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Abstract

Compliant and slender surface coatings are widespread in nature and com-
monly seen in practical applications. They have recently generated interest in
the scientific community in that their features may promise interesting fluid
dynamical performances.

The aim of this thesis is to explore numerically how different structural
parameters of biological structures (mass, bending stiffness and permeability)
affect the dynamics of these tissues when exposed to fluid flows.

In order to perform a numerical investigation a finite volume code in Matlab©
has been developed. As for similar works, an Immersed Boundary (IB) approach
has been exploited in order to efficiently handle elastic thin structures interact-
ing with a viscous incompressible fluid.

The code has been tested on a hinged permeable filament flapping in an
incoming uniform flow (commonly referred as the flag-in-the-wind problem).
Results clearly point out the stabilizing effect of permeability on this particular
type of slender structure, quantifying its effects on both the kinematics and
dynamical behaviour of the filament.

Even though the code has been implemented to investigate permeability as
a flow control parameter, other important applications can be tackled with the
developed methodology. The first bio-engineering application has been found in
the simulation of eye retinal detachment. In this case, the filament was clamped
with a given angle to a moving plate simulating the eye rotation. Two different
configurations were considered and compared in order to determine which case,
and under what conditions, one is more prone to detach compared to the other.

Finally, the code was then exploited to investigate the dynamics of a spring-
filament system similar to energy-harvesting devices. In this case, the filament
was allowed to move just in the direction transversal to the flow and was con-
nected by a spring to the equilibrium point. The aim of this study was to assess
the optimal spring stiffness in order to trigger a resonant condition between the
flapping of the filament and the spring itself, thus enhancing the efficiency of
the device to extract energy from the flow.
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1

Introduction

An object moving through a fluid is subject to an aerodynamic force arising
from the fluid pressure distribution and friction between fluid particles and
body surfaces. In aerodynamics it is common to decompose this force into two
components: drag in the direction of body motion, and /ift in the perpendicular
plane.

Figure 1.0.1: Aerodynamical forces in action: (a) airplanes take off thanks to
the lift generated on wings, (b) the down-force on the spoiler helps racing cars
adhere to the pavement, (¢) hydrofoils contribute in raising the trimaran hulls
out of the water, while (d) drag force helps the parachutist reaching a limited
terminal falling velocity.
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Lift and drag are important phenomena we all experience in everyday life
(Figure 1.0.1): lift enables heavier-than-air airplanes to fly, helps better corner-
ing in competitive cars creating enforce, and raises out of the water the hulls of
racing trimarans. Lift is therefore considered a desirable effect.

On the other hand, drag is usually considered to be a negative effect: it re-
duces swimmers velocity in water, opposes the thrust of a car engine and causes
bridges to collapse during floods. Nevertheless, without the terminal velocity
of raindrops would be nearly fifty times faster, and in cases such as the func-
tioning of parachutes drag turns out to be useful. However, in the majority of
practical applications drag is something to be reduced in order to reduce fuel
consumption or move faster.

1.1 History of Drag

Even though intuitive, a physical formulation of drag has been provided only
recently, well after that of lift. Potential (or inviscid) theory of fluid motion (18}
century state-of-the-art) explains the lift force on asymmetric bodies but fails
dramatically in predicting drag. In 1752 d’Alembert [1] proved that, against all
experimental evidence, potential flow resulted in the prediction of zero drag on
any non-lifting body (d’Alembert’s paradox).

It took more than another century to provide a theoretical explanation for
drag. The key idea was to look more closely at the body surface, where the
fluid-solid attraction force is greater than that between the fluid particles, caus-
ing the velocity profile to have zero values with respect to the surface at the
contact point (no-slip condition). The notion of boundary layer (Figure 1.1.1),
a very thin region of fluid near a solid wall where velocity changes very quickly
from the surface velocity to the free-stream velocity, was introduced by Prandtl
in 1904 [2], and was a breakthrough. Prandtl’s idea was to divide the flow into
two regions: an inviscid outer flow region where potential theory still holds, and
the boundary layer where viscous forces cannot be ignored.

Experimental evidence gives us a proportional relation between shear strain
rate €;; = Ov;/Ox; and shear stresses 7;;. For example, Newtonian fluids are
defined as those for which this dependence is linear, i.e.

Tij = 20€ij,

where p is the dynamical viscosity and is a characteristic of each fluid. Thus
shear stresses are a consequence of the no-slip condition.
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Figure 1.1.1: Schematic of boundary layer (in yellow) around a solid object (a),
and boundary layer growing over a flat plate (b) with different regimes of flow
(not in scale).

A stationary fluid exerts only normal pressure forces on the surface of an
immersed body. Moving fluids, however, also exerts tangential shear forces on
the surface because of the no-slip condition caused by viscous effects. Thus drag
is, in general, due to the combined effects of pressure and wall shear forces. This
comes down directly from the constitutive equation for fluids:

Oij = —p(‘)-ij + Tij

where p is the fluid pressure on the surface and 7;; is called the deviatoric or
viscous stress tensor.

The part of drag that is due directly to wall shear stress 7;; is called skin
friction drag since it is caused by frictional effects, and the part that is due
directly to pressure p is called pressure drag (Figure 1.1.2),

FD = FD,friction + FD,pressure-

- ﬁ
(@) —// — )

Figure 1.1.2: In the case of a flat plate aligned with the flow (a) the main part
of the drag is due to friction, whereas in the case of plate perpendicular to the
flow (b) the main part of the force is due to the pressure distribution around
the plate.
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Both skin friction and pressure drag depend upon geometrical configuration:
the first one is proportional to the surface projection in the flow direction, while
the second is mainly related to the frontal area (Figure 1.1.2). Therefore pres-
sure is usually dominant for bluff bodies and small for streamlined bodies, where
the friction drag prevails.

The d’Alembert paradox could eventually be explained in that potential the-
ory does not satisfy the no-slip condition, ignoring skin drag completely. Indeed,
potential theory could just predict lift and the part of drag related to pressure.

1.2 Flow control

The ability to actively or passively manipulate a flow field to effect a desired
change can be numbered under the term of “flow control”. In 1961 Flatt [3]
defined flow control as “any mechanism or process through which the boundary
layer of a fluid flow is caused to behave differently than it normally would”. A
particular control strategy is chosen based on the kind of flow and the control
goal to be achieved. Flow-control goals are strongly, often adversely, inter-
related, and there lies the challenge of making the tough compromises [41].
Typical goals of flow control are drag reduction, lift enhancement, enhancing
mixing of mass, momentum or energy, suppressing the flow-induced noise, or
a combination thereof. To achieve any of these end results, laminar-turbulent
transition may have to be delayed or advanced, flow separation may have to be
prevented or provoked, and finally turbulence levels may have to be suppressed
or enhanced.

There are several possible classification schemes for flow-control methods.
One is to consider energy expenditure: a control device can be active, requiring
auxiliary power, or passive, requiring no further energy other than that required
to generate fluid motion. Restricting the application field to drag reduction and
passive control techniques, several strategies have so far been identified:

shaping the simplest method to control fluid flow around an aerodynamical
surface involves the use of a suitably shaped body in order to manipulate
the pressure distribution [10]. In order to postpone separation, favorable
pressure gradient extends to the longitudinal location of the pressure min-
imum [41] (Figure 1.2.1, b),

riblets stream-wise microgrooves that act as fences to break up span-wise vor-
tices in turbulent boundary layer and reduce the surface shear stress by



1.2. FLOW CONTROL

(a) (b)

Unseparated flow
Boundary layer
u Separated flow
Y y
/ < y
u
Inflection point

ou
dy

y=0 -

Liquid-vapor
interface

H H H H Vapor cavity
L
Solid rib

Figure 1.2.1: Different passive flow control techniques: suction surfaces for de-
laying transition (a), surface shaping for delaying boundary layer detachment
(b), different riblet pattern (c) and super-hydrophobic surface (d).

preventing eddies from transporting high speed fluid close to the surface
[42] (Figure 1.2.1, ¢),

turbolators A turbulent boundary layer is more resistant to separation than
a laminar one, and mostly for that reason transition advancement may be
desired in some situations [43]. The most common example is the single,
multiple or distributed roughness elements (serrations, strips, bumps or
ridges) typically placed near the airfoil’s leading edge,

super-hydrophobic coatings to achieve super-hydrophobicity a surface must
be structured so as to minimize the liquid-solid interactions. The crucial
aspect is that of maintaining a layer of gas in between the rough wall and
the liquid [17] (Figure 1.2.1, d). By hierarchically structuring the solid
surface both at a micro and at a nano-scale, a sufficiently large apparent
slip of the fluid at the wall can be achieved, thus reducing skin friction.
Consider for example the micro-structure of a lotus leaf,
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compliant surfaces flexible coatings whose modulus of rigidity is low enough
so that surface waves are generated under the influence of the stress field
in the fluid have lately drawn interest ([12, 13],for a more complete dis-
cussion, see [41], Chapter 7). The flow stabilization may be a result of
altering the phase relation between the instantaneous stream-wise and
normal velocity components in the viscous region, rather than changing
the curvature of the mean velocity profile at the wall,

porous materials permitting flow by-pass from high- to low-pressure regions,
thus modifying the pressure distribution in the near-wall region, opens new
possibilities of boundary layer control, in particular where shock waves are
expected [44]. This technique can be viewed as a passive suction in which
mass is allowed to self-bleed, resulting in a reduced pressure gradient with
delayed flow separation (Figure 1.2.1, a).

This thesis will focus on the last two items of the list, compliant surfaces
and porous materials.

Some of these control techniques, such as suction, acoustic effects and plasma
actuators come from the attempt to modify the fluid flow by mean of diffe-
rent physical phenomena. Others such as shaping, riblets, super-hydrophobic
coatings and the introduction of foreign substances descend directly from the
observation of nature, which provides numerous instances where drag reduction
is essential for the survival of many species of avians and nektons. Here the
basic assumption is that drag-reduction adaptations have evolved for improved
efficiency of speed, or both, thereby aiding species survival in a Darwinian sense
(for instance catching the prey or escaping from predators).

1.3 Biomimetics

Biomimetics is the field in which science seeks innovative solutions to real-
life problems by taking inspiration from nature. The strength of this approach
derives from the fact that every living organism has undergone a process of
evolution over an extended period of time so that what we observe now is an
optimized biological system whose structures and methods have adapted in order
to optimize a particular or a set of different functionals.

To understand the difference between Biology and Biomimetics let us con-
sider the well-known “flying machine” by Leonardo da Vinci. He would have
been only a great biologist and painter if his admiration for the anatomy of
birds and flight had only been confined to sketches and notes. His ingenious
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and unconventional step was to depict “flying machines” which, he believed,
would enable human beings to fly [4].

Biomimetical solutions can be found in several fields, with applications rang-
ing from macro- to nano-scales. The Wright brothers [5] derived inspiration from
observations of pigeons in flight, Swiss engineer Georges de Mestral [6] first con-
ceptualized Velcro after removing several burdock burrs (seeds) remained stuck
to his clothes and his dog’s fur after returning from a hunting trip. Researchers
studying a scanned a termite mound discovered a form of construction that
could influence human building design [7]. Other interesting applications are
the noise-reducing fuselage shape of the Bullet Train Shinkansen in Japan [9] and
the application of the lotus effect [17] for realizing super-hydrophobic surfaces
gifted with astonishing aerodynamical features.

Today more and more attention is devoted to biomimetical approaches to
practical problems, both in academia and industry, where companies seeking
new innovative products are looking at nature as an inexpensive Research and
Development laboratory [8].

Human history has witnessed several cases of successful biomimetical ap-
proaches, however as pointed out in [16], two strong caveats have to be given
in order to achieve a final working product. First, the environmental conditions
in which the biological feature under consideration works may differ from those
in which the designed device is supposed to operate, resulting in unexpected or
unfavorable effects. Second, one has to be cautious about the evolutionary his-
tory of the morphology under consideration. Indeed, the investigated attribute
may be simply “passed on” from ancestors without any specific significance. An
indication of this situation is that where species sharing the same ancestors but
living in different environments presents a similar feature. In this case the fact
that the feature have evolved for one particular purpose is questionable. An-
other possible source of a biased perception is to expect only a single purpose
for a biological feature, while multiple function is the rule in biology. For exam-
ple we may be interested in the aerodynamical efficiency of a singularly shaped
detail of an insect and realize only afterward that the feature was optimized for
other functions, for example courtship or scaring predators. Thus, in the early
stages of a biomimetical approach biologists can play a pivotal role by provid-
ing information on the evolutionary history and potential functional value of
the biological morphology in question by conducting a comparative analysis of
related species. In the case where this process is able to exclude other reasons,
the morphology in question is likely to have a functional value in view of appli-
cation to engineering systems [16].

Examples of fluid-dynamical biomimetical approaches are countless (Figure
1.3.1): the simple observation of how different species of avians and nektons
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Figure 1.3.1: Shark dermal denticles arranged in in the flow direction (a), pen-
guins surrounded by water bubbles (b), humpback whale with characteristic
pectoral flippers (c) and the hindwing tails of the swallowtail butterfly (d).

control the flow around their body has provided inspiration for many appli-
cations affecting everyday life. Observation of dermal denticles of shark skin
(Figure 1.3.1 (a)) took to the first application of riblets on the hull of the
winner of the 1987 America’s Cup yacht race, the Star and Stripes [41]. A
video-documentation of swimming penguins clearly shows that penguins (Fig-
ure 1.3.1 (b)) exhale air before emerging at high speed from the sea. Exhaled
bubbles then agglomerate around the body and remain there for several sec-
onds [18]. Following this and other examples a lot of research is currently active
in the field, mainly for the purpose of reducing the skin friction of maritime
transports [19, 20]. The occurrence of “morphological complexity” in biologic
surfaces can suggest a specialized shape adaptation for improved aerodynami-
cal performances. The humpback whale flipper presents peculiar protuberances
(or tubercles, Figure 1.3.1 (c)) located on the leading edge. CFD (Computa-
tional Fluid Dynamics) simulations [15] showed that, for regions downstream
of the tubercle crest, separation was delayed almost to the trailing edge. The
property of delaying stall to higher angles of attacks may explain the ability
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of this kind of whale to perform such acrobatic underwater maneuverings, and
it is why WhalePower [21], a venture based in Toronto, has begun integrating
tubercles into the leading edges of wind-turbine and fan blades. In addition the
shape of the trailing edge greatly affects the aerodynamical performance. Swal-
lowtail butterflies (Figure 1.3.1 (d)), unlike other related species, have distinct
tail-projections on the hind wings that have drawn researches’ attention [16].
The aerodynamical effects of these appendages in gliding flight was investigated
for their ability to keep the wing-tip vortices outboard. Further examples of
intriguing biological features and their fluid-dynamical analysis can be found in
16, 11, 14, 17].

1.4 Aim of the work
The aims of this thesis are:

1. Design a numerical algorithm to take into account permeability in ad-
dition to other structural parameters (mass and bending stiffness) for
which different strategies have already been proposed in several works
[50, 52, 55, 66, 68].

As for similar works, an Immersed Boundary (IB) approach has been
exploited in order to handle efficiently moving objects interacting with
a viscous incompressible fluid. The IB approach has a long history in
modeling bio-fluidodynamical phenomena involving slender and compli-
ant structures as it was introduced by Peskin [50] in the early 1970s to
model blood flow in the heart and through heart valves. The IB formula-
tion avoids the need for creating body-fitted meshes by making use of an
Eulerian description for the fluid and a Lagrangian for the object. The
two descriptions are linked together by a smoothed approximation of the
Dirac Delta function.

In order to capture the essential evolution of the phenomena while main-
taining a moderate level of complexity and not involving huge computa-
tional power, the developed code considers 1-d structures and 2-d fluid
flows. Such a configuration is a good representation of the physical phe-
nomena we want to model: a slender compliant structure such as hair, a
feather, or an appendage, interacts with a fluid flow that is assumed to
have no variation in the third direction. The same consideration is valid
for the structure: its configuration will be constant in the direction nor-
mal to the 2-d domain. Thus, three-dimensional effects cannot be taken
in consideration with the present code.
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Figure 1.4.1: (a) Zoom on the wing scales of a Viceroy butterfly with clearly
visible porous structures, (b) smooth muscle tissue, (c) solid stresses o, on the
cross-section of a deformed beam. Note that the configuration of the deformed
cross-section is planar, thus e, = —y/R.

2. Investigate numerically the aerodynamical performances of surfaces ex-
hibiting properties similar to biological tissues: mass, bending stiffness
and permeability.

Throughout the work, the following mechanical properties of the surface
will be taken into account:

10
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mass per unit volume, or density, of surfaces will be considered in this
work. Biological tissues exhibit different features depending on whether
they belong to animals or plants and on their function and location.
Contrary to this complex classification, from a mechanical point of
view tissues are uniquely characterized by their density and elastic
modulus. In order to estimate tissue density we look at its basic
component, the cell, whose mass is composed of 70% water, more
or less independently from what tissues it belongs to. Thus, it is
quite common that biological tissues in water can be considered neu-
trally buoyant, i.e. with the same density of the surrounding fluid.
This particular condition has important aftermath on the structural
inertial term.

bending stiffness is not a material property, but it is defined for 1 and
2-d elements in order to model the third dimension effects. In the
1-d elastic string theory bending stiffness is derived from the elastic
(or Young) modulus E, characteristic of the material:

M= / o,ydA = —E/ y2dA = Ex/ y?dA=EILx (1.4.1)
A R Ja A

where A is the cross-section of the 1-d element, x = —1/R is the
local curvature, R is the curvature radius and [ A y2dA is the second
moment inertia term of section A around z axis (cfr. Figure 1.4.1,
(¢)). In Equation 1.4.1, the constitutive relation o, = Fe, (with o,
solid stresses and ¢, solid deformations) and the hypothesis of planar
faces €, = —y/R has been used.

permeability i.e. the ability of a medium to permit a fluid flow through
it, comes into play in a wide variety of fields (e.g. earth science,
medicine, biology, chemistry) as a consequence of voids in a solid
matrix and a driving fluid pressure gradient. Ground-water flows get
enriched by minerals through fractures in rock formations and blood
undergoes filtration through the glomerular basement membrane of
the kidneys thanks to filtration slits between cells [22, 24].

Besides tissue mass and bending stiffness, which has been extensively in-
vestigated in the literature using similar tools [66, 68, 55, 52], the novelty
of this work is to take into account also the mass transfer through the
connective voids of biological tissue.

Nowadays several practical issues have been solved by a biomimetical
strategy involving permeability. Many chemical reactors take advantage
of the permeability of some particular media in order to maximize sur-
face area contact between fluid and solid and highways are covered with

11
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permeable paving to maximize the asphalt drying rate. Moreover, per-
meability plays a central role in membrane technology, widely used in the
food technology, biotechnology and pharmaceutical industries to selec-
tively separate different components based on their size or electric charge
[23].

Despite previous examples, in which permeability has been exploited for
different purposes, the aim of the present work is to shed some light on
how surface permeability affects aerodynamical performances.

3. Develop new control strategies borrowed from biology to significantly en-
hance aerodynamical performances.

Slender and compliant bodies subject to an incoming flow exhibit a pecu-
liar control strategy for delaying boundary layer detachment that can be
defined as self-streamlining, ascribable to the compliant structure strate-
gies. This feature is inherently passive in that the structure has the free-
dom to adapt automatically to changes in the flow. Of course, this capa-
bility depends on its inertia (mass) and bending stiffness. Intuitively, the
higher the mass the longer will be the time interval in which the struc-
ture will react to changes in the flow. On the other hand, more rigid
structures (i.e. higher bending stiffness) will be able to communicate local
changes to the rest of the structure. While the effects of mass and bending
stiffness form a well-established frame in the literature of fluid-structure
interaction, the current thesis also accounts for the permeability of tis-
sues, thus paving the way to other types of boundary layer control. By
permitting a mass flow from high- to low-pressure regions the pressure dis-
tribution on the surface can be modified, thus enhancing its aerodynamical
stability.

4. Realize a numerical code for the simulation of the interaction between
slender structures, not necessarily permeable, and incompressible fluid
flows.

A wide range of real-world phenomena, from paper production technology
to bridge construction to prosthetic heart valves, not including natural
processes, exhibits slender structures interacting with a fluid force (Figure
1.4.2). Our aim is to develop a generic numerical code environment that
can efficiently handle this kind of problems due to the Immersed Boundary
approach.

