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Abstract

The action of wind blowing over a closed basin ultimately results in a steady shear-induced circulation pattern and in a leeward

rising of the free surface—and a corresponding windward lowering—known as wind set-up. If the horizontal dimensions of the

basin are large with respect to the average flow depth, the occurrence of local quasi-equilibrium conditions can be expected, i.e.

the flow can be assumed to be locally driven only by the wind stress and by the opposing free surface gradient due to set-up. This

wind-induced flow configuration shows a strong similarity with turbulent Couette–Poiseuille flow, the one dimensional flow between

parallel plates generated by the simultaneous action of a constant pressure gradient and of the shear induced by the relative motion

of the plates. A two-equation turbulence closure is then employed to perform a numerical study of turbulent Couette–Poiseuille

flows for different values of the ratio of the shear stresses at the two walls. The resulting eddy viscosity vertical distributions are

analyzed in order to devise analytical profiles of eddy viscosity that account for the effect of wind. The results of this study, beside

allowing for a physical insight on the turbulence process of this class of flows, will allow for a more accurate description of the wind

effect to be included in the formulation of quasi-3D and 3D models of lagoon hydrodynamics.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Water quality modelling in natural or artificial water

bodies like lakes, reservoir, estuaries and coastal zone

requires the prior knowledge of the circulation flow.

The transport of a passive or active pollutant can be de-

scribed with sufficient accuracy if the hydrodynamics is

known. The simulation of more complex phenomena,
like sediment transport, involves the evaluation of the

shear stress acting on the bed, which in turn is able to

modify the shape of the domain in which the flow itself

evolves.

Mathematical models based on the shallow-water

approximation have quite a long tradition for the solu-
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tion of this class of flows, due to the sharp separation

between the vertical and the horizontal spatial scales

that allows for solving the problem in terms of the

depth-averaged horizontal velocity components, disre-

garding the role of the vertical velocity.

However, the knowledge of the vertical velocity and,

more important, of the vertical profiles of the horizontal

velocities has soon become a pressing need for the study
of some practical engineering problems, like the oil-spill

movement or the transport of a passive contaminant or

the suspended sediment dynamics, which strongly de-

pend on the vertical structure of the flow. Apparently

the only answer to these problem is the solution of the

full set of the 3D Reynolds equation, a task that how-

ever, even nowadays, can be prohibitive in terms of

computer time.
In an attempt to reconcile the requirement of a more

detailed solution with the slenderness and robustness

of 2D models, a new generation of numerical models,
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which can be identified as a whole as quasi-3D (Q3D),

appeared in the late 80s [10,23a]. These models are char-

acterized by a primary module solving the 2D shallow

water equation coupled to a secondary module that is

fed with the local values of the averaged horizontal

velocities and flow depth and, through the identification
of a suitable vertical structure of the flow, allows for the

determination of some quantities (namely the bed shear

stress), which are then fed back to the main module [8].

In a way, even standard 2D models can be thought as

Q3D models, since the usual choice of modelling the

bed shear stress as proportional to the square of the

depth-average velocity through a friction Chezy coeffi-

cient is consistent with the assumption of a vertical log-
arithmic profile of the velocity and of a parabolic

vertical structure of the eddy viscosity.

A realistic 3D flow can thus be obtained at a much

less computational cost with respect to conventional

3D models. Of course, simplifying assumptions have

to be made about the vertical structure of the flow,

but the two dimensional imprint of this class of flows

is retained. Moreover, a rigorous derivation of the shal-
low water equations shows that, in the process of aver-

aging the 3D Reynolds equations, new ‘‘stresses’’

appear that require a suitable closure hypothesis to be

modelled. In fact, similarly to the appearance of Rey-

nolds stresses in the averaging of Navier–Stokes equa-

tion, the nonlinearity of the advective terms produces

the so-called ‘‘dispersive stresses’’ that are related to

the vertical nonuniformity of the horizontal velocities.
Dispersive stresses, together with the depth-averaged

values of the Reynolds stresses acting on vertical planes,

are usually disregarded in conventional 2D models, or,

at most, they are modelled as a whole introducing a dif-

fusive �viscous� term. However, the presence of such a

term is justified more on the ground of numerical insta-

bility control than on a physical basis. The a priori

knowledge of the vertical profiles of velocity and eddy
viscosity allows for a rigorous derivation of all the un-

known stresses in the shallow water equations [5].

