth
of the non-dimensional sediment diameter ds . Furthermore, C is related to the Froude
number F and to the unperturbed slope S0 through the relationship:

C =
F√
S0

, (3.5)

which expresses the well-known balance between friction and fluid weight in a uniform
flow.

Exner equation (2.13) does not produce any additional information, since, under
uniform flow conditions, the bed experiences neither aggradation nor degradation.
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The following relationships hold:

θr0 =
S0

(s − 1)ds

, θb0 = θr0(1 − ηb), θc0 = 0.0495 − μS0, (3.6)

Φ0 = 3.97(θb0 − θc0)
3/2, Q =

3

2

Q0Φ0

θb0 − θc0

. (3.7)

Note that the thickness of the saltation layer has not been perturbed so that the level
ηb depends only on the basic flow quantities θr0 and θc0 through (2.16)–(2.18).

3.2. O(ε1)

At the linear level, after some manipulation, a system of ordinary differential equations
for the unknown vector Z11 = (U11, V11, Tt11, Tn11)

T is eventually obtained and can be
written in the general form:

L11 Z11 − D11 D11 − R11 R11 = {0}, (3.8)

where the linear differential operator L11 and the vectors D11 and R11 are given in
Appendix A, D11 and R11 are treated as parameters to be determined.

The solution of the linear differential system (3.8) is:

Z11 = c
(1)
11 Z(1)

11 + c
(2)
11 Z(2)

11 + D11 Z(D)
11 + R11 Z(R)

11 . (3.9)

Thus, Z11 is expressed as a linear combination of two linearly independent solutions
of the homogeneous initial-value problem

L11 Z(1,2)
11 = 0, (3.10)

which satisfy the boundary conditions at the lower boundary, plus particular solutions
of the non-homogeneous differential systems:

L11 Z(D)
11 = D11, L11 Z(R)

11 = R11, (3.11)

again satisfying the lower boundary conditions. Without loss of generality, the
constants c

(1)
11 and c

(2)
11 are chosen so as to represent the amplitude of the perturbed

tangential and normal stresses at the reference level, respectively.
Making use of the relationships (2.14)–(2.18), linearization of the sediment

continuity equation (2.13) yields:

ΩFR11 − Q(θr0Tt11b − ikμR11) = 0, (3.12)

where Tt11b is the perturbation of the shear stress evaluated at the level ηb.
Equation (3.12) shows that instability is the result of a balance between the

destabilizing effect of the shear stress and the stabilizing role of gravity. Using
the splitting (3.9) in the linearized boundary conditions at the free surface (2.9) and
in the Exner equation (3.12), the following complex algebraic homogeneous system is
eventually obtained:

U11 · C11 = {0}, C11 =
(
c

(1)
11 , c

(2)
11 , D11, R11

)T
, (3.13)

where the matrix U11 is given in Appendix A. Note that, owing to the coupling
between flow and sediment transport, all the coefficients of U11 implicitly depend on
the complex growth rate Ω .

A non-trivial solution of the system is then obtained for the particular values of
Ω (the eigenvalues) that make the determinant of U11 vanish. The constants C11, and
therefore the eigenfunctions (3.9), are readily calculated from (3.13) setting R11 equal
to a half, so that εA represents the amplitude of the bed perturbation.
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Figure 2. Regions of instability for dunes, antidunes and roll waves; C = 20, f = 0.02. The
dashed lines in the close-up pictures correspond to the lines of maximum growth rate.

4. Linear theory: results
The behaviour of the eigenvalues of the linear problem has been extensively

investigated by Colombini & Stocchino (2005). In the following, their main results
are briefly summarized and a more detailed comparison with the experimental data
is performed.

Three separate eigenvalues display unstable regions in the (k − F ) space (see
figure 2): two of them can be readily associated with the formation of dunes and
antidunes, while the third describes the instability of fast sediment waves that appear
at high Froude numbers (i.e. F � 2) associated with the presence of roll-waves. The
antidune mode is characterized by a small negative celerity (upstream propagation)
while the dune mode propagates downstream (positive celerity). The free surface and
the bed oscillations are found to be approximately in phase for antidunes and out
of phase for dunes, with a small lag coherent with the corresponding direction of
migration.

For each value of the coefficient C, two critical points can be identified in the
stability plot, say (kcd , Fcd ) and (kca , Fca), which are encircled in the close-ups in
figure 2. They identify the onset of instability for each mode, since, as the Froude
number equals Fcd (Fca), the basic plane bed solution loses stability, and periodic
perturbations characterized by wavenumber kcd (kca), which represent the bedform,
grow. The critical Froude number for roll-wave instability Fcr is found in the long-
wave limit kcr → 0.

At a linear level, no dune-like disturbances are unstable above Fcd , while no
unstable disturbances are found below Fca and Fcr for the antidune and roll-wave
modes, respectively. On the basis of the critical Froude numbers Fcd , Fca and Fcr , a
map of the linear regions of instability for dunes, antidunes and roll-waves can thus
be obtained in the (C − F ) space, as shown in figure 3.

