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Stress in fluids
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Stress in fluids The continuum approach

The continuum approach I

Definition of a simple fluid
The characteristic property of fluids (both liquids and gases) consists in the ease with which they
can be deformed.

A proper definition of a fluid is not easy to state as, in many circumstances, it is not obvious to
distinguish a fluid from a solid.

In this course we will deal with “simple fluids”, which Batchelor (1967) defines as follows.

“A simple fluid is a material such that the relative positions of elements of the material change by

an amount which is not small when suitable chosen forces, however small in magnitude, are

applied to the material. . . . In particular a simple fluid cannot withstand any tendency by applied

forces to deform it in a way which leaves the volume unchanged.”

Note: the above definition does not imply that there will not be resistance to deformation.
Rather, it implies that this resistance goes to zero as the rate of deformation vanishes.

Microscopic structure of fluids

The macroscopic properties of solids and fluids are related
to their molecular nature and to the forces acting between
molecules. In the figure a qualitative diagram of the force
between two molecules as a function of their distance d is
shown.
d < d0 → repulsion; d > d0 → attraction, where
d0 ≈ 10−10 m.
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Stress in fluids The continuum approach

The continuum approach II

Let d be the average distance between molecules. We have

gases → d >> d0;

solids and liquids → d ≈ d0.

In solids the relative position of particles is fixed, in fluids (liquids and gases) it can be freely
rearranged.

Continuum assumption
Molecules are separated by voids and the percentage of volume occupied by molecules is very
small compared to the total volume.

In most applications of fluid mechanics the typical spatial scale L under consideration is much
larger than the spacing between molecules d . We can then suppose that the behaviour of the
fluid is the same as if the fluid was perfectly continuous in structure. This means that any
physical property of the fluid, say f , can be regarded as a continuous function of space x (and
possibly time t)

f = f (x, t).

In order for the continuum approach to be valid it has to be possible to find a length scale L∗

which is much smaller than the smallest spatial scale at which macroscopic changes take place
and much larger than the microscopic (molecular) scale.

For instance in fluid mechanics normally a length scale L∗ = 10−5 m is much smaller than the
scale of macroscopic changes but still we have L∗ ≫ d .
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Stress in fluids Forces on a continuum

Forces on a continuum I

Two kind of forces can act on a continuum body:

long distance forces;

short distance forces.

Long distance forces
Such forces are slowly varying in space. This means that if we consider a small volume δV the
force is approximately constant over it. Therefore, we may write

δF = f̂δV .

As long distance forces are proportional to the volume of fluid they act on, they are referred to as
volume or body forces. In most cases of interest for this course δF will be proportional to the
mass of the element

δF = ρfδV ,

where ρ denotes density, i.e. mass per unit volume. The dimensions of ρ are [ρ] = ML−3 (with M

mass and L length), and in the International System (SI) it is measured in kg m−3.
The vector field f is denominated body force field. f has the dimension of an acceleration, or
force per unit mass [f] = LT−2 (with T time), and in the SI it is measured in m/s2.
In general f depends on space and time: f = f(x, t). If we want to compute the force F on a finite
volume V we need to integrate f over V

F =

∫∫∫

V

ρfdV .
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Stress in fluids Forces on a continuum

Forces on a continuum II

Short distance forces

Such forces are extremely rapidly variable in space and they act on very short distances. This
means that short distance forces are only felt on the surface of contact between adjacent portions
of fluid. Therefore, we may write

δΣ = tδS .

As short distance forces are proportional to the surface they act on, they are referred to as
surface forces. The vector t is denominated tension. The tension t has the dimension of a force
per unit surface [t] = FL−2 = ML−1T−2, and in the SI it is measured in Pa=N m−2.

The vector t depends on space x, time t and on the unit vector n normal to the surface on which
the stress acts: t = t(x, t, n).

Convention: we assume that t is the force per unit surface that the fluid on the side of the
surface towards which n points exerts on the fluid on the other side.

Important note: t(−n) = −t(n).

If we want to compute the force Σ on a finite surface S we need integrating t over S :

Σ =

∫∫

S

tdS .

Note that, if S is a closed surface, Σ represents the force that the fluid outside of S exerts on the
fluid inside.

Rodolfo Repetto (University of Genoa) Fluid dynamics January 7, 2015 11 / 179



Stress in fluids The stress tensor

The stress tensor I

Cauchy’s stress principle

We now wish to characterise the state of stress at a point P
of a continuum. To this end we consider a small tetrahedron
of volume δV centred in P. In the figure on the right ei
denotes the unit vector in the direction of the axis xi
(i = 1, 2, 3).

The total surface force acting on the tetrahedron is

t(n)δS + t(−e1)δS1 + t(−e2)δS2 + t(−e3)δS3 = 0.

In the above expression we have not displayed the dependence of t on x, as the value of x is
approximately constant over the small tetrahedron. Moreover, t is fixed.

Note that if we wrote the momentum balance for the tetrahedron, volume forces would vanish
more rapidly than surface forces as the volume tends to zero. Therefore, at leading order, only
surface forces contribute to the balance.
We note that

δSi = ei · nδS .
Therefore

δS [t(n)− t(e1)e1 · n− t(e2)e2 · n− t(e3)e3 · n] = 0,
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Stress in fluids The stress tensor

The stress tensor II

or, in index notation,

δS
[
ti (n)− ti (e1)e1jnj − ti (e2)e2jnj − ti (e3)e3jnj

]
= 0.

Note that, throughout the course we will adopt Einstein notation or Einstein summation
convention. According to this convention, when an index variable appears twice in a single term
of a mathematical expression, it implies that we are summing over all possible values of the index
(typically 1, 2, 3). Thus, for instance

fjgj = f1g1 + f2g2 + f3g3 or fj
∂fi

∂xj
= f1

∂fi

∂x1
+ f2

∂fi

∂x2
+ f3

∂fi

∂x3
.

We can now write
ti (n) =

[
ti (e1)e1j + ti (e2)e2j + ti (e3)e3j

]
nj .

Since neither the vector t nor n depend on the coordinate system, the term in square brackets in
the above equation is also independent of it. Thus it represents a second order tensor, say σ (or
in index notation σij ).
We can thus write

ti (n) = σijnj , or, in vector notation, t(n) = σn. (1)

σij is named the Cauchy stress tensor, or simply stress tensor. σij represents the i component of
the stress on the plane orthogonal to the unit vector ej .
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Stress in fluids The stress tensor

The stress tensor III

Equation (1) implies that to characterise the stress in a point of a continuum we need a second
order tensor, i.e. (given a coordinate system) 9 scalar quantities. We will show in the following
(section 5) that σij is symmetric (σij = σji ), and therefore such scalar quantities reduce to 6.

The terms appearing in the principal diagonal of the matrix σij represent the so called normal
stresses, those out of the principal diagonal are named tangential or shear stresses.

It is always possible to choose Cartesian coordinates such that σ takes a diagonal form





σI 0 0
0 σII 0
0 0 σIII



 ,

and σI , σII , σIII are named principal stresses and they are the eigenvalues of the matrix
representing σij . The corresponding directions are called principal directions.
Obviously, the components of σij depend on the coordinate system but the stress tensor does not
as it is a quantity with a precise physical meaning.

For any second order tensor it is possible to define 3 invariants, i.e. 3 quantities that do not
depend on the choice of the coordinate system. A commonly used set of invariants is given by

I1 = σI + σII + σIII = trσ = σjj , I2 = σIσII + σIIσIII + σIIIσI , I3 = σIσIIσIII = detσ.
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Stress in fluids Tension in a fluid at rest

Tension in a fluid at rest I

The structure of σ in a fluid at rest is a consequence of the definition of simple fluid put forward.
We consider a small spherical domain in a fluid at rest. Since the sphere is very small σ must be
approximately constant at all points within the sphere. We locally choose the principal axes so
that we can write σ as

σ =





σI 0 0
0 σII 0
0 0 σIII



 .

We can now write σ = σ1 + σ2, where

σ1 =





1/3σjj 0 0
0 1/3σjj 0
0 0 1/3σjj



 , σ2 =





σI − 1/3σjj 0 0
0 σII − 1/3σjj 0
0 0 σIII − 1/3σjj



 .

The tensor σ1 is spherical. It represents a normal compression on the sphere (see figure (a)
below). In fact on any portion δS of normal n the force is given by δSσ1n = 1/3δSσjjn.

The second tensor σ2 is diagonal and the sum of the terms on the diagonal is zero. This means
that, excluding the trivial case in which all terms are zero, at least one term is positive and one is
negative.

Referring to the figure on the right this implies that this
state of stress necessarily tend to change the shape of the
small volume we are considering. This is not compatible
with the definition of simple fluid given before, according
to which such fluid is not able to withstand a system of
forces that tends to change its shape.
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Stress in fluids Tension in a fluid at rest

Tension in a fluid at rest II

Therefore, σ2 must be equal to zero in a fluid at rest. Since fluids are normally in a state of
compression we set

σij = −pδij , or, in vector form, σ = −pI, (2)

where the scalar quantity p is called pressure, and I is the identity matrix. Note that, due to the
minus sign in the above equation, p > 0 implies compression. In general the pressure is a function
of space and time p(x, t). p has the dimension of a force per unit area
([p] = FL−2 = ML−1T−2) and in the SI is measured in Pa.

Equation (2) implies that at a given point P of a fluid at rest the force acting on a small surface
passing from P is equal to −pn, i.e. it is always normal to the surface and its magnitude does not
depend on the orientation of the surface.

Note: in some textbooks (2) is assumed as an indirect definition of a simple fluid (Euler
assumption).
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Statics of fluids

Statics of fluids
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Statics of fluids The equation of statics

The equation of statics I

Equation of statics in integral form

Let V be a volume of fluid within a body of fluid at rest and let S be its bounding surface. We
wish to write the equilibrium equation for this volume. From the equilibrium of forces we have

∫∫∫

V

ρfdV +

∫∫

S

tdS = 0. (3)

Equation (2) allows to rewrite the above expression as

∫∫∫

V

ρfdV +

∫∫

S

−pndS = 0, (4)

which represents the integral form of the equation of statics. The above equation is often
conveniently written in compact form as

F+Σ = 0, (5)

with F resultant of all body forces acting on V and Σ resultant of surface forces acting on S .
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Statics of fluids The equation of statics

The equation of statics II

Equation of statics in differential form

Using Gauss theorem equation (4) can be written as

∫∫∫

V

ρf −∇pdV = 0.

Since V is arbitrary the following differential equation must hold

ρf −∇p = 0, or, in index notation, ρfi −
∂p

∂xi
= 0, (6)

which is the equation of statics in differential form.

Equilibrium to rotation

In principle, the above equation alone is not sufficient to ensure equilibrium as we also have to
impose an equilibrium balance to rotation. This can be written as

∫∫∫

V

ρx× fdV +

∫∫

S

−px× ndS = 0, (7)
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Statics of fluids The equation of statics

The equation of statics III

or, in index notation, ∫∫∫

V

ρǫijkxj fkdV +

∫∫

S

−pǫijkxjnkdS = 0. (8)

Note: ǫijk is the alternating tensor. Its terms are all equal to zero unless when i , j and k are
different from each other, in which case ǫijk takes the values 1 or -1 depending if i , j and k are or
not in cyclic order. Thus, we have

i j k ǫijk
1 2 3 1
3 1 2 1
2 3 1 1
2 1 3 -1
1 3 2 -1
3 2 1 -1

Applying Gauss theorem to equation (8) we have:

∫∫∫

V

ǫijk

[

ρxj fk − ∂

∂xk
(pxj )

]

dV = 0.
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Statics of fluids The equation of statics

The equation of statics IV

Carrying on the calculations:

∫∫∫

V

ǫijk

(

ρxj fk − ∂

∂xk
(pxj )

)

dV =

∫∫∫

V

ǫijk

(

ρxj fk − xj
∂p

∂xk
− p

∂xj

∂xk

)

dV =

∫∫∫

V

ǫijk

(

ρxj fk − xj
∂p

∂xk
− pδjk

)

dV =

∫∫∫

V

ǫijk

(

ρxj fk − xj
∂p

∂xk

)

dV −
∫∫∫

V

pǫijkδjkdV = 0,

(9)

where δij is the Kronecker delta (δij = 0 if i 6= j and δij = 1 if i = j). The above equation is
automatically satisfied as the first integral vanishes due to equation (6) and ǫijkδij = 0 by
definition.
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Statics of fluids Implications of the equation of statics

Implications of the equation of statics

Let us now consider the equation of statics (6). In order to integrate this equation we need an
equation of state for the fluid, stating how the density ρ depends on the other physical properties
of the fluid, and in particular p.

However, some general conclusions can be drawn by simple inspection of the equation.

As a first consideration we note that not all f(x) and p(x) allow for a fluid to be at rest. In
particular the relationship ρf(x) = ∇p implies that ρf(x) admits a potential W , so that

ρf(x) = −∇W .

In the particular case in which ρ = const, f has to be conservative.

If f is conservative we have that f = −∇φ. In this case we have

−ρ∇φ = ∇p.

Applying the curl to the above expression we find

−∇× (ρ∇φ) = ∇×∇p ⇒ −∇ρ×∇φ−✘✘✘✘ρ∇×∇φ =✘✘✘✘∇×∇p.

The above relationship implies that level surfaces of ρ and φ must coincide.
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Statics of fluids Statics of incompressible fluids in the gravitational field

Statics of incompressible fluids in the gravitational field

We assume

ρ = const. In this case we say that the fluid behaves as if it was incompressible.

f is the gravitational body force field.

We consider a system of Cartesian coordinates (x1, x2, x3), with x3 vertical upward directed axis.
The gravitational field can therefore be written as f = (0, 0,−g).

With the above assumptions equation (6) can be easily solved to get

p = −ρgx3 + const,

and, after rearrangement, we obtain Stevin law

x3 +
p

γ
= const, (10)

where γ is the specific weight of the fluid ([γ] = FL−3, measured in N m−3 in the SI).
The quantity h = x3 + p/γ is called piezometric or hydraulic head. Stevin law implies that, in an
incompressible fluid at rest, h is constant.
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Statics of fluids Equilibrium conditions at interfaces

Equilibrium conditions at interfaces I

Surface tension

The fact that small liquid drops form in air and gas
bubbles form in liquids can be explained by assuming
that a surface tension acts at the interface between the
two fluids.

If we draw a curve across the interface we assume that
a force per unit length of magnitude κ exists, acting
on the surface containing the interface and in the
direction orthogonal to the curve. The dimension of κ
is [κ] = FL−1 = MT−2 ans in the SI is measured in N
m−1.

Drop of water on a leaf.

The existence of such a force can be explained considering what happens at molecular level, close
to the interface: due to the existence of the interface, there is no balance of molecular forces
acting on particles very close to the interface.

κ can be positive (traction force on the surface) or negative (compression force on the surface),
depending on the two fluids in contact. In particular we have:

κ > 0 immiscible fluids;

κ < 0 miscible fluids.
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Statics of fluids Equilibrium conditions at interfaces

Equilibrium conditions at interfaces II

Pressure jump across a curved surface

We consider an equilibrium interface between two fluids. This implies that κ = const on the
surface.

We consider a curved surface. Let O be a point on the surface and let us adopt a system of
coordinates centred in O and such that the (x − y) plane is tangent to the surface. The equation
of the surface is

F (x , y , z) = z − ζ(x , y) = 0. (11)

Note that ζ and its first derivatives are zero at (x , y) = (0, 0). Close to O the approximate
expression of the normal vector n is

n =
∇F

|∇F | ≈
(

− ∂ζ

∂x
,− ∂ζ

∂y
, 1

)

,

correct to the first order in the small quantities ∂ζ/∂x , ∂ζ/∂y .

The resultant of the tensile force on a small portion of the surface S containing O is given by

−κ
∮

C

n× dx,

with n normal to the surface and dx a line element of the closed curve C bounding the surface S .
Recalling the equation of the surface (11) we can write dx = (dx , dy , ∂ζ

∂x
dx + ∂ζ

∂y
dy).
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Statics of fluids Equilibrium conditions at interfaces

Equilibrium conditions at interfaces III

If the surface is flat, n is uniform and the above integral is zero. If the surface is curved the
resultant is directed, at leading order, along z and has magnitude

−κ
∮

C

− ∂ζ

∂x
dy +

∂ζ

∂y
dx .

Green’s theorem states that
∫∫

S

(
∂g

∂x
− ∂f

∂y

)

dxdy =

∮

C

fdx + gdy .

In the present case the above equation can be specified so that

f = − ∂ζ

∂y
, g =

∂ζ

∂x
.

Therefore we get:

κ

∮

C

∂ζ

∂x
dy − ∂ζ

∂y
dx = κ

∫∫

S

(
∂2ζ

∂x2
+
∂2ζ

∂y2

)

dS ≈ κ

(
∂2ζ

∂x2
+
∂2ζ

∂y2

)

O

S .

We finally find

κ

(
∂2ζ

∂x2
+
∂2ζ

∂y2

)

= κ

(
1

R1
+

1

R2

)

,
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Statics of fluids Equilibrium conditions at interfaces

Equilibrium conditions at interfaces IV

where R1 and R2 are radii of curvature of the surface along two orthogonal directions. Note that
it can be shown that 1

R1
+ 1

R2
is independent on the orientation chosen.

The above equation implies that, in order for a curved interface between two fluids to be in
equilibrium, a pressure jump ∆p must exist across the surface so that

∆p = κ

(
1

R1
+

1

R2

)

. (12)
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Statics of fluids Hydrostatic forces on flat surfaces

Hydrostatic forces on flat surfaces I

We adopt in this section the following assumptions:

ρ = const;

f = (0, 0,−g) gravitational field.