Many Q3D models have been formulated for the case

of wind-driven circulation flow. Wind and tide are the

main causes of circulation flow in small basins but while

2D models proved successful in the modelling of tide-

generated flow, the numerical predictions of wind-

induced circulation pattern and of the so-called set-up
were not as satisfactory [15].

The success of standard 2D models in modelling tide-

generated flow can be ascribed to the fact that in this

case a condition of local equilibrium holds such that

the logarithmic vertical profile of the horizontal veloci-

ties can be confused with its depth-averaged value and

the bed shear stress quadratically depends on the

depth-averaged velocity through a friction coefficient.
The actual occurrence of this local equilibrium is en-

sured by the slow variation of all the quantities (and
in particular of the free surface slope) in the horizontal

directions when scaled with the local flow depth.

However, both theoretical analyses and field or labo-

ratory measurements show that the way velocity profiles

develop for the case of tidal and wind-induced circula-

tion is remarkably different. In particular, flow reversal
can be often detected along the vertical in the latter. If

this is the case, the displacement of the local velocity

with respect to its depth-averaged value can be large

and dispersive stresses cannot be assumed to be negligi-

ble. Moreover, the quadratic dependence of the bed

shear stress from the depth-averaged velocity through

a friction coefficient, widely adopted in the simulation

of shallow flows in the absence of wind, cannot be sim-
ply generalized to wind-driven flows.

Purpose of the present paper is to investigate the ver-

tical structure of wind-driven flows and in particular to

propose a new analytical relationship for the vertical

profile of the eddy viscosity aiming at the formulation

of a new quasi-3D model for flow generated by both

wind and tide. As for the case of tide-generated flow,

local equilibrium condition are sought and analyzed in
terms of self-similar vertical profiles of eddy viscosity

and velocity.

The next section is therefore devoted to the analysis

of local equilibrium condition and of the analogy be-

tween these equilibrium profiles and flows of the Cou-

ette–Poiseuille (C–P) family. Then, in Section 3 the

problem of turbulent C–P flow is formulated and the

turbulent closure model adopted is presented. A com-
parison of the numerical results with the experimental

data on C–P flows of El Telbany and Reynolds [4] is

attempted in the following section, showing that the

numerical model perform well for this flow configura-

tion. Then, in Section 5 a discussion of the results in

terms of eddy viscosity profiles is presented, together

with some proposals for an analytical interpretation of

the numerical results.
2. The Couette–Poiseuille flow analogy

In our search of self-similar profiles we focus on uni-

dimensional wind-driven flows slowly varying in the lon-

gitudinal direction. A typical example is the so-called

countercurrent flow, the kind of flow that shows up in
a long and narrow (with respect to flow depth) closed

channel where a constant wind is blown in the longitu-

dinal direction.

This simple flow reproduces many features of 2D

wind-driven flows, namely the formation of a set-up of

the free surface in the wind direction, and it has been

therefore widely studied both experimentally [2,7,20]

and theoretically [10,19,23a,23b].
Nevertheless, for the purpose of identifying self-simi-

lar configurations, the countercurrent flow can be an
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oversimplified example. In fact, continuity forces zero-

mean velocities along the whole channel, a situation that

locally occurs in the more general case of 2D wind-in-

duced flow, but is undoubtly a very peculiar one. Care

must then be used when extending results, namely the

eddy viscosity vertical distribution, obtained from the
analysis of zero-mean countercurrent flow to situation

in which the depth-averaged value of velocity is not

zero.

In a depth-varying cross-section, vertical profiles of

velocities are quite different moving along the transverse

direction. Fig. 1 shows the free surface elevation and the

depth-averaged flow pattern, while Fig. 2 depicts the

vertical pattern of the longitudinal velocity, recon-
structed from Wu and Tsanis� Q3D solution [23a] in a

closed basin with trapezoidal cross-section. In the shal-

low regions close to the lateral banks flow velocity is al-

ways positive (i.e. in the wind direction), while a reverse
Fig. 1. Wind set-up and depth-averaged circulation pattern in a square

basin of trapezoidal cross-section. Wind is blowing from left bottom to

right top.
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Fig. 2. Counter plot of the cross-sectional pattern of the downwind

component of velocity in the basin of Fig. 1, reconstructed from [23a].