The previously listed aims will take shape in the applications described in Chap-

ter 6. In particular, the first application refers to the simulation of a hinged
permeable filament flapping in an incoming uniform flow (commonly referred as

12



1.4. AIM OF THE WORK

Figure 1.4.2: Examples of slender structures interacting with a fluid flow: pros-
thetic heart valves (a), cable-stayed bridge (b), wind turbine (c) and dragonfly
flight (d).

the flag-in-the-wind problem), which is characterized by mass, bending stiffness
and permeability. In this case the main focus was the effect of permeability
regarding both the stability and the flapping dynamics. The second application
regards the simulation of two different types of retinal detachment, a common
pathology of the eye, in order to determine which one is more prone to further
detachment. Finally, in the third application, we simulate a simple model of
an energy harvesting device, trying to find the best parameter set (mass, bend-
ing stiffness and spring stiffness) in order to maximize the oscillations of the
filament and thus energy extraction.

13
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1.5 Structure of the thesis

For better readability, contents of this work has been subdivided into five
modular chapters. Chapter 2 will introduce the main concepts of fluid structure
interaction (FSI), while in Chapter 3 the governing equations of incompressible
fluid flow will be presented along with the fractional step method, the numer-
ical algorithm used to achieve the pressure-velocity coupling. The immersed
boundary (IB) approach will be treated in detail in Chapter 4. Chapter 5 de-
scribes the implementation of a finite volume (FV) code for the direct numerical
simulation (DNS) of the interaction between a fluid flow and an elastic body.
Finally, code applications and numerical results will be presented and discussed
in Chapter 6.

14



2
Fluid Structure Interaction

Fluid-structure interaction (FSI) problems arise every time a fluid flow im-
pacts on a body surface. Depending both on the body’s structural parameters
and on the resolution of our study, we may want to consider the deformations
of the body. These deformations, in turn, will simultaneously change both the
domain and the boundary conditions of the fluid flow. Thus, a simulation that
could have easily been achieved with, at most, an unsteady flow solver on a
fixed domain, now requires a solver capable of simultaneously handling both
structural deformations and mesh motion.

The first studies of FSI trace back to Aeroelasticity, defined by Arthur Rod-
erick Collar [45] in 1947 as “the study of the mutual interaction that takes place
within the triangle of the inertial, elastic, and aerodynamic forces acting on
structural members exposed to an airstream, and the influence of this study on
design.”

As with every engineering discipline, FSI was both born and developed by
the time people realized it was needed to solve such a problem. In particular,
at the beginning of the XIX century, current technologies were ready to allow
humans to fly with the first airplanes. At that time nobody knew that when
a slender and flexible structure (as an aircraft wing) is subject to a fluid flow
they begin to interact. Depending on the parameters, for instance the flow
velocity or wing bending stiffness, this interaction can be damped or amplified,
leading to catastrophic effects. The second failure of Samuel Langley’s prototype
plane on the Potomac has been attributed to aeroelastic effects (specifically,
torsional divergence), the same as those that plagued aircraft during the First
World War. As a first approximation, these problems were solved largely by
trial-and-error and ad-hoc stiffening of the wing, but FSI reason for existence
was outlined. In 1926 Hans Reissner published his theory of wing divergence,
leading to a significant amount of further theoretical research on the subject. In
the 1970’s predictions of flutter and other similar aeroelastic phenomena were
required in the aerospace field. Since then FSI has been successfully applied to
a vast range of applications, including civil engineering (bridges and suspended
cables) [25, 26, 27, 74], process engineering (nuclear reactor steam generator tube
bundles, rotor dynamics, singing hydrofoils) [28, 29, 30, 31], shape optimization
studies [32, 33] and a vast number of biomedical applications (arterial blood
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flow, aortic heart valves, heart and ventricle, lung modeling, aortic aneurysms,
snoring treatment) [34, 35, 50, 36, 37, 38, 39].

2.1 Resonance

Before discussing resonance, let us give the definition of natural frequency as
the frequency at which an ideal system (i.e. with no damping) tends to oscillate
in the absence of any driving force.

Mathematically speaking, natural frequencies correspond to the eigenvalues
of the system matrix. FEigenvalues and eigenvectors can indeed be thought of as
frequencies and modes of the free response to the initial condition of an unforced
dynamical system. This can be seen in the following example.

With respect to Figure 2.1.1 we can write the dynamical equation as

{mls'él—i—klxl —k‘g(l’g—a)‘l) =0 , (211)

modo + k2($2 — 3?1) =0

by introducing vector x = [r; z2]T we can write (2.1.1) in matrix form
mi 0 s kl + kz _kQ
[ 0 mg] X = [ ky Ky | X (2.1.2)

Figure 2.1.1: Dynamical system made up of two masses m, and msy linked by
springs of different elastic constant k; and ks to an external wall.
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The system’s dynamical equation can be written Mx = —Kx. We now
assume harmonic motion, i.e. that both masses oscillate with same frequency w
albeit different amplitudes A, and write

x = A exp(iwt), (2.1.3)

from which we obtain

(K —w?*M)A = 0.

This is an eigenvalue problem for the eigenvalue wy (natural frequencies) and
corresponding eigenvector A (natural modes). We note that discrete systems
(such as the one under consideration) having N degrees of freedom, have N
natural frequencies and N natural modes, that become infinite in continuous
systems.

The above tells us that if we start our dynamical system from the initial
condition A, both masses will evolve periodically as stated in (2.1.3) with the
frequency wy corresponding to A . For a generic initial condition (2.1.3) will
still hold but all frequencies and modes will come into play. In particular, as
the initial condition can be seen as a linear combination of natural modes Ay
(eigenvectors), system oscillations will be ruled by a linear combination of the
corresponding natural frequencies wy (eigenvalues).

In general resonant frequencies wgr and natural frequencies wy are not the
same, since natural frequencies depend only on system parameters (i.e. the
structure), while resonant frequencies also take into account the coupling with
the forcing system (i.e. the fluid flow). For example, fluid flow around the wing
also introduces some viscous damping in the dynamics that makes in general
wgr # wy. However, when damping is negligible the resonant frequency wg is
approximately equal to the natural frequency of the system wy.

Resonance is the state of a system forced at particular frequencies, known
as resonant frequencies wg, in which its oscillations are greater with respect
to other frequencies. Specifically, a periodic driving force at a resonance fre-
quency produces larger amplitude oscillations compared to any other frequency,
no matter the magnitude of that force.

To evidence the latter, let us consider an ideal dynamical system (no damp-
ing) driven by an external periodic force. After a transient, its oscillation fre-
quency coincides with the driving force frequency. Let us consider now the
oscillation amplitudes.

Let us derive the law of motion for the unforced system (Figure 2.1.2, left).
By assuming an ideal behaviour (i.e. without considering friction), its dynamical
equation reads

mi = —kx.
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Figure 2.1.2: Unforced (left) and forced (right) spring-mass system.

As x = 0 is a stable fixed point, in order to trigger the motion we have to
initially displace the mass. By making the following Ansatz:

x = Acos(wpt),
(where A is the mass initial displacement) we obtain

k
WN = —,
m
where wy is the system natural frequency, i.e. the characteristic frequency at
which it oscillates naturally, without being forced.
Now let us consider the forced system (Figure 2.1.2, right), whose dynamical
equation reads
mi = —kx + F,

where the driving force F' is assumed to be periodic with an imposed frequency
wWe:
F = Fy cos(wrt).

In this case, as stated above, the system will oscillate with the same frequency
We:
x = Acos(wrt),

from which we obtain
— Amw? cos(wt) = Fy cos(wt) — kA cos(wt)

and
A= o - Fo
(b= ) ~ (e — %)

stating that when the forcing frequency wp approaches the system natural fre-
quency wy, the oscillation amplitude |A| diverges (Figure 2.1.3).

18



2.2. FLAG-IN-THE-WIND PROBLEM
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Figure 2.1.3: Theoretical oscillation amplitude magnitude as a function of the
imposed driving force frequency wp. The peak in correspondence of natural
frequency wy is clearly visible.

However, this theoretical prediction of oscillation amplitudes does not in-
clude energy dissipations and other forms of energy present in real-world phe-
nomena and that avoid amplitude to diverge, even if a maximum is always
present.

2.2 Flag-in-the-wind problem

The flag-in-the-wind problem has been studied theoretically, numerically and
experimentally as the paradigm for the instability of an elastic structure subject
to a fluid flow. This phenomenon, known as flutter, is caused by a positive feed-
back between the body’s deflection and forcing exerted by the fluid flow. A wide
spectrum of forcing frequencies are triggered by the uniform flow affecting the
body, which begins to resonate when its own natural frequency has been excited.

Despite its simplicity, the system’s dynamics is very rich (Figure 2.2.1): an
elastic one-dimensional boundary is tethered at one end in a two-dimensional
laminar flow, moving at the local velocity and exchanging forces with the sur-
rounding fluid. Vortices are shed from the free end of the filament, transported
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downstream by the flow, and are diffused by viscosity in the vortex street. As
a result, the long-term motion of the filament can result both in a fixed-point
stability, a limit-cycle flapping or a chaotic motion, depending on the governing
parameters of the system.

Starting from Rayleigh’s first theoretical approach in 1879 [65] involving the
evolution of a two-dimensional vortex sheet, the stability of the flag has been
enriched by inertial and structural mechanical properties and has composed one
of the main subjects in the study of theoretical aeroelasticity [71, 73, 74, 75].

More recently, increasingly accurate numerical studies (most of all using an
immersed boundary approach) have come to support analytical results. In par-
ticular, Zhu and Peskin [66] first pointed out the important role of length and
mass on the onset of flapping, and described the bistable behavior of the flap-
ping. Both Kim and Peskin [55] and Huang et al. [52] developed methods to
handle massive filaments in a more efficient way. The first numerical study tak-
ing into account permeability was by Kim and Peskin [68], in which the dynamics
of a massless 2-d parachute not resisting bending was investigated. Despite sim-
plifications, the stabilizing role of permeability has been fully addressed. In the
present work, we propose an innovative way for handling simultaneously per-
meability and bending resistance and mass which overcomes some of the major
drawbacks of previous methods (see Section 4.4). A more complete report on
the efforts in shedding light regarding the dynamics of slender interacting body
with fluid flows may be found in Shelley and Zhang [76].
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2.2. FLAG-IN-THE-WIND PROBLEM

Figure 2.2.1: Vorticity iso-contours around impermeable flapping filament (in
blue) at Re = 200 obtained with the code presented in Section 6.1. Positive
vorticity are shown in red, negative in green. (a), (b) and (c¢) correspond to case
A depicted in Figure 6.1.2, while (d), (e) and (f) refer to case B.
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In order to study the time-dependent behavior of the fluid-structure coupled
system, it is useful at this point to inspect the governing equations of the solid
structure. Without considering the complete equations of solid mechanics we
can take advantage of the fact that slender structures such as those considered
here (a hair, a feather, an appendage) usually have one dimension prevailing
over the others. Therefore, we can resort to the classical beam theory which
describes the dynamical behavior of a beam endowed with bending stiffness and
subject to a given external load.

2.3 The Euler-Bernoulli beam theory

Let us consider a 1-d beam subject to an external load F(s) (Figure 2.3.1, a).
For engineering applications it is useful to derive an equation for the evolution
of its geometrical configuration X(s), where s is the curvilinear abscissa.

(a) (0) F.(s)

S+dS

Mq>M+dM
s

ds

Figure 2.3.1: 1-d beam with a distributed load F(s) along its axis (a) and an
infinitesimal element of the beam with its internal strains S and torque M (b).

We may want to consider the local normal n (sometimes called curvature
vector in that it points towards the local curvature center) and tangent T unit
vector (Figure 4.3.1), defined as

2

oX > o
T=—=¢, n=—32"—= 2
s 15l 1152

n and 7 are perpendicular to each other and, together with the binormal vector
b (in the 3-d world) form the so-called Frenet-Serret or TNB frame (Figure
2.3.2).
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B

Figure 2.3.2: Local tangential 7 and normal n unit vectors. By definition N
and T reactions are aligned with these vectors.

Usually engineers are interested in beam displacements perpendicular to its
axis (n direction). Under the assumptions of small deformations, the normal and
perpendicular problems can be decoupled. Thus, by imposing the translational
and rotational equilibrium for an infinitesimal element perpendicularly loaded
(Figure 2.3.1, b) and neglecting higher order infinitesimal contributions, we get
the following:

dS = F,(s)ds ; dM = —Sds

from which
as

= Fu(s) (2.3.1)
dM
=5 (2.3.2)

Assuming that plane sections conserve their planarity and are normal to the
deflected beam axis, we can express the moment M as a function of the curvature
K

oo 0’X,
Tas ~ 7 os2
where the bending stiffness v = EI with I moment of inertia of the beam’s
cross-section, F the Young modulus, x is the curvature and ¢ is the angle of
rotation of the section (defined as ¢ = —9X,,/0s). By gathering equations
(2.3.3)-(2.3.2) we can write

0*X,

Fn(S) = 7@7 (234)

which is called the static beam equation. In order to obtain the dynamical beam
equation we simply add the inertial term 92X, /0t
%X, 0*X,

St = i Fals) (2.3.5)
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So far we made the hypotesis of small deformations, i.e. that the beam
displacement from the initial (undeformed) configuration are small enough not
to consider the normal reaction (aligned with the beam axis) into the equation
for the displacement perpendicular to the axis. When this hypothesis is no more
acceptable we have to take into account also the normal reaction (i.e. tension)
N. In vectorial form, equation (2.3.5) becomes

72X 9 [ 09X X
-7 = 52 (Nas> ~7 g +F (2.3.6)

We can write (2.3.6) as

X 0 (X o (ox
o2 Os Os 0s2 0s?

2°X
% > +F,
152

thus, using the previous definitions of the TNB frame,

i S o?

?X 0 0 (0OM on

2X 9 ) ,
0%?X 0 0

that represents the dynamical equation for a beam (if N > yx?).

Let us recover now the classical equilibrium equations of Solid Mechanic
textbooks. From equation (2.3.7) we get

or ON on 0T

N— v F =
95 T s st TE=Y
From the Frenet-Serret formulas we have

or on

— =KNn, — = —KT

Os " Os

where £ is the curvature. So by substitution we get

@n+78—N+Ta—¢T— 8—Tn+F:O (2.3.8)

N 0s 0s 0s 0s
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Equation (2.3.8) is vectorial. If we decompose it into the parallel and perpen-
dicular components we get

ON _0¢ B
s T lgs T =0

(2.3.9)
o6 0T B
Ngs s Tin=0

2.4 Beam dynamical analysis

Studying the beams natural modes of oscillation corresponds to finding the
solution to the dynamical beam equation without the forcing term:

oo
oz~ oxh

We can solve this equation with the separation of variables technique, i.e. by
supposing v(s,t) = A(s)B(t), where A(s) takes into account the spatial and
B(t) the temporal behavior of the beam. By doing so we can write

AB' = A"V B,
and by dividing both members by AB we get
BII AV

B Ta
where superscripts denote derivatives. Since the left-hand side does not depend
on s and the right-hand does not depend on ¢ both terms are constant. Let us

name it ¢ and use the temporal equation to discuss its sign:
B —¢B=0

This will result in an exponential function if ¢ > 0, sinusoidal if ¢ < 0, so we look
at solutions for which ¢ < 0. Since the system will oscillate with frequency v/—c,
we will replace ¢ with —w3;, because they are the beam’s natural frequencies.
We can now focus on the equation leading to the spatial solution A(zx):

AV —knyA=0

where k% = w3, /7. The general solution of this equation is a linear combination
of trigonometric functions:

A(s) = Cy cos(kns) + Casin(kns) + Cs cosh(kys) + Cysinh(kys)  (2.4.1)
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where the constraints C; are derived from the imposed boundary conditions
from the particular physical problem.

In the following paragraphs we will investigate two configurations in which
the beam is often found in practical applications, the clamped and the hinged
beam. Thus, equation (2.4.1) will be specialized for the particular boundary
conditions. Theoretical results from the next paragraphs show good agreement
(see Paragraph 5.5.5) with the numerical outcome from the numerical code de-
scribed in Chapter 5.

2.4.1 Clamped beam

The clamped beam (also known as cantilever) is a beam with a free end
where no constraints are applied, so that it can freely deflect and rotate, and
an anchored end with zero prescribed displacement and rotation. In this case
the boundary conditions are the following:

e 1o displacement at the fixed end, i.e. A(0) = 0;

e 10 rotation at the fixed end, i.e. AZ(0) = 0;

e zero torque at the free end, i.e. ATI(L) =0, see eq. (2.3.3);

e zero shear at the free end, i.e. ATI(L) =0, see egs. (2.3.3) and (2.3.2);

From these boundary conditions we can write a system of four equations for
the four constants in (2.4.1). Since this system is homogeneous, the only way to
avoid the trivial solution is to have infinite solutions (i.e. making the coefficient
matrix singular):

cos(knL) + cosh(kyL)
Ysin(knL) + sinh(ky L)

cos(knyL) + cosh(kyL)
sin(knL) + sinh(kyL)

along with the singularity condition that will be used to obtain natural frequen-
cies wy of the system.

cos(knyL) + cosh(kyL) = —1 (2.4.2)

Solutions to the previous equation give us both the natural frequencies of the sys-
tem (Table 2.4.1) along with their corresponding natural modes (Figure 2.4.1).
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mode knL | wnL?/\A
1 1.8751 3.5160
4.6941 22.0345
7.8548 61.6973
10.9955 120.9019
14.1372 199.8596
17.2788 | 298.5555

O U | W N

Table 2.4.1: First natural frequencies of the clamped beam.
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Figure 2.4.1: First natural modes of oscillations for the clamped beam normal-
ized by the maximum amplitude.

Regarding the solution A(s), i.e. the natural modes of the system, it will be
defined up to a constant as expected:

A(s) = C14[cos(kns) — cosh(kns)]

cos(knyL) + cosh(knL)
sin(kNL) + Sinh(kNL)

(2.4.3)

[sinh(kns) — sin(kyx)] }

2.4.2 Hinged beam

The hinged beam is similar to the clamped beam, but with the anchored
end able to rotate. In this case the boundary conditions are the following:

e 1o displacement at the fixed end, i.e. A(0) = 0;
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e zero torque at the fixed end, i.e. AT1(0) =0, see eq. (2.3.3);
e zero torque at the free end, i.e. A1(L) =0, see eq. (2.3.3);

e zero shear at the free end, i.e. ATI(L) =0, see egs. (2.3.3) and (2.3.2);

From which we get

Ci1=0

., sinh(kyL)
C2=C sin(kyL)
Cs=0

along with the singularity condition that will be used to obtain natural frequen-
cies wy of the system.

tan(knL) = tanh(kyL)

As for the clamped beam, from the solution to this equation we will obtain both
the natural frequencies of the system (Table 2.4.2) along with their correspond-
ing natural modes (Figure 2.4.2). Please note that the first mode corresponds
to the trivial solution A(z) = 0, corresponding to the first solution of the singu-
larity condition. From a physical point of view, this corresponds to the system
having one degree of instability (a rigid rotation around the anchored end).

sinh(knL)

A= i)

sin(kns) + sinh(kys) (2.4.4)

mode knL wNLQ/ﬁ
1 0 0
3.9266 15.4182
7.0686 49.9648
10.2102 104.2478
13.3518 178.2698
16.4934 | 272.0309

O U | W N

Table 2.4.2: First natural frequencies of the hinged beam normalized by the
maximum amplitude.
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Figure 2.4.2: First natural modes of oscillations for the hinged beam.

2.5 Numerical methods for FSI

Traditionally two different ways have been introduced to achieve the two-
way coupling needed for FSI: monolithic and partitioned.

In the monolithic approach a single system for the entire problem has to
be formulated on the same variables and solved, thus the non-linear governing
equations of both fluid and solid have to be linearized and discretized on the
same mesh. Provided that the non-linearities of the subsystems can be resolved,
the monolithic approach enables mathematical analysis of the coupled systems
and leads to improved solution stability. Drawbacks of this approach are an
higher degree of complexity of the solver even for very simple configurations
and the possibility of getting an ill-conditioned system matrix due to mesh and
rigidity differences between fluid and solid.

On the other hand the partitioned approach (which is by far the most used)
considers separate domains for the fluid and solid (time-varying and whose union
constitute the entire domain), with the possibility to discretize and solve them
on different meshes using different methods (for instance finite volumes for fluid
and finite elements for the solid) and solvers (linear or non-linear). The main
drawback of this approach is the time lag between the solutions for fluid and for
solid. As the solution of the fluid-solver system has to be consistent in terms of
continuity of displacements and tensions, partitioned solvers differentiate into
“weak” and “strong” coupled, where the “strength” of the coupling refers to the
degree of convergence of the variables across the fluid-solid interface. In a weak

29



CHAPTER 2. FLUID STRUCTURE INTERACTION

coupling there is no iteration between solvers, so that once the fluid domain is
solved stresses are transferred to the solid and displacements are found. In a
strong coupling algorithm, once displacements are computed the flow solver is
run again on a deformed mesh and with different boundary conditions (i.e. solid
velocity at the interface) with the result of finding slightly different stresses on
the solid. In this way the loop continues until some convergence criteria is met.
Unfortunately even the strictest convergence will lead to a time lag between the
two solutions, so it is clear how loosely coupled schemes suffer from instability,
while tightly coupled schemes contain computationally expansive sub-iterations.