Five distinct regions can be identified in the plot. The lowermost region is
characterized by values of the unperturbed Shields stress lower than the threshold for
sediment motion and the bed is therefore plane; as soon as the critical threshold for
motion is exceeded, dunes appear in the second region, which is bounded from above
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Figure 3. Theoretical regions of linear instability in the (C − F ) space.

by the critical Froude number for dune formation Fcd . It must be noted that the
latter decreases with decreasing C, while the threshold for sediment motion increases,
so that the two curves cross at a value of C of about 13. The region bounded from
below by Fcd and from above by Fca is the upper regime plane bed region, which
marks the transition between dunes and antidunes. Again, the two curves practically
coincide for values of C larger of 19. Finally, the antidune region is found above Fca ,
while antidune and roll-wave disturbances are both simultaneously unstable if the
last threshold Fcr is exceeded.

Although the overall pattern of instability described in figure 2 is well-known
since the theoretical work of Kennedy (1963), some interesting information emerges
from the analysis of the present theoretical results: (i) the dune region reduces in
amplitude as C decreases, so that no dunes are expected to form for C < 13, a value
which corresponds to gravel; (ii) the plane bed mode with active sediment transport
is confined within a narrow band that tends to disappear as C increases; (iii) as a
consequence, dune and antidune modes turn out to coexist for C > 19 (fine sand);
(iv) the appearance of the unstable roll-wave mode, which is hidden by the quasi-steady
approximation adopted in most analyses, provides a possible limiting mechanism for
antidune formation at high Froude numbers.

The main purpose of the present contribution is to investigate dune and antidune
instabilities and their transition towards plane bed configurations. Therefore, the
analysis of the mutual interactions between antidunes and roll-waves described at the
latest point above is beyond our present scope.

In the following, the proposed theoretical existence criteria are compared with
experimental observations. The most comprehensive collection of flume experiments
concerning finite-amplitude bedforms is the Fort Collins data set of Guy, Simons &
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Richardson (1966), which covers a wide range of grain sizes, flow depths and Froude
numbers. Among the variety of bedforms observed during the experiments, data
classified as dune, plane bed, antidune and transitional are all relevant for the present
analysis.

As noted by Engelund (1970), the comparison of the results of the stability analysis
with experimental observations is difficult because data are collected when bedforms
have reached a fully developed state, whereas the starting point for the stability
analysis is the basic state, i.e. a uniform flow in an infinitely wide plane bed channel.
The presence of bedforms induces considerable changes of the flow resistance due
to form drag, so that, even at a constant discharge, slope and depth of the final
equilibrium state could be considerably different from the initial plane ones. In this
regard, some of the experiments of Guy et al. (1966) were conducted keeping constant
both the flow discharge and the flow depth and letting the slope adjust itself to the
increased resistance due to the presence of bedforms so that the Froude number
remained unchanged. For some other runs, however, the slope was kept constant
either by adjusting the flow depth or the discharge, or both.

In any case, since all the information collected by Guy et al. (1966) is relative to
the final experimental configurations, an equivalent uniform flow has been sought
to the one characterized, in the same channel, by the same flow depth H ∗ and area
velocity V ∗ as measured at the end of the run, thus disregarding information on the
measured slope and friction coefficient. In other words, following a well-established
approach that dates back to Meyer-Peter & Müller (1948), the measured slope of the
energy grade line has been partitioned into one related to form resistance and another
associated with skin friction, only the latter being of significance for the identification
of the basic flow corresponding to each experiment.

Other difficulties in the interpretation of the experimental results arise from the
presence of smooth sidewalls in the experiments and by the heterogeneity of the
sediment mixtures used, both affecting skin friction. To overcome these difficulties a
procedure similar to that proposed by Wong & Parker (2006), which ultimately led
to the modified version of the Meyer-Peter & Müller relationship (2.14), has been
applied to each experimental run.

It may be useful at this point to briefly summarize the salient assumptions on which
this procedure is based.

Starting from the Darcy–Weisbach equation (Rouse 1946):

V ∗ =

√
8gr∗S

f
, (4.1)

where f is the total Darcy–Weisbach friction coefficient and r∗ is the hydraulic radius,
the cross-section is partitioned into a bed and a wall region, each characterized by
the same value of the energy slope S and mean velocity V ∗ (Vanoni & Brooks 1957).

If (4.1) is then applied to each region we obtain:

r∗
b

fb

=
r∗
w

fw

=
r∗

f
, (4.2)

where the subscripts b and w refer to the bed and wall region, respectively.
The friction coefficients of the wall and bed region (fw, fb) are then related to

the corresponding hydraulic radii through the Keulegan equations (ASCE 1963) for
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smooth and rough flow, respectively:√
8

fw

=
1

κ
ln

(
Rw

√
fw

3.41

)
,

√
8

fb

=
1

κ
ln

(
11.09r∗

b

k∗
s

)
, (4.3)

where Rw = Rr∗
w/r∗, R is the Reynolds numbers computed by using a characteristic

length of 4r∗, and the roughness height k∗
s has been set equal to 2.5d∗

50 in analogy
with (2.4).