Thinner and thicker isolines represent positive (leeward) and negative

(windward) values of the velocity respectively.
flow occurs in the central region. Zero-mean flow only

appears at two symmetrical locations in the cross-

section, corresponding to the center of the two counter-

rotating cells of the depth-averaged circulation pattern.

Since the presence (or the absence) of flow reversal

strongly affect the eddy viscosity distribution [8], a more
general example than that of countercurrent flow has to

be considered.

A condition that can be safely assumed to be valid in

any region of the basin, with the only exception of the

area close to the leeward and windward banks where

the flow is strongly three-dimensional, is that of a linear

distribution of the shear stress along the vertical. The

shear stress can be thought as due to the superposition
of two contributions, a constant one due to the wind

stress acting on the free surface and a linear one due

to the bed shear stress, which can be related to the free

surface slope (the wind set-up). In this case the following

equation is valid:

1

q
os
oy

¼ �g
oh
ox

ð1Þ

where q is fluid density, g the gravitational acceleration,

s the shear stress, h the free surface elevation, x and y the

longitudinal and vertical coordinates respectively.

Since the set-up is fairly constant along the transverse

coordinate, so does the vertical gradient of the shear

stress. Then, as sketched in Fig. 3, the vertical distribu-

tion of shear stress is always positive (no reversal) in the
region close to the lateral banks (a), while a negative

value of the bed shear stress (associated to flow reversal)

is expected in the central region (c). The peculiar situa-

tion of zero bed shear stress (b) marks the boundary be-

tween the two regions. Finally, note that a typical

distribution of the shear stress for the case of absence

of wind is obtained by reversing the profile of Fig. 3(b).

We are now going to cast an analogy between wind-
induced flow and the uniform flow between parallel

plates generated by the simultaneous actions of a con-

stant longitudinal pressure gradient and of the relative

motion of one plate with respect to the other. The latter,

usually referred to as flow of the Couette–Poiseuille

(C–P) family, presents a strong similarity with the flow

under examination.

We assume that along each vertical, flow is uniquely
determined by the local values of the depth-averaged

velocity U, of the depth D and of the wind stress qu2
�s,

where u*s is the friction velocity at the free surface. Fur-

thermore, we stipulate that the vertical structure of the

flow and of the turbulence characteristics are the same

that occur in the confined case, when the distance be-

tween the plates is equal to the flow depth D, the stress

transferred by the moving plate is qu2
�s and the flow rate

for unit width is UD.

In the following, turbulent C–P flows are investi-

gated. The shear stress at the moving plate, representing
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Fig. 3. Schematic of vertical shear stress distributions for different locations on the cross-section of Fig. 2.
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the action of the wind, is kept constant, varying the lon-

gitudinal pressure gradient to simulate the whole set of

flow configurations that can be encountered in wind-

induced 3D flows (see Fig. 3).
3. Formulation of the problem

Fig. 4 shows a sketch of the flow domain in which five

possible shear stress distributions, resulting from differ-

ent combinations of pressure gradient and plate velocity,

are shown. Note that either plate can be moving, having

chosen the high-stress plate as the origin for the y-axis.

To characterize the flows it is useful to introduce the

parameter c as in El Telbany and Reynolds [4], which
represents the ratio of the shear stresses at the two walls

c ¼ s2

s1

ð2Þ

where the subscripts 1 and 2 denotes the largest and

smallest wall stress respectively.

Referring to the shear stress distributions of Fig. 4,

pure Couette (a) and pure Poiseuille (e) flows are then

characterized by values of c equal to 1 and to �1, respec-

tively and, scaling the shear stress with its maximum, the

value of c is always comprised between these values. All

the configurations in which the shear stress remains po-
x, 

y

(a)(b)(c)(d)(e)

D
u

Fig. 4. Sketch of coordinate system and possible shear stress

distributions.
sitive, like in case (b), are associated with positive values

of c and are denoted as Couette-type (C) flows, while

case (d) is representative of Poiseuille-type (P) flows

(c < 0), in which the shear stress distribution always

changes sign along the vertical. Finally case (c) repre-

sents the configuration in which the shear stress at one

wall is zero (c = 0), a stress profile that resembles that
of a conventional uniform flow in the absence of wind.

In the following, the notation F+ indicates that the

generic quantity F has been made nondimensional using

the largest friction velocity u*1, the molecular kinematic

viscosity m and the fluid density q. The distance D be-

tween the plates appears then as the Reynolds number

Re = u*1D/m.