In the present work a partitioned FSI solver has been developed in Matlab®
for research purposes. This solver exploits a particular technique called immersed
boundary (IB), first introduced by Peskin in 1972 [50]. The method is based
on a mathematical formulation which employs a coupled Lagrangian-Eulerian
formulation where information is effectively passed through a discretized ver-
sion of the Dirac delta function. Since then several versions of the IB has been
proposed by different authors, each with particular advantages and drawbacks.
Since all of them are joined by the description of the solid geometry with a
set of Lagrangian points moving in the background of an Eulerian mesh, they
avoid any need for body-fitting meshes nor re-meshing (one of the most time-
consuming steps of a standard FSI solver).
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3
Modeling the fluid flow

The motion of a viscous incompressible flow is described by the Navier-Stokes
equations, a set of partial differential equations obtained from the application of
conservation of mass and momentum of a fluid flow in a given control volume,

ou 1 o
E-ﬁ-u-Vu——Vp—i— EV u ’ (3.0.1)
V-u=0

where u is the velocity, p is the fluid pressure, ¢ represents time and Re is the
Reynolds number, defined as
UL

v

Re

where U and L are respectively velocity and length scales characteristic of the
problem and v is the fluid kinematic viscosity. The complete derivation of (3.0.1)
can be found in every undergraduate textbook. As [40] comments, “the Navier-
Stokes equation is the cornerstone of fluid mechanics. It may look harmless
enough, but it is an unsteady, nonlinear, second-order partial differential equa-
tion. If we were able to solve this equation for flows of any geometry, this book
would be about half as thick.”

To date, analytical solutions of (3.0.1) are unobtainable except for very sim-
ple flow fields. Moreover, mathematicians have not yet proved that smooth
solutions always exist, or that if they do exist, they have bounded energy per
unit mass. This is called the Navier-Stokes existence and smoothness problem.

Since understanding the Navier-Stokes equations is considered to be the
first step to understanding the elusive phenomenon of turbulence, the Clay
Mathematics Institute made this problem one of its seven Millennium Prize
problems in mathematics.

As an exact solution of (3.0.1) is not currently available, to obtain an ap-
proximate (but still useful) solution we dicretize it in a system of algebraic
equations, which can then be solved on a computer. This technique is known as
Computational Fluid Dynamics (CFD). In particular, the numerical simulation
carried on in the present work can be defined as direct numerical simulation
(DNS) since (3.0.1) are solved without recurring to the the Reynolds average
technique and to any turbulence model.
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Several discretization methods have been derived both before and after the
birth of CFD, each of them designed with a specific application in mind. In
the field of incompressible flow simulations one of the techniques for obtaining
the pressure-velocity coupling of the Navier-Stokes equations is the projection
method based on a multi-step time integration. In particular the Fractional
Step Method has emerged for both its elegance and numerical efficiency.

3.1 The Fractional Step Method

The Fractional Step Method is an effective finite-difference method for solv-
ing (3.0.1). It was originally introduced by Alexandre Chorin in 1967 [46] and
independently by Roger Temam [51], and afterwards improved by Perot [49] as
a block LU decomposition.

This algorithm is based on the Helmholtz decomposition of any vector field
u into a solenoidal part us,; and an irrotational part u;.. and is based on two
steps.

The Fractional Step Method has proved to be first order accurate both in
time and space with general boundary conditions. A notable exception is when
periodic boundary conditions are in effect, where it reaches second order ac-
curacy both in time and space. In this thesis we shall refer to the matrix
interpretation made by Perot in [49].

Let us consider the dimensionless unsteady incompressible Navier-Stokes
equations (see for example [47], §1.6). Using an explicit Adams-Bashforth
scheme for the non-linear convective terms and an implicit Crank-Nicholson
(trapezoidal) scheme for the diffusive terms (Euler forward will be used for the
first time step, see Section 5.3), (6.1.1) can be discretized in time as

(u*tt —u™)  [3 1 4
M 8 I2N@WY) - N Y| =
vl R A G
L(u"*!) + L(u")
— _ n+1
Gp™th) + S Re + bCrmom (3.1.1)

D(u™) = beeont

where N, G, L and D are respectively the non-linear convective, gradient, Lapla-
cian and divergence spatial operators. Moreover, bc.ont and bc.on: are the boun-
dary conditions arising in the respective equations from discretization of spatial
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operators near solid walls. Manipulation of (3.1.1) leads to

un+1 L(unJrl )

_ n+1 —
At, 2R +C’;(p ) L)
— ui _ | = ny _ n—1 u
=2 |V = 5N(u )] + —5pe T bemom (3.1.2)
D(u™1) = beeont
and having defined
— 1 L . n o __ u” 3 n 1 n—1 L(un)
At 2Re T T T A [QN(H) PN+ Sk
A + G(p" ) = 1" + bemom (3.1.3)
D(u™) = bemom o

The above-written system can be discretized in space by specifying the spatial
operators A, G and D.

A G u"‘H r" meom

RNt B R el
As said in [54], systems of the form similar to 8.1.4 are known as Karush-Kuhn-
Tucker (KKT) systems that appears in constrained optimization problems in that
they minimized a term similar to the kinetic energy

1
min {(u"“)TAuM'1 — (" (" + bcmom)}
untl | 2

s.t. Du™ = 0+ beeons

It is interesting that the discrete pressure p does not play a direct role in time
advancement, but acts as a set of Lagrange multipliers to minimize the system
energy and satisfy the kinematic constraint of divergence-free velocity field.

We recall here that energy conservation requires the divergence and gradient
operators to be skew-adjoint, i.e. GT = —D. This condition plays an important
role in the choice of the spatial discretization as pointed out in Section 5.1.
Equation (3.1.4) can be factored into a block LU decomposition

A 0 I AtG|[uwtt ] [ n bCmom
D —-AtDG 0 I p”'H o 0 bccont

with an error of (At/2Re)LGp™*! in the upper leftward term, thus making the
method only first order accurate in time. However, as pointed out in [49], it
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is possible to use this information to create a second-order method. Moreover,
when periodic boundary conditions are in effect, the fractional method will
recover second-order accuracy in time (for a more detailed discussion see [49],
end of chapter 6).We can then split the large indefinite system (3.1.5a) into two
smaller, far better behaved problems

A 0 u* r" bemom
e N I R el BT
I AtG| [ ut! } [ u* ]
= 3.1.5b
|:0 I :| |: anrl anrl ( )
that can be also written as
Au* = r"+bcnom
At D G p*!' = D u* — beeons (3.1.6)
u?tl = u* — At G pn+1

Equations (3.1.6) bear a close resemblance to the traditional Fractional Step
Method usually presented as a semi-discrete method for time splitting and rep-
resent the steps actually performed in the numerical code. In particular, the
first equation gives the intermediate velocity u* that does not satisfy the in-
compressibility constraint. In the second a Poisson equation has to be solved in
order to get the new pressure field p" !, whereas in the third the pressure p"t!
is used to project the intermediate velocity u* onto a space of divergence-free
velocity fields to obtain the updated velocity field u™*!.

In the following paragraphs the discretization of both spatial operators and
boundary conditions will be discussed. As the staggered arrangement allows
all spatial operators to be evaluated through centered differences, the spatial
accuracy of the method will be second order.
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4

The Immersed Boundary
approach

The immersed boundary (IB) method is a mathematical approach used for
problems in which a slender structure interacts with a viscous incompressible
flow. It turns out to be very effective in handling moving or deforming bodies
with complex surface geometry. Peskin [50] first introduced the method in 1972
to simulate blood flow inside a heart with flexible valves. Since then it has been
used in a wide variety of applications, especially in bio-fluid dynamics problems
where complex geometries and immersed elastic membranes or structures are
present and make traditional computational approaches difficult.

The key point of the IB approach consists of describing the flow field on a
Eulerian grid, while representing the immersed surface with a set of Lagrangian
points. The Eulerian grid is not required to conform to the body surface (so
that it can be structured Cartesian) as the information between the two grids
is passed through a discretization of the Dirac Delta function. The no-slip con-
dition is enforced at the Lagrangian points by introducing appropriate surface
forces in the Navier-Stokes equations.

Let x = (z,y) € Q be the Cartesian physical coordinates, with Q denoting
the physical domain; let s € ' be the Lagrangian curvilinear coordinate, with T"
denoting the body surface; let X(s,t) = (z(s,t),y(s,t)) € I' denote the physical
position of each material point of curvilinear coordinate s at time ¢ (Figure
4.0.1). The main equations of the IB method can thus be summarized as

Ju
E(X’t) + u(x,t)-Vu(x,t) =

— Vp(x,t)+ év%(x? t) + f(x,1) (4.0.1)
V-u(x,t) =0
£(x, 1) = /FF(s,t)ah(x — X(s,1))ds, (4.0.2)
Uy = X _ u(x, t)op(x — X(s,t))dQ, (4.0.3)
o
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Figure 4.0.1: IB T (in red) described by a set of Lagrangian points X(s,t) (in
green) in fluid region  with background Cartesian mesh.

where the Navier-Stokes equations describing fluid motion (4.0.1) are con-
sidered together with an artificial forcing f to enforce the no-slip condition
and solved on the background cartesian structured mesh preserving numerical
efficiency. The momentum forcing f derives from the convolution between the
solid stress term F and the discretized version of Dirac Delta function &y, (4.0.2).
Analogously, the velocity of immersed boundary comes from the convolution of
dp, with the surrounding flow field (4.0.3). The convolution with the discretized
Dirac Delta function ¢, is a weighted interpolation and represents an effective
way to link the Lagrangian variables F' and U, with their Eulerian counterparts
f and u. For simplicity’s sake, in the following the subscript h will be dropped.

Among a wide choice of synthetic Delta functions, we made use of the one
proposed by Roma in [69]:

RN O Y AR

6ATr Ar Ar

] if 0.5A7 < [r] < 1.5A

S (r) = i if 0.5Ar < |r|] < 1L.5Ar (4.0.4)

1 2
1+44/1-3 (E) if [r| <0.5AF

0 otherwise.

Starting from this basic idea, several implementations of the IB have been
documented in literature. In the following we will describe in depth the three
of them we used for the applications described in Chapter 6: the projection
approach (Section 4.1), the original IB by Peskin and coworkers (Section 4.2)
and IB by Huang, Shin and Sung (Section 4.3).
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4.1. THE IB PROJECTION APPROACH

4.1 The IB projection approach

This approach was introduced by Taira & Colonius and described properly
in [54], where they illustrated how their work can be seen as a valuable extension
of the Fractional Step method by Chorin [46] and Temam [51] described in 3.1.

As stated in [54], since the discretized Navier-Stokes equations (3.1.4) are ob-
served to be a KKT system with pressure acting as a set of Lagrange multipliers
to satisfy constraint, one can image appending additional algebraic constraints
by increasing the number of Lagrange multipliers, i.e. incorporate the no-slip
constraint through the solid stress term F.

In this case the IB formulation is written as

g—ltl(x, t) +u(x,t) - Vu(x,t) = —=Vp(x,t) + évzu(x, t)+
+ / F(s,t)0(x — X(s,t))ds, (4.1.1)
r
V- u(x,t) =0, (4.1.2)
Uin(s,1) = / u(x, 1)5(x — X(s,£))d2, (4.1.3)
Q

where Uy (s,t) is the imposed boundary velocity, that can be either given or
calculated (as for a free falling body).
As in (3.1.4), this system of equations can be summarized in a matrix form

A G —-H q"“ r" + bCmom
D 0 0 p | = bCcont (4.1.4)
E 0 0 F uptt

where H F corresponds to the last term in equation (4.1.1) and E q"*! is
related through a scaling to the left-hand-side of the no-slip condition (4.1.3).

The advantage of this method is that one can show (see Appendix of [54])
that through ad-hoc scaling the system matrix can be made skew-adjoint as for
the original Fractional Step Method in that D = —GT and —H = ET. This

enables us to introduce the variable Q = [G, ET] so that the system can be
simplified into the KKT form:
A G Ta] [
AIENBE 415
where
n+1 n+1
)\|:q :| r1:I‘n+bcmom I'2|:q :|
p p
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CHAPTER 4. THE IMMERSED BOUNDARY APPROACH

This method can be regarded as a monolithic approach to the FSI problem
as it summarizes in one linear system both fluid, structure and their interaction.
The main benefit of this method is numerical stability, which enables the use
of large time-steps (up to CFL!'= 0.5). Unfortunately, this elegant formulation
cannot be used for deformable bodies in that the equations do not take into
account structure deformations.

4.2 The IB approach by Peskin
& coworkers

4.2.1 Neutrally buoyant membrane

The original IB formulation initially presented by Peskin to study heart
valves leaflets was designed to take into account a neutrally buoyant boundary
(i.e. same density for fluid and membrane). For an elastic boundary its dis-
cretization was made through the introduction of a discrete number of forces
acting on straight-line segments connecting specified pairs of boundary points.

Since the boundary is neutrally buoyant an equation for the force between
fluid and solid F the equilibrium condition on an infinitesimal part of the mem-

brane gives
—Fiot 47(1?)

s(b) — s(a)

Figure 4.2.1: Equilibrium condition on a small element of membrane.

Y Fi=0= ~Fi + T(a)7(a) + T(b)7(b) =0 = / b F(s,t) ds = [T'7];

(4.2.1)

IThe Courant-Friedrichs-Lewy number, defined as UAxz/At (where U is a representative
velocity, Az is the mesh-grid size and Atis the time step), is a quantity of uttermost importance
in CFD as it is related to the numerical stability of a temporal integration scheme
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4.2. THE IB APPROACH BY PESKIN & COWORKERS

where 7(s,t) = (0X/0s)/ ||0X/0s|| is the unitary tangent vector to the boun-
dary at the points b and a, respectively and T'(s,t) is the tension. Using the
Fundamental Theorem of Calculus equation (4.2.1) can be rewritten as

b
/ <F(s,t) - 8;':) ds =0,

F(s,t) = % (T(s,t)T(s,t)). (4.2.2)

or

Assuming the reference configuration to be unstressed and that the mechanical
behavior of the material is well described by a Hookean material, the tension

e rior - |25 1) o

where k is a large numerical parameter needed to enforce the inextensibility of
the boundary up to a desired value (according to literature no more than 0.1%).

The main advantage of this method is that the no-slip condition on the
boundary is enforced by definition (Lagrangian points move with the local fluid
velocity). As we can see by inspecting the governing equations, this method
suffers from the lack of equations describing structure dynamics. In turn, this
causes problems both in the enforcement of the inextensibility condition and
on the resolution of solid forces. Moreover, given that Lagrangian points are
connected by stiff springs, the time step for the numerical integration has to be
small enough not only to satisfy the stability of the fluid solver, but also to effec-
tively solve the spring oscillations, whose characteristic period is proportional
to k=12, k being the spring stiffness.

4.2.2 Massive membrane

With the massless assumption, however, we cannot approach many other
problems for which the boundary mass is important (it is usually the case for
elastic boundaries immersed in air). Thus, different strategies have been devel-
oped in order to overcome this issue.

Zhu & Peskin proposed a method based on a non-uniform distribution of
density spread by the usual discretized Delta function, that in the dimensional
form read as

px,1) = ps + / pron(x — X(s,1))ds

Please note that mass density p; is the structure density in addition to fluid
density pys, i.e. p1 = py — psA where p, is the density of the structure and A is
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CHAPTER 4. THE IMMERSED BOUNDARY APPROACH

the membrane cross-section. It is indeed in the spirit of the IB formulation to
add something (the immersed boundary) to an already filled-with-fluid domain.

Unfortunately, because of the non-uniform density fast solvers such as FFT-
based methods cannot be employed here.

In order to retain the use of the FFT solver, Kim & Peskin proposed an
alternative way to give mass to the elastic boundary called the penalty immersed
boundary method. To derive this method the starting equations are the same
as for the method by Zhu & Peskin:

0
p((,;:+u~Vu> = -Vp+uViu+f

ploct) = ps + [ prdx = X(s,)ds

We substitute the density definition in the momentum equation and separate
the left-hand side into two terms: one involving the constant density py and the
other containing the singular part that comes from the immersed boundary. In
dimensionless form we then write

OJu 1 _, p1 Du
- . — — S i -X
; +u-Vu Vp + Rev u+ /F On(x (s,t))ds

where L is a characteristic length scale of the problem and D /Dt is the material
derivative. Using another form of the no-slip condition

9?°X _ Du
o2 Dt
we can then write

Ju 1,
aJru'Vuf—prLEV ll+fffD

_ [ PX
£ — /F L (x = X s, 1))ds

where fp can be interpreted as an Eulerian body force obtained by using the
Dirac delta function to transform the Lagrangian expression

P1 82X
Fp=-+L
b poL 6t2

which is known as the D’Alembert force.
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4.3. THE IB APPROACH BY HUANG, SHIN & SUNG

The key idea of this method is to split the immersed boundary conceptually
into two Lagrangian components, one massless and interacting with the fluid and
the other carrying mass and bounded by massless springs to the first boundary.
An accurate presentation of this method is found in [55].

Advantages and drawbacks of these methods derive from the original im-
plementation of the method by Peskin, plus an additional arbitrary parameter
given by the stiffness of springs connecting the two boundaries.

4.3 The IB approach by Huang,
Shin & Sung

The approach proposed by Huang, Shin & Sung [52] presents a substantial
difference from the previous ones in that the dynamics of the structure is ex-
plicitly taken into consideration (thus considering directly its mass). Moreover,

the inextensibility condition
X o0X

55 B 1 (4.3.1)
is fully satisfied by using the tension as a Lagrangian multiplier (in the same
spirit of pressure for incompressibility). In this method the forces acting on the
filament are calculated by means of Goldstein’s feedback law [59]:
t
F = 04/0 (Uip — %)dt/ + B(Uip — %) (4.3.2)

where v and § are large negative constants, Uy, is the fluid velocity interpolated
at the immersed boundary. This methodology, whose advantages and drawbacks
will be discussed in Section 4.4.2, has also been exploited in [57, 58].

This method was developed specifically for the dynamics of a hinged or
clamped filament, so it considers a massive inextensible filament described by

92X 0 OX* 0? 9?°X*
—_— = T — * —F* 4.3.
1 ot*2 Os* ( OJs* > 0s*2 (fy Os*2 ) e (4.3.3)

surrounded by a viscous incompressible fluid described as

a *
£0 (altl* +u*- Vu*) = —Vp* + uViu* +f* (4.3.4)
where T is the tension along the filament axis, v* is the bending rigidity and F
is the Lagrangian forcing exerted by the filament on the surrounding fluid (the
description given in [52] at the beginning of page 2209 is incorrect on this point).
As in Section 4.2, p; denotes the density difference between the filament and
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CHAPTER 4. THE IMMERSED BOUNDARY APPROACH

the surrounding fluid, so p; = 0 represents the neutrally buoyant case. In the
case of neutrally buoyant boundaries equation 4.3.3 loses the temporal term, so
the time integration of the filament position X becomes harder. In this case the
original approach by Peskin and coworkers (see Section 4.2) becomes preferable.

Equations (4.3.3) and (4.3.4) can be made dimensionless by introducing the
following characteristic scales: the reference filament length L for length, the
far-field velocity Uy, for velocity, L/Us, for time, poUZ, for pressure p*, poUZ2, /L
for the Eulerian momentum forcing f*, pyU2 /L for the Lagrangian momentum
forcing F*, p;U2 for the tension T* and p;U2 L? for the bending rigidity ~*
(their dimensionless counterparts will drop the star):

9?°X 0 0X 0? 9?X

52 = s (Tas) 752 < 952 ) + FT; —F (4.3.5)
Ju 9
E—i—u Vu=-Vp+ EV u+f (4.3.6)

where Fr is the Froude number defined as gL /U?. Note that two different densi-
ties, po and p1, have been used for structure and fluid equations: this difference
will be considered in the spreading from the Lagrangian to the Eulerian grid:

f(x,t) = p/FF(s,t)é(x — X(s,t))ds (4.3.7)

where p = p1/(poL) comes from the different non-dimensionalization scales
chosen for Equations 4.3.4 and 4.3.3. In this method the tension force T is
determined by a Poisson equation derived by inserting the constraint of inex-
tensibility into the beam dynamical equation:

X 9 (Tax> 1 (ax ax) P*X °X 90X 0

0s 0s2\ 0s ) 2012\ 9s 0s )] 0tds 0tos _EK(F »—F) (438)

Where Fj, = fg%(anQ/as?) denotes the bending force. Equations (4.3.5) and
(4.3.8) for filament dynamics are solved respectively for X and T" at Lagrangian
(e) and interface (|) points.