Finally, water continuity applied to the case of a rectangular cross-section with
wetted perimeters B∗ and 2H ∗ for the bed and wall regions, respectively, yields:

r∗ =
B∗r∗

b + 2H ∗r∗
w

B∗ + 2H ∗ . (4.4)

For any given value of the depth-averaged velocity U ∗ and of the flow depth H ∗,
the system composed by (4.2)–(4.4) constitutes an implicit closed set in the unknowns
f, fw, fb, r

∗
w and r∗

b , and can be solved iteratively.
Substitution of the total friction factor f into (4.1) gives an estimate of the slope

S of the energy gradient line due to skin friction alone. Moreover, once the hydraulic
radius of the bed region r∗

b is known, the corresponding plane-bed shear velocity u∗
b

as well as the coefficient Cb can been evaluated as:

u∗
b =

√
gr∗

bS, Cb =
V ∗

u∗
b

=

√
8

fb

. (4.5)

The final step in the determination of the basic state to be associated with the
experimental run consists in setting the undisturbed flow depth D∗ in our analysis

equal to r∗
b , so that u∗

b devolves to u∗
f , V ∗ to U

∗
and Cb to C. The shear stress at

the bed then becomes equal in the two configurations, which also share the same
slope S. Note that, by this choice, the bed hydraulic radius r∗

b takes the role of the
characteristic vertical length scale of the flow and it is therefore employed in the
process of non-dimensionalization of the height and wavelength of the bedforms.
The Froude number to be associated with each experimental run is augmented by
this procedure with respect to its measured value, a necessary condition for (3.5) to
hold for both flows.

The (C − F ) pairs obtained for each experiment of Guy et al. (1966) following the
above procedure have been superimposed on the theoretical regions of instability in
figure 4.

Furthermore, in order to estimate the relevance of suspended sediment transport
in the experiments, data have been classified on the basis of the Van Rijn (1984a)
criterion. Data exceeding the threshold for incipient suspension are shown in grey in
figure 4.

The comparison of the theoretical regions of instability with the experiments of
Guy et al. (1966) shows that the dune regime is predicted with satisfactory accuracy.
All the dune runs (circles) fall inside the predicted region and, in particular, the
lower boundary separates quite well dunes from no-transport plane bed data (upper
triangles). The upper boundary of the dune regime lies among experimental data of
the upper flow regime plane bed (upper triangles) and transitional bedforms (lower
triangles), the latter being defined by Guy et al. (1966) as a ‘category for flows that
mold bedforms ranging from those typical of the lower flow regime (dunes) to those
typical of the upper flow regime (plane bed, antidunes).’
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Figure 4. Theoretical regions of instability for dunes and antidunes compared with the
experimental data of Guy et al. (1966). Grey symbols indicate data exceeding the threshold
for incipient suspension.

Moreover, as C decreases, the experimental dune runs exhibit a general trend
following the predicted tendency for the dune region to reduce in amplitude, which is in
agreement with dunes hardly being observed for grain sizes larger than 5 mm (Carling,
Richardson & Ikeda 2005). As C increases, the boundary between (transitional) dunes
and the upper regime plane bed seems to be slightly overestimated by the theory (see
also Carling & Shvidchenko 2002). This may be due to the effect of suspended
sediment transport, which has been neglected in the present analysis. Although most
of the dune experiments are characterized by negligible suspension according to the
Van Rijn (1984a) criterion, the number of experimental points exceeding the threshold
for suspension clearly increases with C.

The latter consideration also applies to the antidune regime, where certainly
suspension plays a more crucial role. If, on one hand, the choice of neglecting
suspension has the merit of showing that antidunes can develop also in gravel beds
(Colombini 2004), on the other hand, it has the obvious flaw of eliminating a well-
known stabilizing effect from the analysis. The inclusion of a suspended load is
expected to raise the value of Fca (Engelund 1970) and to lower the value of Fcd

(Engelund & Fredsøe 1974) as the Shields stress θ exceeds the threshold value θs

(Van Rijn 1984a). In this regard, the regions of instability depicted in figures 3 and 4
can be thought of as the slice at θ � θs of a more complex diagram in the three-
dimensional space (C, F, θ/θs) where the experimental data are actually scattered.

A close inspection of the experimental runs concerning the upper flow regime
reveals that both antidune and plane bed solutions are observed for similar Froude
numbers in the range 0.9 <F < 1.2, so that a net separation between the two regimes
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is hardly detectable in terms of Froude number. Although the inclusion of suspension
can, in principle, modify the value of Fca , no explanation can be found at a linear
level for this overlapping. We postpone to the weakly nonlinear analysis a possible
interpretation of this observed behaviour.

Finally, the fact that transitional bedforms appear close to the critical curve Fcd ,
while finite-amplitude dunes are found for lower values of the Froude number suggests
that the bedform amplitude increases with the distance from Fcd , which is consistent
with the weakly nonlinear expansion that will be presented in the following.