Under the above hypotheses the steady longitudinal
momentum equation can be written as

d

dyþ
ð1 þ mþt Þ

duþ

dyþ

� �
¼ � 1 � c

Re
ð3Þ

where u+ is the longitudinal velocity and mþt is the eddy

viscosity.

Eq. (3) has to be solved with boundary conditions of

no-slip (or, equivalently, with the imposition of the

shear stress) at the two walls and requires the specifica-

tion of the y+-dependence of the eddy viscosity mþt . Such
vertical profile of the eddy viscosity is one of the ex-

pected outputs of the present analysis, so no guesses

have been made on its structure and a two-equations

turbulence closure, which will be outlined in the follow-

ing, has been adopted for the solution. Note that (3) can

be integrated once leading to

duþ

dyþ
¼ sþ

1 þ mþt
¼ 1

1 þ mþt
1 � yþ

Re
ð1 � cÞ

� �
ð4Þ

Although complex turbulence closures are not suitable

for inclusion in Q3D models, they provide a consider-
able insight on the turbulence characteristics and have

therefore been used to investigate wind-driven flow.

Among others, countercurrent flow were investigated

by means of a k–L one-equation model [11] or by the

classical two-equation k–e model [17].

Two-equation turbulence closures can be used to pre-

dict a given turbulent flow with no a priori information

other than boundary conditions required in order to
achieve a solution. In other words they do not require
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any guess on both the length and the velocity character-

istic scales that locally describe the turbulence dynamics.

Despite their apparent simplicity, however, C–P flows

are a challenging test case for turbulence closures, since

some features of these flows, namely the negative pro-

duction of turbulent kinetic energy between the location
of zero shear stress and the velocity maximum in P-flows

or the situation of vanishing shear stress at a boundary,

require particular care in modeling [6].

In particular, a word of caution should be spent on a

standard application of the k–e model. As it will be

shown in Section 4, in fact, the equilibrium wall-layer

in which production and dissipation of turbulent kinetic

energy balance, disappears as the boundary shear stress
tends to vanish. The conventional k–e is very ill-behaved

in this situation since the boundary condition on the dis-

sipation rate e becomes physically uncertain. Moreover,

integration of k–e transport equations is usually not per-

formed up to the actual boundary but is instead stopped

(or started) at some point inside the wall equilibrium

layer. Modifications to the standard k–e have been pro-

posed [9] to allow for numerical integration throughout
the viscous sublayer with the aid of viscous damping

functions that, however, make the equations very stiff.

Since the present contribution is focussed on the

determination of the behaviour of the turbulent charac-

teristic scales in C–P flow more than on a detailed anal-

ysis on the local behaviour of the turbulent energy and

dissipation balances, the k–x model of Wilcox [22] has

been chosen to investigate the eddy viscosity structure
for turbulent Couette–Poiseuille flows. This model,

which will be briefly summarized in the following, is

based on two transport equations for the turbulent

kinetic energy k and for the specific dissipation x.

The eddy viscosity is assumed to be related to these

two quantities by the relationship

mt /
k
x

ð5Þ

The model of Wilcox [22] is not subject to some of the

above-mentioned shortcomings [21]. In particular, the

model equations are valid inside the viscous sublayer

with no need for artificial damping functions, thus

allowing for integration through the viscous sublayer

and for imposition of no-slip conditions at the walls.

Moreover, the model is known to accurately predict

the proper wake strength in equilibrium adverse pres-
sure gradient boundary layers [12]. Finally, the value

of the constants that appear in the model has been deter-

mined on the basis of theoretical arguments and there-

fore are assumed to be universal.

For turbulent Couette–Poiseuille flow the model

equations can be written in dimensionless form as

okþ

otþ
¼ ðPk � DkÞkþ þ o

oyþ
Kk

okþ

oyþ

� �
ð6Þ
oxþ

otþ
¼ ðPx � DxÞxþ þ o

oyþ
Kx

oxþ

oyþ

� �
ð7Þ

where time t+ plays the role of a relaxation parameter,

P ðk;xÞ ¼
aðk;xÞ

xþ
ouþ

oyþ

� �2

ð8Þ

Dðk;xÞ ¼ bðk;xÞx
þ ð9Þ

Kðk;xÞ ¼ ð1 þ rðk;xÞm
þ
t Þ ð10Þ

and finally, the eddy viscosity is defined as the ratio

mþt ¼ kþ

xþ ð11Þ

The constants appearing in the model have been chosen,

according to Wilcox [22], as

ak ¼ 1; bk ¼ 9=100; rk ¼ 1=2; ð12Þ

ax ¼ 5=9; bx ¼ 3=40; rx ¼ 1=2. ð13Þ
Eqs. (3) and (6)–(11) form a closed set. Standard [22]
boundary conditions are prescribed at each wall for k+