Figure 4.3.1: Filament T" described by a set of Lagrangian points X(s, t).
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4.4. PERMEABILITY

4.4 Permeability

Besides elasticity and mass, biological tissues are characterized by perme-
ability in that they consist of dispersed cells separated by connective voids which
allow normal mass transport. Moreover, there are several technological appli-
cations of porous synthetic membranes, mostly in separation industry.

Permeability, i.e. the ability of a medium to allow a fluid flow through it,
comes into play in a wide variety of fields (e.g. earth science, medicine, biology,
chemistry) as a consequence of voids in a solid matrix and a driving fluid pressure
gradient. Ground-water flows get enriched in minerals through fractures in rock
formations and blood undergoes filtration through the glomerular basement
membrane of the kidneys thanks to filtration slits between cells. Permeability
plays a central role in membrane technology, widely used in the food technology,
biotechnology and pharmaceutical industries to selectively separate different
components based on their size or electric charge.

Despite previous examples, in which permeability has been exploited for
different porpuses, this thesis is aimed at investigating how permeability affects
the performances of elastic objects. As already pointed out by the work of Kim
and Peskin [68], pressure redistribution from high to low pressure zones modifies
the near-wake region behind bluff bodies, enhancing their stability.

In the following sections we will describe the only approach currently avail-
able in literature to include permeability in the framework of the IB method,
along with the approach that has been developed during the current thesis.

4.4.1 The velocity approach

In this section we will cover the approach introduced by Kim and Peskin
[68] in order to model the permeability of a parachute canopy. As this approach
places itself in the IB method described in Section 4.2, the authors model per-
meability as a relative slip velocity in the direction normal to the boundary
between the fluid and the boundary itself. In this way a normal flux through
the boundary is naturally achieved, while a force reduction can be seen in an
indirect way.

The need to include a no-slip velocity can be demonstrated by considering
the force equilibrium on a massless token of canopy of length ds. Since there
are no inertial terms, the equilibrium gives

0X

D5 ds+F -nds=0 (4.4.1)

(pl - p2)

Starting from the basic assumption of the validity of Darcy’s law, i.e. of a linear
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dependence between flux and pressure difference across the membrane through
a coefficient called aerodynamic conductance 7, we get

0X

d 4.4.2
55 | 45 (4.4.2)

By(p1 — p2)ds = (U - aa}t() ‘n

where fds is the number of pores in the interval (s, s + ds), while the factor
|0X/0s| appears because, the authors say, |0X/0s|ds is the arc length of the
segment (s, s+ ds). Combining equations (4.4.1) and (4.4.2) we finally get the
expression for the normal component of the slip velocity on the boundary:

X B By

while the authors assign a no-slip condition in the tangential direction by as-
suming pores oriented normal to the surface of the shell. Lacking other more
elaborated model, by assuming 3y proportional to |0X/ds|? by a factor \, we
can rewrite

0X

E:U+)\(F.n)n (4.4.4)

This approach is neat and simple to implement. However except for some con-
trolled cases equation (4.4.4) causes numerical problems when plugged into the
IB formulation described in Section 4.2 since the Lagrangian quantity F is usu-
ally very noisy (Figure 4.4.1), thus making X noisier at every new time step.
As in turn F depends on X through the constitutive equation of the boundary,
equation (4.4.4) leads to numerical instability.

The noisy nature of F seems to derive from the discretization of the filament
as a series of springs disconnected from one another, so that it is possible that
the i'" spring is compressed while the (i + 1)** is extended. This leads to the
peak-to-peak classical appareance of F. Possible strategies to overcome this is-
sue, such as the application of a low-pass filter, have been considered. In order
not to lose or gain momentum, such filters have to preserve the integral value of
F. However, this strategy did not lead to positive results since the application of
a filter added new free constants (e.g. the threshold frequency) that needed to
be determined, and this approach has been discarded in favor of that described
in the next section.
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Figure 4.4.1: Lagrangian forces F along the curvilinear abscissa s of a simply
hinged filament subject to an incoming flow. In this simulation 2 Lagrangian
points per Eulerian grid were approximately used to describe the surface.

4.4.2 The force approach

Given the limitations of the velocity approach we tried to tackle the prob-
lem by using a dualistic approach based on the reduction of forces instead of
velocities. In order to do so, our new approach needed to be inserted in an IB
formulation different from that described in Section 4.2, and in particular we
found an effective approach in the one described in 4.3.

We would like to point out the difference between the two approaches, both
of which contains advantages and drawbacks. In the original approach by Pe-
skin the no-slip condition is enforced by definition in that Lagrangian boundary
points are passively transported by the surrounding fluids, and the filament is
composed of stiff springs preventing Lagrangian points not getting too far away
or too near. The approach of Huang, Shing and Sung, on the other hand, solves
the beam dynamical equations satisfying the inextensibility constraint starting
from the aerodynamical loads on the filament.

The first difference between the two approaches is that while the solid solver
for Peskin [67] takes as input the point velocity 0X/d¢ and returns the La-
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grangian forces F, the solid solver in the case of Huang, Shing and Sung [52]
needs the Lagrangian forces as input and gives back the velocity of the filament
points. The second difference is that while the approach by Peskin satisfies the
no-slip condition to machine precision but fails to fulfill the inextensibility of
the filament, the approach by Huang, Shing and Sung does exactly the opposite.

By placing itself in the Huang, Shing and Sung approach, we model perme-
ability by decreasing the normal component of momentum transferred from the
fluid to the filament:

F= (1 - )‘) : (F7mp : n)n + (Fim,p . T)T (445)

where F;;,, represents the force exerted by the fluid on an impermeable fila-
ment, n and 7T are the unit versor normal and tangent to the filament, while F
is the reduced force because of permeability. Eq.(4.4.5) is physically motivated
by the fact that while tangential stresses on a solid surface come from the tan-
gential component of velocity normal derivative (Ju/dn) - T, the normal part
derives only from pressure differences across the surface, so permeability affects
only this component by reducing the pressure drop.

We want to stress the duality of this approach with the one used by Peskin
and coworkers since a relative slip velocity will decrease the momentum trans-
ferred to the filament, while the present approach based on the reduction of
momentum will lead to a slip velocity.
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5
Code description

This Chapter describes the implementation of a Finite Volume (FV) code
for the Direct Numerical Simulation (DNS) of the interaction between a fluid
flow and an elastic body.

The governing equations for the fluid motion (Navier-Stokes equations) are
solved on a staggered grid using the fractional step method, while the interaction
with the solid body is handled via an Immersed Boundary method.

Sections 5.1 represents the numerical discretization of the Fractional Step
Method described in 3.1, while Saspaections 5.2 and 5.3 deal with the technical
details on how spatial operators, boundary conditions and time integration are
implemented in the code. An illustration of the storage system of both fields
and operators is made in Section 5.4. Finally, validation cases are described in
Section 5.5.

The numerical code is freely downloadable from [53].

5.1 Spatial discretization

5.1.1 Staggered grid

The set of discrete locations at which the variables are to be calculated define
the so-called numerical grid, which is essentially a discrete representation of the
geometric continuous domain in which the problem is to be solved.

The obvious choice is to evaluate all the variables (pressure and velocity)
on the same set of grid points (such a grid is called co-located), but despite its
computational advantages this arrangement leads to some significant drawbacks
regarding the solution of the pressure field, given by a Poisson equation.

Since energy conservation requires GT = —D, it is possible to show [47],
§7.5.2 that a co-located grid approach would result in a discretization of the
Poisson equation on a grid twice as coarse as the original one, and the equation
would be split into four unconnected systems, one with 7 and j both even, one
with ¢ and 7 both odd, one with i even and j odd and one with ¢ odd and j even
(checkerboard pressure scheme). Each of these systems give a different solution,
resulting in spurious “pressure oscillations” even with smooth velocity fields.
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Figure 5.1.1: Staggered grid. x-velocity component u, is evaluated at —, y-
velocity component u,, at T, whereas pressure at x.

In Cartesian coordinates, the staggered grid introduced by Harlow and Welsh
(1965) offers several advantages over the co-located grid, the biggest of which
is the strong coupling between the velocities and the pressure, avoiding oscilla-
tions in pressure field. The numerical approximation on a staggered grid with
central derivatives is also kinetic energy conservative, with the advantages that
were discussed earlier. Moreover both the pressure and diffusion terms are very
naturally approximated by central differences without interpolation, since the
pressure nodes lie at cell centers and horizontal and vertical velocity components
lie at the center of cell faces.

This grid choice has a few drawbacks on the data structure: depending on
the particular boundary conditions, velocity and pressure fields do not have
the same size and their computational domain may change. In the following
description, and also in the code, we will label the face coordinates (12,
Yn+1/2) as “geometry” and the face centers (z,, y,) as “center” (see Figure
5.1.1).

Stretched grid

Numerical simulations are memory-demanding and time-consuming, depend-
ing mainly on the dimension of the domain being resolved and on the resolution
at which the solution is sought. Moreover, the time step is also a direct conse-
quence of the grid resolution through the CFL number.

One possible way to speed-up the code without degrading the precision of
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the solution in the region near the body comes from stretched grids. Since a
good solution requires high resolution in the presence of high gradients we can
design our numerical grid in order to have high resolution where needed, and
making it coarse elsewhere.

The main drawback of this grid arrangement is the loss of accuracy of dif-
ferential operators: it can be shown ([47], §3.3.4) that the central derivative
scheme does not maintain a second-order accuracy when applied to a stretched
grid but, naming stretching factor r the ratio between two neighbor grid spac-
ings (A;+1 = rA;), this error is proportional to A;(r — 1).

For this reason and in order to simplify the Eulerian-Lagrangian data trans-
mission, the grids used here will be uniform, i.e. r = 1, in the region next to
the body, while it will be stretched by a factor 2 1 far away from it.

Spatial operators

All the differential operators described in Section 3.1 need to be discretized
on the numerical grid in order to be applied on a discretized field. As the
mesh is structured, the fields can be stored in a regular matrix, in which the
column-wise direction corresponds to the x-axis, and the row-wise direction to
the y-axis. In our code, all but the non-linear operator N(-) = u - V(-) are
defined as matrices and the effect of an operator on a certain field is given by
the row-column product of the two matrices.

For computational reasons it is also useful to define some interpolation op-
erators by which we can evaluate the same variable at different locations: from
cell faces (velocity nodes) to cell centers (pressure nodes) and from cell faces to
cell corners. Even if other choices are possible, these operators are written in a
local form (i.e. looping over the whole domain instead of considering all nodes
at the same time).

Table 5.1.1 reports the action of each spatial operator including the spatial
location of points on which it operates and at which it returns the output. We
stress the importance of this asymmetry, since pressure gradient operators G,
and G, (that operate at cell centers x where the pressure field p is defined) will
be needed to evaluate the velocity field at cell faces (— and 1).

Conversely, the divergence-free constraint will be evaluated at cell centers
x by applying the divergence operators I, and D, on velocity fields v, and
uy that are defined respectively at — and 1. As an example, let us calculate
the gradient of the pressure field p in the x direction and for simplicity let us
assume periodic boundary conditions. As previously described, this operation
results in the row-column product G,p. As stated in Table 5.1.1 and Figure
5.1.1, the pressure field is evaluated at cell centers x, while its gradient along x
will result on cell faces —.
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Operator ‘ Operates on ‘ Returns values at ‘ Size
D, — X (Ny x Ny — 1)
D, 0 X (Ny x N, — 1)
G, X — (N — 1 x N,)
Gy X 1 (Ny — 1 x Ny)
L, — — (Ny —1x Ny —1)
L, T T (Ny—1x N, —1)

Table 5.1.1: Size of spatial operator matrices with Dirichlet Boundary condi-
tions: p is computed at the center of the cell, while u and v respectively at the
vertical and horizontal faces of the cell.

Let us call ng, and ngy the number of geometries and n., and n., the
number of centers along z and y (refer to Section 5.1.1 for definitions), so p will
have dimensions (ney, Ney) and ug (nga, ney). The operator G, will then have
dimensions (ngg, ne;). The effect of the product between the it" row of G, on
the j* column of p will be the pressure gradient in the 2 direction evaluated
at the u, node (—) located at the i*" value of geometries and at the j** value
of centers (Figure 5.1.2). In the following we will describe all discrete spatial
operators, including the part of the code in which they come into play.

Divergence The divergence operator returns the divergence of the input ve-
locity field u = (u,v). It is used to compute the known column vector
of the Poisson equation in the second step of the Fractional Step Method
and to check the flow incompressibility at each time step. This operator
is applied at velocity nodes and returns the value at pressure nodes.

Gradient The gradient operator returns the gradient of the input pressure field
p. It partially forms the known column vector r of the first step of the
Fractional Step Method. This operator is applied at pressure nodes and
returns the value at velocity nodes.

Laplacian The Laplacian operator returns the Laplacian of each component
of the input velocity field u = (u, v). It partially forms the known column
vector r of the first step of the Fractional Step Method. This operator is
applied at velocity nodes and returns the value at the same location.

Non-linear operator The non-linear operator is written in the conservative
form as

o Bus B N u? | duv  duv | 2
u'vu*“Jax,-*aa-j(“l“J) - (6w+6y’ 8x+8y)

(Nmz Ny)zg

1
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* * T * * *
* * * * * *
¥ % % % k% * -th * % % ok ok ok *
" row
¥ % % % ok ok * * % % ok ok ok *
¥ % % % k% * * % % ok ok ok *
¥ % % ok ok % * * % % ok ok ok *
L J L " J
column
G, P J

Figure 5.1.2: Action of the matrix operator to evaluate the differential operator
at a particular point of a generic input field.

and is discretized with a two-step Adam-Bashforth (or with a Euler for-
ward at the first time step), appearing in the known column vector r of the
first step of the Fractional Step Method. The evaluation of this operator
requires the interpolation of u, and u, at both cell centers (x) and cell
corners (+). The stencil for N, is shown in Figure 5.1.3.

5.2 Boundary Conditions

To fully understand the reason for boundary terms to appear we need to
introduce the so-called computational domain, the ensemble of all grid nodes at
which variables are unknown.

The stencil of the spatial operators, i.e. the set of points needed to compute
the value of a differential operator, usually overflow the computational domain
involving nodes on the boundary or beyond. In the case of points near bounda-
ries, stencils have to be modified in order to be considered at boundary nodes.
In this way values of variables or their derivatives at boundaries, the so-called
boundary conditions needed to solve differential equations, become part of the
right-hand-side of our linear system (bc).

In the following we present the most used kinds of boundary conditions.
As stated in [49], §3, by implementing boundary conditions before any split-
ting takes place, no boundary conditions on intermediate velocity u* and p are
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Figure 5.1.3: Non-linear operator stencil (in blue) for an z-component velocity
node (in red).

required. Thus, only boundary conditions on velocity u are required.

In order to simulate an open flow around a flexible body, the following boun-
dary conditions are used; Dirichlet boundary at inlet, symmetric boundary con-
ditions at sides and convective boundary conditions at outlet. These boundary
conditions are discussed in detail in the following sections.

5.2.1 Symmetry Boundary Conditions

It is sometimes useful to impose this kind of condition on boundaries through
which there is no mass flux, but where no solid walls are present. This can be
the case of external flows with boundaries very far from the body. This kind of
condition implies

g . ST
(u'n)p—O, 671’11"_0

i.e. the velocity component normal to the boundary is required to be zero
(Dirichlet condition), while the normal derivative to the boundary of the tan-
gential component is zero (Neumann condition). These are homogeneous boun-
dary conditions, and generate no boundary condition vectors in the discretized
equations.

5.2.2 Dirichlet Boundary Conditions

The velocity of the fluid is usually known at inlets, and therefore it is con-
venient to use it as a boundary condition, resulting in inhomogeneous Dirichlet
boundary conditions.

ulr = f(s)

where s is the curvilinear coordinate of the boundary.
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Symmetric b.c.

A A A 4 A A
L L L I P
%—>‘x —> X —> X —> X —> X —> x|
Y ! ‘
L4 A A 4 A Al
H I I I I LI
X —> X —> X —> X —> X —> x: .
,  Dirichlet ) A 2 » A 41 | Convective
b.c . 1 1 x 1 T b.c
o —> I X —> X —> X —> X —]> X —> x: e
I
L4 A A A A A
i 1 1 1 1 T
%—>‘Lx —> X —> X —> X —> X —> XI
A A A 4 A
I I I I

—>

Symmetric b.c.

Figure 5.2.1: Staggered grid with applied boundary conditions (b). The dashed
line encloses the computational domain.

5.2.3 Convective Boundary Conditions

Boundary conditions at outlets are often modeled with a homogeneous Neu-
mann boundary condition (i.e. du/0On) for steady simulations. However, this
condition is not satisfactory in an unsteady case, where it is better to apply a
convective boundary condition. A number of such conditions have been tried
but the one that appears to work well is also one of the simplest ([47], p. 273):

ou ou
E—FUG—H—O

where U is a velocity independent of the location and chosen such that overall
mass in the domain is conserved. This is a particular case of the Dirichlet
boundary condition in which the boundary value changes in time.

In the numerical discretization the previous boundary condition can be im-
plemented by using antime explicit time scheme:

+UD(u); =0

where D is the spatial derivative operator. Since the derivative has to be ex-
trapolated from the computational domain, we can obtain the stencil by the
Method of Undetermined Coefficients ([86], §1.2).
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5.3 Time discretization

In computing unsteady flows, we have a fourth coordinate direction to con-
sider: time. As with spatial coordinates, it must be discretized. We can consider
the time ”grid” as discrete points in a prescribed time interval, just like the spa-
tial discretization.

The major difference between the time and the space coordinates lies in the
direction of influence: whereas a force at any space location may (in elliptic
problems) influence the flow anywhere else, forcing at a given instant will affect
the flow only in the future, i.e. there is no backward influence. Unsteady flows
are, therefore, parabolic in time, so all solution methods advance in time in a
step-by-step or "marching” manner.

When trying to solve a PDE (partial differential equation) with both time
and spatial derivatives, we can first evaluate all spatial operators and then treat
them as forcing (known) terms: in this way we can think of the evolution in
time as ruled by an ODE (ordinary differential equation) with an initial value
problem.

Here we use an explicit two-point Adams-Bashforth scheme, as in [49], to
evaluate convective terms and an implicit Crank-Nicholson (trapezoidal) scheme
for diffusive terms (Euler forward is used for the first time step). This is because
the Laplacian operator (diffusive terms) is linear, so it can be directly written
in a matricial form, whereas the non-linear operator (convective term) would
have required a further linearization to be inverted.

Crank-Nicholson method This method approximates the integral with a
straight line interpolation between the initial and final points to construct
the approximation

A
G = 0+ ST (b 00) + Sl bne)]

This method is implicit (¢,,+1 appears on the right hand side) and is called
two-level method because it involves the values of the unknown at only
two times (¢n+1 and ¢y,).

Two-point Adams-Bashforth method This method belongs to the so-called
multipoint methods, that approximate the integral by integration of a
polynomial function created via Lagrangian interpolation at a certain
number of points (in this case t,, and t,,_1). This can be written as

A
G = 6+ S (s Bn) — b1 fn)]

This method is explicit (¢,+1 does not appear on the right hand side) and
is a three-level method because it involves the values of the unknown at
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(0,0) ,
(a) Az (b)
y (LasLy)
Ay J
1Ay
., i (N, +1,N, +1)

Figure 5.4.1: Computational domain (a) and data field storage in matrix form
(b), where L, = N;Az, L, = N,Ay.

three times (¢nt1, ¢n and ¢,—1). The major drawback of this method
is that, because it requires data from many points prior to the current
one, it cannot be started using only data from initial conditions. Other
methods have to be used to compute the initial time steps.

5.4 Matrix description

In order to perform operations in a simple and effective way, both data fields
and spatial operators are described by matrices.

5.4.1 Data storage

Each data field is described by a matrix having the number of columns equal
to the number of computational nodes along the x-direction, and the number of
rows equal to number of computational nodes along the y-direction.

Depending on the particular boundary conditions we have different matrix
dimensions for different data fields.

Periodic Boundary Conditions In this simple case the computational do-
main is the same as the physical domain, so each data field has to be
evaluated at N, x N, computational nodes.