5. Weakly nonlinear theory
We intend to investigate the weakly nonlinear evolution of the perturbations of the

flow-bed system in a neighbourhood of the points (kcd , Fcd ) and (kca , Fca) shown in
figure 2. We then define:

F = Fc(1 + ε2F2), k = kc, (5.1)

where the subscript c indicates either of the two critical points and F2 is a dummy
parameter that takes the value of ±1.

In order to investigate the nonlinear behaviour of the system we employ a multiscale
perturbation technique and define a ‘slow’ time scale T such that:

T = ε2τ,
∂

∂τ
→ ∂

∂τ
+ ε2 ∂

∂T
. (5.2)

Nonlinearity gives rise to interactions between the fundamental and itself that lead
to the generation of higher harmonics. Following the above cascade process, the
fundamental is reproduced at third order. Hence, to prevent the occurrence of secular
terms, the slow time dependence of the amplitude of the fundamental must also
produce a contribution at the same order.

We then expand the solution in the form:

G(ξ, η, τ, T ) = G0 + εG1 + ε2G2 + ε3G3, (5.3)

and collect terms at the various order of approximation in ε.

5.1. O(ε1)

At the linear level, the structure of the solution is analogous to (3.2):

G1 = A(T )G11 exp[ikc(ξ − Ωcτ )] + c.c., (5.4)

where the complex function A(T ) is now a ‘slowly varying’ function of time to be
determined.

The differential system (3.8) is recovered, with Ω = Ωc and k = kc, and its solution
proceeds as described in § 3. As expected, no information is gathered on the amplitude
A at this level of approximation.

5.2. O(ε2)

The structure of the solution at the next order follows from an analysis of the
interaction of the fundamental with itself and considering (5.1):

G2 = {A2G22 exp [2ikc(ξ − Ωcτ )] + c.c.} + AA∗G20 + F2G20F . (5.5)

Three separate differential problems are then obtained at this order, the solutions
of which follow a slightly different procedure. We start to form the 22-system which
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can be written as:

L22 Z22 − D22 D22 − R22 R22 = P22, (5.6)

where the linear differential operator L22 is obtained from L11 substituting k with
2kc. Applying the same substitution to D11 and R11 leads to the vectors D22, R22.
Finally, the vector P22 is a lengthy function of η given in Appendix B.†

We then expand the solutions as in (3.9) obtaining:

Z22 = c
(1)
22 Z(1)

22 + c
(2)
22 Z(2)

22 + D22 Z(D)
22 + R22 Z(R)

22 + Z(P )
22 , (5.7)

and solve the resulting homogeneous and non-homogeneous differential problems:

L22 Z(1,2)
22 = 0, L22 Z(D)

22 = D22, L22 Z(R)
22 = R22, L22 Z(P )

22 = P22. (5.8)

The boundary conditions at the free surface plus the Exner equation eventually
produce the non-homogeneous algebraic system:

U22 · C22 = U (P )
22 , C22 =

(
c

(1)
22 , c

(2)
22 , D22, R22

)T
, (5.9)

the solution of which determines the unknowns constants C22. As for the
corresponding linear differential operator, the array U22 is obtained from U11

substituting k with 2kc while the vector U (P )
22 is given in Appendix C.†

A slightly different treatment is required to handle the 20 and 20F systems, which
represent nonlinear distortions of the basic uniform flow arising from the interactions
of the fundamental with its complex conjugate and by the perturbations of the Froude
number in (5.1), respectively. They can be written as:

L20 Z20 −D20 D20 −S20S20 = P20, L20 Z20F −D20F D20 −S20F S20 = P20F , (5.10)

where the linear differential operator L20 is obtained from L11 for vanishing k, while
the terms proportional to S20 and S20F arise from the perturbation of the gravity term
in (2.1). The vectors D20, S20 and P20F are:

D20 = −I20, S20 = S−1
0 I20 P20F = −2I20, I20 = (0, 0, 1, 0)T , (5.11)

while the vector P20, which involves interactions of the fundamental with its complex
conjugate, is given in Appendix B.

At this point, it may be useful to point out the kind of experiment implied by (5.1).
Since the friction coefficient C is assumed to be held constant, perturbing the Froude
number corresponds, owing to (3.5), to a perturbation S20F of the average slope. We
are then considering a uniform flow that is slightly perturbed with respect to the
critical conditions, preserving the uniform flow depth and depth-averaged velocity
and letting the slope adjust according to (3.5). In strict analogy, the interaction of
the fundamental with its complex conjugate produces a correction S20 proportional
to AA∗.

The conservation of the basic unperturbed flow depth and depth-averaged
velocity formally corresponds to the imposition of two integral conditions that are
automatically satisfied for the systems 11 and 22 and imply, for the systems at hand,
that U 20, U 20F , D20 and D20F vanish.