and x+, namely

kþ ¼ 0 at yþ ¼ 0;Re ð14Þ

xþ ¼ xþ
w at yþ ¼ 0;Re ð15Þ

where the value of xþ
w is specified as a function of the

nondimensional roughness of the wall Kþ
R

xþ
w ¼

50
Kþ
R

� �2

smooth RKþ
R < 25 ðaÞ

100
Kþ
R
R rough RKþ

R > 25 ðbÞ

8<
: ð16Þ

and the parameter R is equal to 1 for the high-stress
plate and to jcj

1
2 for the low-stress plate.

Finally, to improve numerical accuracy, a coordinate

transformation of the kind

g ¼ 1

2
1 �

ln aþ1�yþ=Re
aþyþ=Re

� �
ln aþ1

a


 �
2
4

3
5 0 6 g 6 1 ð17Þ

has been introduced that increases the number of node

points close to the boundaries depending on the small
parameter a.
4. Comparison with experimental data

In order to test the accuracy of the numerical predic-

tions, a comparison with the experimental measure-

ments of El Telbany and Reynolds [4] has been
performed. The latter set of hot-wire time-mean velocity

measurements represents the most extensive collection

of data on turbulent C–P flows. The parameter c of

the experiments covers the whole range �1 6 c 6 1.
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Fig. 5. Comparison of the calculated velocity profiles with the
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Moreover, experimental distributions of the shear stress

match quite well the linear law we are using as a starting

point for our analysis of local equilibrium. Table 1 lists

the leading features of the runs that were numerically

simulated.

In Fig. 5 a comparison of the calculated velocity pro-
files with the experimental measurements is presented.

Purposely, the same scalings that appear in the cited

work have been adopted for these plots: velocities have

been scaled with the belt velocity ub (or with the maxi-

mum velocity for the Poiseuille flow); if the high-stress

wall is fixed, u is the local fluid velocity while if it is mov-

ing, u is the relative velocity of the fluid.

The overall agreement for both P-type and C-type
flows is quite good and the error can be quantified in

a few percent.

As expected, C-type profiles have their maximum at

the wall, while the plane of maximum velocity falls in-

side the flow domain for P-type flows. For the latter

class of flows, the numerical solution, based on the

Boussinnesq hypothesis, enforces the overlapping of

the plane of maximum velocity and of the zero-stress
plane, a condition which has been questioned based on

experimental evidence [4] and on numerical prediction

[6]. However, due the flatness of the velocity profile in

this region, the differences in the location of the maxima

lead to very small differences on the calculated versus

predicted velocity profiles.

Fig. 6 shows a comparison of the calculated shear

stress distributions with the experimental measurements.
Again, the overall agreement is acceptable even though

slight differences (less than 4% when scaled with the

higher stress) were found in the calculated wall shear

stresses with respect to the experimental values, ulti-

mately leading to corresponding errors on the calculated

value of c. Note that once the flow velocities at the two

walls and the slope of the shear stress distributions are

fixed, the values of the shear stresses at the two walls re-
Table 1

Main parameters of some experimental runs of El Telbany and

Reynolds [4] used for the comparison with numerical predictions

Run D

[mm]

Ub

[ms�1]

Re = u
*1D/m u

*1

[ms�1]

u
*2

[ms�1]

c = u
*2/u*1

1 66 12.84 1257 0.282 0.282 1

2 66 12.84 1463 0.328 0.233 0.504

3 66 12.84 1614 0.362 0.1809 0.250

6 66 8.59 1396 0.313 0.0615 0.0386

7 101 17.08 � 0.6 0.04 0.0044

8 101 12.84 � 0.485 0.0229 0.00223

10 66 12.84 2515 0.504 0.03 �0.0028

11 66 12.84 3028 0.679 0.186 �0.075

12 66 12.84 3924 0.88 0.4142 �0.2215

13 66 12.84 4361 0.978 0.518 �0.2805

14 66 8.59 4285 0.961 0.67 �0.485

15 66 0 2938 0.659 0.659 �1

The original numeration of the experiments is retained.
sult from the integration of (3) and cannot be imposed a

priori.