Dirichlet Boundary Conditions In this case the computational domain dif-
fers from the physical domain, and each data field has different computa-
tional dimensions (Table 5.4.1).
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Data field ‘ size
u (Ny —1x Ny)
v (Ng x N, — 1)
cell centers (p) (Ng x Ny)
cell faces (N —1x N, —1)

Table 5.4.1: Dimensions of data matrices using Dirichlet Boundary Conditions,
as for example in Figure 5.2.1

Spatial operator Input matrix Output matrix
(size) (size) (size)
G, uu G, - uu
(Ny —1x N,) (N x Ny) (Ny —1 x Ny)
Gy vl (Gy - T)T
(Ny — 1 x Ny) (Ny x Ny) (Ngy x Ny, — 1)
D, U D, -uv
(Ny x N — 1) (N, —1x N, —1) (Ngy x N, — 1)
D, uvT (Dy - uvT)T
(Ny x Ny, — 1) (Ny —1x N, —1) (Ny —1x N)
Lu:c U Lua: cUu
(N; —1x N, —1) (N — 1 x Ny) (Ngy — 1 x Ny)
Loy uT (Lyz - uT)T
(Ny X Ny) (Ny X Na — 1) (Ne — 1 x Ny)
Loy v Lyz-u
(N, X Ng) (Ny x Ny, — 1) (Ny x N, — 1)
Ly, o (Luy )T
(Ny—1x N, —1) (Ny — 1 x Np) (Ng x Ny — 1)
T (% Ty - u
(Ny x N, — 1) (N — 1 x N) (Ng x Ny)
Lun ul (Iypn - uT)T
(N, —1x N,) (Ny x Ny — 1) (N; —1x N, —1)
Iy T (Ipe - vT)T
(Ny x N, — 1) (Ny — 1 x Ny) bo(Ny x Ny)
Tyn v Iy - v
(N — 1 x N,) (Ngy x N, — 1) (N —1x N, —1)

Table 5.4.2: Spatial operators size under Dirichlet Boundary Conditions.
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5.4.2 Spatial operators

As described in Section 5.1, in order to solve for the flow field we have to
manipulate fields with different spatial operators. Here we also define spatial
operators in matrix form so that the application of a spatial operator on a data
field is simply computed by a row-column multiplication.

Due to their non-linearity, the convective operators N, and N, cannot be
described as matrices, i.e. they will not be evaluated implicitly but will be taken
into account on the right hand side.

The size of each matrix depends upon the specific boundary conditions since
they have to operate on the data matrices. Moreover, because of the staggered
grid arrangement, it is not true in general that the original operator matrix and
the resulting field matrix have the same dimension (see Table 5.4.2).

5.5 Validation

In this Section we will go through the benchmark problems that have been
selected to test the validity of the code.

5.5.1 Simulation of a vortex flow field

The first validation test of the code concerns the spatial convergence rate in a
simulation with periodic boundary conditions, where a second-order accuracy in
both time and space is expected. The chosen problem was the simulation of the
Taylor-Green array of vortices, whose time-dependent behaviour is described in
a closed form as

Uref(x,y,t) = — cos(kyx) Sin(kyy)e’t(kiJrki)/Re

Vreg (2, 1) = = sin(kya) cos(kyy)e ke
1 A 412 2
Pres(,,8) = —7[cos(2k,) + sin(2kyy) e 10 D/
that has be taken as a reference solution to compute the error £ defined as
€= [Ju—tresll o + v = vresll (5.5.1)
The simulation has been run with the following parameters

Re=10, L,=3, L,=3, ny,=2" n,=2%

At =0.01, Topg=12
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Results of the time convergence analysis are listed in Table 5.5.1. Figure 5.5.1
shows the same results as Table 5.5.1 compared with an analytical solution with
first and second order accuracy: it is possible to see how the obtained results
overlap almost exactly the second-order convergence.

At € convergence rate
1-107%1 [ 3.5-107 1 \
2.1074 | 1.4-10710 2.000
4-107* | 5.8-10710 2.051
8-107% | 2.3.107° 1.988
1-1073 | 3.6-107° 2.008
2-107% | 1.5-1078 2.059
4-1073 | 5.9-1078 1.976
81073 | 2.3-1077 1.963
1-1072 | 3.7-1077 2.131
2-1072 | 1.5-1076 2.019
4-107%2 | 5.9-1076 1.976
8-1072 | 2.4-107° 2.024

Table 5.5.1: Temporal convergence of the implemented code: as expected the
convergence rate approximates the theoretical value of 2.

1.0e-04
1.0e-05 "]
1.0¢-06 °

>

o
1.0e-07
.
1.0e-08
L
o
1.0e-09
]
1.0e-10 + & first order 4
¢ second order

numerical °

1.0e-11 |
1.0e-04 1.0e-03 1.0e-02 1.0e-01

At

Figure 5.5.1: Temporal convergence rate of the numerical code (dots) compared
with the theoretical first- and second-order error curves.
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Azx = Ay | ny, =ny € convergence rate
7.8-1073 128 2.0-107° \
1.5-1072 64 8.0-107° 2.044
3.1-1072 32 3.1-107% 1.949
6.3-1072 16 1.2-1073 1.849
1.3-1071 8 3.7-1073 1.628

Table 5.5.2: Spatial convergence of the implemented code: the numerical con-
vergence rate is next to the theoretical value of 2 (see Figure 5.5.2).

1.0e-02
el
1.0e-03 o
w [ ]
1.0e-04
o
first order
L second order

numerical °

1.0e-05 L
1.0e-03 1.0e-02 1.0e-01 1.0e+00

Az

Figure 5.5.2: Spatial convergence rate of the numerical code (dots) compared
with the theoretical first- and second-order error curves.

A spatial convergence analysis was also performed. As with the temporal
analysis, results are listed in Table 5.5.2 and shown in Figure 5.5.2.

5.5.2 Simulation of an elastic membrane

As a second test on code reliability we compared the results of our code with
the ones reported by Griffith in [48], where the dynamics of a thin, elastic and
mass-less membrane immersed in a viscous incompressible fluid was performed.

The fluid is taken initially at rest and the membrane is an ellipse with semi-
major axis 0.3 and semi-minor axis 0.2. After the membrane is released at time
t=0, the interface undergoes damped oscillations, with period and damping
depending on the stiffness k¥ and the Reynolds number Re. Due to the incom-
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pressibility of the fluid enclosed by the membrane and the presence of fluid
viscosity, the membrane relaxes towards a circular configuration with radius

V6/10.

1

0.9

0.8r

0.7F

0.6

> 051

0.4F

031

0.2}

0.1r

0

0O 01 02 03 04 05 06 07 08 09 1
X

Figure 5.5.3: Membrane (continuous line) deforms from its original configuration
(dashed line) towards the final configuration (dotted line).

In the simulations we considered three boundary stiffnesses (x = 1,10, 100)
and two Reynolds numbers (Re = 100, 1000). We performed each computation
until ¢ = 1.2 dimensionless time units, which for k = 1 corresponds to three
damped oscillations. We used Cartesian grids with 16, 32 and 64 points in
each coordinate direction, while the elliptic boundary was described with 64
Lagrangian points. All the simulations were conducted with CFL= 0.1. Table
5.5.3 compares the results from our numerical code with those reported in [48].
Although the accuracy is not satisfactory, over all simulations both codes, im-
plemented with different versions of the IB, give the same order of magnitude
of area losses. For this kind of test, we assumed as the measure of the accuracy
of the method the percentage loss of area inside the membrane:

_ |Area — Areag| 100
Areag
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R Re Ecode EGrif fith |Teler’r|
1 [1-10%[6.41-10723.69-102 | 0.269
1-10% | 2.26-107t | 3.56-10"1 | 0.223
10 | 1-10% | 3.33-107! | 3.95-10"' | 0.085
1-10% | 890-10~1 | 1.90-10° | 0.362
100 | 1-10% | 2.33-10° 1.23- 109 0.310
1-10% | 3.90-10° | 5.76-10° | 0.193

Table 5.5.3: Maximum area losses in our numerical code (£.04e) compared with
those listed in [48]. In all the simulations the Cartesian grid was [64 x 64] and
CFL=0.1

5.5.3 Lid-driven cavity

In order to test the Dirichlet boundary condition, simulation of the so-called
“regularized lid-driven cavity” has been performed. In this standard benchmark
problem the fluid domain is a box of coordinates (0 < z < 1,0 < y < 1) bounded
by still walls except for the top wall, sliding with a tangential velocity u defined

as:
81n2[7m] ifxgl;p
1—p 2
1-— 1
uz) =<1 it Py EP (5.5.2)
sin? [w(x—l)} otherwise.
1-p

where p is the wall percentage at which v = 1 (Figure 5.5.4). The grid and grid
size distribution used for simulations as well as velocity profiles are shown in
Figure 5.5.5.
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o/ y

Figure 5.5.4: Regularized tangential velocity profiles along sliding wall for p =
0.4.
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Figure 5.5.5: Stretched grid used for the simulation (a) and grid steps distri-
bution along = (b). u (¢) and v (d) velocity profiles at, respectively, x = 0.5
and y = 0.5 for different percentage of sliding wall velocity profile (Eq. (5.5.2)).
Dots in (c¢) and (b) represent the profiles simulated in [89].
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5.5.4 Parachute

In order to test the IB formulation by Peskin (see Section 4.2), a test case
regarding a parachute has also been carried out for the simulation of the flux
around a massless 2D opening parachute, bonded by two ropes to a pinned point.
Boundary conditions in all directions are periodic, and the velocity ug = (u,v)
is forced to be up = (0,1) at the bottom boundary. This is accomplished by
applying a volume force f; inside a strip ) near the inlet:

(5.5.3)

£ (x, ) ap(up(t) —u(x,t)) ifxeQ
X =
oA 0 otherwise.

where aq is a large positive constant.
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Figure 5.5.6: Streamlines (in red) around the opening parachute (in blue). The
initial position of the parachute is shown in green.

Here the permeability has been simulated using the original approach pro-
posed by Kim and Peskin [68] and described here in 4.4.2, i.e. by allowing a
relative slip between the flow velocity U and the structure velocity 90X /0t in
the direction normal to the structure

<U8X) ~n:$2F'n
ot 10X /03]
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Figure 5.5.8: Time history of drag force on the pinned point.
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Figure 5.5.7: Time history of flux through canopy.

64



5.5. VALIDATION

In the performed simulations the term ~/ |0X/ds|* has been set as a constant
and equal to 1. Figure 5.5.4 depicts the streamlines around the parachute in
the transient between the initial (green) and the actual (blue) configuration.
Figures 5.5.7 and 5.5.8 represent respectively the flow through the canopy and
the drag force on the pinned point for different values of the pore density 8 (the
aerodynamic conductance is constant and equal to v = 1). As expected, the
flow through the canopy increases with 8 while the drag force decreases.

5.5.5 Beam dynamics

In order to also assess the reliability of the structural part of the code some
numerical simulations of both the clamped and the hinged beam (without sur-
rounding fluid) have been performed. For each case the initially deformed con-
figuration was free to evolve without any external driving force, so that in the
limit of small initial displacement numerical simulations give us both eigenval-
ues and eigenfunctions. The numerical simulations are in good agreement with
the theoretical results shown in Section 2.4.

Clamped beam

In the following we show the result of the simulations of the unforced clamped
beam for the first two modes. Since we want to show just one of the eigenfunc-
tions at a time, the initial condition has been set proportional to one of the
eigenfunctions depicted in Figure 2.4.1.

0.0015
mode 1
mode 2

\\ / \ / |

\ |/ o

-0.001

-0.0015
0

Figure 5.5.9: Time trace of displacement at the clamped beam’s free end.
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Looking at the displacement of a single point over time Figure (5.5.9), a
sinusoidal behavior appears as expected (apart from a little damping) with
frequency given in Table 5.5.4, showing a good agreement with the theoretical
values shown in Table 2.4.1.

mode T f wnL?/ A
1 25.1381 | 0.0398 3.5348
2 4.0221 | 0.2486 22.0924

Table 5.5.4: Oscillation frequencies of simulated modes of the clamped beam.

Figures 5.5.10 and 5.5.11 show different snapshots during one oscillation
period of the beam displacement (eigenfunction) respectively for the first and
the second mode.
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Figure 5.5.10: Beam snapshots during one oscillation. Initial condition (in
green) is such that only the first oscillation mode of the clamped beam is excited.
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Figure 5.5.11: Beam snapshots during one oscillation. Initial condition (in
green) is such that only the second oscillation mode is excited.

Hinged beam

Numerical simulations of the unforced simulation have also been performed
for the hinged beam. As for the cantilever, the first two oscillation modes have
been investigated.

0.0015

mode 2
mode 3
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Figure 5.5.12: Time trace of displacement at the hinged beam’s free end.
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Looking at the displacement of a single point over time (Figure 5.5.12),
a sinusoidal behavior appears as expected (apart from a little damping) with
frequency reported in Table 5.5.5 showing good agreement with the theoretical
values shown in Table 2.4.2.

mode T f NG
2 5.7264 | 0.1746 15.5173
3 1.7686 | 0.5654 50.2415

Table 5.5.5: Oscillation frequencies of simulated modes of the hinged beam.

Figures 5.5.13 and 5.5.14 show different snapshots during one oscillation
period of the beam displacement (eigenfunction), respectively, for the first and
the second non-trivial oscillation mode.
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Figure 5.5.13: Beam snapshots during one oscillation. Initial condition (in
green) is such that only the second oscillation of the hinged beam mode is
excited.
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Figure 5.5.14: Beam snapshots during one oscillation. Initial condition (in

green) is such that only the third oscillation mode of the hinged beam is excited.

5.5.6 Darcy’s law

The physical accuracy of the results has been tested with the well-established
Darcy’s law by simulating a porous membrane hinged at both ends perpendic-
ular to an incoming uniform flow (see Figure 5.5.15).
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Figure 5.5.15: An inextensible membrane (left, solid line) simply supported
at both ends is subject to a uniform flow from left (streamlines in dot lines)
and (right) pressure profile along z. Notice the sudden pressure drop around
membrane location (z ~ 0) within the space of two mesh grids.
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In the next subsection we will derive the theoretical relationship between
Darcy’s permeability coefficient k and the parameter A used in our model, while
in subsection 5.5.7 the numerical procedure and results will be shown.

Theoretical derivation of the k£ — A mapping

Darcy’s law is a phenomenological relationship describing the flow in porous
media in the limit of laminar flow (low Reynolds numbers). It states a linear
dependence between the pressure gradient Vp and the fluid velocity U — Uy,
through the so-called permeability coefficient k, that takes into account the
geometry of the porous medium:

U-U; = —kVp (5.5.4)

where U — Uy, is the fluid relative slip velocity across the permeable medium.
In our numerical simulation the force exerted by the fluid on the filament is
given by Goldstein’s feedback law (6.1.2), that by neglecting the time-integral
term can be written as F = (U — Uy,). Since the drag on a flat plate normal
to the flow is only due to the pressure difference we can approximate
F  Op

— ~ 5.5.5
6 Oz ( )
where § is the width of the membrane, given by the “effective radius” of the
Dirac delta function used by the IB method. In our case, § has been estimated
to be twice the minimum grid spacing, i.e. § = 2AZmin = 2AYmin. Finally,
exchanging the normal direction n with the x-direction one obtains

s
k= ST (5.5.6)

5.5.7 Numerical results

Several simulations were performed with different values of A and four dif-
ferent Reynolds number (2.5,5,7.5,10). By sampling pressure immediately up-
stream and down-stream of the membrane along the x axis (Figure 5.5.15, left)
we got the pressure gradient across the membrane, while flow measurements
were obtained by interpolating the fluid velocity on the membrane.

The linear relationship between pressure gradient and the fluid flux across

the membrane (Figure 5.5.16, left) is in good agreement with Darcy’s law at low
Reynolds numbers. Darcy’s k parameter for each value of A\ was thus obtained
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Figure 5.5.16: Linear regression of every set of simulations (dots) at different
A (left). Darcy’s k is the slope of each line and comparison between analytical
prediction and numerical results of the kK — A mapping (right).

through a linear regression of the simulation results, leading to a numerical
mapping curve (A — k) (Figure 5.5.16, right) that shows good agreement with
the analytical prediction curve from equation (5.5.6).
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Applications and results

6.1 Permeable filament

Motion of deformable, slender structures immersed in an incompressible vis-
cous fluid is commonly seen in natural phenomena, and can be found in many
applications such as paper processing [91], energy harvesting [60, 62, 63] and
turbulence reduction [90].

In the present paper we study numerically how permeability, a key factor
in a number of both biological and technological tissues, plays a role in the
dynamics of a flapping hinged filament, commonly referred to as the flag-in-the-
wind problem.

6.1.1 Problem formulation and characteristic
length scales

We consider a one-dimensional inextensible elastic filament of length L*,
with mass per unit length p% and bending rigidity K, surrounded by a viscous
incompressible fluid of density pj}., dynamic viscosity v* and velocity at inflow
UZ. As in [52], we also make use of the density difference pj = p§ — piA*,
where A* is the filament cross section area (dimensional variables with star,
dimensionless without).

The dimensional governing equations (4.3.5) and (4.3.6) can be made di-
mensionless by using the same characteristic scales as described in Section 4.3,
giving equations (6.1.6) and (6.1.1).

While section 5.5.6 contains the numerical benchmark with Darcy’s law,
section 6.1.2 describes the numerical method, and the numerical results are
discussed in section 6.1.6. The analytical model is presented in 6.1.9, while in
section 6.1.8 we try to provide a physical insight into the phenomenon. Finally
conclusions are drawn in section 6.1.10.
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6.1. PERMEABLE FILAMENT

6.1.2 Numerical model

Let x = (z,y) € Q be the Cartesian physical coordinates, with Q denoting
the physical domain, x and y being the stream-wise and cross-stream direction,
respectively; let s € I' be the Lagrangian curvilinear coordinate, with I' denoting
the body surface; let X(s,t) = (X1(s,t), Xa(s,t)) € I’ denote the physical posi-
tion of each material point of curvilinear coordinate s at time ¢ (Figure 6.1.1).
Velocity boundary conditions are: u = (Us,0) at Qipier, Ou/0t+UsxpOu/dn = 0
at Qoutier (convective boundary condition) and {u-n = 0, d(u-7)/0n = 0}
at Quop and Qportom (Symmetrical boundary condition), where n and T are, re-
spectively, the normal and tangential directions to the boundary. Given these
conditions, the governing equations can be written as:

y UL
N p,v
N N S S = | |
" pd
0 NG
— \\\_,/
] X(s,1)
Q X

Figure 6.1.1: Filament I' (in red) described by a set of Lagrangian points X(s, t)
(in green). Initial configuration (in cyan) of the filament is a straight line with
a certain angle of attack 6.

Mixt) + ulxd) Vulxf) =
— Vp(x,t) + équ(x, )+ f(x,t) (6.1.1)
V-u(x,t) =0
Fimp = a/ot(Uib - %)dt’ +B(Uy — %) (6.1.2)
F = (1 - \)(Fimp )0+ (Finy - 7)T (6.1.3)
£(x,t) = p /F F(s,1)5(x — X(s,1))ds (6.1.4)
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Up(s, t) / u(x — X(s,t))dQ2 (6.1.5)
Q
8 82 0*X g
<T ) (7 952 ) + F?”E —F (6.1.6)
X (XY 15 (oxax
Ds 0s? 85 20t2 \ 0s Os (6.1.7)

9?X 92X B 87X g
Ot0s Ot0s Js 0s

The incompressible Navier-Stokes equations (6.1.1) are considered together with
an artificial forcing f to enforce the no-slip condition. Hydrodynamical forces
acting on a permeable filament are calculated by means of eqs. (4.4.5) and
(6.1.2), where the first is the force reduction equation presented in Section 1
for taking into account permeability and the second is Goldstein’s feedback law
[59]. According to [59], o and S are negative constants chosen to enforce the
no-slip condition up to an arbitrary small value. Throughout this work, we
have used o = 0. Equations (6.1.4) and (6.1.5) link together Eulerian and La-
grangian quantities through a convolution with a discretized version of Dirac
Delta function § (interested readers are referred to [67]). Among a wide choice
of synthetic Delta functions, we made use of the one proposed by Roma in [69)].
As explained in [52], the difference of density scales in the dimensional version
of equations (6.1.1) and (6.1.6) (p} and p7, respectively), is taken into account
in equation (6.1.4) through the ratio p = pi/(piL*). Filament dynamics is
considered in equation (6.1.6), known as d’Alembert elastic string equation. As
shown in [52], equation (6.1.7) solves for the tension as a Lagrangian multiplier
in order to enforce incompressibility and can be recovered by deriving equa-
tion (6.1.6) with respect to s and multiplying by 0X/ds. As in [56], we chose
a staggered arrangement of the Lagrangian variables X and T (see Figure 4.3.1).