We wish to compute the force on a flat solid surface.

Magnitude of the force

The magnitude of this force is given by

|Σ| =

∣
∣
∣
∣
∣
∣

∫∫

S

−pndS

∣
∣
∣
∣
∣
∣

=

∫∫

S

pdS .

Note that, by definition, Σ is the force that the surface
exerts on the fluid. Thus the force of the fluid on the
surface is equal to −Σ.
We consider a plane inclined by an angle ϑ with respect to
a horizontal plane and introduce a coordinate ζ, with
origin on the horizontal plane where p = 0, laying on the
surface and oriented along the line of maximum slope on
the surface. We therefore can write, using equation (10),

p = ζγ sinϑ.
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Statics of fluids Hydrostatic forces on flat surfaces

Hydrostatic forces on flat surfaces II

Substituting in the definition of |Σ| we obtain

|Σ| =
∫∫

S

ζγ sinϑdS = γ sinϑ

∫∫

S

ζdS = γ sinϑS, (13)

where S is the static moment of the surface S with respect to the axis y , defined as

S =

∫∫

S

ζdS . (14)

S can be written as S = ζGS , with ζG being the ζ coordinate of the centre of mass of S . Thus
we can write

|Σ| = γ sinϑζGS = γzGS = pGS , (15)

where z is a vertical coordinate directed downwards and with origin on the horizontal plane p = 0
(see the figure of the previous page), and pG is the pressure in the centre of mass of S .

Equation (15) states that the magnitude of the force exerted by an incompressible fluid at rest
in the gravitational field on a flat surface is given by the product of the pressure pG at the
centre of mass of the surface and the area of the surface S .
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Statics of fluids Hydrostatic forces on flat surfaces

Hydrostatic forces on flat surfaces III

Application point of the force

We now wish to determine where the force Σ is applied. To this end we impose the equilibrium to
rotation with respect to the y axis, given by the intersection of the planes ζ = 0 and z = 0,

ζC |Σ| =
∫∫

S

ζpdS =

∫∫

S

γ sinϑζ2dS = γ sinϑ

∫∫

S

ζ2dS = γ sinϑI, (16)

where we have introduced the moment of inertia I of the surface with respect to the axis y

I =

∫∫

S

ζ2dS . (17)

Finally, we recall that
I = I0 + ζ2GS , (18)

where I0 is the moment of inertia of the surface with respect to an axis parallel to y and passing
through the centre of mass of the surface. Thus, substituting (18) into (16) and recalling
equations (13) and (14) we obtain

ζC = ζG +
I0
ζGS

= ζG +
I0
S , (19)

which is often more convenient to use than (16).
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Hydrostatic forces of curved surfaces

In the case of forces on curved surfaces it is not possible to take the normal vector n out of the
following integral

Σ = −
∫∫

S

pndS ,

as n changes from point to point on S . In this case it is necessary to specify explicitly n and solve
the integral.

An alternative, often more convenient, method consists of selecting a closed control volume,
bounded by the curved surface and by a suitable number of flat surfaces. In this case the
calculation of the forces on the flat surfaces is straightforward and the force on the curved surface
can be determined employing the integral form of the statics equation (4), provided it is possible
to compute the volume of the control volume.
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Spatial and material coordinates I

The kinematics of fluids studies fluid motion per se, with no concern to the forces which generate
the motion. All kinematic notions that will be introduced in the present chapter are valid for any
fluid described as a continuum. A very good reference for kinematics of fluid is Aris (1962); the
present section is largely based on this textbook.

Understanding how to study fluid motion from the kinematic point of view is a prerequisite to
study the dynamics of fluids, which will be considered in the following chapter.

The basic mathematical idea is that, within the continuum approach, fluid motion can be
described by a point transformation.

Let us consider a fluid particle which at time t0 is located in the position ξ = (ξ1, ξ2, ξ3). The
same particle at time t is at position x = (x1, x2, x3). Without loss of generality we can set
t0 = 0. The motion of the particle in the time interval [0, t] is described by the function

x = x(ξ, t), or, in index notation, xi = xi (ξ1, ξ2, ξ3, t), (20)

which, at any time t, tells us the position in space of the particle that was in ξ at t = 0.

ξ are named material or Lagrangian coordinates as a particular value of ξ identifies the
material particle that at t = 0 was in ξ.

x are named spatial or Eulerian coordinates as a particular value of x identifies a given
position in space which might be occupied, at different times, by different fluid particles.
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Spatial and material coordinates II

We assume that the motion is continuous, that at a given time a single particle cannot occupy
two different positions and, conversely, that a single point in space cannot be occupied
simultaneously by two particles. This implies that equation (20) can be inverted to obtain

ξ = ξ(x, t), or, in index notation, ξi = ξi (x1, x2, x3, t). (21)

Equation (21) gives the initial position (at t = 0) of a material particle that at time t is in x.
Mathematically, the condition of invertibility of (20) can be expressed as J > 0 (see Aris, 1962),
where the Jacobian J is defined as

J = det

[
∂(x1, x2, x3)

∂(ξ1, ξ2, ξ3)

]

. (22)

Knowledge of equation (20) or (21) is enough to completely describe the flow. The flow,
however, can also be studied by describing how any fluid property, say F (e.g. density, pressure,
velocity, . . . ) changes in time at any position in space.

F = F(x, t).

This approach is referred to as spatial approach or Eulerian approach.

Alternatively, we can describe the evolution of a fluid property F associated with a given fluid
particle. In this case we write

F = F(ξ, t).
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Spatial and material coordinates III

Note that a given value of ξ identifies the particle that in t = 0 was in ξ. This approach is
referred to as material approach or Lagrangian approach.

Any physical property of the fluid can be expressed either in Eulerian or Lagrangian coordinates,
and employing equations (20) and (21) we can change the description adopted

F(x, t) = F [ξ(x, t), t], (23)

F(ξ, t) = F [x(ξ, t), t]. (24)
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The material derivative I

The time derivative of a generic physical property of the fluid F has a different meaning in
Eulerian and Lagrangian coordinates.

Eulerian coordinates:
∂F(x, t)

∂t
local derivative.

This represents the variation in time of F at a given point in space. Such a point can, in
general, be occupied by different particles at different times.

Lagrangian coordinates:
∂F(ξ, t)

∂t
material derivative.

This represents the time evolution of F associated with a given material particle.

Since the physical meaning of the two derivatives is different it is customary in fluid mechanics to
denote them with different symbols.

∂

∂t
≡
(
∂

∂t

)

x

≡ time derivative at constant x,

D

Dt
≡
(
∂

∂t

)

ξ

≡ time derivative at constant ξ.
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The material derivative II

Note: If the fluid property F is the position of a material particle (F = xi ) we have

ui =
Dxi

Dt
, or in vector notation u =

Dx

Dt
, (25)

which is the velocity of the fluid particle.

In general it is more convenient in fluid mechanics to adopt a spatial (Eulerian) description of the
flow. However, for the definition of some physical quantities the material derivative is required.
For instance the acceleration a is defined as

a =
Du

Dt
,

while ∂u/∂t 6= a, as it represents the rate of change of velocity at a fixed point in space, i.e. it is
not referred to a material particle.

It is then often necessary to define the material derivative in terms of spatial coordinates. Using
equations (24) and (25) we can write

DF
Dt

=
∂F(ξ, t)

∂t
=
∂F [x(ξ, t), t]

∂t
=

=

(
∂F
∂t

)

x

+
∂F
∂xi

(
∂xi

∂t

)

ξ

=

=
∂F
∂t

+ ui
∂F
∂xi

.
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The material derivative III

Thus we find

DF
Dt

=
∂F
∂t

+ ui
∂F
∂xi

, or, in vector form,
DF
Dt

=
∂F
∂t

+ u · ∇F . (26)

If F is a vector quantity we obtain

DFi

Dt
=
∂Fi

∂t
+ uj

∂Fi

∂xj
, or in vector form,

DF

Dt
=
∂F

∂t
+ (u · ∇)F . (27)
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Definition of some kinematic quantities I

Trajectories or particle paths
Equation (20) can be seen as a parametric equation of a curve in space, with t as parameter. The
curve goes through the point ξ when t = 0. It represents the particle path or pathline or particle
trajectory.

Particle trajectories can be obtained from a spatial description of the flow by integration of the
spatial velocity field

dx

dt
= u(x, t), x(0) = ξ. (28)

Steady flow
The velocity field in spatial coordinates is described by the vector field u(x, t). If u does not
depend on time the flow is said to be steady. Note that steadiness of flow does not imply that
each material particle has a constant velocity in time as u(ξ, t) might still depend on time.

Streamlines
Given a spatial description of a velocity field u(x, t), streamlines are curves which are at all points
in space parallel to the velocity vector. Mathematically, they are therefore defined as

dx× u = 0, (29)

Rodolfo Repetto (University of Genoa) Fluid dynamics January 7, 2015 39 / 179



Kinematics of fluids Definition of some kinematic quantities

Definition of some kinematic quantities II

with dx an infinitesimal segment along the streamline. The above expression can also be written
as

dx1

u1
=

dx2

u2
=

dx3

u3
. (30)

The unit vector dx/|dx| can be written as dx/ds, where the curve parameter s is the arc length
measured from an initial point x0 = x(s = 0). Equation (29) then implies that

dx

ds
=

u

|u| . (31)

Particle paths and streamlines are not in general coincident. However they are in the following
cases.

Steady flow. In this case the equation for a pathline is dx
dt

= u(x). The element of the arc
length along the pathline is ds = |u|dt, which, substituted in the above expression, yields

dx

ds
=

u

|u| ,

which shows that, for a steady flow, the differential equation for pathlines and streamlines
are the same.
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Definition of some kinematic quantities III

Unsteady flow the direction of which does not change with time. In this case we can write
u(x, t) = f (x, t)u0(x) with u0 the velocity field at the initial time. In this case the argument
used for steady flows still holds.

Streaklines
At a given time t a streakline joins all material points which have passed through (or will pass
through) a given place x at any time.

Filaments of colour are often used to make flow visible. Coloured fluid introduced into the stream
at place x0 forms a filament and a snapshot of this filament is a streakline.

Setting x = x′ and t = t′ in (21) identifies the material point which was at place x′ at time t′.
The path coordinates of this particle are given by

x = x[ξ(x′, t′), t].

At a given time t, t′ is the curve parameter of a curve in space which goes through the given
point x′. This curve in space is a streakline.

In steady flows, streaklines, streamlines and pathlines are all coincident.

Uniform flow
A flow is said to be uniform if u does not depend on x.

u = u(t).
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Definition of some kinematic quantities IV

This is a very strong requirement. Sometimes the flow is called uniform if u does not change
along the streamlines.

Plane flow
A flow is said to be plane or two-dimensional if it is everywhere orthogonal to one direction and
independent of translations along such direction.

In a plane flow it is therefore possible to choose a system of Cartesian coordinates (x1, x2, x3) so
that u has the form

u = (u1, u2, 0),

and u1 and u2 do not depend on x3.

Axisymmetric flow
A flow is said to be axisymmetric if, chosen a proper system of cylindrical coordinates (z, r , ϕ)
the velocity u = (uz , ur , uϕ) is independent of the azimuthal coordinate ϕ, and uϕ = 0.
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Reynolds transport theorem I

Let F(x, t) be a property, either a scalar or a vector, of the fluid and V (t) a material volume
entirely occupied by the fluid. A material volume is a volume which is always constituted by the
same particles. We can define the integral

F (t) =

∫∫∫

V (t)

F(x, t)dV . (32)

We wish to evaluate the material derivative of F . Since V (t) depends on time the derivative
D/Dt can not be taken into the integral. However, if we work with material coordinates ξ, the
volume remains unchanged in time and equal to the value V0 it had at the initial time. We can
thus write

D

Dt

∫∫∫

V (t)

F(x, t)dV =
D

Dt

∫∫∫

V0

F(ξ, t)JdV0,

where dV = JdV0, with J Jacobian of the transformation, defined by (22). We can now write

∫∫∫

V0

J
DF
Dt

+ F DJ

Dt
dV0.

It can be shown (see section 13) that

DJ

Dt
= (∇ · u)J. (33)
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Reynolds transport theorem II

The above integral can then be written as

∫∫∫

V0

[
DF
Dt

+ F(∇ · u)
]

JdV0,

and going back to the spatial coordinates x, we find

∫∫∫

V (t)

[
DF
Dt

+ F(∇ · u)
]

dV .

Finally, recalling (26), we have

D

Dt

∫∫∫

V (t)

F(x, t)dV =

∫∫∫

V (t)

[
∂F
∂t

+∇ · (Fu)

]

dV . (34)

This result is known as Reynolds transport theorem. The above expression can be also be
written as

D

Dt

∫∫∫

V (t)

F(x, t)dV =

∫∫∫

V (t)

∂F
∂t

dV +

∫∫

S(t)

Fu · ndA, (35)
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Reynolds transport theorem III

with S(t) being the bounding surface of the volume V (t) and n the outer normal to this surface.
Equation (35) shows that the material derivative of a variable F integrated over a material
volume V (t) can be written as the integral of ∂F/∂t over the volume V (t) plus the flux of F
through the surface S(t) of this volume.
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Principle of conservation of mass

Let us consider a material volume V with bounding surface S . The principle of conservation of
mass imposes that: the material derivative of the mass of fluid in V is equal to zero.

The mass of the fluid in V is given by ∫∫∫

V

ρdV .

Therefore we have
D

Dt

∫∫∫

V

ρdV = 0.

Recalling (34) we have:
∫∫∫

V

∂ρ

∂t
+∇ · (ρu)dV = 0. (36)

since the volume V is arbitrary the following differential equation holds

∂ρ

∂t
+∇ · (ρu) = 0, or, in index notation,

∂ρ

∂t
+

∂

∂xj
(ρuj ) = 0. (37)

This equation is known in fluid mechanics as continuity equation.
In the particular case in which the fluid is incompressible, i.e. the density ρ is constant, the above
equation reduces to

∇ · u = 0, or, in index notation,
∂uj

∂xj
= 0. (38)

This implies that the velocity field of an incompressible fluid is divergence free.
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The streamfunction I

A differential form
df = p(x , y)dx + q(x , y)dy ,

is said to be an exact differential if
∫
df is path independent. This happens when

df =
∂f

∂x
dx +

∂f

∂y
dy .

Therefore, in this case

p =
∂f

∂x
, q =

∂f

∂y
,

and this implies
∂p

∂y
=
∂q

∂x
. (39)

Plane flow of an incompressible fluid
Let us consider a plane flow on the (x1, x2) plane so that the velocity has only two components u1
and u2. Let us also assume that the fluid is incompressible. The continuity equation (38) reduces
to

∂u1

∂x1
+
∂u2

∂x2
= 0.
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The streamfunction II

The above expression implies that the following differential

dψ = −u2dx1 + u1dx2,

is exact, as the condition (39) is satisfied. Then we have

u1 =
∂ψ

∂x2
, u2 = − ∂ψ

∂x1
, (40)

and the scalar function ψ(x1, x2, t) is defined as

ψ − ψ0 =

∫

(−u2dx1 + u1dx2). (41)

In the above expression ψ0 is a constant and the line integral is taken on an arbitrary path joining
the reference point O to a point P with coordinates (x1, x2). We know that, as dψ is an exact
differential, the value of ψ− ψ0 does not depend on the path of integration but only on the initial
and finals points.

The function ψ has a very important physical meaning. The flux
of fluid volume across the line joining the points O and P (taken
positive if the flux is in the anti-clockwise direction about P) is
given by the integral

∫

(−u2dx1 + u1dx2).

This means that the flux through any curve joining two points is
equal to the difference of the value of ψ at these points.
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The streamfunction III

Therefore the value of ψ is constant along streamlines as, by definition, the flux across any
streamline is zero. For this reason the function ψ is named streamfunction.
The advantage of having introduced the streamfunction is that we can describe the flow using a
scalar function rather than the vector function u.

Axisymmetric flow of an incompressible fluid
Let us now consider an axisymmetric flow of an incompressible fluid.
Let us assume a system of cylindrical coordinates (z, r , ϕ). The corresponding velocity
components are (uz , ur , uϕ). Due to the axisymmetry of the flow we know that uϕ = 0 and that
ur and uz do not depend on ϕ. In this case the continuity equation (38) reads

∇ · u =
∂uz

∂z
+

1

r

∂rur

∂r
= 0.

We can again define a streamfunction as

ur = −1

r

∂ψ

∂z
, uz =

1

r

∂ψ

∂r
, ψ − ψ0 =

∫

r(uzdr − urdz). (42)

The streamfunction for an incompressible axisymmetric flow can also be expressed in terms of
other orthogonal systems of coordinates, e.g. spherical polar coordinates, see equation (123).
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The velocity gradient tensor I

Let us consider two nearby points P and Q with material coordinates ξ and ξ + dξ. At time t

their position is x(ξ, t) and x(ξ + dξ, t). We can relate the position of the two particles with the
following relationship

xi (ξ + dξ, t) = xi (ξ, t) +
∂xi

∂ξj
dξj + O(d2),

where O(d2) represents terms of order dξ2 or smaller that will be neglected. The small
displacement vector dξ at the time t has become dx = x(ξ + dξ, t)− x(ξ, t) and it takes the
expression

dxi =
∂xi

∂ξj
dξj . (43)

Definition: the quantity ∂xi
∂ξj

is a tensor which is named displacement gradient tensor. This

tensor is fundamental in the theory of elasticity.