A good representation of both the velocity and the

shear stress distributions implies, due to (4), a good rep-

resentation of the eddy viscosity behaviour as a whole.

Since the main purpose of the present contribution
was to obtain suitable eddy viscosity profiles for wind-

driven flows aiming at an algebraic interpretation of

the latter, the overall agreement of the numerical results

with the experimental values shown in Figs. 5 and 6 is

satisfactory. Indeed, more interesting from the point of

view of the physical interpretation of the results are

the semi-logarithmic plotting of the velocity profiles in

wall-coordinate presented in Figs. 7 and 8.
Fig. 7 shows the behaviour of the velocity profiles in

the neighborhoods of the high-stress wall. A substantial

collapse of both the numerical predictions and the mea-

sured data onto the logarithmic and viscous laws, shown

as dashed lines, is found. The behaviour of the velocity

close to the low-stress wall differs significantly from that
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*2 has

been used for scaling both yþ2 and uþ2 .
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Fig. 9. Semi-logarithmic plot of the production (P1,2) and dissipation

(D1,2) terms of the turbulent kinetic energy equation (6) in the vicinity
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plot, respectively.
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at the other wall, as shown in Fig. 8. In the latter the fric-
tion velocity u*2 has been used to scale both yþ2 and uþ2 .

For values of jcj of order 1 there is still a reasonable

agreement with the line that represents the logarithmic

law, while as c tends to zero, the velocity profiles curve

away. The point of departure from the logarithmic law

moves toward the wall until, when jcj is sufficiently

small, the viscous layer is reached and the logarithmic

equilibrium layer no longer exists.
This behaviour, analyzed for the first time several

years ago in some seminal studies of boundary layers

in adverse pressure gradients [16,18], is typical of flow

with negligible wall stress and is often referred to in

boundary layer theory as the ‘‘erosion’’ of the logarith-

mic layer.

We postpone to the following section the discussion

on the implications that this fact has on the turbulent
processes (namely on the eddy viscosity structure) in

the vicinity of the low-stress wall. The two plots of

Fig. 9, showing the production and dissipation terms

of the turbulent kinetic energy equation (6) in the vicin-

ity of the walls, confirm the fading of the logarithmic

layer for small values of the wall shear stress. The simu-

lation is relative to a value of c equal to 0.0044 (run 7)

and shows that close to the high-stress wall a substantial
balance between the two terms occurs, while the oppo-

site is true in the neighboring of the low-stress wall.

Note that in this situation the use of ‘‘equilibrium’’

boundary conditions at the low-stress wall would be



946 M. Colombini, A. Stocchino / Advances in Water Resources 28 (2005) 939–949
inadequate and so predictions obtained with the conven-

tional k–e model would have been rather inaccurate.
5. Algebraic eddy viscosity distributions

The eddy viscosity distributions obtained by the

numerical model have been analyzed in order to estab-

lish a suitable framework in which analytical profiles

of eddy viscosity can be devised that account for the ef-

fect of wind. Indeed, the main goals of the present con-

tribution are to show, firstly, that simple algebraic eddy

viscosity models can successfully describe the vertical

momentum exchange of wind-driven flows in shallow
basins and secondly, that care must be used in the choice

of the proper vertical distribution of the eddy viscosity

in order to handle shallow flows driven by the concur-

ring action of wind and tide.

This section is largely devoted to the analytical inter-

pretation of the behaviour of the function N(g,c) defined

as

mt ¼ u�1DNðg; cÞ ð18Þ
where u*1 is the maximum friction velocity, D is a char-

acteristic vertical scale (either the distance between the

plates or the local flow depth) and the origin of the ver-

tical axis g has been set on the high-stress boundary.

Hydraulically smooth conditions are assumed in (18),

thus neglecting the role of boundary roughness.
Fig. 10 shows the calculated profiles of the function N

for different values of c. The simulations were made with

a Reynolds number Re equal to 20000. All the calcu-

lated profiles collapse onto an almost linear behaviour

at the high-stress boundary, while sensible differences

are detectable close to the low-stress boundary as c var-

ies. The kink present in P-type profiles is due to the pres-

ence of a zero-stress plane inside the domain, a feature
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Fig. 10. Calculated profiles of the eddy viscosity function N for

different values of c as indicated in the legend. The thick solid line

represents the parabolic profile (19).
that is absent in C-type flows. The maximum value of

N varies considerably with c and is more than doubled

moving from the pure Poiseuille to the pure Couette

flow.