(Fp — F)

In order to solve equation (6.1.6) four boundary conditions are enforced both
at the leading and at the trailing edge:
0?X
Ps |,y = 0%
The first and second conditions enforce the filament to be hinged to the pole
Xhinged, While the third and the fourth conditions state that the filament trailing

edge is unloaded (zero torque and shear). Moreover, equation (6.1.7) is solved
together with these conditions:

0 <T8X

3X
=0 X =0.

X|S:0 = Xhingeda ’ 93
s=L S ls=L

g
(=) =-FS4+F, T|_, =0
65 88) o rg + ) ‘szL 9
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6.1. PERMEABLE FILAMENT

where the first one derives from equation (6.1.6) in the absence of acceleration
and bending moment (hinged condition), while the second again comes from the
unloaded free edge condition.

6.1.3 Numerical Discretization

The computational domain is an 8 x 8 square ranging [—2, 6] in the cross-
stream direction and [—4, 4] in the span-wise direction as in [52]. The compu-
tational grid is uniform in an inner region close to the pinned end (0,0) of the
filament ([—0.5, 3] in the cross-stream direction and [—1, 1] in the span-wise di-
rection) with grid spacing 1/75, and stretched outside with a constant stretching
ratio equal to 1.1. A convergence study on grid spacing has been performed up
to 1/150, showing a relative error on flapping amplitude less than 2.5%. The
filament length L is set equal to 1 and the Lagrangian grid is made up of 150
points, so that approximately 2 Lagrangian points appear in one Eulerian cell
(as suggested in [55]). Boundary conditions on the velocity are Us, = (1,0) at
the inflow, convective at the outflow and symmetric at the lateral sides. Since
our computational grid for the flow is staggered, no boundary conditions for
the pressure are needed. The initial configuration of the filament is a straight
line inclined at a certain angle 6 (Figure 6.1.1). In all the simulations the fluid
kinematic viscosity v has been calculated to give Re = 200.

6.1.4 Numerical scheme

To solve the incompressible Navier-Stokes equations we make use of the Frac-
tional Step Method, a projection method originally introduced independently
by Chorin [46] and Temam [51] and later refined by Perot [49]. This formulation
results in a code with second-order accuracy in space and first order accuracy
in time.

6.1.5 Solution Procedure

At each time step the numerical algorithm can be summarized as follow: (i)
evaluation of hydrodynamical forces F on the filament (6.1.2), (ii) spreading of
the force F from Lagrangian points on the Eulerian grid (6.1.4), (iii) solution
of fluid flow (6.1.1), (iv) solution of filament motion (6.1.6), (6.1.7).

6.1.6 Simulations of impermeable filament

Before focusing on permeable filaments, we ran a few simulations in order
to validate our numerical method against results available in literature. In
particular the analytical model shown in [71] has been taken as a reference for all
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CHAPTER 6. APPLICATIONS AND RESULTS

numerical simulations. This model considers the beam dynamical equation with
external loads given by the “slender body theory” (see Munk [72]), obtaining

9%h 0 oh 0?h 0*h
— + 2l —T) = — =0 6.1.8
(P+pa) g +2Mag or +(pa = T) 55 +757 =0, (6.1.8)
having introduced the following non-dimensional quantities:
Ps Mq T Ky
= a = —, T = — = —
P T L o UL T o UPLE

where ps is the structure linear density, py is the fluid density, mq, = pyA
(and therefore p, = A/L, giving a dimensionless ratio in 2D) is the “virtual
mass” considered to surround the filament cross section. We would like to point
out that this equation differs slightly from (6.1.6) in that here we consider the
absolute beam density p, in the inertial term and not the density difference p;
required by the Immersed Boundary approach.

This is a fourth order linear equation for h(s,t) involving only second and
fourth order derivatives, which leads to simple solutions that exhibit some inter-
esting features. In order to perform a stability analysis, we insert in the previous
equation the generic expression of a wave evolving both in time and space

h(S, t) _ aei(ksfwt)

where a is the amplitude, k the wave number and w the angular frequency.
In order to estimate tension, we use the solution deriving from a zero-pressure
gradient boundary layer developing over a flat plate (Blasius, see [10])

T(y) y
=—==13VRe(l— =
(0) = gy = LaVEe(1 - ¥)
Since the filament is assumed to be infinite, we will use the maximum value to
be representative, 7(y = 0) = 1.3Re~1/2.
Substitution of the generic solution into equation (6.1.8) yields a quadratic

expression

o PakF k(0 + pa) (L3RI 4 7k?) — pp
P+ Pa
In this case the stability of the solution is found when I'm(w) = 0. This can be

asserted by the evaluation of the term under the square root. In particular the
stability condition can be written

2p

2
(p+ %)(1.3Re*1/2 + yk?) — = =0

)
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6.1. PERMEABLE FILAMENT

from which it is possible to derive critical values for linear density, flexural stiff-
ness and incoming velocity related to other parameters. In the previous equation
we substituted p, = 2/k given from potential flow solution [74] (k = 2m).

° °
° 0
o ‘o0
a
stable
unstable ®
analytic, k=t
0 analytic, k=2x -------

0.0e+00 1.0e-02 2.0e-02 3.0e-02 4.0e-02 5.00-02

v

Figure 6.1.2: Comparison between analytical models and DNS simulations. The
close-up refers to the rectangle near axis origin.

Numerical simulations show a good agreement with the theoretical curve
up to v = 2.5- 1072 (Figure 6.1.2), which coincides with the range of values
investigated by Connel and Yue [71]. Above this critical value of the bending
stiffness the agreement between the analytical model and DNS simulations de-
teriorates. This discrepancy can be partly explained by a modification of the
filament shape as the value of v exceeds 2.5 - 1073. In relation to Figure 6.1.2,
Figure 6.1.3 depicts snapshots of the filament during a flapping cycle for two
different values of v (cases A and B, respectively), whereas in Figure 2.2.1 vor-
ticity iso-contours for the same parameter sets are shown. Here, it can be noted
that the wave number k = 27 for v < 2.5-1072, while k is approximately 7 when
v > 2.5-1073. Following the derivation of the model, this shape alteration leads
to a variation of the added mass coefficient obtained from potential theory. The
new curve drawn for k = 7 matches qualitatively the DNS simulations (Figure
6.1.2). Further discrepancy between analytics and numerics may be due to the
failure of the model (still based on Blasius boundary layer theory) to predict,
for example, tension along filament.

In Section 6.1.9 we show a generalization of the well-established model to also
account for permeability. Interestingly, the simple generalization qualitatively
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Figure 6.1.3: Snapshots of impermeable filament during one flapping cycle for
case A (left) and B (right) depicted on Figure 6.1.2. While a unique concavity
characterizes the behavior of the right filament, an inflection point is clearly
identifiable in the left oscillations.

captures the stability effect induced by permeability. However, a quantitative
comparison between our DNS results and model prediction is not satisfactory.
A possible reason is that we exclude any dependency of tension 7 and added
mass p, on the permeability and wave number. The latter is expected to depend
greatly on permeability in an analogy to what is observed in a suction/blowing
boundary layer.

6.1.7 Simulations of permeable filament

In order to assess the stabilizing property of permeability, several DNS simu-
lations with different sets of parameters (v, p) have been performed at Re = 200
and for different values of permeability A\. For the impermeable case (A = 0) we
compare the DNS results with the analytical curve obtaining a close agreement,
which can be seen in Figure 6.1.4. When permeability is considered (A # 0), the
critical density difference p increases as A increases, for a given value of bending
stiffness . This means that the onset of instability requires a heavier filament
as the permeability increases. If we consider the (p,~) plane, for instance, the
neutral curve shifts up when going from an impermeable to an increasingly more
permeable filament (Figure 6.1.4), effectively extending the stability zone.
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Figure 6.1.4: Neutral curve on the plane (v, p) for Re = 200 and A = 0. The
analytical curve for A\ = 0 is taken from [71], whereas dotted lines represent
neutral curves for different permeabilities.

Figure 6.1.5: Critical value of p with A for different values of bending stiffness
.

Even considering parameter values far from the stability threshold (bullets
C, D and E in Figure 6.1.4), permeability still shows a non-negligible effect on
the dynamics of the filament: as permeability is increased both the sustained
flapping amplitude and frequency (Figure 6.1.6) decrease.

Besides kinematics (Figure 6.1.6), the effects of permeability on the peak
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values of the forces acting on the flapping filament have also been assessed for
case C' shown in Figure 6.1.4. Both lift and drag forces decrease monotonically
as permeability increases (Figure 6.1.7, left). As we can see, there is an optimal
value of A ~ 0.6 for which the aerodynamic efficiency is maximized.
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Figure 6.1.6: Oscillation amplitude and frequency as function of permeability.
Each curve is drawn for different sets of parameters (v, p), see Figure 6.1.4.
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Figure 6.1.7: Lift and drag forces (left) aerodynamic efficiency (right) for case
C (Figure 6.1.4), all as a function of the permeability.

In previous sections we showed quantitative results on the permeability sta-
bilizing role on the flapping behavior of an elastic filament. In this section we
will provide a simple physical mechanism at the origin of the stabilization and
show that the phenomenon can be traced back to a resonance condition between
porous and hydrodynamical time scales.
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6.1. PERMEABLE FILAMENT

Figure 6.1.8: Snapshots of permeable filaments (respectively A = 0,0.6,0.8)
during one flapping cycle (case C, Figure 6.1.4 and 6.1.6).

6.1.8 The permeability time-scale

The idea is that two different mechanisms at work start to interact when
their characteristic time-scales become of the same order of magnitude. Argu-
ments of this type have been successful, e.g. to explain a symmetry breaking
mechanism in fluid-structure interaction [70] as well as emergence of elastic in-
stabilities [75, 63] and the emergence of macroscopic spatial scales at which
microscopic polymers cause visco-elastic behavior [80]. In this spirit we define
the permeable time as the characteristic time needed by mass to cross the mem-
brane of thickness 0. Following Darcy’s empirical law U — Uy, = —kVp, we
estimate this quantity to be:

) ) 52
Toor = = = 6.1.9
P |lU—-Uull kVp kAp ( )

In order to give a quantitative value for the pressure difference across the mem-
brane, we resort to the slender body theory [73] already used in [71, 74]

9 9\ U\?
Ap = — — ~ — 1.1
P p“<at+Uas>h pa<L>h (6.1.10)
where p, is the added mass coefficient as defined in Section 6.1.6, (0/9t+Ud/0t)
is the convective derivative for a fluid particle near the filament and h is the
vertical displacement. Inserting (5.5.6) and (6.1.10) into (6.1.9) one obtains
SL2B(1—)\)
Tpor = — 7757
P paU2h
Physically, this is the time it takes for the flow to flatten the pressure difference
Ap across the filament.
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Our aim here is to compare this characteristic time-scale with the hydro-
dynamical time-scale, roughly estimated as 7,4 = L/U, in order to assess A
critical value to have resonance between permeability and hydrodynamics:

M__w[]_

oL
Thdr paU%h L pUR

From this expression we can derive a critical value of A as

paUR

Aert = 1 .
crt +6LB

(6.1.11)

If we use the parameters given here the critical value of A is >~ 0.98, in qualitative
agreement with DNS. Such a value corresponds to a permeability k£ ~ 0.06 (see
Eq. (5.5.6)). Interestingly, this result shows that the permeability stabilizing
effect occurs when we are very close to A =1 (see Figure 6.1.6).

6.1.9 Straightforward generalization
of the analytical model

Let us perform a stability analysis study on a simplified model inspired from
[71]. Permeability has the overall effect of reducing the drag force of fluid by
allowing a mass transfer through the body. That is to say, it reduces the force
exerted by the fluid on the filament normal direction by reducing the pressure
difference across the boundary.

In order to take into account permeability effects we propose to reduce the
hydrodynamical forces by a factor (1 — X)

0 0
L(s,t) = —pa(l = \)(= + U—)?
(8,8) = =pa(1 = N5, + U5-)"h
from which, by using the same non-dimensionalization as in Section 6.1.6, we
obtain

0%h 0 Oh 9%h 9*h

1 — )pta] o + 2pta(l — @) = + [pa(1 — @) — 7] os + 7= =
[+ (A = Jual gz + 20a(l = @) 5o + [Ha(l = @) =755 +755 =0

where X represents permeability (A = 0 reduces to the impermeable case, A =1
is the limit for an infinitely permeable boundary). If we now perform a stability
analysis as before, we end up with a slightly different stability condition

20

>0 (6.1.12)

. +p} WQJF 1.3 }_2(14)

pV Re k
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from which it is possible to derive critical values for linear density, flexural
stiffness and incoming velocity related to permeability A and Reynolds number
Re (see Figure 6.1.9).
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Figure 6.1.9: Neutral curves on the plane (v, p) for Re = 200 and different
values of the permeability coeflicient A.

6.1.10 Conclusions

The present work represents the initial investigation of how to take into ac-
count permeability in conjunction with mass and bending rigidity in an immersed
boundary formulation through an innovative formulation. For simulations tak-
ing into account permeability, the code has been confirmed by Darcy’s empirical
theory in Section 5.5.6.

In order to test numerical results, the code has been benchmarked with
results from classical stability analysis [71] without taking into account perme-
ability. Results (Figure 6.1.2) show a good agreement between the theoretical
prediction of the stability curve and the DNS simulations up to v = 2.5 - 1073.
After this value the wave number associated with the oscillation of the filament
decreases, leading to a failure of the theoretical curve.

Simulations of permeable filament (Figure 6.1.4) show that permeability
increases significantly the stability zone for values of A > 0.85. As Figure 6.1.5
shows, the critical value of the filament linear density p.. does not vary for
A < 0.85, while above this threshold it varies as 1/(A — 1) (Figure 6.1.5). This
behavior is confirmed also by Figure 6.1.6 from which it appears that both
flapping amplitude and frequency remain constant up to A ~ 0.8 and decrease
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sharply afterward. As it comes to forces (Figure 6.1.7), both lift and drag shows
a smoother dependence on permeability. It appears to be a maximum in the
lift over drag ratio for A ~ 0.6. This particular dependence of both kinematic
and dynamic quantities on permeability is also confirmed through the physical
interpretation based on characteristic time scales we give in Section 6.1.8.

Moreover, in Section 6.1.9 the stability analysis developed for an imperme-
able flag has been extended in order to also take permeability into account. This
attempt (Figure 6.1.9), matching numerical results in a qualitative way, is not
able to give a good prediction of the neutral curve.

6.2 Retinal detachment

Retinal detachment is one of the common pathologies of the human eye
which involves the separation of the sensory retina, a thin layer of neural tissue
that lines the back of the eye, from the underlying retinal pigment epithelium
[92] (Figure 6.2.1). It occurs when fluid enters the sub-retinal space through a
retinal tear between the neurosensory retina and the retinal pigment epithelium,
the outer layer to which the retina adheres.

Sclera Choroid

Retina

Cornea

Ciliary body

Figure 6.2.1: Vertical sagittal section of human eye.

There are numerous variations in the pathogenesis of a retinal detachment.
They include developmental factors, such as myopia, that affect the overall
size and shape of the globe, vitreoretinal disorders, metabolic disease, trauma,
inflammation and degenerative conditions. A retinal detachment can have dev-
astating visual consequences depending on its displacement and extent. If the
detachment reaches the macula, the most sensitive part of the eye, patient
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could experience a significant reduction of vision field or, in the worst cases,
lose eyesight. However, the majority of retinal breaks do not result in retinal
detachment. In the general population, retinal detachment occurs in about 12
out of 100,000 people (0.01% annual risk) with a lifetime risk (up to 60 years
of age) of 0.6%, and is one of the most frequent causes of blindness in Western
countries [93]. Retinal detachment can be divided into rhegmatogenous and
nonrhegmatogenous detachment, with the first being the most common. In the
first case a vitreous traction generates a break (retinal tear) while in the second
case detachment occurs without any retinal breaks (Figure 6.2.2).

Figure 6.2.2: Irregular posterior extensions of the vitreous due to horseshoe-
shaped retinal tears (A) and retinal hole with a free operculum (B).

In this application we analyze two types of rhegmatogenous detachments,
called retinal tear and retinal hole. The first type occurs when a localized trac-
tion generates a break in the retinal layer, leading to the formation of a retinal
flap which is free to move (Figure 6.2.2). The second type is characterized by
the presence of a hole in the retinal layer, which is typically produced by lo-
calized vitroretinal traction able to remove a certain area of the retina. As the
typical size of the flap is much smaller than the eye radius, in the numerical
simulations we model the eye surface as a flat plate. We further simplify the
model by restricting our attention to two dimensional simulations so that the
“tear” case will be represented by a single filament, analogous to the one used
in Section 6.1. In the simulations regarding the hole, we chose to model the
three-dimensional geometrical effect with a tip-connecting spring between the
two-filaments. Our final aim is to assess the forces and torques generated at
the attachment points of both the “tear” and the “hole” in order to determine
which type of detachment could deteriorate more easily.
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6.2.1 Imposed plate motion

In order to simulate the dynamics of retinal detachment we first need to
consider the characteristics of eye movements, which are the main forcing mech-
anisms producing flow in the vitreous chamber.

In this work we focus on the so-called saccadic motion that, due to its char-
acteristics, is the main responsible of vitreous motion. A saccade is a fast
movement of the eye, by which the eye scans the surroundings and acquires
information. Physiologic characteristics of eye movements are reported in detail
in Becker [88], where the basic features of these movements are discussed. In
particular, saccadic rotations are characterized by:

e high initial angular acceleration (up to 30000°s?);

e a less intense deceleration which is, however, capable of inducing a very
efficient stop of the movement;

e a peak angular velocity proportional to the saccadic amplitude for small
rotations up to a saturation value ranging between 400 and 600 deg s—2
for larger movements;

e an amplitude ranging from 0.05° (microsaccades) to 80 —90°, which is the
physical upper limit for eye rotations.

As referred to in [85], a saccade movement can be described through the
following quantities: the saccade amplitude A, the saccade duration D, the peak
angular velocity 2, and the acceleration time %, i.e. the time required to reach
the peak velocity starting from rest. Becker [88] reports that the relationship
between saccade duration and saccade amplitude is very well described by the
following linear law:

D =Dy+dA

in the range 5° < A < 50°, where d approximately assumes the value of
0.0025s deg—! and the intercept Dy typically ranges between 0.02 and 0.03s. D
is measured in seconds and A in degrees. The average angular velocity during a
saccadic movement is defined as Q = A/D and measurements suggest that the
ratio €2,/ Q) between the peak and the mean velocities attains a fairly constant
value. Becker [88] suggests the constant value of 1.64. Finally, the experimental
data show that small amplitude saccades (smaller than 10°) follow an almost
symmetrical time law, the acceleration time ¢, being approximately 0.45 D. The
dimensionless quantity ¢,/D varies linearly with increasing saccade amplitudes
to the value of t,/D ~ 0.25 for saccades of 50°.
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Repetto et al. [85] proposed to describe the time law 6(t) describing the
angular eye displacement 6 in time by making use of a simple fifth order degree
polynomial function of the form

0(t) = co + c1t + cot® + c3t® + cqt? + c5t°

where the coefficients ¢; are computed by imposing the following constraints:
6(0) =0, (D) = A, 6(0) =0, (D) =0, 8(t,) = 2, and 6(t,) = 0 where
D, Q, and t, are evaluated by using the previous relationships. The resulting
functions 6(t) and df/dt are shown in Figure 6.2.3 in terms of position r 6 and
velocity r df/dt (where r is the eye radius) and they satisfactorily reproduce
the main features of real saccadic movements.
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Figure 6.2.3: Plate position X, = rf (red) and velocity dX,/dt = r df/dt
(green) as function of time (Figure 6.2.4).

Besides the “tear” and the “hole” configuration we also performed additional
simulations addressed as “periodic tear” similar to the “tear” case but in which
the motion of the wall is assumed periodic in time:

X, (t) = rf(t) = asin(2nf)

6.2.2 Numerical discretization

In the following we describe both the set-up and results from simulations re-
garding the “tear” and “hole” configurations. For problem formulation and char-
acteristic length scales the reader may refer to Section 6.1.1. In all simulations
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the Reynolds number has been set constant and equal to 114.6 and the effect
of gravity has been neglected. In the case of the “tear” and the “hole” we con-
sider the filaments to have different non-dimensional lengths (L* = 0.75,1,1.25)
and the same non-dimensional bending stiffness (1 -107!), while in the case of
“periodic tear” the same length but different non-dimensional bending stiffness
(Kj =1-1071,2.5-107%,5-107!) and non-dimensional frequency has been con-
sidered. In all the simulations the fluid kinematic viscosity v has been calculated
to give Re = 114.6.