In fluid mechanics it is more significant to reason in terms of velocities (u = Dx/Dt). The
relative velocity of two particles with material coordinates ξ and ξ + dξ can be written as

dui =
∂ui

∂ξj
dξj =

D

Dt

(
∂xi

∂ξj

)

dξj . (44)
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The velocity gradient tensor II

Inverting (43) we can rewrite the above expression as

dui =
∂ui

∂ξk

∂ξk

∂xj
dxj =

∂ui

∂xj
dxj . (45)

The above equation expresses the relative velocity in terms of the current relative position.

Definition: the quantity ∂ui
∂xj

(or ∇u in vector form) is a tensor that is named velocity gradient

tensor.

In general ∇u is non symmetric. Any tensor can be decomposed into a symmetric and an
antisymmetric part. In particular we can write

∂ui

∂xj
=

1

2

(
∂ui

∂xj
+
∂uj

∂xi

)

+
1

2

(
∂ui

∂xj
− ∂uj

∂xi

)

, or in vector form ∇u = D+Ω. (46)

Above we have defined

Dij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)

, rate of deformation tensor, (47)

Ωij =
1

2

(
∂ui

∂xj
− ∂uj

∂xi

)

, rate of rotation tensor. (48)

Both the above tensors play a vey important role in fluid mechanics. Their physical meaning is
explained in the two following sections.
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Physical interpretation of the rate of deformation tensor I

We now wish to interpret the physical meaning of the rate of deformation tensor D. Let us
consider how a small material element of fluid deforms during motion. Let P and Q be two close
material particles with coordinates ξ and ξ + dξ, whose positions at time t are x(ξ, t) and
x(ξ + dξ, t). Let the length of the small segment connecting P and Q at time t be ds. Recalling
(43) we can write

ds2 = dxidxi =
∂xi

∂ξj

∂xi

∂ξk
dξjdξk .

Let us now take the material derivative of ds2.

D

Dt
ds2 =

(
∂ui

∂ξj

∂xi

∂ξk
+
∂xi

∂ξj

∂ui

∂ξk

)

dξjdξk = 2
∂ui

∂ξj

∂xi

∂ξk
dξjdξk .

Note that we have used the fact that dξj and dξk do not change in time as they are material
segments. Moreover, we could swap j and k as they both are dummy indexes.
Recalling (43), (44) and (45) we know that

∂ui

∂ξj
dξj =

∂ui

∂xj
dxj ,

∂xi

∂ξk
dξk = dxi .

Therefore, we can write

1

2

D

Dt
ds2 = ds

D

Dt
ds =

∂ui

∂xj
dxidxj = Dijdxidxj .
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Physical interpretation of the rate of deformation tensor II

In the above expression we have used the fact the antisymmetric terms in ∂ui/∂xj vanish upon
summation and, therefore, only the symmetric part of the velocity gradient tensor (i.e. Dij )
survives.
The above expression can also be rewritten as

1

ds

D

Dt
ds = Dij

dxi

ds

dxj

ds
. (49)

The term dxi/ds is the i th component of a unit vector in the direction of the segment PQ.
Therefore equation (49) states that the rate of change of the length of the segment (as a fraction
of its length) is related to its direction through the deformation tensor D.
We can also observe that if D = 0 the segment PQ remains of constant length. Therefore we can
state that if D = 0 the motion is locally and instantaneously rigid. The tensor D is therefore
related to deformation of material elements.

Meaning of the terms on the main diagonal of D

Let PQ be parallel to the coordinate axis x1. In this case
dx

ds
= e1, with e1 unit vector in the

direction of x1. Then equation (49) simplifies to

1

dx1

D

Dt
dx1 = D11.

Rodolfo Repetto (University of Genoa) Fluid dynamics January 7, 2015 53 / 179



Kinematics of fluids Physical interpretation of the rate of deformation tensor D

Physical interpretation of the rate of deformation tensor III

Thus the element D11 represents the rate of longitudinal strain of an element parallel to x1.
Obviously, the same interpretation applies to the other two terms on the main diagonal of D, i.e.
D22 and D33.

Meaning of the terms out of the main diagonal of D

We now consider two segments PQ and PR, where R is a
material particle with material coordinates ξ + dξ′. Let ds′ be
the length of the segment PR and θ the angle between the
segments PQ and PR. We then have

ds ds′ cos θ = dxidx
′
i .

Taking the material derivative of the above expression, using again (45), we have

D

Dt
(ds ds′ cos θ) = duidx

′
i + dxidu

′
i =

∂ui

∂xj
dxjdx

′
i + dxi

∂ui

∂xj
dx ′j .

As i and j are dummy indexes they can be interchanged, and we can then write

cos θ

(
1

ds

D

Dt
ds +

1

ds′

D

Dt
ds′
)

− sin θ
Dθ

Dt
=

(
∂uj

∂xi
+
∂ui

∂xj

)
dxj

ds

dx ′i

ds′
= 2Dij

dx ′i

ds′

dxj

ds
.
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Physical interpretation of the rate of deformation tensor IV

Now suppose, as an example, that dx′ is parallel to the axis x1 and dx to the axis x2. This
implies that dx ′i /ds

′ = δi1, dxi/ds = δj2 and θ = θ12 = π/2. Then we have

−Dθ12

Dt
= 2D12.

This implies that the term Dij (with i 6= j) can be interpreted as one half of the rate of decrease
of the angle between two segments parallel to the xi and xj axes, respectively.

Rodolfo Repetto (University of Genoa) Fluid dynamics January 7, 2015 55 / 179



Kinematics of fluids Physical interpretation of the rate of rotation tensor Ω

Physical interpretation of the rate of rotation tensor I

We now consider the tensor Ω defined by equation (48). We first note that an anti-symmetric
tensor Ω can be related to a vector ω by the following relationship

Ωij = −1

2
ǫijkωk , (50)

where the coefficient −1/2 has been introduced for convenience. Ω and ω have the following
forms

Ω =
1

2





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 , ω =





ω1

ω2

ω3



 .

Comparing the above equation with the definition of Ω given in (48) we obtain

ω1 =

(
∂u3

∂x2
− ∂u2

∂x3

)

, ω2 =

(
∂u1

∂x3
− ∂u3

∂x1

)

, ω3 =

(
∂u2

∂x1
− ∂u1

∂x2

)

.

Thus ω is the curl of the velocity

ω = ∇× u, or in index form ωi = ǫijk
∂uk

∂xj
. (51)

In fluid mechanics the vector ω is known as vorticity.
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Physical interpretation of the rate of rotation tensor II

To show the physical meaning of vorticity let us recall Stokes theorem

∫∫

S

(∇× u) · ndS =

∫∫

S

ω · ndS =

∮

l

u · d l,

which holds for any open surface S bounded by a closed curve l .
We now choose a plane surface S with normal n, bounded by a small circle l of radius r centred
at x. Let r be a unit vector connecting the point x to any point on the circle l . Let moreover l be
a unit vector tangential to the circle. We thus have l = n× r. The average of the projection of
the angular velocity of points on l in the normal direction n is

1

2πr2

∮

l

n · (r × u)dl =
1

2πr2

∮

l

u · (n× r)dl =
1

2πr2

∮

l

u · ldl = 1

2S

∫∫

S

ω · ndS ≈ 1

2
ω · n.

As this result is valid for any n, this shows that the vorticity ω = ∇× u can be interpreted as
twice the angular velocity of the fluid.
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Momentum equation in integral form

Let us consider a material volume V with bounding surface S . Newton’s first principle states
that: the material derivative of the momentum of the fluid in V is equal to the resultant of all
external forces acting on the volume.

The momentum of the fluid in V is given by

∫∫∫

V

ρudV .

Therefore we have (in index notation):

D

Dt

∫∫∫

V

ρuidV =

∫∫∫

V

ρfidV +

∫∫

S

tidS . (52)

Recalling (35) we have:

∫∫∫

V

∂

∂t
(ρui )dV +

∫∫

S

ρuiujnjdS =

∫∫∫

V

ρfidV +

∫∫

S

tidS . (53)

This is the integral form of the momentum equation and is often written in compact form as

I+W = F+Σ, (54)

with I named local inertia and W being the flux of momentum across S .

Rodolfo Repetto (University of Genoa) Fluid dynamics January 7, 2015 59 / 179



Dynamics of fluids Momentum equation in differential form

Momentum equation in differential form I

Let us now consider the expression

D

Dt

∫∫∫

V

ρFdV =

∫∫∫

V

∂

∂t
(ρF)+

∂

∂xj
(ρFuj )dV =

∫∫∫

V

F ∂ρ

∂t
+ρ

∂F
∂t

+F ∂

∂xj
(ρuj )+ρuj

∂F
∂xj

dV ,

with F any function of space and time. Recalling (37) this simplifies to

D

Dt

∫∫∫

V

ρFdV =

∫∫∫

V

ρ
∂F
∂t

+ ρuj
∂F
∂xj

dV =

∫∫∫

V

ρ
D

Dt
FdV . (55)

In the particular case in which the generic function F is the velocity u we have

D

Dt

∫∫∫

V

ρudV =

∫∫∫

V

ρ
D

Dt
udV . (56)

Using equations (1) and (56), equation (52) can be written as

∫∫∫

V

ρ
Dui

Dt
dV =

∫∫∫

V

ρfidV +

∫∫

S

σijnjdS .
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Momentum equation in differential form II

Using Gauss theorem we get

∫∫∫

V

ρ
Dui

Dt
− ρfi −

∂

∂xj
σijdV = 0.

Since V is arbitrary the following differential equation must hold

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)

−ρfi −
∂σij

∂xj
= 0, or, in vector form, ρ

∂u

∂t
+ρ(u ·∇)u−ρf−∇·σ = 0. (57)

This is known as Cauchy equation. This equation holds for any continuum body. In order to
specify the nature of the continuum a further relationship is needed, describing how the stress
tensor σ depends on the kinematic state of the continuum. This relationship is called
constitutive law and will be discussed in section 6.
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Principle of conservation of the moment of momentum I

Given a material volume V , the material derivative of the moment of momentum of the fluid
in V is equal to the resultant of all external moments acting on V .

The above principle is expressed mathematically as follows.

D

Dt

∫∫∫

V

ρx× udV =

∫∫∫

V

ρx× fdV +

∫∫

S

x× tdS , (58)

or, in index notation,

ǫijk




D

Dt

∫∫∫

V

ρxjukdV −
∫∫∫

V

ρxj fkdV −
∫∫

S

xj tkdS



 = 0. (59)

We use again equation (56) and note that Dxj/Dt = uj . Moreover, the definition of the operator
ǫijk implies that

ǫijk

∫∫∫

V

ρujukdV = 0.

Thus we have, also using Gauss theorem and equation (1),

ǫijk





∫∫∫

V

ρxj

(
Duk

Dt
− fk

)

− xj
∂σkl

∂xl
− σkl

∂xj

∂xl
dV



 = 0,
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Principle of conservation of the moment of momentum II

and after rearrangement

ǫijk





∫∫∫

V

xj

(

ρ
Duk

Dt
− ρfk − ∂σkl

∂xl

)

− δjlσkldV



 = 0,

The term in brackets in the above equation is zero for equation (57). Therefore we obtain

ǫijk

∫∫∫

V

δjlσkldV = 0.

Since in the above expression V is arbitrary the following differential equation must hold:

ǫijkδjlσkl = 0,

or
ǫijkσkj = 0.

The above equation implies:
σkj = σjk , (60)

which imposes that the stress tensor must be symmetrical.
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Equation for the mechanical energy I

Let us now consider Cauchy equation (57) and multiply it by ui . Since i is now a repeated index
we obtain the following scalar equation

ρui
Dui

Dt
− ρui fi − ui

∂σij

∂xj
= 0, ⇒ 1

2
ρ
Du2i

Dt
− ρui fi −

∂

∂xj

(
uiσij

)
+ σij

∂ui

∂xj
= 0.

Reorganising the above expression and using the fact that the tensor σij is symmetric, we have

1

2
ρ
Du2i

Dt
= ρui fi +

∂

∂xj

(
uiσij

)
− 1

2

(
∂ui

∂xj
+
∂uj

∂xi

)

σij ,

or, recalling the definition of the rate of deformation tensor Dij , given by (47),

1

2
ρ
Du2i

Dt
= ρui fi +

∂

∂xj

(
uiσij

)
− Dijσij .

Integrating the above equation over an arbitrary volume V and using (55) we get

D

Dt

∫∫∫

V

1

2
ρu2i dV =

∫∫∫

V

ρui fidV +

∫∫

S

uiσijnjdS −
∫∫∫

V

DijσijdV .
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Equation for the mechanical energy II

Note that we can define the kinetic energy Ek associated with the fluid in V as

Ek =

∫∫∫

v

1

2
ρu2i dV .

Thus we obtain
D

Dt
Ek =

∫∫∫

V

ρui fidV +

∫∫

S

ui tidS −
∫∫∫

V

DijσijdV , (61)

or in vector form

D

Dt
Ek =

∫∫∫

V

ρu · fdV +

∫∫

S

u · tdS −
∫∫∫

V

D : σdV . (62)

The above equation states that the rate of change of the kinetic energy of the fluid in the
material volume V is equal to the power associated to the resultant of all external forces
minus the internal power used to deform the fluid within V . The last term in equation (62) is
therefore associated with internal energy dissipation.
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Definition of pressure in a moving fluid I

In section 2 we showed that, in a fluid at rest, the stress tensor takes the simple form

σij = −pδij ,

where the scalar quantity p is the static pressure.
In the case of a moving fluid the situation is more complicated. In particular:

the tangential stresses are not necessarily equal to zero;

the normal stresses might depend on the orientation of the surface they act on.

This implies that the simple notion of pressure as a normal stress acting equally in all directions is
lost. We wish now to find a proper definition for the pressure in the case of a moving fluid.
A natural choice is to consider 1

3
σii =

1
3
trσ, which we know to be an invariant under rotation of

the axes. A simple physical interpretation of 1
3
σii is available. Let us consider a small cube with

side dl centred in x. As the cube is small we can assume that σ is constant within it. Taking a
system of Cartesian coordinates (x1, x2, x3) with axes parallel to the sides of the cube the average
value of the normal component of the stress over the surface of the cube is

1

6dl2
(2σ11 + 2σ22 + 2σ33) dl

2 =
1

3
σii .

As the σii is an invariant of σ, the numerical value of 1
3
σii is independent of the orientation of the

cube.
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Definition of pressure in a moving fluid II

The quantity 1
3
σii reduces to the static fluid pressure when the fluid is at rest, and its mechanical

significance makes it an appropriate generalisation of the elementary notion of pressure.
Therefore, we adopt the following definition of pressure

p = −1

3
σii , or, p = −1

3
trσ. (63)

Important note

Incompressible fluids
For an incompressible fluid the pressure p is an independent, purely dynamical variable. In
the rest of this course we will deal exclusively with incompressible fluids.

Compressible fluids
In the case of compressible fluids we know from classical thermodynamics that we can define
the pressure of the fluid as a parameter of state, making use of an equation of state.
Thermodynamical relations refer to equilibrium conditions, so we can denote the
thermodynamic pressure as pe .
The connection between p and pe is not trivial as p refers to dynamic conditions, in which
elements of fluid in relative motion might not be in thermodynamic equilibrium. A thorough
discussion of this subject can be found in Batchelor (1967). Here it suffices to say that, for
most applications, is it reasonably correct to assume p = pe .
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Definition of pressure in a moving fluid III

For the discussion to follow it is convenient to split to the stress tensor σij into an isotropic part
−pδij , and a deviatoric part dij which is entirely due to fluid motion. We thus write

σij = −pδij + dij . (64)

The tensor dij accounts for tangential stresses and also normal stresses whose sum is zero.
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Constitutive relationship for Newtonian fluids I

We derive the constitutive relationship under the following assumptions.

1 The tensor d is a continuous function of ∇u.

2 If ∇u = 0 then d = 0, so that σ = −pI, i.e. the stress reduces to the stress in static
conditions.

3 The fluid is homogeneous, i.e. σ does not depend explicitly on x.

4 The fluid is isotropic, i.e. there is no preferred direction.

5 The relationship between d and ∇u is linear.

Both the tensors d and ∇u have nine scalar components. The linear assumption means that each
component of d is proportional to the nine components of ∇u. Hence, in the most general case
there are 81 scalar coefficients that relate the two tensors, in the form

dij = Aijkl

∂uk

∂xl
, (65)

where Aijkl is a fourth-order tensor which depends on the local state of the fluid but not directly
on the velocity distribution. Note that since dij is symmetrical so it must be Aijkl in the indices i

and j .
It is convenient at this stage to recall the decomposition of the velocity gradient tensor (46) into
a symmetric and an anti-symmetric part

∂ui

∂xj
= Dij +Ωij .
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Constitutive relationship for Newtonian fluids II

The assumption of isotropy of the fluid implies that the tensor Aijkl has to be isotropic. A tensor
is said to be isotropic when its components are unchanged by rotation of the frame of reference.
It is known from books on Cartesian tensors (e.g. Aris, 1962) that all isotropic tensors of even
order can be written as the sum of products of δ tensors, with δ being the Kronecker tensor. In
the case of a fourth-order tensor we can write

Aijkl = µδikδjl + µ′δilδjk + µ′′δijδkl ,

where µ, µ′ and µ′′ are scalar coefficients. Since Aijkl is symmetrical in i and j it must be

µ = µ′.