We then expand the 20 and 20F solutions as:

Z20 = c
(1)
20 Z(1)

20 + c
(2)
20 Z(2)

20 + S20S
−1
0 Z(I )

20 + Z(P )
20 , (5.12)

Z20F = c
(1)
20F Z(1)

20 + c
(2)
20F Z(2)

20 +
(
S20F S−1

0 − 2
)

Z(I )
20 , (5.13)

† Appendices B and C are available as a supplement to the online version of the paper.
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and solve the resulting differential problems:

L20 Z(1,2)
20 = 0, L20 Z(I )

20 = I20, L20 Z(P )
20 = P20. (5.14)

As far as the boundary conditions at the free surface are concerned, we remark
that the kinematic boundary condition degenerates and is formally replaced by the
integral condition on the depth-averaged velocity. In addition, since the bed neither
aggrades nor degrades under uniform flow conditions, the Exner equation does not
provide any further information at this order and, without loss of generality, we can
safely set R20 = R20F =0.

The dynamic boundary conditions at the free surface plus the integral condition
on the depth-averaged velocity produce two non-homogeneous algebraic systems,
namely:

U20 · C20 = U (P )
20 , C20 =

(
c

(1)
20 , c

(2)
20 , S20

)T
, (5.15)

U20 · C20F = U (I )
20F , C20F =

(
c

(1)
20F , c

(2)
20F , S20F

)T
, (5.16)

which are readily solved in the unknowns C20 and C20F . The matrix U20 and the
vectors U (P )

20 , U (I )
20F are given in Appendix C.

5.3. O(ε3)

At third order, the spatial dependence of the fundamental is reproduced and therefore
we can write:

G3 = G31 exp[ikc(ξ − Ωcτ )] + A3G33 exp[3ikc(ξ − Ωcτ )] + c.c. (5.17)

The related differential systems read:

L11 Z31 − D31 D11 − R31 R11 =
dA

dT
P (1)

31 + A2A∗ P (3)
31 , (5.18)

L33 Z33 − D33 D33 − R33 R33 = A3 P33, (5.19)

where the vectors P (1,2,3)
31 and P33 are functions of η expressed in terms of products

of basic- , leading- and second-order components of the perturbations, reported
in Appendix A. The linear differential operator L33 is again obtained from L11

substituting k with 3kc.
The solution of the 33-system follows the same procedure as outlined in the previous

subsection for the 22-system. Once again, the solution is expanded as:

Z33 = c
(1)
33 Z(1)

33 + c
(2)
33 Z(2)

33 + D33 Z(D)
33 + R33 Z(R)

33 + Z(P )
33 , (5.20)

and the solution of the non-homogeneous algebraic system:

U33 · C33 = U (P )
33 , C33 =

(
c

(1)
33 , c

(2)
33 , D33, R33

)T
, (5.21)

allows for the determination of the constants C33. The matrix U33 is obtained from
U11 by replacing k with 3kc and the vector U (P )

33 is given in Appendix C.

As far as the 31-system is concerned, once the particular solutions Z(P1,P2,P3)
31 of the

non-homogeneous differential systems:

L11 Z(P1,P2,P3)
31 = P (1,2,3)

31 , (5.22)

are obtained, the boundary conditions at the free surface and the Exner equation can
be cast in a similar way as (3.13) to give:

U11 · C31 =
dA

dT
U (1)

31 + AF2U (2)
31 + A2A∗U (3)

31 , (5.23)
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where the second term on the right-hand side is generated by the boundary conditions
and by the Exner equation.

The homogeneous part of the algebraic system (5.23) admits of a non-trivial
solution so that a solvability condition has to be satisfied, which can be found by
imposing that the determinant of the matrix obtained by substituting the right-hand
side of (5.23) into the last column of U11 must vanish. Having set:

δi = det
(
U(i)

11

)
, (5.24)

where the arrays U(i)
11 are obtained substituting the vector U (i)

31 into the last column of
U11, the following Landau–Stuart amplitude equation is readily obtained:

δ1

dA

dT
+ δ2F2A + δ3A

2A∗ = 0. (5.25)

After some manipulations, the above equation can be rewritten as:

d|A|
dT

= |A|(α1F2 + α2|A|2), (5.26)

where:

α1 = −Re

(
δ2

δ1

)
α2 = −Re

(
δ3

δ1

)
, (5.27)

and, from now on, the symbol ‖ will be omitted for simplicity.
The coefficient α1 is found to be proportional to the derivative of the imaginary

part of the growth rate with respect to the Froude number. In turn, as expressed by
(3.12), the growth rate is proportional to the phase-lag between the bed shear stress
and the bed itself. Thus, α1 is a measure of how fast the phase-lag increases with the
Froude number in a neighbourhood of critical conditions. On the contrary, a physical
explanation of the Landau coefficients α2 is not readily available.

In light of the following discussion on the results of the weakly nonlinear analysis
for the case of dunes and antidunes, it is worth examining briefly the kind of
bifurcations that are described by the Landau–Stuart equation (5.26).