We let x = (z,y) € Q be the Cartesian physical coordinates, with 2 denoting
the physical domain; let s € I' be the Lagrangian curvilinear coordinate, with
I' denoting the body surface; let X(s,t) = (X1(s,t), Xa(s,t)) € I' denote the
physical position of each material point of curvilinear coordinate s at time ¢.
Given these assumptions, the governing equations are the same as described in
Section 6.1.2.

Y 040p
Q J pyv
r
Ve gt /; TNy rnzr r OVight
5 t
y rm\ "w, .
X.(S, t) / /f o ’1
/ / )\ It e ":.
Pl ALY TS
\(/ Lf —
X,(t)
6Qbottmﬂ

Figure 6.2.4: Filament I'y (in red, initial condition in cyan) is clamped to an
underlying plate IT at a certain angle 6 and is described by a set of Lagrangian
points X(s,¢) (in green). Plate II is animated with a prescribed motion X, (¢).
In the “hole” case filament I's is also considered, bounded by spring ¥ to I'y
with initial distance d.

The incompressible Naviers-Stokes equations of motion (6.1.1) are consid-
ered together with an artificial forcing f to enforce the no-slip condition on
the filaments. Hydrodynamical forces acting on the filaments are calculated by
means of eq. (6.1.2), known as the Goldstein feedback law. Filament dynamics
is considered in equations (6.1.6) and (4.3.8).

88
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Since the filament is clamped to a moving plate with a given angle 6 (see
Figure 6.2.4), equation (6.1.6) needs to be solved along with proper boundary
conditions both at the clamped and at the free edge:
0X 9?X

95| _, = (cosf,sinb), 525

S

X

X‘s:O = Xp(t)a —r — Y% 838

=0.
s=L

The first and second conditions enforce the filament to follow the underlying
moving plate and to be clamped with a given angle 8, while the third condition
state that the bending moment and shear at the free edge is zero. The latter
condition is true in both the “tear” and “hole” case. The two cases are different
in that for the “tear” case no further forces other than the hydrodynamical ones
are applied at the free edge, while in the hole case the free edges are subject to an
additional force +ks(Xi|,_; — X2|,_;) (depending on the filament) modeling
the tip-connecting spring. On the other hand, equation (6.1.7) is solved together
with the conditions:

2 (12X

—_ =F+F A T =
Os 85)8_0 b+ Ap, =2 =0,

where A, is the plate acceleration. The first one derives from equation (6.1.6)
while the second comes again from the unloaded free edge condition. This
condition is maintained also in the “hole” case in the absence of a better estimate
of the spring tension. The main observables of this work are the forces and
moments at the clamped edge of the filaments, defined as:

Fo=(TT+5Sn)_,, M= (k7). (6.2.1)

where 7 and n are the local normal and tangential unit vectors while x is the
curvature of the filament at the clamped edge (see Section 2.3). In this way, the
computed force F. and torque M, are those exerted by the filament on the plate.

The computational domain is an 5 - 2.5 rectangle ranging [—1,4] in the di-
rection parallel to the plate and [0,2.5] in the normal direction in the “tear”
case. For the “hole” the domain is slightly bigger ranging from —2 to 4. Veloc-
ity boundary conditions (Figure 6.2.4) are: periodic between Q,igne and Qe gy
and {u-n =0, 9(u-7)/0n = 0} at Dy, and Qportom (Symmetrical boundary
condition), where n and 7 are respectively the normal and tangential directions
to the boundary. As the plate is modeled as an immersed boundary, all of its
points have to be inside the domain in the y direction ([0.2 — 3/80,0.2]), while
it spans all the domain in the x direction because of the periodic boundary
conditions from left to right. Along the plate the computational grid is uniform
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with grid spacing 1/60, while in the normal direction it is uniform in the region
[0, 1.5] with grid spacing 1/40 and stretched outside with a constant stretching
ratio equal to 1.1.

Furthermore, the dimensionless quantity p = pi/(pL*) defined in Section
6.1 has been set = 1-1072, from which

Py ppA* L

as the filament cross-section A* has been estimated (as in Section 5.5.6) to be
equal to the support of the Dirac Delta function support, i.e. 2Ax, thus giving
L*/A* = 30. This means that the simulated filament is 30% heavier than the
surrounding fluid.

The filament length L is set equal to 1 and the Lagrangian grid is made
up of 120 points, so that approximately 2 Lagrangian points appear in one
Eulerian cell. Velocity boundary conditions are the no-slip boundary condition
at the plate (whose motion has been taken from [85]), periodic conditions at
the sides and slip boundary conditions at the top (see Figure 6.2.4). Since the
computational grid for the flow is staggered, no boundary conditions for the
pressure are needed. The initial configuration of the filament is a straight line
clamped at a certain angle # with respect to the plate. In the case of the hole
a second filament symmetrical to the first one is considered, tethered to this
one by a spring ¥ with stiffness ks, (Figure 6.2.4). The numerical scheme and
solution procedure are the same as those described in Sections 6.1.4 and 6.1.5.

6.2.3 Tear case

In these simulations we investigate the behavior of a single clamped filament
(“tear”, see Figure 6.2.2, A), and evaluate the forces and moment transmitted
to the plate. In all graphs time is scaled with D, the saccade duration, so
that the temporal interval of motion is given for (0 < ¢/D < 1). Snapshots of
the dynamics of the single filament are shown in Figure 6.2.5. Between time 0
and t/D ~ 0.5 the plate accelerates from the initial configuration causing the
stationary fluid to impact on the filament. This gives raise to a buckling effect
on the filament, which bends. When the plate stops at ¢/D = 1 both the stored
bending energy and the inertia of the fluid make the filament continue its motion
until, after some oscillations, it goes back to its resting straight position.
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Figure 6.2.5: Dynamics of the single clamped filament during the plate motion
at different times.

First we study the sensitivity of the dynamical response at the attachment
point on the filament length. In order to investigate the trend, we simulate
three different lengths L (0.75, 1 and 1.25). Figures 6.2.6-6.2.8 describe the
evolution of the clamping forces F. and moment M, in time, while Figure 6.2.12
(left column) shows that both F. and M, increase in absolute value with the
filament length. It can be noted (Figures 6.2.6 to 6.2.11) that both forces and
moments increase from zero, reach the peak value nearly at the same time, i.e.
at the velocity peak time and return to zero after the plate stops.
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Figure 6.2.6: Time history of the x-force component acting at the attachment
point of the filament for different filament lengths. The velocity of the plate is
in black.
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Figure 6.2.7: Time history of the y-force component acting at the attachment
point of the filament for different filament lengths. The velocity of the plate is
in black.
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Figure 6.2.8: Time history of the moment acting at the attachment point of the
filament for different filament lengths. The velocity of the plate is in black.

In order to study the influence of the clamping angle on the dynamical re-
sponse of the plate we simulate three different angles (27°, 30° and 33.56°) given
a fixed filament length, L = 1. In Figures 6.2.9-6.2.11 we show the evolution of
the clamping forces F,. and moment M, with time, while Figure 6.2.12 (right
column) summarizes the influence of the clamping angle 6 on the absolute peak
values of both F. and M.: the x component of the force does not show any
appreciable variation, while the y component of the force and the moment in-
crease with the angle. As in the case of varying the filament length both forces
and moments have their peak value at the time of maximum plate velocity.
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Figure 6.2.9: Time history of the x-force component acting at the attachment

point of the filament for different clamping angles. The velocity of the plate is
in black.
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Figure 6.2.10: Time history of the y-force component acting at the attachment

point of the filament for different clamping angles. The velocity of the plate is
in black.
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Figure 6.2.11: Time history of the moment acting at the attachment point of
the filament for different clamping angles. The velocity of the plate is in black.
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Figure 6.2.12: Peak values of force |F.| and moment |M,| (in red) and corre-
sponding time (in green) for the “tear” case. The left column shows the values
for different filament length L, while in the right column the clamping angle 6

varies.

6.2.4 Hole case

In this section we show results for the case of two filaments the tips of which
are linked by a spring of given stiffness ky, (“hole”, see Figure 6.2.2, B). As for
the “tear” case, time is scaled with the saccade duration D, so that the plate is
in motion for (0 < ¢/D < 1). Snapshots of the dynamics of the single filament

are shown in Figure 6.2.13.
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Figure 6.2.13: Dynamics of the linked clamped filaments during the plate motion
at different times.

In the following we show the time history of the forces and moments trans-
mitted by both filaments (continuous line for the right filament, dots for the
left filament) to the plate. Similarly to the “tear” case, in all simulations both
forces and moments follows the evolution of the plate velocity, reaching their
peak approximately at the same time and then decaying to zero when the plate
comes to rest. During the plate acceleration (Figure 6.2.13, t/D = 0.5) the pres-
sure inside the hole rises, causing both filaments to stretch. Depending on the
clamping angle, the tension T causes the z-component of the force F. (Equation
(6.2.1)) on the plate to be negative for the right filament and positive for the left
filament, while the y-component and the moment is positive for both filaments
(Figures 6.2.14-6.2.16). In all simulations the attachment point at the base of
the right filament turns out to transmit the highest clamping force F. to the
plate, while the left one produces the highest clamping torque M.

Similar to the “tear” case, we study the sensitivity of the dynamical re-
sponse at the attachment point on the filaments length. In order to investigate
the trend, we simulate three different lengths L (0.75, 1 and 1.25, Figures 6.2.14 -
6.2.16). As the filament length increases (Figures 6.2.20 and 6.2.21, left column)
the peak value of the force components shows a maximum for length L = 1,
while the moment increases monotonically. Furthermore, differently from the
“tear” case, here the peak time of forces and moment grows with the filament
length.
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Figure 6.2.14: Time history of the x-force component acting at the attachment
point of the right (line) and left (dots) filament for different filament lengths.
The velocity of the plate is in black.
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Figure 6.2.15: Time history of the y-force component acting at the attachment
point of the right (line) and left (dots) filament for different filament lengths.
The velocity of the plate is in black.
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Figure 6.2.16: Time history of the moment acting at the attachment point of the
right (line) and left (dots) filament for different filament lengths. The velocity
of the plate is in black.

Analogously in Figures 6.2.17-6.2.19 we show the evolution of the clamping
forces and moments as we change the inter-tip distance. From the results (Fi-
gures 6.2.20 and 6.2.21, right column) we notice that this parameter has little
or no effect on the dynamical response at the attachment point (neither as peak
value nor as peak time).
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Figure 6.2.17: Time history of the x-force component acting at the attachment
point of the right (line) and left (dots) filament for different inter-tip distances.
The velocity of the plate is in black.
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Figure 6.2.18: Time history of the y-force component acting at the attachment
point of the right (line) and left (dots) filament for different inter-tip distances.
The velocity of the plate is in black.
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Figure 6.2.19: Time history of the moment acting at the attachment point of
the right (line) and left (dots) filament for different inter-tip distances. The
velocity of the plate is in black.
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Figure 6.2.20: Peak values of force |F.| and moment |M,| (in red) and cor-
responding time (in green) for the right filament in the “hole” case. The left
column shows the values for different filament length L, while in the right col-
umn the inter-tip distance d varies.
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Figure 6.2.21: Peak values (in red) of force component |F. ;| (first row), |F. |
(second row), and moment |M,| and corresponding time (in green) for the left
filament in the “hole” case. The left column shows the values for different
filament length L, while in the right column the inter-tip distance d varies.

6.2.5 Periodic tear case

In the following images we show the results from the simulations involving
the same clamped filament as in the “tear” case but assuming periodic motion
of the plate

X, (t) = rf(t) = asin(2n f).

In this analysis, we investigate how the filament bending stiffness (y = 1 -
1072,2.5-1072,5-1072) and the plate oscillation frequency (f = f,0.5f,0.25f)
effect the force and moment at the attachment point and the filament tip displa-
cement. Both the amplitude @ and the dimensionless frequency f ~ 2.507
(scaled with L/U) has been chosen so that the maximum acceleration is the
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same as in the “tear” and “hole” cases. Snapshots of the filament dynamics
clamped to a plate with oscillation frequency equal to f are shown in Figure
6.2.22.
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Figure 6.2.22: Dynamics of the single clamped filament during the oscillating
plate motion at different times. The trajectory of the filament tip is shown in
Figure 6.2.23.

In Figure 6.2.23 we show the filament tip trajectory for different values of the
bending stiffness . The double-lobed shape of the curves comes from the plate
motion. Points labeled with “0” correspond to the instant where the plate is at
the leftmost location (considered here to be the beginning of the periodic cycle),
at “0.25” it reaches the maximum positive velocity, at “0.5” is at the rightmost
location and at the “0.75” has the maximum negative velocity. During each
time-loop, the filament shows a non-symmetric behavior due to the clamping
angle being different from 7. In particular at the beginning of the loop (Figure
6.2.22, (a)) the filament is nearly completely extended and the plate is still. As
the plate accelerates rightward a buckling instability appears in the structure,
leading to the formation of a traveling wave at the root of the filament (Figure
6.2.22, (b)). As the plate motion continues rightward the traveling wave causes
the filament tip to move leftward (Figure 6.2.22, (¢)). Once the traveling wave
reaches the filament free end it generates the so-called “bullwhip effect” [111]
(Figure 6.2.22, (c)), causing the tip velocity direction to change abruptly. As
the bending stiffness increases the left lobe in Figure 6.2.23 shrinks, showing
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that the “bullwhip effect” becomes sharper as the bending stiffness increases.
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Figure 6.2.23: Trajectory of the filament tip for different bending stiffness and
of the plate (black). The colored dots indicate the simulation time (as indicated
in Figure 6.2.22 and 6.2.24-6.2.26).

In the following graphics the time history of the force and torque at the
attachment point will be shown for different plate oscillation frequency f and
bending stiffness . In all graphs time is scaled with the period associated to
the corresponding frequency 7' = 27/ f.

Figures 6.2.24-6.2.26 describe the time-history of the force and moment at
the attachment point for frequency f and different filament bending stiffness.
Here the “bullwhip effect” is visible in the wiggles generated during the negative
velocity peak, while the buckling is responsible for the local peak just after the
midpoint of the cycle.
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Figure 6.2.24: Time history of the x-force component acting at the attach-
ment point of the filament for different bending stiffness and plate oscillation
frequency f. The velocity of the plate is in black.
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Figure 6.2.25: Time history of the y-force component acting at the attach-
ment point of the filament for different bending stiffness and plate oscillation
frequency f. The velocity of the plate is in black.
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Figure 6.2.26: Time history of the moment acting at the attachment point of the
filament for different bending stiffness and plate oscillation frequency f. The
velocity of the plate is in black.

Figures 6.2.27-6.2.29 describe the time-history of the force and moment at
the attachment point for frequency 0.5f and different filament bending stiffness.
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Figure 6.2.27: Time history of the x-force component acting at the attach-
ment point of the filament for different bending stiffness and plate oscillation
frequency 0.5f. The velocity of the plate is in black.
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Figure 6.2.28: Time history of the y-force component acting at the attach-
ment point of the filament for different bending stiffness and plate oscillation
frequency 0.5f. The velocity of the plate is in black.
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Figure 6.2.29: Time history of the moment acting at the attachment point of
the filament for different bending stiffness and plate oscillation frequency 0.5f.
The velocity of the plate is in black.
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Figures 6.2.30-6.2.32 describe the time-history of the force and moment at
the attachment point for frequency 0.25f and different filament bending stiff-
ness.

Figure 6.2.30: Time history of the x-force component acting at the attach-
ment point of the filament for different bending stiffness and plate oscillation
frequency 0.25f. The velocity of the plate is in black.
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Figure 6.2.31: Time history of the y-force component acting at the attach-
ment point of the filament for different bending stiffness and plate oscillation
frequency 0.25f. The velocity of the plate is in black.
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Figure 6.2.32: Time history of the moment acting at the attachment point of
the filament for different bending stiffness and plate oscillation frequency 0.25f.
The velocity of the plate is in black.

M.

110



6.2. RETINAL DETACHMENT

In Figure 6.2.33 we show the variation of the force and torque peak values
and their corresponding times as the bending stiffness (right column) and plate
oscillation frequency (left column) varies. Apart from the y-component of the
force F. whose dependency of v is not univocal, the z-component of F. and
moment M, increases with the oscillation frequency and the bending stiffness
(left column). The peak time of both F. and M, does not vary substantially
(right column), in that generally all peaks are generated during the rightward
maximum acceleration of the plate (approximately at the first quarter of the
cycle). The only substantial variation is in the peak time of the z-component
of F. (Figure 6.2.33, right column, top) as the peak value for the parameters
v =1-10"2and f/f = 1 (unlike all the others) appears to be during the leftward
acceleration of the plate (approximately at the third quarter of the cycle, Figure
6.2.24, red curve).
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Figure 6.2.33: Surface plots of the peak values (right column) of force compo-
nents |F. .| (first row), |F. .| (second row) and moment |M,| (third row) and
their corresponding time ¢ p /T (left column) for the “periodic” case as a function
of the bending stiffness 7 and of the plate oscillation frequency f/f.
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6.2.6 Tendency to detachment

In order to study the detachment propension of the clamping force F¢ and
torque Mo exerted by the filament on the underneath substrate, we borrow
from Geotechnics the simple model of a foundation on elastic soil proposed by
Winkler [94]. It assumes the soil medium as a system of identical but mutually
independent, closely spaced, discrete and linearly elastic springs (Figure 6.2.34).
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Figure 6.2.34: Foundation beam (in green) subject to an external load ¢(s)
(in blue), s being the curvilinear abscissa, and supported by elastic spring of
stiffness k7 (in red). The soil reaction r(s) (in orange) is proportional to the
foundation displacement v(s).
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In this way the soil reaction r(s) (in orange) is proportional to the foundation
displacement v(s) through the spring stiffness constant K:

r(s) = krv(s)

In our specific case the foundation beam, representing the retina, will be
considered as semi-infinite, and the external load will be applied at the finite
end (Figure 6.2.35).

F

Figure 6.2.35: Semi-infinite foundation beam (in green) subject to a punctual
force F' and torque M at the finite end.
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For this particular case there is an analytical solution for the dimensionless
displacement v(s), and consequently for the soil reaction r(s).

v(s) = ;;:; [(aM + F) cos (as) — aM sin (as)]
= 593 ,y{aM [cos (as) — sin (as)] + Feos (as)}

where F' and M are the punctual force and torque applied at the beam finite end,
v is the beam bending stiffness and « is the characteristic wavelength defined

as
kr
ot = 22 (6.2.2)
4y
where / is the width of the beam. Figure 6.2.36 shows the substrate displacement
in the “tear” configuration for typical values of the parameters (F = 70, M =
2.5,7 = 0.1, = 50).
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Figure 6.2.36: Winkler beam displacement for typical values of external loads
(F =70,M = 2.5) and system parameters (v = 0.1, = 50) recorded in the
tear case.

As it is defined, v(s) is positive for negative displacements. We define as
tendency to detachment d the negative displacement at the free end (s = 0),
thus
oM + F

d = —min(v|s=9,0) = —mi
min(v|s=0,0) min( 20ty

,0). (6.2.3)
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The parameter « is the ratio between the stiffness of the substrate and the
bending stiffness of the beam. Since the substrate can be though to be more
rigid than the filament, we can assume « to be “large”. Figure 6.2.37 shows the
maximum tendency to detachment in time for the tear and hole configuration
and ratio between them for L = 1 and # = 33.56°. Since o multiplies the torque
M, as a — +oo the ratio between the tear case and the hole left filament
converges to 1.22, the ratio between the maximum torque for the respective
cases.
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Figure 6.2.37: Tendency to detachment in the tear and hole configuration and
ratio between them for L = 1 and 6 = 33.56°. As a — +oo the ratio between
the tear case and the hole left filament converges to 1.22, the ratio between the
maximum torque for the respective cases.

Regarding a suitable estimate for « (equation 6.2.2), we could think of kr
to be related to the Young modulus E of the retina. Since

v(s)

r(s) = Ere = Er ™

where h, is the height of the compressible layer, it follows that Ep = krh,, thus

. Ert
o =
4hey

and since v = EI, where I is the area moments of inertia of the filament cross
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section (assumed to be a square),

. Ert ¢ 3

O T Un BT B30 BB
4hc§

and, with the further assumption h. = h, we get a* = 3/h%. As in our sim-
ulations h = 1/30 we get o >~ 40. In the following we will make use of this value.