An obvious starting point for the analysis of alge-

braic profiles of eddy viscosity in free surface flows is
the parabolic profile

N ¼ jgð1 � gÞ ð19Þ
that is shown for comparison in Fig. 10, having set the

value of the von Kármán constant j equal to 0.4. Even

simpler model for which the eddy viscosity is constant

[10] or, at most, constant in the core region and linear
in a neighbourhood of one [13] or both [3,1] boundaries,

are not considered herein.

No dependence on c is present in (19), this resulting

from the assumption that only one turbulent velocity

scale enters the problem, in particular the wind friction

velocity [19] or the maximum between the wind and

the bottom friction velocities u*1 [8]. The dependence

on c displayed by the calculated profiles of Fig. 10 shows
that for wind-driven flow at least two turbulent velocity

scales appears simultaneously. It is then useful to define

the parameter C, which is the nondimensional friction

velocity at the low-stress boundary.

The cubic polynomial

N ¼ j½F ðCÞg þ ð1 � gÞ
gð1 � gÞ ð20Þ

is the simplest distribution that is consistent with a linear

behaviour, with different slopes, at the boundaries. The

above relationship can be formally derived assuming

that the characteristic nondimensional turbulent veloc-

ity scale, i.e. the term between square brackets in (20),

varies linearly between 1 at the high-stress boundary

and a generic, for the moment, F(C) at the low-stress

boundary.
In Fig. 11 the function F(C) obtained by a regression

on the calculated eddy viscosity in a neighbourhood of

the low-stress boundary is shown. The dashed line rep-

resents the function F(C) = C. Note that using C instead

of F(C) in (20), the cubic distribution originally pro-

posed by Signell et al. [14] is recovered.

The results presented in Fig. 11 show that the nondi-

mensional turbulent velocity scale F is equal to the local
friction velocity C only for C � O(1), while F is larger

than C and tends to unity as C ! 0. These results are

consistent with the considerations developed in the pre-

vious section based on the analysis of Figs. 7 and 8. In

particular, at the low-stress wall it has been shown that:

(i) a logarithmic layer exists for C � O(1), characterized

in term of the local friction velocity u*2; (ii) as C ! 0, the

logarithmic layer disappears.
Moreover, in the limiting case C = 0 presented in Fig.

12, the parabolic distribution (19) fits quite well the cal-

culated one suggesting that only one characteristic tur-

bulent velocity scale, namely u*1, enters the problem.
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In this case (20) reduces to the parabolic profile (19)

since F is equal to unity. Besides, using the vanishing lo-

cal friction velocity C instead of F would imply the van-

ishing of the derivative of N at the boundary, a

condition that strongly influences the whole distribution

as shown in the same figure.

It must be pointed out that the limiting case C ! 0 is

not only representative of the peculiar situation in which
the bottom stress vanishes but, most important, it con-

trols the behaviour of the eddy viscosity for the case

of vanishing wind stress or, more generally, when

u*s 
 u*b. Therefore, a better description of this limiting

case will possibly improve the performances of a Q3D

model when wind and tide participate together in gener-

ating a circulation flow.

As formulated, the distribution (20) is identical for
P-type and C-type flow characterized by the same value

of C. Fig. 10 shows that this is not the case for the core

region, while at the boundary the two symmetric (for
±c) distributions actually merge into one except for

the smallest values of C when the location of the zero-

stress plane present in P-type flows only, interferes with

the behaviour of the eddy viscosity in the vicinity of the

low-stress boundary.

Even with the proposed modifications, a cubic poly-
nomial is not able to represent some other features of

the calculated profiles shown in Fig. 10, namely the dif-

ferences between C-type and P-type flows in the core re-

gion. As mentioned before the latter effect is mainly due

to the change of sign that the shear stress distribution

experiences for P-type flows, which produces a kink in

the eddy viscosity profile. Eventually, this results in an

overall lowering of the intensity of the eddy viscosity
for P-type flows.