If µ = µ′ the tensor Aijkl is also symmetrical in the indices k and l . This implies that

AijklΩkl = 0,

as Ωkl is anti-symmetric. The fact that dij can not depend on Ωkl is reasonable as, on the ground
of intuition, we do not expect that a motion locally consisting of a rigid body rotation induces
stress in the fluid. Note that this also implies that the assumption 2 has to be rewritten as
D = 0 ⇒ d = 0.
We now have that equation (65) reduces to

dij = µδikδjlDkl + µδilδjkDkl + µ′′δijδklDkl = µDij + µDji + µ′′δijDkk .
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Constitutive relationship for Newtonian fluids III

Recalling that Dkk = ∂uk
∂xk

= ∇ · u, the above expression takes the form

dij = 2µDij + µ′′∇ · u δij . (66)

Finally, we recall that, by definition, dij makes no contribution to the mean normal stress,
therefore

dii = (2µ+ 3µ′′)∇ · u = 0,

and, since this expression holds for any u, we find

2µ+ 3µ′′ = 0. (67)

From (64), (66) and (67) we finally obtain the constitutive equation for a Newtonian fluid in the
form

σij = −pδij + 2µ

(

Dij −
1

3
∇ · u δij

)

, or, in vector form, σ = −pI+ 2µ

(

D− 1

3
(∇ · u)I

)

.

(68)
Notice that for an incompressible fluid we have ∇ · u = 0 by the continuity equation (38),
therefore the constitutive law simplifies in this case to

σij = −pδij + 2µDij , or, in vector form, σ = −pI+ 2µD. (69)
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Constitutive relationship for Newtonian fluids IV

Definitions

µ is named dynamic viscosity. It has dimensions [µ] = ML−1T−1, and in the IS it is
measured in N s m−2.

It is often convenient to define a kinematic viscosity as

ν =
µ

ρ
. (70)

The kinematic viscosity has dimensions [ν] = L2T−1, and in the IS is measured in m2s−1.

Inviscid fluids

A fluid is said to be inviscid or ideal if µ = 0. For an inviscid fluid the stress tensor reads

σij = −pδij , or, in vector form, σ = −pI, (71)

i.e. it takes the same form as for a fluid at rest. Note that inviscid fluids do not exist in nature.
However, in some cases, real fluids can behave similarly to ideal fluids. This happens in flows in
which viscosity plays a negligible effect.
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The Navier-Stokes equations

We now wish to derive the equations of motions for an incompressible Newtonian fluid. We
consider the Cauchy equation (57) and substitute into it the constitutive relationship (69). We
obtain

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)

− ρfi −
∂

∂xj

(
−pδij + 2µDij

)
= 0. (72)

Let us consider the last term of the above expression. We can write it as

∂

∂xj

(
2µDij

)
= 2µ

∂

∂xj

[
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)]

= µ

(

∂2ui

∂x2
j

+
∂2uj

∂xi∂xj

)

.

For the continuity equation, we have
∂uj
∂xj

= 0 ⇒ ∂
∂xi

∂uj
∂xj

= 0. We can then write equation (72) as

∂ui

∂t
+uj

∂ui

∂xj
−fi+

1

ρ

∂p

∂xi
−ν ∂

2ui

∂x2
j

= 0, or, in vector form,
∂u

∂t
+(u·∇)u−f+

1

ρ
∇p−ν∇2u = 0.

(73)
Recalling the definition of material derivative (27) the above equation can also be written as

Dui

Dt
− fi +

1

ρ

∂p

∂xi
− ν

∂2ui

∂x2
j

= 0, or, in vector form,
Du

Dt
− f +

1

ρ
∇p − ν∇2u = 0. (74)

These are called the Navier-Stokes equations and are of fundamental importance in fluid
mechanics. They govern the motion of a Newtonian incompressible fluid and have to be solved
together with the continuity equation (38).
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The dynamic pressure

We now assume that the body force acting on the fluid is gravity, therefore we set in the
Navier-Stokes equation (73) f = g. When ρ is constant the pressure p in a point x of the fluid
can be written as

p = p0 + ρg · x+ P, (75)

where p0 is a constant and p0 + ρg · x is the pressure that would exist in the fluid if it was at rest.
Finally, P is the part of the pressure which is associated to fluid motion and can be named
dynamic pressure. This is in fact the departure of pressure from the hydrostatic distribution.
Therefore, in the Navier-Stokes equations, the term ρg −∇p can be replaced with −∇P.
Thus we have:

∇ · u = 0,

∂u

∂t
+ (u · ∇)u+

1

ρ
∇P − ν∇2u = 0. (76)

If the Navier-Stokes equations are written in terms of the dynamic pressure gravity does not
explicitly appear in the equations.
In the following whenever gravity will not be included in the Navier-Stokes this will be done with
the understanding that the pressure is the dynamic pressure (even if p will sometimes be used
instead of P).
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Initial and boundary conditions for the Navier-Stokes equations

We know from the previous section that the motion of an incompressible Newtonian fluid is
governed by the Navier-Stokes equations (73) and the continuity equation (38), namely

∂u

∂t
+ (u · ∇)u− f +

1

ρ
∇p − ν∇2u = 0,

∇ · u = 0.

Initial conditions
To find an unsteady solution of the above equations, we need to prescribe initial conditions, i.e.
the initial (at time t = 0) spatial distribution within the domain of pressure and velocity

p(x, 0), u(x, 0). (77)

Boundary conditions
Equations (73) and (38) have also to be solved subjected to suitable boundary conditions.
We will discuss in the following the boundary conditions that have to be imposed at the interface
between two continuum media.
We will then specify these conditions to the following, particularly relevant, cases:

solid impermeable walls;

free surfaces, e.g. interfaces between a liquid and a gas.
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Kinematic boundary condition I

The kinematic boundary condition imposes that at a boundary of the domain the normal velocity
of the surface vn = v · n (with v velocity of the boundary and n unit vector normal to the surface)
is equal to the normal velocity of fluid particles on the surface un = u · n. Thus we have

un = vn at the boundary. (78)

Let us determine vn. Let F (x, t) = 0 be the equation of the surface and n the normal to this
surface, defined as

n =
∇F

|∇F | . (79)

Let us consider a small displacement of the surface in the time interval dt. The differential dF
taken along the direction normal to F = 0 in the time interval dt has to be equal to zero for
F = 0 to still represent the equation of the surface. Thus

dF =
∂F

∂n
dn +

∂F

∂t
dt = 0. (80)

In the above expression dn represents the displacement of the interface along the normal direction
in the time interval dt. The normal component of the velocity of the surface is

vn =
dn

dt
. (81)
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Kinematic boundary condition II

Comparing (81) and (80) we obtain

vn = − ∂F/∂t

∂F/∂n
.

Equation (79) implies n · n|∇F | = ∇F · n ⇒ |∇F | = ∂F
∂n

. Therefore the above equation can be
written as

vn = −∂F/∂t|∇F | . (82)

Substituting (82) into (78) we find

−∂F/∂t|∇F | = u · n = u · ∇F

|∇F | ,

from which, recalling (26)
∂F

∂t
+ u · ∇F =

DF

Dt
= 0. (83)

The above equation states that the F = 0 is a material surface, i.e. it is always constituted by
the same fluid particles.
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Continuity of the tangential component of the velocity

Given a boundary surface between two continuum media experience shows that the tangential
component of the velocity is continuous across the interface. Let us denote with subscripts a

and b the two continuum media. We thus have

ua t = ub t at the boundary, (84)

where subscript t indicates the tangential components of u.

This condition can be justified by the observation that a discontinuity of the tangential velocity
would give rise to the generation of intense (infinite) stress on the surface, which would tend to
smooth out the discontinuity itself.
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Dynamic boundary conditions

Let us now consider an interface between two fluids. Since the boundary is immaterial, i.e. it has
no mass, the elements that constitute the interface have to be in equilibrium to each other. This
implies that:

the tangential component of the stress has to be continuous across the interface;

a jump in the normal component of the stress is admissible, which has to be balanced by the
surface tension, according to equation (12).

Thus, recalling (69) we can write

(−paI+ 2µaDa)n− (−pbI+ 2µbDb)n = κ

(
1

R1
+

1

R2

)

n, at the interface (85)

where subscripts a and b denote the fluid at the two sides of the interface, and the normal unit
vector n points from the fluid a to b.
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Two relevant cases

Let us now consider two cases of particular relevance in fluid mechanics.

Fluid in contact with a solid impermeable wall
When a fluid is in contact with a solid the boundary conditions described above take a very
simple form.

The kinematic boundary condition (83) and the conditions imposing the continuity of the
tangential component of the velocity (84), imply that the velocity of the fluid at the wall u
has to be equal to the velocity of the wall uw . Thus we have

u = uw at the wall. (86)

This is named no-slip boundary condition.
In the particular case in which the solid is not moving we obtain

u = 0 at the wall. (87)

There is no need to impose the dynamic boundary conditions (85), unless the problem for
the solid deformation is also solved, i.e. it is assumed that the solid is deformable.

Interface between a liquid and a gas (free surface)
Typically there is no need to solve the problem for the gas motion. This has the following
consequences.

Conditions (84) are no longer needed.

In equation (85) the stress on the gas side (b) reduces to the contribution of the pressure
−pgasn.
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Units of measurement and systems of units I

A very comprehensive book on scaling and dimensional analysis, which pays particular attention
to problems in fluid mechanics, is Barenblatt (2003). This section is based on this book.
Measurement of a physical quantity is a comparison of a certain quantity with an appropriate
standard, or unit of measurement.
We can divide the units for measuring physical quantities into two categories:

fundamental units;

derived units.

This has the following meaning. Let us consider a certain class of phenomena (e.g. mechanics).
Let us list a number of quantities of interest and let us adopt reference values for these quantities
as fundamental units. For instance we can choose mass, length and time standards as
fundamental units. Once fundamental units have been decided upon it is possible to obtain
derived units using the definition of the physical quantities. For instance, we know that density is
mass per unit volume. We can therefore measure the density of a certain body by comparing it
with the density of a body that contains a unit of mass in a volume equal to the cube of a unit of
length.

Important note. Given a certain class of phenomena there is a minimum number of fundamental
units necessary to measure all quantities within that class. However, a system of units needs not
be minimal, i.e. we may choose as fundamental units more units than we strictly need.

Definition. A set of fundamental units that is sufficient for measuring all physical properties of
the class of phenomena under consideration is called a system of units.
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Units of measurement and systems of units II

A system of units consisting of one fundamental unit (e.g. the metre) is sufficient to describe
geometric objects.

Two fundamental units (e.g. the metre and the second) are sufficient to describe kinematic
phenomena.

Three fundamental units (e.g. the metre, the second and the kilogram) are sufficient to
describe dynamic phenomena.

. . .

In the International System of Units SI the fundamental units for studying dynamic phenomena
are:

the kilogram kg for mass (equal to the mass of the International Prototype Kilogram,
preserved at the Bureau of Weights and measures in Paris);

the metre m for length (the length of the path travelled by light in vacuum during a time
interval of 1/299, 792, 458 s);

the second s for time (the duration of 9,192,631,770 periods of the radiation corresponding
to the transition between the two hyperfine levels of the ground state of the caesium 133
atom).
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Units of measurement and systems of units III

Definition. Two systems of units are said to belong to the same class of systems of units if they
differ only in the magnitude of the fundamental units, but not in their physical nature.

For instance if we choose to describe a mechanical problem adopting as fundamental units one
kilometre (= 103 m), one metric ton (= 103 kg) and one hour (= 3600 s) we have a system of
units in the same class as the SI (metre-kilogram-second).

If we regard the metre-kilogram-second as the original system in its class, then the corresponding
units on an arbitrary system in the same class are obtained as follows

unit of length = m/L, unit of mass = kg/M, unit of time = s/T , (88)

where L, M and T are positive numbers that indicate the factor by which the fundamental
units change by passing from the original system to another system in the same class.
The class of systems of units based on length, mass and time is called LMT class.
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Dimension of a physical quantity I

Definition of dimension
The function that determines the factor by which the numerical value of a physical quantity
changes upon passage from the original system of units to an arbitrary system within a given class
is called dimension function or dimension of that quantity.

The dimension of a quantity F is denoted by [F ].

For example, if the units of length and time are changed by factors L and T , respectively, then
the unit of velocity changes by a factor LT−1. According to the above definition we can say that
LT−1 is the dimension of velocity.

Definition. Quantities whose numerical value is independent of the choice of the fundamental
units within a given class of systems of units are called dimensionless.

Important principle. In any equation with physical meaning all terms must have the same
dimensions. If this was not the case an equality in one system of units would not be an equality in
another system of units within the same class.

Thus, from Newton law we find that the dimension of force ([F ]) in the LMT class is

[F ] = [m][a] = LMT−2,

with m mass and a acceleration.
If, on the other hand, we adopt the LFT class (length-force-time), then the dimension of mass is
[m] = L−1FT 2.
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Dimension of a physical quantity II

The dimension function is a power-law monomial
We will prove this using the LMT class of systems of units. We know that the dimension of a
physical quantity a within this class depends on L, M and T only.

[a] = φ(L,M,T ).

Suppose we have chosen an original system (e.g. metre-kilogram-second). Moreover, we choose
two further systems in the same class, say 1 and 2, so that, upon passage from the original
system to these new systems, the fundamental units decrease by factors L1, M1, T1 and L2, M2,
T3, respectively.
Let a be the numerical value of the quantity in the original system. This value will become, by
definition of dimension, a1 = aφ(L1,M1,T1) in the first new system and a2 = aφ(L2,M2,T2) in
the second one. Thus we have

a2

a1
=
φ(L2,M2,T2)

φ(L1,M1,T1)
. (89)

All systems of units within a given class are equivalent, i.e. there are no preferred systems. This
implies that we may assume system 1 as the original system of the class. System 2 can then be
obtained by decreasing the fundamental units by L2/L1, M2/M1 and T2/T1. This implies that
the numerical value a2 of the considered quantity can now be written as

a2 = a1φ

(
L2

L1
,
M2

M1
,
T2

T1

)

.
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Dimension of a physical quantity III

Therefore we have
a2

a1
= φ

(
L2

L1
,
M2

M1
,
T2

T1

)

. (90)

Comparing equations (89) and (90) we obtain the following functional equation for φ

φ(L2,M2,T2)

φ(L1,M1,T1)
= φ

(
L2

L1
,
M2

M1
,
T2

T1

)

. (91)

To solve this equation we proceed as follows. We first differentiate both sides of (91) with
respect to L2 and then set L2 = L1 = L, M2 = M1 = M and T2 = T1 = T , finding

∂

∂L
φ(L,M,T )

φ(L,M,T )
=

1

L

∂

∂L
φ(1, 1, 1) =

α

L
,

where α = ∂
∂L
φ(1, 1, 1) is a constant. The solution of the above equation is

φ(L,M,T ) = LαC1(M,T ).

Substituting this expression into (91), we find the following functional equation for C1

C1(M2,T2)

C1(M1,T1)
= C1

(
M2

M1
,
T2

T1

)

.
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Dimension of a physical quantity IV

We now differentiate this equation with respect to M2 and then set M2 = M1 = M and
T2 = T1 = T .

∂

∂M
C1(M,T )

C1(M,T )
=

1

M

∂

∂M
C1(1, 1) =

β

M
,

where, again, β = ∂
∂M

C1(1, 1) is a constant. Solving for C1 we obtain

C1 = MβC2(T ).

Proceeding in a similar way we finally find

C2(T ) = C3T
γ .

Thus the solution is
φ = C3L

αMβTγ .

The constant C3 has to be equal to 1 as L = M = T = 1 means that the fundamental units
remain unchanged, so that the value of the quantity a also has to remain unchanged and,
therefore, it must be φ(1, 1, 1) = 1. We then finally have

φ = LαMβTγ . (92)

and we can easily verify that this is actually a solution of our original functional equation (91).
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Quantities with independent dimensions I

Definition
The quantities a1, a2, . . . , ak are said to have independent dimensions if the monomial

aα1 a
β
2 . . . a

ω
k

has a dimension function equal to 1 (i.e. it is dimensionless) only for
α = β = · · · = ω = 0.

Example
Let us consider, for example, the quantities density ([ρ] = ML−3), velocity ([u] = LT−1) and
force ([f ] = MLT−2). Let us now construct the monomial Γ = ραuβ f γ . We require this
monomial to be dimensionless, thus

[Γ] = [ρ]α[u]β [f ]γ = MαL−3αLβT−βMγLγT−2γ =

= Mα+γL−3α+β+γT−β−2γ = 1.

The above equation implies

α+ γ = 0,

− 3α+ β + γ = 0,

− β − 2γ = 0.

This above system has no solution unless α = β = γ = 0. This means that the quantities ρ, u
and f have independent dimensions.
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Quantities with independent dimensions II

Theorem
Within a certain class of systems of units, it is always possible to pass from an original system of
units to another system, such that any quantity, say a1, in the set of quantities a1, . . . , ak with
independent dimensions, changes its numerical value while all the others remain unchanged.

Proof

Let us consider a system of units PQ . . . . Let us consider a set of quantities with independent
dimensions, whose values in a chosen original system of units are a1, . . . , ak . Upon change of the
system of units to an arbitrary one, their numerical value becomes a′1, . . . , a

′
k
, such that

a′1 = a1P
α1Qβ1 . . . , . . . a′k = akP

αkQβk . . . ,

where the powers αi , βi , . . . (i = 1, . . . , k) are determined by the dimensions of each quantity.
We want to find a system of units such that

a′1 = a1P
α1Qβ1 . . . , a′2 = a2, . . . a′k = ak .

We thus have a system of equations

Pα1Qβ1 · · · = A1, Pα2Qβ2 · · · = 1, . . . , PαkQβk =̇1.