If the coefficient α2 is dropped, an exponential behaviour for A(T ) is recovered with
α1F2 representing the linear growth rate of the perturbation. Nonlinearity, expressed
by the coefficient α2 might inhibit the exponential growth so that an equilibrium
amplitude is eventually attained as T → ∞.

Equation (5.26) admits of two steady solutions: the trivial one, A1 = 0, and the
solution:

A2 =

√
−α1F2

α2

. (5.28)

For the A2 solution to exist, the coefficient α2 must not vanish, a condition that
identifies the so-called ‘tricritical point’, and it must have opposite sign with respect
to the product α1F2. If α2 is negative, the bifurcation is termed supercritical and
an equilibrium solution is found for positive values of the linear growth rate. On
the contrary, when α2 is positive, the bifurcation is termed subcritical. In this case,
the cubic term in (5.26) is unable to balance the linear exponential growth of the
perturbations; rather, the A2 solution exists for perturbations that linearly decay
(hence the definition of ‘subcritical’). The linear stability of the solutions A1 and A2

is readily investigated: the trivial solution is stable for negative values of α1F2 and
loses stability crossing the bifurcation point F2 = 0; the A2 solution is always stable
when the bifurcation is supercritical and unstable when it is subcritical.
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Figure 5. Bifurcation diagrams for the Landau–Stuart amplitude equation; solid lines
represent stable solutions, dashed lines unstable solution. (a) Supercritical bifurcation, cubic
equation, α2 < 0. (b) Subcritical bifurcation, cubic equation, α2 > 0. (c) Subcritical bifurcation,
quintic equation, α2 > 0 and α3 < 0.

The bifurcation diagrams for the supercritical and subcritical cases are shown in
figures 5(a) and 5(b), respectively. In the latter case, no stable bifurcating solutions
exist beyond F2 = 0, thus implying that the amplitude equation in the form (5.26) is
inadequate to describe the nonlinear dynamics of such perturbations. In the subcritical
case, the analysis must be pursued to higher order in order to locate the damping
mechanism. If a fictitious quintic-order term is added to the amplitude equation as
in:

dA

dT
= A(α1F2 + α2A

2 + α3A
4), (5.29)

the subcritical bifurcation diagram changes (figure 5c). A stable finite-amplitude
solution is now present above the bifurcation point. Moreover, in the interval
α2

2/(4α3) <α1F2 < 0 both, the trivial and the bifurcating solutions are simultaneously
stable and can be reached depending on the amplitude of the initial disturbance.

6. Weakly nonlinear theory: discussion of results
We now apply the bifurcation analysis presented in the previous section to the

study of dune and antidune instability.
Tricritical points, which mark the change of state of the bifurcation from subcritical

to supercritical, exist along both the critical Fcd and Fca curves. However, they
are found at such extreme values of the dimensionless conductance coefficient
(C = 11, f = 0.066 for antidunes and C =24, f = 0.014 for dunes) that, for values
of C of practical interest, dune bifurcation can consistently be taken as supercritical
whereas antidune bifurcation is subcritical.

Therefore, an equilibrium amplitude can be identified for dune instability while
no information can be gathered on antidunes at the present level of approximation.
In this respect, a quintic-amplitude equation might be sought to determine a stable
asymptotic solution according to the mechanism outlined at the end of the previous
section. However, rather than pursuing the weakly nonlinear analysis to the fifth
order, the inclusion of suspension into the sediment transport model seems to be
the first task to be addressed. In fact, previous stability analyses (Engelund 1970;
Engelund & Fredsøe 1974) have shown that a suspended load has a significant
influence on antidune development and is therefore potentially capable of modifying
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Figure 6. Sketch of bottom topography at various orders of approximation in ε; (a)
fundamental; (b) effect of second-order terms; (c) effect of third-order terms. Vertical scale is
enhanced. C = 22, ε = 0.1.

the linear threshold for antidune instability, the position of the related tricritical point,
or both, thus altering the whole bifurcation picture.

Even in bedload dominated context such as the one examined herein, the fact that
antidune instability is subcritical suggests a possible explanation for the observed
overlapping between upper flow plane bed and antidune solutions (see figure 4 and
the related discussion). In fact, close to Fca , both the plane-bed and the antidune
solutions could be simultaneously stable. On the contrary, no overlapping exists at
Fcd between the dune and the upper plane bed regimes since dune instability is
supercritical in the range examined.

The supercritical nature of the dune bifurcation allows then for an immediate
verification of the results of the weakly nonlinear analysis in terms of shape and
amplitude of the bedforms. In fact, for any given set of the model parameters, all
variables of the flow-bed system can be reconstructed from (5.3) once the equilibrium
amplitude is obtained.

In figure 6, an example of a dune bed profile is shown, where the expansion is
truncated at different orders of approximation in ε. The shape of the linear wave
solution is shown in figure 6(a). As the nonlinear O(ε2) correction is added to the
fundamental (figure 6b), an asymmetric bed profile is found, with a steeper front
and a more gentle slope upstream of the crest. This is due to the action of the R22-
component, which leads the fundamental, thus moving the crest downstream. This
effect is enhanced by the third-order component R33 (figure 6c), which also eliminates
the kink observed on the stoss side of the dune, producing a more realistic concave
profile that becomes almost flat as the dune crest is approached (Allen 1968; Carling
et al. 2000). Note that the third-order contribution to the bedform amplitude is almost
negligible.