In order to better handle the different behaviours dis-

played by P-type and C-type flows, a quartic polynomial

of the kind

N ¼ j½F ðCÞg þ ð1 � gÞ þ GðcÞgð1 � gÞ
gð1 � gÞ ð21Þ

is proposed, where a dependence on c is introduced
through the function G to differentiate P-type from C-

type flows.

The function G has been evaluated by means of a

regression on the whole set of calculated data and its

dependence on c is shown in Fig. 13. This function,

which controls the maximum of the eddy viscosity distri-

bution, is approximately equal to unity for positive val-

ues of c and decreases linearly to the value of �1.5 in the
negative half-plane. The vanishing of G in a narrow

neighbourhood of c = 0 witnesses the recovering of a

parabolic structure in this region.

Finally, the performances of the proposed distribu-

tions (20) and (21) are analyzed in term of the relation-

ship between the vertically averaged velocity, the wind

stress and the bottom stress. Once implemented in a

Q3D model, in fact, the above eddy viscosity distribu-
tions and the corresponding velocity profiles constitute

the basis for the evaluation of all the quantities that
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the primary shallow water flow solver requires in order

to proceed in the calculation of the circulation flow,

namely the bed shear stress and the depth-averaged dis-

persive stresses.

In Fig. 14, the bed to surface shear stress ratio is plot-

ted versus the nondimensional depth-averaged velocity.
Results obtained through the use of the quartic distribu-

tion (21) are almost undistinguishable from the calcu-

lated one, shown as a thicker solid line, and for this

reason have not been plotted. This should indicate that

the residual small errors related to the kinks present in

P-type flows, which cannot be handled without further

increasing the degree of the polynomial representing

the eddy viscosity, have negligible influence on the bed
shear stress evaluation.

The cubic distribution (20) still produces a fairly good

agreement with the numerical results. The slight under-

estimation of the bed shear stress for positive values of

the depth-averaged velocity is mainly due to the overall

underestimation of the eddy viscosity in the core region

for C-type flows. The introduction of the effective fric-

tion velocity F ultimately improves the performances
of the model especially for vanishing c, where the distri-

bution proposed by Signell et al. [14] leads to a sharp

underestimation of the bed shear stress.

The use a parabolic profile of the eddy viscosity with

the assumption of the wind friction velocity u
*s being the

only turbulent characteristic velocity scale, as suggested

by Tsanis [19], leads to an unrealistic linear relationship

between the bed shear stress and the depth-averaged
velocity, as shown in Fig. 14. A careful choice of the

constant of proportionality in (19), with a suggested

value of 0.35 [19], conceals the weakness of this formu-

lation for handling cases in which the bottom stress is

larger (in modulus) than the wind stress. Increasingly
-30 -20 -10 0

U

-1.0

-0.5

0.0

0.5

1.0

b
/

s

Fig. 14. Bed to surface shear stress ratio versus depth-averaged fl
high values of the average velocity yield values of the

bed shear stress that are sharply underestimated with re-

spect to the quadratic dependence, formally recovered in

the case of negligible wind forcing, displayed by the

numerical predictions and by all the profiles obtained

by means of the cubic or quartic polynomials.
6. Conclusions

In the present contribution, the behaviour of the ver-

tical profiles of eddy viscosity in uniform flows for differ-

ent combinations of the shear stresses at the boundaries

has been investigated, aiming at an improvement of the
representation of the wind effect in the parametrization

of turbulence.

Exploiting the analogy between wind-driven flows

and turbulent Couette–Poiseuille flows, the latter have

been analyzed by means of a two equation turbulent clo-

sure and a comparison with existing experimental data

have been performed, showing an overall agreement be-

tween measured and calculated velocity profiles.
The calculated eddy viscosity distributions have been

then analyzed and compared with currently available

algebraic formulations, which were proposed to handle

wind-driven flow, with specific attention on their behav-

iour in the mixed tide–wind case (or, more generally,

when wind is not the only cause of motion). Two new

algebraic formulations for the eddy viscosity are pro-

posed, which are shown to improve turbulence descrip-
tion of this class of flows.

Further investigations will be required in order to

estimate the role of bottom roughness, which can be in-

cluded in the proposed formulations by a suitable shift

in the origin of the reference level (i.e. the conventional
10 20 30

/u*s

calculated cubic (eq. 31)

Signell (1990) Tsanis (1989)

ow velocity for different formulations of the eddy viscosity.
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level at which the logarithmic velocity vanishes) or,

equivalently, by estimating the characteristic thickness

of the wall layers.
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