Taking the logarithm of the above equations we obtain

α1 lnP + β1 lnQ + · · · = lnA1, α2 lnP + β2 lnQ + · · · = 0, . . . , αk lnP + βk lnQ + · · · = 0.
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Quantities with independent dimensions III

This system has a solution unless the left-hand side of the first equation is a linear combination of
the remaining ones, so that

α1 lnP + β1 lnQ + · · · = c2(α2 lnP2 + β2 lnQ + . . . ) + · · ·+ ck (αk lnPk + βk lnQ + . . . ),

with c2, . . . , ck constants. However, this implies, going back to the exponent form, that

Pα1Qβ1 · · · =
(

Pα2Qβ2

)c2
. . .
(

PαkQβk

)ck
,

or

[a1] = [a2]
c2 . . . [ak ]

ck .

This contradicts the fact that a1, . . . , ak have independent dimensions and the theorem is
therefore proved.

Rodolfo Repetto (University of Genoa) Fluid dynamics January 7, 2015 93 / 179



Scaling and dimensional analysis Buckingham’s Π theorem

Buckingham’s Π theorem I

Any physical study (experimental or theoretical) consists in finding one or several relationships
between physical quantities in the form

a = f (a1, . . . , ak , b1, . . . , bm). (93)

In the above expression a denotes the quantity of interest. On the right-hand side of the above
equation we have separated the physical quantities into two groups.

The k quantities a1, . . . , ak have independent dimensions;

the m quantities b1, . . . , bm can be expressed in terms of the dimensions of a1, . . . , ak .

Thus we can write

[b1] = [a1]
α1 . . . [ak ]

ω1 , . . . [bm] = [a1]
αm . . . [ak ]

ωm .

Note: it must be that the dimension of a is dependent on the dimensions of a1, . . . , ak , so that

[a] = [a1]
α . . . [ak ]

ω .

Indeed, if a had dimensions independent from the dimensions of the variables a1, . . . , ak , for the
theorem proved above it would be possible to pass from the original system of units to another
system, such that the numerical value of a would change and the numerical values of a1, . . . , ak
and b1, . . . , bm would remain unchanged. This would indicate the need to include further
quantities on the right-hand side of equation (93).
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Buckingham’s Π theorem II

We now introduce

Π =
a

aα1 . . . a
ω
k

,

Π1 =
b1

a
α1
1 . . . aω1

k

, . . . Πm =
bm

a
αm
1 . . . aωm

k

.

We can thus write equation (93) as

Π =
f (a1, . . . , ak , b1, . . . , bm)

aα1 . . . a
ω
k

=
f (a1, . . . , ak ,Π1a

α1
1 . . . aω1

k
, . . . ,Πma

αm
1 . . . aωm

k
)

aα1 . . . a
ω
k

,

or
Π = F(a1, . . . , ak ,Π1, . . . ,Πm).

Π and Πi (i = 1, . . . ,m) are dimensionless, therefore they don’t change their numerical value
upon changing of the system of units. Now, suppose that we change the system of units so that
a1 changes its value and a2, . . . , ak remain unchanged. In the above equation a1 would be the
only variable to change and this indicates that the function F can not depend of a1. The same
argument holds for all the a1, . . . , ak variables. Therefore the above equation can be written as

Π = F(Π1, . . . ,Πm). (94)
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Buckingham’s Π theorem III

We have therefore proved that equation (93) is equivalent to equation (94), which involves only
dimensionless variables. Note, moreover, that (94) involves a smaller number of variables than
(93). In particular, the number of variables involved has decreased by k, i.e. by the number of
variables involved in (93) that have independent dimensions. This fact is of fundamental
importance and it is one of the main reasons for which working with dimensionless quantities is
typically desirable.
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Dimensionless Navier-Stokes equations I

When dealing with theoretical modelling of physical phenomena it is convenient to work with
dimensionless equations. The main reasons for that are:

according to the Π theorem the number of parameters involved in the problem decreases if
one passes from a dimensional to a dimensionless formulation;

in dimensionless form (if proper scalings are adopted) it is much easier to evaluate the
relative importance of different terms appearing in one equation.

Let us consider the Navier-Stokes equation and assume that the body force is gravity.
Equations (73) and the continuity equation (38), can then be written as

∂u

∂t
+ (u · ∇)u

︸ ︷︷ ︸

1©

−g
︸︷︷︸

2©

+
1

ρ
∇p

︸ ︷︷ ︸

3©

−ν∇2u
︸ ︷︷ ︸

4©
= 0, (95)

where the vector g, representing the gravitational field, has magnitude g and is directed vertically
downwards. We recall the physical meaning of all terms:

1©: convective terms;

2©: gravity;

3©: pressure gradient;

4©: viscous term.
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Dimensionless Navier-Stokes equations II

We now wish to scale the above equation. Suppose that L is a characteristic length scale of the
domain under consideration and U a characteristic velocity. We can then introduce the following
dimensionless coordinates and variables

x∗ =
x

L
, u∗ =

u

U
, t∗ =

t

L/U
.

Above and in what follows superscript stars indicate dimensionless quantities. We still have to
scale the pressure. We might consider two different situations:

1 In equation (95) 3© balances with 4©. In this case we can write

p∗ =
p

ρνU/L
.

2 If, on the other hand, in (95) the pressure gradient 3© balances with the convective terms 1©,
we can scale the pressure as follows

p∗ =
p

ρU2
.
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Dimensionless Navier-Stokes equations III

Low Reynolds number flows

Let us consider the first case. Making equation (95) dimensionless using the above scales we
obtain

Re

[
∂u∗

∂t∗
+ (u∗ · ∇∗)u∗

]

+
Re

Fr2
z+∇∗p∗ −∇∗2u∗ = 0, (96)

where z is the upward directed vertical unit vector.
In the above equation we have defined two dimensionless parameters.

Re =
UL

ν
: Reynolds number. It represents the ratio between the magnitude of inertial

(convective) terms and viscous terms. It plays a fundamental role in fluid mechanics.

Fr =
U√
gL

: Froude number. It represents the square root of the ratio between the

magnitude of inertial (convective) terms and gravitational terms. It plays a fundamental role
when gravity is important, e.g. in free surface flows.

If we now consider the limit Re → 0 the dimensionless Navier-Stokes equation (96) reduces to the
so called Stokes equation, i.e.

∇∗p∗ −∇∗2u∗ = 0. (97)

This equation is much simpler than the Navier-Stokes equation as it is linear. In section 10 we
will derive some analytical solutions of equation (97).
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Dimensionless Navier-Stokes equations IV

Large Reynolds number flows

Let us now consider the case in which the pressure gradient balances the convective terms. The
dimensionless Navier-Stokes equation takes the form

∂u∗

∂t∗
+ (u∗ · ∇∗)u∗ +

1

Fr2
z+∇∗p∗ − 1

Re
∇∗2u∗ = 0. (98)

In the limit Re → ∞ the viscous term in equation (98) tends to zero. Thus we are led to think
that, at large values of Re, the fluid behaves as an ideal or inviscid fluid.
This argument, however, has to be used with care as dropping off the viscous term from (98)
means to neglect the term containing the highest order derivatives in the equation. Therefore, if
the viscous term in (98) is neglected it is not possible to impose all boundary conditions. To
resolve this contradiction we need to assume that at the boundaries thin boundary layers form,
within which viscous terms in the Navier-Stokes equations have the same magnitude as
convective terms.
If boundary layers keep very thin everywhere in the flow domain the fluid out of the boundary
layers, in the core of the domain, actually behaves as if it was inviscid. This point will be
discussed in more detail in section 11.
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Introduction to unidirectional flows

We consider the flow of an incompressible Newtonian fluid in the gravitational field. We thus
have equations (95) and the continuity equation (38), namely

∂u

∂t
+ (u · ∇)u− g +

1

ρ
∇p − ν∇2u = 0,

∇ · u = 0.

We consider a unidirectional flow, i.e. a flow in which the velocity has everywhere the same
direction (say the direction of the axis x) and it is independent of x . Thus, assuming Cartesian
coordinates (x , y , z), we have

u = [u(y , z, t), 0, 0]. (99)

It is easy to check that with the velocity field (99) all the non linear terms in the Navier-Stokes
equations vanish. Thus the governing equations in this case are linear and therefore much more
amenable for analytical treatment.
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Some examples of unidirectional flows I

Let us consider the unidirectional flow shown in the
figure. The direction of flow is inclined by an angle ϑ
with respect to a horizontal plane. Referring to the
figure we consider the system of Cartesian coordinates
(x , y , z), with x direction of flow. The corresponding
velocity components are [u(y , z), 0, 0]. In this case the
Navier-Stokes equations take the form

∂u

∂t
+ g sinϑ+

1

ρ

∂p

∂x
− ν

(
∂2u

∂y2
+
∂2u

∂z2

)

= 0, (100)

1

ρ

∂p

∂y
+ g cosϑ = 0, (101)

∂p

∂z
= 0. (102)

Equations (101) and (102) simply impose that the pressure distribution is hydrostatic on the
cross-section of the flow (planes with x = const). This also implies that, as in hydrostatics (10),
the piezometric (or hydraulic) head h is constant on such planes and is thus a function of x only.
We can thus write

h(x) = x sinϑ+ y cosϑ+
p(x , y)

γ
,
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Some examples of unidirectional flows II

from which
∂h

∂x
= sinϑ+

1

γ

∂p

∂x
.

We can then rewrite equation (100) as

∂u

∂t
+ g

∂h

∂x
− ν

(
∂2u

∂y2
+
∂2u

∂z2

)

= 0. (103)

Since u does not depend on x it follows that also ∂h/∂x is independent of x . Hence, we can write

∂h

∂x
= −j(t),

where j is function of time only. Upon substitution of j , equation (103) takes the form

∂u

∂t
− gj − ν

(
∂2u

∂y2
+
∂2u

∂z2

)

= 0. (104)

In the particular case of steady flow this simplifies to

∂2u

∂y2
+
∂2u

∂z2
= −g

ν
j . (105)
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Some examples of unidirectional flows III

Couette-Poiseuille flow

Let us now consider a particular case of the flow
described above, i.e. the flow within a gap formed by
two flat parallel walls, each one of which is moving in
the x direction with a given velocity, say u1 (lower wall)
and u2 (upper wall). Moreover, we assume that j has a
constant prescribed value. We wish to study the motion
of a fluid within this gap. In this case u = [u(y), 0, 0].

Equation (105) can be written as

d2u

dy2
= −g

ν
j ,

The solution of the above equation is

u = − gj

2ν
y2 + c1y + c2.

The constants c1 and c2 can be determined imposing the no-slip boundary conditions at the
walls, i.e.

u(0) = u1, u(a) = u2.
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Some examples of unidirectional flows IV

We finally find

u =
gj

2ν
(a− y)y +

u2 − u1

a
y + u1. (106)

From the above solution we can easily compute the volume flux per unit length q as

q =

∫ a

0
udy =

gj

12ν
a3 +

u2a

2
+

u1a

2
. (107)

We now consider a few particular cases.

Poiseuille flow: j 6= 0, u1 = u2 = 0.

In this case the flow is driven by a
hydraulic head gradient alone. The
velocity distribution (106) reduces to

u =
gj

2ν
(a− y)y , (108)

i.e. the velocity profile is parabolic. The maximum velocity is located at the centre of the
channel (y = a/2) and is equal to

umax =
gj

8ν
a2,
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Some examples of unidirectional flows V

and the volume flux per unit length is

q =
gj

12ν
a3 =

2

3
umaxa.

The average velocity u is equal to 2
3
umax.

Let us now compute the shear stress on the wall. The stress tensor has the form

σ =









0 µ
du

dy
0

µ
du

dy
0 0

0 0 0









− pI.

Thus we easily find that the tangential stress τ exerted by each wall is given by

τ = −γj
2
a.

Quite surprisingly the shear stress is not dependent on the viscosity of the fluid.
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Some examples of unidirectional flows VI

Couette flow: j = 0, u1 = 0, u2 6= 0.

In this case the flow is driven by the
movement of the upper wall and the
hydraulic head gradient is zero. The
velocity distribution (106) reduces to

u =
u2

a
y . (109)

Moreover, we find

q =
u2a

2
, τ = µ

u2

a
.
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Some examples of unidirectional flows VII

Unidirectional free-surface flow

We now consider a steady free-surface flow over an
inclined plane, as shown in the figure. The velocity
vector can be written as u = [u(y), 0, 0] and
equation (105) reduces to

d2u

dy2
= −g

ν
j ,

subjected to the no-slip condition at y = 0 and the dynamic boundary conditions at y = h, i.e.

u(0) = 0,
du

dy

∣
∣
∣
∣
y=h

= 0.

The corresponding velocity distribution and flux per unit length are

u =
gj

2ν
(2h − y)y , q =

∫ h

0
udy =

gj

3ν
h3.

If, as in fact is normally the case, the flux q and the slope j are fixed (rather than h) we obtain
the following expression for h

h = 3

√

3νq

gj
.
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Some examples of unidirectional flows VIII

Axisymmetric Poiseuille flow

Let us now consider a steady, completely developed flow
in a straight pipe with circular cross-section of radius R.
Let the pipe axis be in the z direction and let the flow
be axisymmetric. In cylindrical coordinates (z, r , ϕ) the
velocity vector takes the form u = [u(r), 0, 0], with u

velocity component in the z direction. With these
coordinates equation (105) takes the form

(
d2

dr2
+

1

r

d

dr

)

u = −gj

ν
, ⇒ 1

r

d

dr

(

r
du

dr

)

= −gj

ν
.

The above equation has to be solved subjected to the no-slip boundary condition at r = R and a
regularity condition in r = 0.
We then have

r
du

dr
= − gj

2ν
r2 + c1, ⇒ u = − gj

4ν
r2 + c1 log r + c2.

Regularity at r = 0 imposes c1 = 0. Moreover, enforcing the no-slip boundary condition yields

c2 =
gj

4ν
R2. The solution is

u =
gj

4ν

(
R2 − r2

)
. (110)
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Some examples of unidirectional flows IX

This is known as Poiseuille flow. The velocity profile is a paraboloid. The volume flux Q is given
by

Q =

∫ R

0

∫ 2π

0
urdϕdr =

gjπ

8ν
R4. (111)

Written in cylindrical coordinates (z, r , ϕ) the stress tensor σ for this flow field takes the form

σ =









0 µ
du

dr
0

µ
du

dr
0 0

0 0 0









− pI.

We then easily compute the tangential stress τ on the wall, which reads

τ = −γj
2
R.
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Unsteady unidirectional flows I

Flow over a periodically oscillating plate

Let us now consider one example of unsteady unidirectional flow. In this case we need solving
equation (104).
We consider the flow in the region y > 0 induced by periodic motion along the x axis of a rigid
flat wall located at y = 0. The velocity of the wall uw can be written as

uw = u0 cos(ωt) =
u0

2

(

e iωt + c.c.
)

,

where c.c. denotes the complex conjugate.
Since there is no imposed pressure gradient equation (104) reduces to

∂u

∂t
− ν

∂2u

∂y2
= 0. (112)

We seek a separable variable solution in the form

u = f (y)e iωt + c.c. (113)

where f (y) is a complex function. Substituting (113) into (112) we obtain

iω

ν
f − d2f

dy2
= 0.
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Unsteady unidirectional flows II

Remembering that
√
i = 1√

2
(1 + i), the solution of the problem is

u(y , t) =






c1 exp






− y(1 + i)
√

2
ν

ω







+ c2 exp







y(1 + i)
√

2
ν

ω












e iωt + c.c.

As the solution should not be divergent for y → ∞ we require c2 = 0. Moreover, the no-slip
boundary condition at the wall imposes

c1 =
u0

2
.

Thus the solution of (112) is

u(y , t) =
u0

2
exp






− y(1 + i)
√

2
ν

ω







e iωt + c.c. = u0 exp






− y
√

2
ν

ω







cos






ωt − y

√

2
ν

ω






. (114)
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Unsteady unidirectional flows III

The solution is sketched in the figure for u0 = 1 m/s, ν = 10−6 m2/s (water) and for two
different values of ω, (a) ω = 1 s−1, (b) ω = 0.1 s−1.

0 0.002 0.004 0.006 0.008 0.01
−1

−0.5

0

0.5

1

y [m]

u 
[m

/s
]

(a)

0 0.002 0.004 0.006 0.008 0.01
−1

−0.5

0

0.5

1

y [m]

u 
[m

/s
]

(b)

It is important to notice that the velocity does not spread to infinity in the y direction for long
times. The solution (114) suggests that a characteristic length scale l of the layer of fluid
interested by motion is given by

l ≈
√
ν

ω
.
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Axisymmetric flow with circular streamlines I

We present here another case in which the Navier-Stokes equations take a linear form. Let us
consider a flow such that all streamlines are circles centred on a common axis of symmetry.
Moreover, adopting cylindrical coordinates (z, r , ϕ), we assume that the velocity, which is purely
azimuthal, only depends of the radial coordinate r and, possibly, on time t. Thus we have
u = [0, 0,w(r , t)]. We finally assume axisymmetry, so that ∂

∂ϕ
≡ 0. This flow is strictly related

with unidirectional flows.

The continuity equation and the and Navier-Stokes equations in cylindrical coordinates are
reported in the appendix 14 (equations (189), (190), (191) and (192)). It is immediate to verify
that, when the velocity field takes the form u = [0, 0,w(r , t)], and the flow is axisymmetric the
above equations reduce to

∂p

∂z
= 0 (115)

− w2

r
+

1

ρ

∂p

∂r
= 0 (116)

∂w

∂t
− ν

[
1

r

∂

∂r

(

r
∂w

∂r

)

− w

r2

]

= 0, (117)

and the continuity equation is automatically satisfied. Equation (115) implies that the pressure
does not depend on z, and equation (116) that the radial variation of p supplies the force
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Axisymmetric flow with circular streamlines II

necessary to keep the fluid element moving along a circular path. Finally, equation (117) is linear
and it is the analogous of equation (104), for a unidirectional flow.