The tendency of dunes to create steep fronts as they develop, besides being evident
from observations, was substantiated by Reynolds (1965), who suggested that, in
general, the steeper faces of bed perturbations are those facing in the direction of
motion. The steepening role of the second harmonic has been outlined by Fredsøe
(1974) in his analysis of second-order interactions and is recovered here in the formal
context of a weakly nonlinear theory.

Following the same procedure, the perturbed flow field up to O(ε3) is plotted in
figure 7, in terms of the streamfunction Ψ , defined in a reference frame moving with
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Figure 7. Perturbed streamfunction up to O(ε3). Thicker lines indicate clockwise rotation,
thinner lines counterclockwise rotation. C = 22, ε =0.1.

the dune celerity as:

∂Ψ

∂y
= U − Ωc,

∂Ψ

∂x
= −V. (6.1)

This secondary flow is driven by depth variations, which are generated by the phase
shift between the free-surface and the bed oscillations.

Two counter-rotating cells emerge, which reflect the asymmetry of the flow domain
since an upwelling flow is found over the dune crests and a downwelling flow over
the troughs. This results in a more intense secondary flow downstream of the crest.
No recirculating flow is obtained, as expected, in the lee of the dune.

This feature deserves some attention since the role of separation in dune
morphodynamics has long been debated (see Best 2005, and references therein).
If, on one side, flow separation behind the crest certainly affects the local shear stress
distribution and the sediment transport, on the other side, the present results indicate
that dunes of finite, though small, height evolve towards an asymmetric shape and
reach an equilibrium amplitude even in the absence of flow separation.

The acceleration/deceleration of the flow associated with the sequence of
contractions and expansions above the dune is critical in controlling the shape of
the bed surface through nonlinear interactions. In particular, the relative amplitude
and phase of the R22-component, which are responsible for the asymmetric shape of
the dune (see figure 6), are again related to the phase-lag between shear stress and
sediment transport that, at linear level, drives the whole instability process.

Finally, a comparison between theoretical predictions and laboratory observations
of dune amplitude is presented in figure 8. The theoretical dune height At is defined
as the difference between the maximum and minimum bed elevations within a dune
wavelength, approximated at O(ε2). We recall that the experimental amplitudes Ae are
scaled by the hydraulic radii of the bed region, evaluated by the procedure outlined
in § 4.

About one hundred runs relative to fully developed dunes have been extracted from
the experimental dataset of Guy et al. (1966). Runs cover a wide range of grain sizes
(0.19–0.93 mm), Froude numbers (0.25–0.7) and dimensionless conductance coefficients
(16–22). Nearly one third of the runs (grey markers in figure 8) are characterized by
significant transport in suspension according to the Van Rijn criterion.

The order of magnitude of the bedform amplitudes is captured well by the weakly
nonlinear model. Even though data display an appreciable scatter around the line of
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Figure 8. Comparison between theoretical (At ) and experimental (Ae) dune height. Dune
experiments of Guy et al. (1966).

perfect agreement, about 70 % of them are affected by an error of less than ±50 %.
The largest group of data falling outside of the 50 %-error band, which are sharply
overestimated by the theory, refer to conditions quite close to the critical threshold
for sediment motion. About this particular set of experiments, the notes of Guy et al.
(1966) clearly keep track of the low bedload, since not all the sediment moved and
the bed was plane except for ‘very small’ and ‘very low’ dunes that occurred close to
the walls and ‘tapered down’ to the plane bed.

As far as the theoretical results are concerned, it must be pointed out that the weakly
nonlinear solution is expanded in the neighbourhood of the critical point Fcd , where
the α1 and α2 coefficients, and so the equilibrium amplitude A, are evaluated. Hence,
as the Froude number is lowered, the theoretical amplitude increases regardless of the
approach of the no-motion threshold. Furthermore, the small parameter ε increases
according to (5.1) and the weakly nonlinear solution becomes less reliable. In this
regard, we remark that, for all the data analysed, the maximum values of ε do not
exceed 0.75. Although the expansion is found to be strictly convergent for ε � 0.3, a
satisfactory agreement is displayed in figure 8 even for higher values of ε. Moreover,
the quantity εA is always lower than 0.03, so that the O(ε3A3) corrections, which have
been neglected in the evaluation of the theoretical dune amplitude, are reasonably
small.

Note that an increase of the amplitude with decreasing Froude number is displayed
also by the functional relationship of Van Rijn (1984b), which, far from the no-motion



Finite-amplitude river dunes 303

threshold, can be approximated as

At = K(25 − T ), T =
θ − θc

θc

, θ =
F 2

C2(s − 1)ds

, (6.2)

where the constant K depends on the dimensionless grain size ds .
Finally, no particular differences are detected in the accuracy of the predictions for

runs characterized by a relevant suspended sediment transport with respect to bedload
only data, an indirect confirmation that dune morphodynamics is only moderately
affected by suspension.