Steady flow between two concentric rotating cylinders

Let us consider two concentric cylinders with radius R1 and
R2, respectively (R2 > R1). Each of the cylinders rotates
with a given constant angular velocity (Ω1 and Ω2). The gap
between the cylinders is filled with fluid. The flow is steady
and equation (117) reduces to

d

dr

(

r
dw

dr

)

− w

r
= 0,

with the boundary conditions

w = R1Ω1 (r = R1), w = R2Ω2 (r = R2).

The above equation can be rewritten as

1

r

d

dr

(

r2
dw

dr
− rw

)

= 0.
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Axisymmetric flow with circular streamlines III

We then have

r2
dw

dr
− rw = c1, ⇒ dw

dr
=

c1

r2
+

w

r
, ⇒ w = − c1

2r
+ c2r .

Enforcing the boundary conditions we finally find

w =
1

r

(

Ω1 − Ω2

R−2
1 − R−2

2

)

+ r

(
Ω1R

2
1 − Ω2R

2
2

R2
1 − R2

2

)

. (118)

We now consider a few particular cases.

Ω1 = 0, the inner cylinder is at rest.
In this case the solution (118) simplifies to

w = −Ω2R
2
2 (r

2 − R2
1 )

r(R2
1 − R2

2 )
. (119)

The shear stress τ on the outer cylinder (r = R2) is

τ = σrϕ|r=R2
= µ

(
dw

dr
− w

r

)

r=R2

=
2µΩ2R

2
1

R2
1 − R2

2

,
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Axisymmetric flow with circular streamlines IV

and the couple per unit length of cylinder m necessary to keep the outer cylinder in rotation is

m = 2πR2
2 τ.

This device (rotational cylinder rheometer) is often used to measure the viscosity of a fluid,
as, by rearrangement of the above formula, it is possible to obtain the value of the dynamic
viscosity µ by measuring the couple m required to keep the outer cylinder in motion.

R1 = 0, Ω1 = Ω2, flow inside a single rotating cylinder.
From (118) we immediately get

w = rΩ2,

which is a rigid body rotation.

R2 → ∞, Ω2 → 0, flow around a single rotating cylinder.
From (118) we obtain

w =
R2
1Ω1

r
. (120)

This is the so called “free vortex” velocity distribution. Notice that the vorticity associated
with this velocity field is everywhere zero. In this case the couple per unit length m

transmitted to the fluid by the rotating cylinder is

m = 4πR2
1µΩ1,
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Axisymmetric flow with circular streamlines V

and it is not zero. This implies a continuum growth of the angular momentum of the fluid.
This is not in contrast with the assumption of steady flow since the total angular momentum
associated with the velocity distribution (120) is infinite.

Ω1 = 0,
R2 − R1

R1
≪ 1.

In this case we can write

ε =
R2 − R1

R1
, R2 = R1(1 + ε),

with ε≪ 1. Let us now define a new coordinate ζ as

ζ =
r − R1

R2 − R1
=

r − R1

εR1
, ⇒ r = R1(1 + εζ),

with 0 ≤ ζ ≤ 1. Substituting the above expression into (119) and expanding in terms of ε we
find

w = Ω2R1ζ +Ω2R1ζ

(
3

2
− 1

2
ζ

)

ε+O(ε2)

It appears that in the limit of small gap (compared with the radius) the velocity tends to a
linear distribution, i.e. to the Couette flow (109).
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Low Reynolds number flows
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Introduction to low Reynolds number flows

In section 8 we have shown (page 99) that for low values of the Reynolds number, the equations
of motion reduce, at leading order, to the following linear equations

∇2u = ∇p, (121a)

∇ · u = 0. (121b)

The above equations, being linear, are much more amenable to analytical treatment than the
original Navier-Stokes equations.

In the following of this section we consider the classical solution obtained by Stokes in 1851 for
the slow flow past a sphere.

Rodolfo Repetto (University of Genoa) Fluid dynamics January 7, 2015 121 / 179



Low Reynolds number flows Slow flow past a sphere

Slow flow past a sphere I

For the flow around a sphere of radius a a sensible definition for the Reynolds number is

Re =
aU

ν
,

where U is the magnitude of the velocity far from the sphere. We consider a flow such that
Re ≪ 1. Moreover, let the pressure far from the sphere be equal to p0.
We make our problem dimensionless using the following scales

x∗ =
x

a
, u∗ =

u

U
, (p∗, p∗0 ) =

(p, p0)

ρνU/a
,

where the symbol ∗ denotes dimensionless variables. In the following we adopt a dimensionless
approach but skip the ∗ to simplify the notation.
Let i be the unit vector in the direction of the flow very far from the sphere (see the figure
below). The flow is axisymmetrical about the direction i. We consider a system of polar spherical
coordinates (r , ϑ, ϕ), centred in the centre of the sphere, with ϑ the zenithal and ϕ the azimuthal
coordinates, respectively. The corresponding velocity components are u = (ur , uϑ, uϕ). The
direction i coincides with the axis ϑ = 0, π. Our dimensionless problem can be written as

∇2u = ∇p, (122a)

∇ · u = 0, (122b)

u = 0 (r = 1), (122c)

u → i (r → ∞) (122d)

p → p0 (r → ∞) (122e)
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Slow flow past a sphere II

As a consequence of the axisymmetry of the flow we have

∂

∂ϕ
= 0, uϕ = 0,

and the continuity equation takes the form

1

r2

∂

∂r

(
r2ur

)
+

1

r sinϑ

∂

∂ϑ
(sinϑuϑ) = 0.

This allows us to introduce the so called Stokes streamfunction ψ, defined as

ur =
1

r2 sinϑ

∂ψ

∂ϑ
, uϑ = − 1

r sinϑ

∂ψ

∂r
. (123)

Given a vector b = (br , bϑ, bϕ) we have

∇× b =
r

r sinϑ

[
∂

∂ϑ
(bϕ sinϑ)− ∂bϑ

∂ϕ

]

+
ϑ

r

[
1

sinϑ

∂br

∂ϕ
− ∂

∂r
(rbϕ)

]

+
ϕ

r

[
∂

∂r
(rbϑ)−

∂br

∂ϑ

]

,

with r, ϑ and ϕ unit vectors along the three coordinate directions.
It is then easy to show that

u = ∇×
(

0, 0,
ψ

r sinϑ

)

= curl

(

0, 0,
ψ

r sinϑ

)

. (124)
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Slow flow past a sphere III

For future convenience we use the notation (curl) rather than (∇×) for the curl operator.
Recalling the vector identity

∇2u = ∇(∇ · u)− curl curl u, (125)

equation (122a) can be written as
curl curl u = −∇p.

Further taking the curl of the above expression we can eliminate the pressure, to get

curl3u = 0.

Using (124) the above expression can written in terms of the streamfunction as

curl4
(

0, 0,
ψ

r sinϑ

)

= 0. (126)

It is not difficult to show that

curl2
(

0, 0,
ψ

r sinϑ

)

=

(

0, 0,
−D2ψ

r sinϑ

)

,

where the operator D2 is defined as

D2 =
∂2

∂r2
+

1

r2

∂2

∂ϑ2
− cotϑ

r2

∂

∂ϑ
.
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Slow flow past a sphere IV

Therefore, equation (126) reduces to
curl4ψ = 0. (127)

The boundary conditions, written in terms of ψ, take the following form.

Condition on the sphere surface (r = 1)

Using the definition of the streamfunction (123) the condition (122c) can be written as

∂ψ

∂r
=
∂ψ

∂ϑ
= 0 (r = 1). (128)

Condition at infinity (r → ∞)

To write the condition at infinity (122d) as a function of ψ we note that

ur = cosϑ =
1

r2 sinϑ

∂ψ

∂ϑ
⇒ ∂ψ

∂ϑ
= r2 cosϑ sinϑ ⇒ ψ =

r2 sin2 ϑ

2
+ g1(r),

uϑ = − sinϑ = − 1

r sinϑ

∂ψ

∂r
⇒ ∂ψ

∂r
= r sin2 ϑ ⇒ ψ =

r2 sin2 ϑ

2
+ g2(ϑ).

Comparing the above expressions we find

ψ =
r2 sin2 ϑ

2
+ C . (129)
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Slow flow past a sphere V

We now seek a separable variable solution, thus writing ψ = f (r)g(ϑ). The boundary condition
(129) suggests to choose g(ϑ) = sin2 ϑ, so that

ψ(r , ϑ) = f (r) sin2 ϑ.

After some algebra it can be shown that

D2ψ =

(
d2

dr2
− 2

r2

)

f sin2 ϑ.

and hence we finally have to solve the following equation

(
d2

dr2
− 2

r2

)2

f = 0. (130)

The general solution of this homogeneous equation is

f = ar4 + br2 + cr + dr−1.

The boundary condition at infinity shows that it must be a = 0 and b = 1
2
. The condition at the

sphere surface imposes c = − 3
4
and d = 1

4
. Thus the Stokes solution for the flow past a sphere is

ψ =

(
1

2
r2 − 3

4
r +

1

4
r−1

)

sin2 ϑ. (131)
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Slow flow past a sphere VI

The two velocity components are immediately found from (123) and read

ur =

(

1− 3

2r
+

1

2r3

)

cosϑ, uϑ =

(

−1 +
3

4r
+

1

4r3

)

sinϑ. (132)

Finally, the pressure can be calculated from equation (122a) and is found to be

p = p0 −
3 cosϑ

2r2
. (133)

We can now compute the drag force F that the flow exerts on the sphere. This quantity is of
particular practical interest. Obviously, F is in the i direction, so we just have to compute the
following scalar quantity

F =

∫∫

r=1
(σrr cosϑ− σrϑ sinϑ) dS ,

which is the force magnitude. Note that the above expression is dimensionless; to find the
dimensional force we have to multiply it by ρνaU.
We have

σrr |r=1 =

(

−p + 2
∂ur

∂r

)

r=1

= −p0 +
3 cosϑ

2
,

σrϑ|r=1 =

[

r
∂

∂r

(uϑ

r

)

+
1

r

∂ur

∂ϑ

]

r=1

= −3

2
sinϑ.
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Slow flow past a sphere VII

The contribution to the drag from the normal stress is given by

∫ 2π

0

∫ π

0

(

−p0 +
3 cosϑ

2

)

cosϑ sinϑdϑdϕ = 2π,

and the contribution from the tangential stress is

∫ 2π

0

∫ π

0

3 sin3 ϑ

2
dϑdϕ = 4π.

The dimensionless drag force on the sphere is then

F = 6π, (134)

and, going back to dimensional quantities,

Stokes drag force = 6πρνaU. (135)
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Lubrication theory I

This technique provides a good approximation to the real solution when the domain of the fluid
is long and thin.

For simplicity let us assume that the flow is two dimensional (all derivatives with respect to the
third coordinate, say z, may be neglected) and that the height of the domain is h(x) and a typical
streamwise length is L.

The fluid velocity at the vessel walls is zero (no-slip condition) but the fluid velocity at the surface
of the cell equals the cell velocity (U). Therefore changes in the x-velocity u are on the order of
U, that is |∆u| ∼ U, and |∂u/∂y | ∼ |∆u/∆y | ∼ U/h0, where h0 is a characteristic value of h(x).

The change in fluid velocity as we move through a distance L in the x-direction is likely to be at
most U, and therefore |∂u/∂x | ∼ U/L. The continuity equation,

∂u

∂x
+
∂v

∂y
= 0,

implies that |∂v/∂y | ∼ U/L; hence |∆v | ∼ h0U/L.

Scaling
We nondimensionalise

x = Lx∗, y = h0y
∗, h(x) = h0h

∗(x∗), u = Uu∗, v = h0Uv
∗/L, p = p0p

∗,

where p0 is an appropriate scale for the pressure (to be chosen). Note that x∗, y∗, u∗, v∗ and p∗

are all order 1. (Note also that the flow has a low Reynolds number, so we expect to scale the
pressure gradient with the viscous terms.)
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Lubrication theory II

Neglecting gravity and assuming a steady solution, the nondimensional governing equations are

ǫ2Re

(

u∗
∂u∗

∂x∗
+ v∗ ∂u

∗

∂y∗

)

=− h20p0

µUL

∂p∗

∂x∗
+ ǫ2

∂2u∗

∂x∗2
+
∂2u∗

∂y∗2
, (136)

ǫ3Re

(

u∗
∂v∗

∂x∗
+ v∗ ∂v

∗

∂y∗

)

=− h20p0

ǫµUL

∂p∗

∂y∗
+ ǫ3

∂2v∗

∂x∗2
+ ǫ

∂2v∗

∂y∗2
, (137)

∂u∗

∂x∗
+
∂v∗

∂y∗
=0, (138)

where ǫ = h0/L ≪ 1 and Re = UL/ν.
We may immediately cancel the viscous terms that have a repeated x∗-derivative since they are
much smaller than the viscous terms with a repeated y∗-derivative. Balancing the pressure
derivative and viscous terms in the x-component equation (136) leads to the scaling
p0 = µUL/h20.
Multiplying equation (137) by ǫ and simplifying, equations (136) and (137) can be written as

ǫ2Re

(

u∗
∂u∗

∂x∗
+ v∗ ∂u

∗

∂y∗

)

=− ∂p∗

∂x∗
+
∂2u∗

∂y∗2
, (139)

0 =− ∂p∗

∂y∗
, (140)

where we have neglected terms of order ǫ2 and terms of order ǫ3Re relative to the
leading-order terms.
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Lubrication theory III

Solution procedure

The quantity ǫ2Re is called the reduced Reynolds number. We assume it is not too large,
which places an upper bound on the possible flux.

We may immediately solve (140) to find that the pressure is a function of x∗ only, that is,
the pressure is constant over the height of the gap.

The governing equations are thus (139) and (138), where p∗ is a function of x∗ only and
these must be solved subject to no-slip boundary conditions for u∗ at the walls.
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Lubrication theory IV

Series expansion for small reduced Reynolds number

In the case that the reduced Reynolds number is small, ǫ2Re ≪ 1 we can use a series expansion
method to find the velocity, by setting

u∗ =u∗0 + ǫ2Re u∗1 +
(
ǫ2Re

)2
u∗2 + . . . ,

v∗ =v∗
0 + ǫ2Re v∗

1 +
(
ǫ2Re

)2
v∗
2 + . . . ,

p∗ =p∗0 + ǫ2Re p∗1 +
(
ǫ2Re

)2
p∗2 + . . . .

noting that all the p∗i ’s are independent of y , and then solving for u∗0 (from equation (139)), v∗
0

(from equation (138)), u∗1 (from equation (139)), v∗
1 (from equation (138)), etc in that order. An

equation for the pressure can be obtained by integrating the continuity equation over the gap
height.

In many cases it is sufficiently accurate to find just the first terms u∗0 and v∗
0 (or even just u∗0 ).

Generalisation
Note that we could generalise this approach to include:

dependence upon the third spatial dimension;

time-dependence of the solution;

gravity;

. . . .
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Lubrication theory V

Example of solution

We consider the domain shown in the figure. For simplicity, we assume two-dimensional flow. We
wish to solve the flow in the gap 0 ≤ y ≤ h(x), with 0 ≤ x ≤ L.
The flow
is subject to the following boundary conditions:

no-slip at y = 0 and y = h(x);

given

flux per unit length F =
∫ h0
0 udy at x = 0;

given pressure p = 0 at x = L.

We assume that h0 = h(0) is a typical value of
the thickness of the domain in the y -direction and
assume that ǫ = h0/L ≪ 1. We can, therefore, apply the lubrication theory.
We scale the variables as follows

x∗ =
x

L
, y∗ =

y

h0
, u∗ =

u

U
, v∗ =

v

ǫU
,

with U = F/h0.
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Lubrication theory VI

Assuming that ǫ2Re ≪ 1, we need to solve the following dimensionless equations (see equations
(139), (140) and (138))

∂2u∗

∂y∗2
− ∂p∗

∂x∗
= 0, (141)

∂p∗

∂y∗
= 0, (142)

∂u∗

∂x∗
+
∂v∗

∂y∗
= 0, (143)

subject to the boundary conditions

u∗ = v∗ = 0 (y∗ = 0), (144)

u∗ = v∗ = 0 [y∗ = h∗(x∗)], (145)
∫ 1

0
u∗dy∗ = 1 (x∗ = 0), (146)

p∗ = 0 (x∗ = 1). (147)
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Lubrication theory VII

Equation (142) imposes that p∗ cannot depend on y∗. As a consequence equation (141) can be
integrated with respect to y∗ and, also using the boundary conditions (144) and (145), we obtain

u∗(x∗, y∗) =
1

2

dp∗

dx∗

(
y∗2 − h∗y∗) . (148)

In the above expression the term dp∗/dx∗ is still an unknown function of x∗.
Using the boundary condition (146) and (148) we find that

dp∗

dx∗

∣
∣
∣
∣
x∗=0

= −12. (149)

We now integrate the continuity equation (143) with respect to y∗

∫ h∗

o

∂u∗

∂x∗
+
∂v∗

∂y∗
dy∗ =✘✘✘v∗(h∗)−

✟
✟✟v∗(0) +

∫ h∗

o

∂u∗

∂x∗
dy∗ = 0,

where we have used the no-slip boundary conditions (144) and (145).
Using Leibniz rule1 and, again, the no-slip boundary conditions (144) and (145) we obtain the
following second order equation for the pressure

d

dx∗

(

h∗3
dp∗

dx∗

)

= 0.

Rodolfo Repetto (University of Genoa) Fluid dynamics January 7, 2015 135 / 179



Low Reynolds number flows Lubrication Theory

Lubrication theory VIII

From the above equation and using (149) we obtain

dp∗

dx∗
= − 12

h∗3
,

which we can plug into equation (148) to obtain the following expression for the velocity in the
x∗-direction

u∗(x∗, y∗) = − 6

h∗3

(
y∗2 − h∗y∗) .

The y∗-component of the velocity can be obtained from the continuity equation (143) and reads

v∗(x∗, y∗) = −6

(

− y∗3

h∗4
+

y∗2

h∗3

)
dh∗

dx∗
.

Finally, the pressure distribution can be obtained by integrating (129) and using the boundary
condition (147).
We note that we managed to obtain an analytical expression for the velocity without having to
specify the shape of the domain h∗(x∗).

1

b(z)∫

a(z)

∂f (x, z)

∂z
dx =

∂

∂z

b(z)∫

a(z)

f (x, z)dx − f (b, z)
∂b(z)

∂z
+ f (a, z)

∂a(z)

∂z
.
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The Bernoulli theorem I

As a first tool to study high Reynolds number flows we introduce the Bernoulli theorem. As it
will appear in the following, provided that some assumptions hold, this theorem is a very powerful
tool to solve practical problems by very simple means.

Let us recall the following vector identity

u× (∇× u) =
1

2
∇(u · u)− (u · ∇)u. (150)

Plugging it into the Navier-Stokes equation, we can rewrite (73) as

∂u

∂t
− u× ω − f +∇

(
p

ρ
+

1

2
|u|2
)

− ν∇2u = 0, (151)

where ω is the vorticity defined by (51).
Let us now assume that f is conservative. We can then write f = −∇Ψ, with Ψ scalar potential
function. Let, moreover assume that the flow is steady, so that ∂u/∂t = 0. Under the above
assumptions we can write (151) as

∇H′ = u× ω + ν∇2u,

where we have defined

H′ =
1

2
|u|2 +Ψ+

p

ρ
. (152)

Rodolfo Repetto (University of Genoa) Fluid dynamics January 7, 2015 138 / 179



High Reynolds number flows The Bernoulli theorem

The Bernoulli theorem II

If the fluid is inviscid (or, more realistically, if viscosity plays a negligible role in the flow under
consideration), we have

∇H′ = u× ω.

Projecting the above equation in the direction of flow we obtain

u · ∇H′ = 0.

The above equation implies that H′ is constant along the streamlines, which is a remarkably
simple result.

Particular case: gravitational body force field

In the particular case in which the body force is gravity we have

Ψ = gz,

with z a vertical and upwards directed coordinate. In this case we then have

H′ =
1

2
|u|2 + p

ρ
+ gz.

It is customary, in fluid mechanics and hydraulics to work with the quantity H = H′/g , so that

H = z +
p

γ
+

|u|2
2g

. (153)

H is named total head and it represents the total mechanical energy per unit weight of the fluid.
Note that if the fluid is at rest H reduces to the pressure head, defined in section 3.
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The Bernoulli theorem III

Bernoulli theorem can be stated as follows. If the following conditions are satisfied:

the fluid is incompressible,

the body force is gravity (or more in general it is conservative),

the flow is steady,

the effects of viscosity are negligible,

then the total head H is constant along streamlines. Note that the value of H can differ from
one streamline to another.
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Vorticity equation and vorticity production I

Vorticity equation
We wish to determine an equation for the vorticity ω = ∇× u, see equation (51). The
importance of the vorticity equation for studying large Reynolds number flows will become clear
in the following.
We take the curl of the Navier-Stokes equation (73), in which we assume that the body force
field is conservative, so that we can write f = −∇Ψ. We then obtain

∇×
[
∂u

∂t
+∇

(u · u
2

)

− u× ω +∇Ψ+
1

ρ
∇p − ν∇2u

]

= 0. (154)

In the above equation we have used the vector identity (150).
As the curl of a gradient is zero the second, fourth and fifth terms in equation (154) vanish.
Therefore we can write, using the index notation,

ǫijk
∂

∂xj

∂uk

∂t
− ǫijk

[
∂

∂xj
(ǫklmulωm)

]

− νǫijk
∂

∂xj

∂2uk

∂x2
l

= 0,

or
∂ωi

∂t
− ∂

∂xj
(ǫijkǫklmulωm)− ν

∂2ωi

∂x2
l

= 0.

We note that by definition of the alternating tensor we have ǫijk = ǫkij . Moreover, the following
formula holds

ǫkij ǫklm = δilδjm − δimδjl . (155)
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Vorticity equation and vorticity production II

Therefore, we can write
∂ωi

∂t
− ∂

∂xj
(uiωj − ujωi )− ν

∂2ωi

∂x2
j

= 0.

From the continuity equation we have that ∂uj/∂xj = 0. Moreover, the divergence of a curl is
zero, and therefore, ∂ωj/∂xj = 0. The above equation then simplifies to

∂ωi

∂t
+ uj

∂ωi

∂xj
− ωj

∂ui

∂xj
− ν

∂2ωi

∂x2
j

= 0, (156)

or, in vector form,
∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u− ν∇2ω = 0. (157)

This equation is called vorticity equation and it is of fundamental importance in fluid mechanics.

The first and second terms in equation (157) represent advective transport of vorticity.

The last term represents viscous (diffusive) transport of vorticity.

The third term does not have a counterpart in the Navier-Stokes equations. It accounts for
changes of vorticity due to deformation of material elements of the fluid.

Note, that pressure and body force do not appear in the vorticity equation.
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Vorticity equation and vorticity production III

Changes of vorticity in a volume V

Let us now study how the amount of vorticity changes in a fluid volume V . A suitable measure of
the amount of vorticity is the enstrophy, defined as (ω · ω)/2. Multiplying equation (156) by ωi

we obtain
∂

∂t

(

ω2
i

2

)

+ uj
∂

∂xj

(

ω2
i

2

)

− ωiωj

∂ui

∂xj
− νωi

∂2ωi

∂x2
j

= 0.

After some algebraic manipulation this can be written as

∂

∂t

(

ω2
i

2

)

+ uj
∂

∂xj

(

ω2
i

2

)

− ωiωj

∂ui

∂xj
− ν

[

∂2

∂x2
j

(

ω2
i

2

)

−
(
∂ωi

∂xj

)2
]

= 0.

Taking the integral of the above expression over a material volume V and applying the Reynolds
transport theorem we obtain

D

Dt

∫∫∫

V

(

ω2
i

2

)

dV =

∫∫∫

V

ωiωj

∂ui

∂xj
dV +

∫∫∫

V

ν
∂2

∂x2
j

(

ω2
i

2

)

dV −
∫∫∫

V

ν

(
∂ωi

∂xj

)2

dV . (158)

The term on the left hand side represents the time variation of the enstrophy associated with
the volume V .
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Vorticity equation and vorticity production IV

The first term on the right hand side induces changes of vorticity in V , as a response to the
velocity distribution. Note, however, that this is not a source term: if at some time the
vorticity within V is zero this term can not produce new vorticity.

Making use of Gauss theorem the second term on the right hand side can be transformed
into a flux term across the surface S bounding V as follows

∫∫∫

V

ν
∂2

∂x2
j

(

ω2
i

2

)

dV =
ν

2

∫∫

S

nj
∂

∂xj
ω2
i dS .

Therefore it does not produce nor dissipate vorticity.

Finally the last term represents viscous dissipation of vorticity and always contributes to
decrease the amount of vorticity within the volume V .

Equation (158) shows that the vorticity can not be generated within a body of fluid. It then
follows that vorticity can only be generated at the boundary of the domain.
A typical source of vorticity is, for instance, the no-slip condition (86), which holds in
correspondence of solid walls.
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Vorticity equation and vorticity production V

Generation of vorticity due to an impulsively started solid body

To understand the generation and transport of vorticity let us consider an example: a fluid
occupying an infinite region and initially (at time t = 0) at rest is set in motion by a solid body
immersed in the fluid that, at t = 0, impulsively starts moving with velocity U. Suppose that we
study this flow in a frame moving with the solid body.
We can think that the development of motion in the fluid takes place in three different phases.

1 At the initial time (t = 0) the fluid starts moving and the flow is irrotational, i.e. the
vorticity is zero everywhere. In fact the vorticity is initially confined in an infinitesimally thin
layer at the wall and, within that layer the vorticity is theoretically infinite.

2 For t > 0 the vorticity starts be transported away from the wall. Transport occurs both for
viscous diffusion and advection. If diffusion was the only transport mechanism the thickness
of the boundary layer in which the flow is not irrotational would be of order

√
νt at time t.

At the very initial stage advection is expected to have a relatively small effect as, initially, the
normal component of the relative velocity of the fluid with respect to the wall is expected to
be small. Thus for small times the thickness of the boundary layer will be of the order of√
νt.
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Vorticity equation and vorticity production VI

3 For larger times two different scenarios might occur.

The body is thin and oriented in the direction of motion

In this case the normal component of the relative velocity close to the wall will remain small
even for large times. In this case a steady flow might be reached in which longitudinal
advection and diffusion are balanced. If L is the longitudinal spatial dimension of the body
the characteristic time for a fluid particle to travel in the region close to the body is of order
L/U. In this case the vorticity keeps confined within a boundary layer at the wall with

thickness δ of order
√
νL/U. It follows that

δ

L
∝ 1
√

UL/ν
=

1√
Re
.

In this case it is said that boundary layer separation does not occur.
The above considerations suggest that, at large values of the Reynolds number, if no
boundary layer separation occurs, the motion is irrotational in most of the domain. We
will see in the next subsection that the absence of vorticity allows for great simplification of
the governing equations.

The body is thick or not oriented in the direction of motion

In this case advection in the direction normal to the body is strong and the region with
vorticity grows rapidly. In this case it is said that boundary layer separation occurs.
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Irrotational flows I

Potential function of the velocity
We have seen in the last section that at large values of the Reynolds number it might happen
that in most of the flow domain motion remains irrotational. We now wish to study if the
assumptions of

incompressible fluid, and

irrotational flow,

i.e.
∇ · u = 0, ∇× u = 0. (159)

allow for any simplifications of the problem. Note that the conditions (159) are of purely
kinematic nature even if they are consequence of the dynamic behaviour of the fluid.

Let us consider a closed reducible curve C and let us take the line integral of the velocity along
this curve. We have, by Stokes theorem,

∮

C

u · dx =

∫∫

S

(∇× u) · ndS =

∫∫

S

ω · ndS = 0.

We now consider any two points, say O and P, on C . They split C into two curves, C1 and C2,
with both C1 and C2 joining O to P. We then have

∮

C1

u · dx =

∮

C2

u · dx.
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Irrotational flows II

This implies that the integral between O and P does not depend on the path of integration but
only on the starting and ending points. We can then define a potential function φ(x) of the
velocity field, such that

φ(x) = φ(x0) +

∫ P

0
u · dx. (160)

Equation (160) implies that we can write

u = ∇φ. (161)

If we recall the continuity equation for an incompressible fluid, i.e. ∇ · u = 0, and plug (161) into
it we find

∇2φ = 0, (162)

which implies that the potential function φ has to be harmonic. In other words the velocity
potential function satisfies the Laplace equation. If we solve the problem for the function φ we
can then easily find the velocity u using equation (161).
It is clear that the mathematical problem for an irrotational flow is much easier than that for a
rotational flow, for the following main reasons:

equation (162) is linear, whereas the Navier-Stokes equations are nonlinear;

in the case of an irrotational flow it is sufficient to solve the problem for a scalar function
rather than a vector function;
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Irrotational flows III

the problem for the pressure is decoupled from the problem for the velocity field. How to
compute the pressure in an irrotational flow will be discussed in the following.

Owing to the properties of equation (162) we can state that the velocity distribution has the
following properties.

As equation (162) is elliptic the solution for φ and all its derivatives is smooth except, at
most, on the boundary.

The function φ is single-valued if the considered domain is simply connected.

In the following we will only consider the case of simply connected regions.

Conditions for φ to be uniquely determined
Let us now consider the boundary conditions we need to impose for the solution for φ to be
unique. We first note that the following vector identity holds

∇ · (φu) = φ∇ · u+ u · ∇φ = u · u,

from which we can write, also using the divergence theorem,

∫∫∫

V

u · udV =

∫∫∫

V

∇ · (φu)dV =

∫∫

S

φu · ndS . (163)
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Irrotational flows IV

Let u1 = ∇φ1 and u2 = ∇φ2 be two solutions of equation (162). The difference (u1 − u2) is also
a solution, owing to the linearity of the equation. Recalling equation (163) we can write

∫∫∫

V

|u1 − u2|2 dV =

∫∫

S

(φ1 − φ2)(u1 − u2) · ndS .

The above expression shows that u1 and u2 coincide if

(u1 − u2) · n = 0 on the boundary S , i.e. if the normal components of the velocity are the
same (Neumann conditions);

or if φ1 = φ2 on S (Dirichlet conditions);

of if (u1 − u2) · n = 0 on a portion of S and φ1 = φ2 on the remaining part of S .

It is important to notice that for an irrotational flow it is not possible to impose the no-slip
condition at solid walls as only the normal component of the velocity is required. However, close
to rigid walls a boundary layer exists, in which the flow is rotational. To determine the flow in the
boundary layer the Navier-Stokes equations have to be solved.
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Bernoulli equation for irrotational flows I

We have shown that the potential function φ can be obtained by using the irrotationality of the
flow and the continuity equation. We now consider the momentum equation (Navier-Stokes
equation) and study how it simplifies in the case of irrotational flow. We anticipate that the use
of the momentum equation will allow us to determine the pressure.

Recalling the vector identities (125) and (150) the Navier-Stokes equation (73) can then be
written as

∂u

∂t
+∇

( |u|2
2

)

− u× ω +
1

ρ
∇p − f = 0

Assuming that the the body force field is conservative we can write f = −∇Ψ. If the flow is
irrotational we have ω = 0 and u = ∇φ. Thus we can write

∇
(
∂φ

∂t
+

|u|2
2

+
p

ρ
+Ψ

)

= 0.

This equation can be solved to get

∂φ

∂t
+

|u|2
2

+
p

ρ
+Ψ = F (t). (164)

Notice that, without loss of generality, we can introduce a function φ̃ such that

φ̃ = φ−
∫

Fdt,
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Bernoulli equation for irrotational flows II

which allows to eliminate the unknown function F (t) from (164) to finally obtain

H =
∂φ̃

∂t
+

|u|2
2

+
p

ρ
+Ψ = c, (165)

with c arbitrary constant. This is the Bernoulli theorem for irrotational flows. Notice that the last
three terms of H in the above equation represent H′ as defined by equation (152).
It is important to stress that Bernoulli theorem holds in a stronger form in the case of irrotational
flows. In particular

H is constant also in unsteady flow conditions (this is not true for H′ in rotational flows);

H is constant in the whole domain and not only along streamlines as it is the case for H′ in
rotational flows;

the theorem holds exactly for real viscous fluids, provided the vorticity is everywhere zero.

Important note: it is important to stress that even if in irrotational flows the viscous terms in the
Navier-Stokes equation vanish, the viscous stresses are not necessarily zero. In fact it is the
divergence of the stress tensor that vanishes, not the stress itself. In other words viscous stresses
might exist in irrotational flows. However they do not contribute to the momentum equation.
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Introduction to numerical methods
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Computational fluid dynamics (CFD)

The equations governing fluid flow have been derived more than a century ago and have been
proved to very accurately describe real phenomena.
However, as discussed in previous chapters, these equations can be solved analytically only in
extremely specific cases (i.e. unidirectional flows, see chapter 9).
One has therefore to resort to approximate solutions of the equations governing fluid flows. This
is where computational fluid dynamics (CFD) comes into play. With the CFD approach one seeks
a numerical solution of the governing equations. This means that the original set of partial
differential equations is discretised and transformed into a set of algebraic equations that can be
solved on a computer.

Some references
Numerous textbooks of numerical methods and computational fluid dynamics exist. The following
books are good references for numerical methods in fluid mechanics:

Ferziger and Perić (2002),

Pletcher et al. (2012),

Versteeg and Malalasekera (2007),

Toro (2009).
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Components of a method for a numerical solution I

Mathematical model
The starting point of a numerical solution is a mathematical model that describes a physical
phenomenon. This may consist in a set of ordinary (ODE) or partial (PDE) differential equations.
For instance, in the case of flow of a viscous, incompressible fluid the mathematical model
consists in the Navier-Stokes equations (73) and continuity equation (38). For particular
applications (such as flows at low or large values of the Reynolds number) these equations can
possibly be simplified, as it was discussed in the previous chapters.

Discretisation method
The second step consists in the choice of a discretisation method, i.e. a method for transforming
the differential operators appearing in the mathematical model into algebraic expressions. This
means that the unknowns have to be evaluated at a certain number of discrete points in space
and/or time. This discretisation procedure can be performed in various ways. The three most
important methods are:

finite difference method;

finite volume method;

finite element method.

Each of the methods have its own pros and cons. They all should lead to the same solution in the
limit of infinitely fine computational grid.
In the following a short introduction to the finite difference method will be given.
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Components of a method for a numerical solution II

Numerical grid
The locations at which the numerical solution is computed define the computational grid or
mesh, which is, therefore, a discrete representation on the computational domain (including time
for unsteady problems).