7. Conclusions
Dune and antidune instability have been investigated both in the linear and

weakly nonlinear regimes. The results of the linear analysis extend those presented
in Colombini (2004) and Colombini & Stocchino (2005). In particular, the regions of
instability for dunes and antidunes in the (C − F ) space have been derived and tested
against the experimental dataset of Guy et al. (1966). Experimental runs for fully
developed dunes fit fairly well into the theoretical regions of instability. The tendency
for dunes to disappear as the non-dimensional grain size increases is predicted. On the
contrary, the transition from plane bed to antidunes is not satisfactorily described at a
linear level, partly because suspended sediment transport has been ignored. A further
experimental observation still requiring a sound explanation is the absence of a net
separation between upper flow plane bed solutions and antidunes, at least for Froude
numbers below 1.2. The present approach suggests that a hysteresis loop might occur.
In fact, the bifurcation analysis performed in the weakly nonlinear context shows
that antidune bifurcation is subcritical in character. However, a conclusive answer
in this regard cannot be sought within the present formulation since a higher-order
bifurcation analysis would be required.

On the contrary, dune instability is found to be consistently supercritical and this
allows for the determination of an equilibrium amplitude.

Bed perturbations display, as they grow, a tendency to form steeper lee fronts and
milder stoss sides. For small values of the parameter ε, the theoretical bed profile at
equilibrium reproduces well the main geometrical features of low-amplitude dunes.
The present theory can therefore describe finite-amplitude dune growth when the
steepness of the front at equilibrium remains small enough to prevent flow separation
at the crest. In this case, the phase-lag between flow and bed topography is confirmed
to be the mechanism controlling dune formation and nonlinear evolution. Moreover,
a satisfactory agreement between theoretical predictions and laboratory observations
of dune height is found, which suggests that the present weakly nonlinear model can
provide a rough estimate of dune amplitude even for larger values of ε (i.e. for larger
steepnesses), although the question of how separation affects dune development as
the steepness of the front increases remains open.

We are fully aware that our results provide a simplified representation of the
flow and sediment transport over dunes, as it emerges from laboratory and field
observations. This is partly due to the intrinsic limitations of the perturbative approach
adopted. In fact, convergence of the power expansion (5.3) is ensured only in a
neighbourhood of the critical conditions. Moreover, separation in the leeside of the
dune can be handled satisfactorily only by means of a fully nonlinear numerical
solution. On the other hand, the present analysis could be extended to include
further effects that might be relevant in order to improve the overall description
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of the phenomenon. In this regard, some suggestions have already been mentioned
throughout the paper. Among others, the inclusion of suspension and the analysis of
wave-packet evolution seem to be the most promising.

Nonetheless, in spite of these limitations, we feel that a further step has been
taken in the direction of a predictive theory for dune and antidune finite-amplitude
evolution, which could eventually lead to a rational estimate of dune height in terms
of the main flow and sediment parameters. In particular, we hope that the present
work may contribute to addressing at least a few of the many challenging questions
raised by the ASCE Task Committee on Flow and Transport over Dunes (ASCE
2002).

This research has been partially supported by the Fondazione Cassa di Risparmio
di Verona, Vicenza, Belluno ed Ancona (Project MODITE).

Appendix A
The linear differential operator L11 in (3.8) is:

L11 =

⎛
⎜⎜⎜⎝

d/dη ik/2 −1/(2νT 0) 0

ik d/dη 0 0

UΩ
0 − 4k2νT 0 −U ′

0 d/dη ik

0 UΩ
0 ik d/dη

⎞
⎟⎟⎟⎠ (A 1)

while the vectors D and R are, respectively:

D11 =

⎛
⎜⎝

0
ikU ′

0η

UΩ
0 U ′

0η − 2k2η(1 − η) − 1
ikη − 2ik(1 − η)

⎞
⎟⎠ R11 =

⎛
⎜⎝

0
ikU ′

0

UΩ
0 U ′

0 − 2k2(1 − η)
ik

⎞
⎟⎠ (A 2)

where UΩ
0 = − ik(U0 − Ω) and primes stand for derivatives with respect to η.

The array U11 in (3.13) is equal to:⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎣

V
(1)
11 V

(2)
11 V

(D)
11 + UΩ

0 V
(R)
11 + UΩ

0

T
(1)
t11 T

(2)
t11 T

(D)
t11 T

(R)
t11

T
(1)
n11 T

(2)
n11 T

(D)
n11 + S−1

0 T
(R)
n11 + S−1

0

⎤
⎥⎦

1[
T

(1)
t11 T

(2)
t11 T

(D)
t11 T

(R)
t11 − ΩF0

Qθr0
− ikμ

θr0

]
ηb

⎞
⎟⎟⎟⎟⎟⎠ . (A 3)
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