Structured meshes

Regular or structured grids consist of families of grid lines with the property that members of
a single family do not cross each other and cross each member of the other families only
once (Ferziger and Perić, 2002). This implies that grid points can be numbered
consecutively. A Cartesian grid is obviously structured, but structured grids can have more
complicated shapes. An example is given in the figure below.
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Components of a method for a numerical solution III

Unstructured meshes

For very complex geometries structured meshes might nor be suitable. In this case it is
better to rely on unstructured grids, as the one shown in the figure below, which can be
adapted to any shape of the computational domain. The elements or control volumes can
have any shape and there are no restrictions on the number of neighbour volumes. Of course
the flexibility obtained using unstructured meshes comes to the cost of having an irregular
data structure. Since the nodes cannot be numbered consequently node location and
neighbour connections have to be explicitly specified.
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Properties of numerical methods I

Consistency
A numerical method is said to be consistent if the discretisation of the differential operators tends
to become exact as the grid spacing tends to zero. The difference between the discretised
equation and the exact one is called truncation error.
Usually the truncation error is proportional to a power of the grid spacing, say ∆x . If the
truncation error is of order (∆x)n it is said that the numerical method is an nth-order
approximation.

Stability
A numerical method is stable if it does not magnify the errors in the course of the numerical
solution procedure. Investigating the stability of a numerical method can be difficult, especially in
the case of nonlinear equations.

Convergence
A numerical solution is said to be convergent if the numerical solution tends to the exact solution
of the differential problem as the grid spacing tends to zero.
Studying the convergence of a numerical solution can be difficult, especially for nonlinear
equations. Normally one proceed with numerical experiments by progressively refine the grid and
checking the independence of the results on the grid spacing.
Normally, if the method is stable and consistent the solution converges to a grid-independent
solution. For sufficiently small grids the rate of convergence is dictated by the largest truncation
error.
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Properties of numerical methods II

Accuracy
Numerical solutions are always affected by errors. These can be classified in the following
categories.

Modelling errors
These are due to discrepancies between the solution of the real physical problem and the
exact solution of the equations that have been derived to model it.

Discretisation errors
These errors are related to difference between the exact solution of the differential problem
and the exact solution of the discretised equations. Obviously, discretisation errors depend
on the truncation error of the numerical method.

Iteration errors
Once a differential equation is discretised it results in a set of algebraic equations, that can
be linear or nonlinear. These equations have to be solved numerically. Iteration errors are the
difference between the exact solution of the discretised equations and the the solution that is
actually obtained, which normally relies on iteration methods. We also note that, during the
solution procedure with a computer round-off errors are introduced.
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The Windkessel model I

The simplest possible model of the arterial flow is based on a 0-dimensional schematisation of the
system. The arterial system is described as a compliant reservoir in which a blood flux Qh enters
from the heart and from which a blood flux Q exits to the venous system.
In 0-dimensional models there is not spatial description of the arterial network. This implies that
wave propagation can not be described. The model was originally proposed by Otto Frank in
1899 and it is known as windkessel model (in German windkessel means air chamber).

a

Scheme of the windkessel model.

If the arterial system consisted of a single long, straight,
rigid tube the volume flux Q through it (= Qa) could be
expressed, according to Poiseuille law (110), as

Q =
p − pv

R
,

with p pressure in the arterial system (just downstream of
the heart) and vv pressure in veins, and with R a constant
resistance ([R] =L−4 T−1 M).

In the windkessel model this approach is adopted, and since pv ≈ 0, we may write

p ≈ RQ. (166)
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The Windkessel model II

The arterial system is considered compliant and its volume V is related to the arterial pressure by
the following relationship

p = V /C , (167)

where C is a constant compliance ([C ] = L4T 2M−1).
In 0-dimensional models there is no equation of motion and only the conservation of mass is
imposed. In this case the continuity equation can be written as

dV

dt
= Qh − Q, (168)

where Qh denotes the flux ejected by the heart into the arterial system and Q is the flux from the
arterial system to veins. Note that Q does not need be equal to Qh because of the compliance of
the arterial system (which implies that V (t) depends on time). Substituting (166) and (167) into
(168) we obtain

dV

dt
= Qh − V

RC
, (169)

or, equivalently,
dp

dt
=

Qh

C
− p

RC
, (170)
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Solution of ordinary differential equations (ODE)

Let us consider a generic first order ordinary differential equation (ODE):

dy

dx
= f (x , y), (171)

with boundary condition y(0) = ŷ .
The objective of the following slides is to show how to solve it using finite difference methods.
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Finite difference schemes I

Appropriate difference formula comes from Taylor series expansion of a function around a
considered point xi . For the function depending on one independent variable only, the Taylor
series can be written as follows:

y(xi+1) = y(xi ) +
∞∑

m=1

∆xm

m!

dmy

dxm

∣
∣
∣
∣
xi

. (172)

As this series has infinite number of terms, taking into account any finite number of its terms
introduces a truncation error. Consequently, instead of the exact value of the function, an
approximation of it is obtained. Of course, the error of approximation depends on the number of
terms taken into consideration. Assuming that only the first three terms accounted for, an
estimate of y(xi+1) can be expressed using (172), which can be rewritten in the following form

yi+1 = yi +∆x
dy

dx

∣
∣
∣
∣
i

+
∆x2

2

d2y

dx2

∣
∣
∣
∣
i

+ O(∆x3), (173)

where yi , yi+1 are the values of y(x) at the nodes i and i +1, respectively, and ∆x is the distance
between the nodes i and i + 1.
The term O(∆x3) indicates that the truncation error is of the order ∆x3. This means that the
error is proportional to the step size ∆x at the power of 3. In other words, if we divide the step
size by 2 the estimated error of yi+1 is reduced by a factor 8.
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Finite difference schemes II

Directly from (172) one can find an estimate of the first order derivative as

dy

dx

∣
∣
∣
∣
i

=
yi+1 − yi

∆x
− ∆x

2

d2y

dx2

∣
∣
∣
∣
i

+ O(∆x2), (174)

One can notice, that the following finite difference expression

dy

dx

∣
∣
∣
∣
i

≃ yi+1 − yi

∆x
, (175)

approximates the derivative of y(x) at node i with first order accuracy, i.e. O(∆x). This formula
is called the forward difference.
A similar approach can be applied to derive the backward difference formula. To this end the
Taylor series expansion is performed to provide an estimate of yi−1

yi−1 = yi −∆x
dy

dx

∣
∣
∣
∣
i

+
∆x2

2

d2y

dx2

∣
∣
∣
∣
i

+ O(∆x3), (176)

which gives the backward difference formula approximated to the first order as

dy

dx

∣
∣
∣
∣
i

≃ yi − yi−1

∆x
. (177)
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Finite difference schemes III

Subtracting (173) from (176) we obtain

dy

dx

∣
∣
∣
∣
i

≃ yi+1 − yi−1

2∆x
. (178)

In contrast to the previous formulas this one ensures second order accuracy, i.e. the truncation
error is O(∆x2).
Let us approximate (171) at the node i using the previously derived finite differences expressions.
Subsequent substitution of the formulas (175), (177) and (178) into (171) yields the following
expressions.

1 For the forward difference we have

yi+1 − yi

∆x
= f (xi , yi ), (179)

which gives the Explicit Forward Euler method

yi+1 = yi +∆x f (xi , yi ). (180)
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Finite difference schemes IV

2 For the backward difference we have

yi − yi−1

∆x
= f (xi , yi ), (181)

which gives the Backward Euler method

yi = yi−1 +∆x f (xi , yi ). (182)

3 For the centred difference we have

yi+1 − yi−1

2∆x
= f (xi , yi ), (183)

which gives the Nystrom method

yi+1 = yi−1 + 2∆x f (xi , yi ) (184)

4 In the same way further methods can be derived. Assume that the approximation of the
derivative is performed at midpoint of the interval (xi ,xi+1), in which the value of f (x , y) is
taken as arithmetic average from both nodes. Then (180) becomes

yi+1 − yi

∆x
=

1

2
(f (xi , yi ) + f (xi+1, yi+1) , (185)

which gives the implicit Trapezoidal method

yi+1 = yi +
∆x

2
(f (xi , yi ) + f (xi+1, yi+1)) . (186)
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Bisection method I

The method is applicable for solving the equation f (x) = 0 for the real variable x , where f is a
continuous function defined on an interval [a, b] and f (a) and f (b) have opposite signs. In this
case a and b are said to bracket a root since, by the intermediate value theorem, the continuous
function f must have at least one root in the interval (a, b).

Bisection method: Step 1
Given a function f (x), we have to choose the initial values a e b, within which only one root (i.e.
f (x) = 0) lies. In this case we have that f (a) · f (b) < 0.
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Bisection method II

Bisection method: Step 2
We define xm as the mid point within the interval [a, b], xm = (a+ b)/2. Then we verify if xm is
a root of the function f (x).
xm is a root if |f (xm)| < ǫ, where ǫ is a small number, i.e. the tolerance we choose for the
definition of the root.

Bisection method: Step 3
If the condition |f (xm)| < ǫ is not satisfied, we have to evaluate the sign of f (a) · f (xm):
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Bisection method III

if f (a) · f (xm) < 0 then the root lies in the interval [a, xm]
⇒ and we change the right end of the interval, i.e. b = xm;

if f (a) · f (xm) > 0 then the root lies in the interval [xm, b]
⇒ and we change the left end of the interval, i.e. a = xm;

Bisection method: Step 4
Iterations: once the new interval has been assigned, we proceed once again with step 2 ad 3 until
the following relation is satisfied:

|f (xm)| < ǫ .
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Appendix A:

material derivative of the Jacobian
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Appendix A: material derivative of the Jacobian Determinants

Determinants

Definition:
A permutation i , j , . . . , p of the first n integers 1, 2, . . . n is called even or odd according as the
natural order can be restored by an even or odd number of interchanges.

Definition: The determinant of a n × n matrix A with elements aij is

detA =
∑

±a1ia2j . . . anp , (187)

where the summation is taken over all permutations i , j , . . . , p of the integer numbers 1, 2, . . . , n,
and the sign is positive for even permutations and negative for odd ones.

Therefore, for instance, the determinant of a 3× 3 matrix A is

detA =a11a22a33 + a12a23a31 + a13a21a32

− a12a21a33 − a11a23a32 − a13a22a31.

Note that in each term of the sum there is only one element from each row and each column.

Derivative of a determinant
If the elements of a n × n matrix A are function of a variable s, so that aij (s), the derivative with
respect to s of detA is the sum of n determinants obtained by replacing one row of A by the
derivatives of its elements.
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Derivative of the Jacobian I

We consider the Jacobian

J = det











∂x1

∂ξ1

∂x1

∂ξ2

∂x1

∂ξ3
∂x2

∂ξ1

∂x2

∂ξ2

∂x2

∂ξ3
∂x3

∂ξ1

∂x3

∂ξ2

∂x3

∂ξ3











.

We wish to compute its material derivative DJ/Dt. Let us consider an element of the above
matrix. We have

D

Dt

(
∂xi

∂ξj

)

=
∂

∂ξj

Dxj

Dt
=
∂ui

∂ξj
.

In the above expression we could interchange the order of differentiation because D/Dt is
differentiation with constant ξ by definition of material derivative. If we regard ui as a function of
(x1, x2, x3) we can write

∂ui

∂ξj
=
∂ui

∂x1

∂x1

∂ξj
+
∂ui

∂x2

∂x2

∂ξj
+
∂ui

∂x3

∂x3

∂ξj
=
∂ui

∂xk

∂xk

∂ξj
.
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Derivative of the Jacobian II

We know that the derivative of a determinant of a 3× 3 matrix is the sum of three determinants,
each of a matrix in which one row is differentiated. Thus to compute DJ/Dt we have to sum up
three terms the first of which is

det












∂u1

∂ξ1

∂u1

∂ξ2

∂u1

∂ξ3
∂x2

∂ξ1

∂x2

∂ξ2

∂x2

∂ξ3
∂x3

∂ξ1

∂x3

∂ξ2

∂x3

∂ξ3












= det












∂u1

∂xk

∂xk

∂ξ1

∂u1

∂xk

∂xk

∂ξ2

∂u1

∂xk

∂xk

∂ξ3
∂x2

∂ξ1

∂x2

∂ξ2

∂x2

∂ξ3
∂x3

∂ξ1

∂x3

∂ξ2

∂x3

∂ξ3












.

With k = 1 we have

det












∂u1

∂x1

∂x1

∂ξ1

∂u1

∂x1

∂x1

∂ξ2

∂u1

∂x1

∂x1

∂ξ3
∂x2

∂ξ1

∂x2

∂ξ2

∂x2

∂ξ3
∂x3

∂ξ1

∂x3

∂ξ2

∂x3

∂ξ3












=
∂u1

∂x1
J.

With k = 2, 3 we have ∂u1/∂xk times the determinant of a matrix with two identical rows, which
is therefore equal to zero.
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Derivative of the Jacobian III

Computing the other two term of the DJ/Dt we thus finally find

DJ

Dt
=

(
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3

)

J = (∇ · u)J. (188)
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coordinates systems
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Appendix B: the equations of motion in different coordinates systems Cylindrical coordinates

Cylindrical coordinates

Let us consider cylindrical coordinates (z, r , ϕ), with corresponding velocity components
(uz , ur , uϕ).

Continuity equation

∂uz

∂z
+

1

r

∂

∂r
(rur ) +

1

r

∂uϕ

∂ϕ
= 0 (189)

Navier-Stokes equations

∂uz

∂t
+ uz

∂uz

∂z
+ ur

∂uz

∂r
+

uϕ

r

∂uz

∂ϕ
+

1

ρ

∂p

∂z
− ν

[
∂2uz

∂z2
+

1

r

∂

∂r

(

r
∂uz

∂r

)

+
1

r2

∂2uz

∂ϕ2

]

= 0. (190)

∂ur

∂t
+ uz

∂ur

∂z
+ ur

∂ur

∂r
+

uϕ

r

∂ur

∂ϕ
−

u2ϕ

r
+

1

ρ

∂p

∂r
+

− ν

[
∂2ur

∂z2
+

1

r

∂

∂r

(

r
∂ur

∂r

)

+
1

r2

∂2ur

∂ϕ2
− ur

r2
− 2

r2

∂uϕ

∂ϕ

]

= 0. (191)

∂uϕ

∂t
+ uz

∂uϕ

∂z
+ ur

∂uϕ

∂r
+

uϕ

r

∂uϕ

∂ϕ
+

uruϕ

r
+

1

ρr

∂p

∂ϕ
+

− ν

[
∂2uϕ

∂z2
+

1

r

∂

∂r

(

r
∂uϕ

∂r

)

+
1

r2

∂2uϕ

∂ϕ2
+

2

r2

∂ur

∂ϕ
− uϕ

r2

]

= 0. (192)
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Spherical polar coordinates I

Let us consider spherical polar coordinates (r , ϑ, ϕ) (radial, zenithal and azimuthal), with
corresponding velocity components (ur , uϑ, uϕ).

Continuity equation

1

r2

∂

∂r

(
r2ur

)
+

1

r sinϑ

∂

∂ϑ
(sinϑuϑ) +

1

r sinϑ

∂uϕ

∂ϕ
= 0. (193)

Navier-Stokes equations

∂ur

∂t
+ ur

∂ur

∂r
+

uϑ

r

∂ur

∂ϑ
+

uϕ

r sinϑ

∂ur

∂ϕ
−

u2ϑ

r
−

u2ϕ

r
+

1

ρ

∂p

∂r
+

− ν

[
1

r2

∂

∂r

(

r2
∂ur

∂r

)

+
1

r2 sinϑ

∂

∂ϑ

(

sinϑ
∂ur

∂ϑ

)

+
1

r2 sin2 ϑ

∂2ur

∂ϕ2
+

−2ur

r2
− 2

r2 sinϑ

∂(uϑ sinϑ)

∂ϑ
− 2

r2 sinϑ

∂uϕ)

∂ϕ

]

= 0. (194)

∂uϑ

∂t
+ ur

∂uϑ

∂r
+

uϑ

r

∂uϑ

∂ϑ
+

uϕ

r sinϑ

∂uϑ

∂ϕ
+

uruϑ

r
−

u2ϕ cotϑ

r
+

1

ρr

∂p

∂ϑ
+

− ν

[
1

r2

∂

∂r

(

r2
∂uϑ

∂r

)

+
1

r2 sinϑ

∂

∂ϑ

(

sinϑ
∂uϑ

∂ϑ

)

+
1

r2 sin2 ϑ

∂2uϑ

∂ϕ2
+
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Spherical polar coordinates II

+
2

r2

∂ur

∂ϑ
− uϑ

r2 sin2 ϑ
− 2 cosϑ

r2 sin2 ϑ

∂uϕ)

∂ϕ

]

= 0. (195)

∂uϕ

∂t
+ ur

∂uϕ

∂r
+

uϑ

r

∂uϕ

∂ϑ
+

uϕ

r sinϑ

∂uϕ

∂ϕ
+

uruϕ

r
+

uϑuϕ cotϑ

r
+

1

ρr sinϑ

∂p

∂ϕ
+

− ν

[
1

r2

∂

∂r

(

r2
∂uϕ

∂r

)

+
1

r2 sinϑ

∂

∂ϑ

(

sinϑ
∂uϕ

∂ϑ

)

+
1

r2 sin2 ϑ

∂2uϕ

∂ϕ2
+

+
2

r2 sinϑ

∂ur

∂ϕ
+

2 cosϑ

r2 sin2 ϑ

∂uϑ

∂ϕ
− uϕ

r2 sin2 ϑ

]

= 0. (196)
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