6.2.7 External loads and detachment

In Figures 6.2.38 - 6.2.40 we show the tendency to detachment d in time for
the tear and hole configuration for L = 1 and 6 = 33.56°. The force normal to
the substrate F' to be inserted in (6.2.3) has been calculated as

F=Tsinf+ Scosf (6.2.4)

where 7" and S are respectively the tension and the shear internal reaction of
the filament at the clamping point. Tendency to detachment curves d,—.. have
been scaled with the maximum tendency to detachment in time for the tear
configuration. Positive force F' and torque M have a detaching effect. Results
clearly shows that the tendency to detachment in the hole case is ~ 3.15 times
bigger (peak in the left filament at approximately 0.51, Figure 6.2.39)
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Figure 6.2.38: Punctual loads (F, M, on the left) and tendency to detachment
(d, on the right) in the tear case (normalized to 1 as the reference case).
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Figure 6.2.39: Punctual loads (F, M, on the left) and tendency to detach-
ment (d, on the right) in the hole case, left filament (scaled with the maximum
tendency to detachment in time for the tear configuration).
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Figure 6.2.40: Punctual loads (F', M, on the left) and tendency to detachment
(d, on the right) in the hole case, right filament (scaled with the maximum
tendency to detachment in time for the tear configuration).

6.2.8 Tear-hole comparison

Figure 6.2.41 summarizes the tendency to detachment for the tear and hole
case for L = 1 and 6 = 33.56°. Results have been scaled with the maximum
tendency to detachment in time for the tear configuration.
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Figure 6.2.41: Tendency to detachment for the tear and hole case (right and
left filaments) scaled with the maximum tendency to detachment in time for
the tear configuration. Simulations for L = 1 and 6 = 33.56°.

Figures 6.2.42 and 6.2.43 respectively reports the maximum tendency to
detachment in time for L = 0.75 and L = 1.25 for angle 6 = 33.56°.
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Figure 6.2.42: Tendency to detachment for the tear and hole case (right and

left filaments) scaled with the maximum tendency to detachment in time for
the tear configuration. Simulations for L = 0.75 and 6 = 33.56°.
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Figure 6.2.43: Tendency to detachment for the tear and hole case (right and
left filaments) scaled with the maximum tendency to detachment in time for
the tear configuration. Simulations for L = 1.25 and 6 = 33.56°.

In this study the plate motion is from left to right, thus the hole upwind
side is represented by the right filament, while the left is on the downwind
side. As the downwind part of the hole is the most stressed part, we will
consider it as representative of the whole configuration. Figure 6.2.44 reports
the ratio between the maximum tendency to detachment between the hole and
tear configuration for different filament lengths L and 6 = 33.56°.
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Figure 6.2.44: Ratio between the maximum tendency to detachment between
the hole and tear configuration for different filament lengths L and 6§ = 33.56°.
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6.2.9 Tear comparison

Figure 6.2.45 summarizes the tendency to detachment for different tear
lengths (6 = 33.56°), while Figure 6.2.46 describes the tendency to detachment

for different tear clamping angles 6 (and L = 1).
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Figure 6.2.45: Tendency to detachment for the tear case with different lengths
and 0 = 33.56°. Results have been scaled with the maximum tendency to

detachment in time for L = 1.
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Figure 6.2.46: Tendency to detachment for the tear case with different clamping
angles and L = 1. Results have been scaled with the maximum tendency to

detachment in time for 6 = 25°.
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Figure 6.2.47 reports the peaks of previous figures.
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Figure 6.2.47: Maximum values of the tendency to detachment d for the tear
case for different filament lengths L and ¢ = 33.56° (left), and for different 6
and L =1 (right).

6.2.10 Hole comparison

Figure 6.2.48 summarizes the tendency to detachment for different filament
lengths (inter-tip distance A = 0.16) while Figures 6.2.49 describes the tendency
to detachment for different inter-tip distance and L = 1.
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Figure 6.2.48: Tendency to detachment for the hole case (left filament) with

different lengths and inter-tip distance equal to 0.16. Results have been scaled
with the maximum tendency to detachment in time for L = 1.
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Figure 6.2.49: Tendency to detachment for the hole case (left filament) with dif-
ferent inter-tip distance and L = 1. Results have been scaled with the maximum
tendency to detachment in time for d = 0.16.

Figure 6.2.50 reports the peaks of previous figures.
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Figure 6.2.50: Maximum values of the tendency to detach d for the hole case for
different filament lengths L and A = 0.16 (left), and for different A and L =1
(right).

6.2.11 Conclusions

In this study the dynamics of retinal breaks both the “tear” and the “hole”
configuration, have been analyzed. Moreover, the “tear” case has also been
studied in the case of a plate with periodic motion (“periodic tear”).

Regarding the “tear” configuration, both the influence of filament length and
clamping angle have been considered. Results (Figure 6.2.12) show that both
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the clamping force F. and moment M, increase with the filament length. On
the other hand, as the clamping angle increases the y-component of the force
decreases while the other observed quantities increase.

Simulations of the “hole” case show that the right filament exerts on the
plate the highest clamping force F. to the plate, while the left one produces the
highest clamping torque M..

The comparison of the “tear” and “hole” configurations show that the “hole”
configuration generates peak values of both clamping force F. and torque M,
higher than in the “tear” case. With the same bending stiffness v = 1- 107!
and length L = 1, the ratio of the peak values is ~ 4 for the x-component of
the force, ~ 2 for the y-component and >~ 1.32 for the torque.

In the case of “periodic tear” (Figure 6.2.23) an interesting phenomena, also
know as the “bullwhip effect”, has been observed. In this configuration the influ-
ence of both the filament bending stiffness v and the plate oscillation frequency
has been investigated. From the results of the clamping force F. and torque
M, during an entire plate oscillation (Figure 6.2.33) it appears that the peak
values increase almost univocally with both bending stiffness and oscillation
frequency.

6.3 Energy harvesting

Recent technical developments have opened the way to a wide spectrum
of devices able to capture small amounts of energy from the environment and
transform them into electrical energy. Energy harvesting (also known as power
harvesting or energy scavenging) is the process by which energy is derived from
environmental sources (e.g. solar power, thermal energy, wind energy, salinity
gradients and kinetic energy), captured and stored. Even if energy harvesters
are able to extract free and clean energy its amount, although often limited, can
be suitable for small devices such as wearable electronics or wireless sensor net-
works, possibly scattered in inaccessible locations (Figure 6.3.1, d). Moreover
a “free” energy source, maintenance-free and available throughout the lifetime
of the application, can be more reliable than wall plugs or batteries [96]. Fur-
thermore, energy harvesting can be used as an alternative energy source to
supplement a primary power source and to enhance the reliability of the overall
system and prevent power interruptions. All energy harvesting systems require
as fundamental components:

e an energy source,
e an energy conversion device,

e an end application.
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Energy is everywhere in the environment surrounding us under different
forms [96] and different strategies for its extraction have been designed so far,
mainly in regard to mechanical, thermal and electromagnetic energy. Mechani-
cal energy can be extracted from natural forces such as wind or water flow, or
by recovering energy from vibrations, mechanical stresses and strains. On the
other hand, thermal energy can be obtained from the sun, or by intercepting
wasted energy from plants or heaters, and by exploiting thermal gradients. Due
to radio and television broadcasting, there is a large amount of electromagnetic
energy in the environment. Moreover, electromagnetic energy is also emitted
from any electric/electronic device and even from the sun.

Energy conversion devices vary depending on the exploited energy source,
with electromagnetic energy being the easiest to be transformed into electrical
energy. Mechanical energy can be converted by means of piezoelectric crys-
tals [98] or dielectric elastomers [99], a polymer also known as “dielectric elas-
tomer transducer”, that generates a small electrical potential difference when
deformed. Depending on the application, mechanical energy can also be con-
verted by using an electromagnetic generator exploiting induction [100]. Solar
energy is stored by means of photovoltaic cells [102], while thermal gradients
can be exploited by using thermoelectric generators or the pyroelectric effect
[101]. Other forms of energy (i.e. when the source is the wind or a water body)
cannot be directly transformed into electricity but need to be first converted
into some transitional form (usually mechanical energy) [103].

Many real life applications requiring low energy power nowadays rely on energy
harvesting devices. The Seiko Watch Corporation was successful in building a
Thermic watch powered entirely by exploiting the thermal gradient between the
wearer’s body and the external environment (Figure 6.3.1, a) [97]. The power
extracted by this device is of the order of uW due to limited thermal gradients
used, but thermoelectric generators can be applied to a broad range of appli-
cations where thermal gradients occur (e.g. pipes carrying hot exhaust gases
in power plants), generating power up to 1 kW [104]. In particular, Thermal
Electronics Corp. [105] has recently designed a device able to produce ~ 50 W
with a thermal gradient of ~ 90° (Figure 6.3.1, b).

Several energy harvesting devices able to convert mechanical energy have
been successfully designed. Solepower, a new-born company spin-off of the
Carnegie Mellon University, has designed a small generator to be embedded in
a shoe sole [106] that create electricity with every step. Energy is stored in a
battery placed in a holster upon the shoelaces that, when charged, can be used
to recharge almost any pocket device (Figure 6.3.1, c).
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Figure 6.3.1: Energy harvesting applications: Seiko Thermic wristwatch using
the Peltier-Seebeck effect (a), TEG generating electricity from temperature dif-
ference (b), SolePower EnSole producing energy from mechanical compression
(c) and a solar panel powering the remote sensor located at a several-meter high
location (d).

Mankind has extracted energy from wind and water for a long time [110, 109].
The earliest evidence of wind and watermills traces back to Greece in the 3™
century B.C., and since then they have become widespread around the world. At
first, their their main task was to convert wind or water energy into rotational
energy used to grind grain, however following technological improvements they
have also been successfully applied to crush mining materials, saw wood and
forge tools. Nowadays the same technology of ancient wind and water mills is
used in modern wind farms and hydroelectric power stations to produce renew-
able energy (Figure 6.3.2, a). In 2009, the world relied on renewable sources for
around 13.1% of its primary energy supply, according to International Energy
Agency (IEA) statistics. In particular, global wind power capacity was 238 GW
at the end of 2011, up from just 18 GW at the end of 2000, with an average
growth rate of over 25% over the past five years [95]. As a general rule, wind
generators require a constant wind speed of 16 km/h or greater, while water
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turbines are usually installed concurrently with a water jump of the order of ~
10 m.

Due to the previous requirements the installation of both wind and water
turbines (Figure 6.3.2, b) are restricted to only a few sites. To overcome this
limitation, new technologies to exploit the energy of air and water have been de-
veloped. In 2002 the Ocean Power Technologies, Inc. applied for a patent for “a
piezoelectric power generator, particularly for use in a flowing fluid stream. Is is
comprised of an elongated, flexible central layer of a dielectric material having,
spaced axially along opposite sides thereof, a plurality of separate piezoelec-
tric elements. Each element is formed from a portion of a continuous layer
of a piezoelectric layer extending along each opposite side of the central layer,
sandwiched between a pair of electrodes unique to each piezoelectric element”
[107]. This device, commonly referred to as a “water eel”, converts the energy
of the incoming water flux into mechanical energy under the form of stresses
and strain, and then into electricity by means of piezoelectric elements (Figure
6.3.2, ¢). Analogously, a team of researchers from the Universita di Genova have
proposed an innovative flapping wing system to harvest energy from the motion
of fluid [62, 64]. This device consists of a wing attached to two fixed points by
means of two elastometers, so that in the presence of a fluid flow the wing begins
to oscillate and consequently the elastometers to stretch, producing electrical
energy (Figure 6.3.2, d). In the last two examples of energy harvesting the en-
ergy source was provided by the fluid motion. As stated previously, this kind
of energy cannot be directly transformed into electricity but needs firstly to be
converted into a more suitable form, i.e. mechanical energy. This transforma-
tion can be done in a more or less efficient way depending on the parameters of
the problem. While a resonant coupling mechanism between fluid and structure
has previously been regarded as a potential carrier of system failure, here the
generation of self-sustained, possibly large-amplitude motion of the structure is
highly desirable.

The application of flapping wings to extract energy from uniform flows was
first proposed by McKinney and DeLaurier [60]. Flapping energy harvesters

can be devided into the following three categories with respect to the activating
mechanism of the device [61]:

e forced pitching and heaving motions (fully-activated),
e forced pitching and induced heaving motions (semi-activated),

e self-sustained pitching and heaving motions (self-sustained).
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Figure 6.3.2: Traditional windmill in front of a modern wind farm (a), Francis
turbine for hydroelectric power generation (b) and schematics of the water-eel
and of the flapping wing energy harvesters (c-d).

While the first two categories consume some energy to control the heaving
and/or pitching motion in order to maximize the harvested energy, the last
class is not endowed with an imposed motion (i.e. no external energy is needed)
againts a minor extracted energy. In particular, the device under study in this
application belongs to the self-sustained category.

In this Section the code described in Chapter 5 has been successfully applied
to the numerical investigation of the behavior of a spring-filament oscillator, very
similar to the flapping wing energy harvester [62] (Figure 6.3.2, d). In particular,
here we consider an impermeable 2D filament with mass and bending stiffness
hinged to a pole linked by two elastometers to external fixed boundaries (not
considered in the flow simulations). The filament is subject to a uniform flow and
its leading edge is forced to move only in the direction normal to the incoming
flow (see Figure 6.3.3). For the mathematical formulation and characteristic
length scales see to Section 6.1.1.
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Figure 6.3.3: Filament T is hinged (initial condition in dashed blue line) to point
O, constrained to move only in vertical direction and linked by two springs of
stiffness k/2 to external fixed boundaries (not considered in the flow simula-
tions).

As in the case of the “water eel” and the flapping wing harvester, the main
idea to increase the efficiency of the device is to trigger a resonant condition
between the elastic structure and the fluid flow. In this condition the motion of
the leading edge is expected to produce the highest amount of energy.

6.3.1 Numerical model

Let x = (z,y) € Q be the Cartesian physical coordinates, with Q denoting
the physical domain; let s € I' be the Lagrangian curvilinear coordinate, with
I denoting the body surface; let X(s,t) = (X1(s,t), Xa(s,t)) € T' denote the
physical position of each material point of curvilinear coordinate s at time ¢.

The governing equations for this problem are those presented in Section 6.1.2
(not considering permeability) with different boundary conditions. In particular,
the equations describing the dynamics of the beam have to consider the presence
of a concentrated spring force on the filament leading edge. Simple dynamical
considerations tell us that the system in Figure 6.3.3 is exactly the same as one
filament linked to target point T by a spring of doubled stiffness k. Filament
dynamics is considered in equations (6.1.6) along with the boundary conditions
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The first condition enforce the filament to follow the motion of the pole while
the second derives from the hinged condition at the leading edge. The third and
the fourth conditions state that the filament trailing edge is unloaded. The last
condition forces the leading edge to move only in the vertical direction. On the
other hand, tension in the filament is solved through equation (4.3.8) with the
following conditions

0 0X
> (T38>s_o - —Fr% +F+F,+A4p, T|_; =0, Fyl_,=kO—T),
where Ao is the acceleration of the leading edge. The first one derives from
equation (6.1.6), while the second again comes from the unloaded free edge con-
dition. Finally the third considers the concentrated spring force at the leading
edge to be proportional through the bending stiffness k£ to the displacement
between the filament current leading edge and the target point.

6.3.2 Numerical Discretization

The computational domain is an 8 x 8 square ranging [—2, 6] in the stream-
wise direction and [—4,4] in the span-wise direction as in [52]. The computa-
tional grid is uniform in an inner region close to the pinned end (0,0) of the
filament ([—0.5, 3] in the stream-wise direction and [—1, 1] in the span-wise direc-
tion) with grid spacing 1/200 and stretched outside with a constant stretching
ratio equal to 1.1. The filament length L is set equal to 1 and the Lagrangian
grid is made up of 150 points, so that approximately 2 Lagrangian points ap-
pear in one Eulerian cell (as suggested in [55]). Boundary conditions on velocity
are Uso = (1,0) at inflow, convective at outflow and symmetric at lateral sides.
Since the computational grid for the flow is staggered, no boundary conditions
for the pressure are needed. The initial configuration of the filament is a circular
arc 6 with leading edge in the resting point T (Figure 6.3.3, blue dashed line).
Numerical scheme and solution procedure are the same of those described in
6.1.4 and 6.1.5. In all the simulations the fluid kinematic viscosity v has been
calculated to give Re = 200.

6.3.3 Numerical results

The first result is the identification of the optimal spring stiffness k in order to
trigger a resonant condition between the flapping of the filament and the spring
itself. Several simulations have been performed varying the spring stiffness k
while keeping the other parameters of the problem constant and equal to

U=1, L=1, Re=200, p=15 ~r=1-1073.
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Figure 6.3.4: Time history of the y coordinate of the leading (left) and trailing
(right) edge of the filament for different spring stiffness k.

Figures 6.3.4 shows the evolution in time of the leading (left) and the trailing
(right) edge y coordinate, while Figure 6.3.5 shows the flapping amplitude (left)
and frequency (right) of the leading and trailing edge once a stable oscillation
state is reached. Results for £ — 400 were obtained by simulating a filament
hinged to a fixed point as in Section 6.1.

Figure 6.3.5 clearly shows a non-symmetrical peak for £ = 1.3 and then
converges to the results obtained for the hinged filament (k — +o0), i.e. f ~
0.267 and A,, ~ 1.27. The resonant condition for k¥ = 1.3 is associated with a
sudden increase of the flapping amplitudes and drop of the flapping frequencies
in both the trailing and leading edges.
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Figure 6.3.5: Flapping peak-to-peak amplitude (left) and frequency (right) of
the leading and trailing edge once a stable oscillation state is reached. The solid
line represents the peak-to-peak amplitude and flapping frequency of the hinged
filament, i.e. K — +o00
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Figure 6.3.6: Frequency spectra for the leading (left) and trailing (right) edge.
In the right graphics the spectrum for the case £ — +o0 is also shown.

In Figure 6.3.6 the frequency spectra for both the leading (left) and the
trailing (right) edge are shown. According to Figure 6.3.5 (right), the lock-in
frequency at which the spring-filament system oscillates experiences a sudden
drop at the occurence of the resonant condition (consider the peaks for k = 1.2
and k = 1.3), then it slowly increases. We investigate now what happens by
changing the Reynolds number (i.e. the velocity of the incoming flow) varies.

As shown in Figures 6.3.7 and 6.3.8 stiffer springs will need higher Reynolds-
number flow to resonate, and their resonant condition will be linked with smaller
amplitude and higher frequency. Interestingly, once the resonance threshold has
been exceeded the behavior of the particular spring-filament system does not
change with the Reynolds number.
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Figure 6.3.8: Flapping peak-to-peak amplitude (left) and frequency (right) of
the trailing edge for different Reynolds numbers.
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Figure 6.3.7: Flapping peak-to-peak amplitude (left) and frequency (right) of
the leading edge for different Reynolds numbers.

The fact that higher Reynolds-number flows trigger a resonant condition in
stiffer springs can also be demonstrated by following the theoretical reasoning
in Section 2.

The natural pulsatance wy for a mass-spring system is

k
wN =\ — 3.1

and
Fy

m(wi —wi)’

A= (6.3.2)

ie. k o w% and the oscillation amplitude has an asymptote as wy = wp,
where wp is the pulsatance driving frequency. In this respect, the reader is
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recommended to compare the numerical results shown in Figure 6.3.5 (left,
red curve) and the theoretical curve in Figure 2.1.3. Table 6.3.1 shows the
pulsatance wg of a hinged filament (as described in Section 6.1) subject to
different Reynolds-number flows and the corresponding spring stiffness optimal
value.

Re ‘ Wrp = WN ‘ kpeak
100 1.571 1
125 1.599 1.1
150 1.653 1.3
200 1.680 1.5

Table 6.3.1: Pulsatance of a hinged filament (similar to that described in Section
6.1) subject to different Reynolds-number flows and corresponding kpeqr values.

The pulsatance of the hydrodynamical forces wp acting on the filament in-
creases with the Reynolds number, thus there will be a particular Reynolds num-
ber for which wp = wy is denoted by the oscillation amplitude maximum (Fig-
ure 6.3.7). As predicted by equation (6.3.1), Figure 6.3.9 shows the quadratic
relation between the natural oscillation pulsatance wy and the optimal spring
stiffness Kpeqk-
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Figure 6.3.9: Relation between the natural oscillation pulsatance wy and the
optimal spring stiffness kpeqr as predicted by equation (6.3.1).
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After considering the dynamics of the filament edges, we turn to energetic
considerations. As stated in Section 6.3, this kind of device is a self-sustained
energy harvester, in that no external power source is required to control the
motion of the filament, and the harvested power will be provided by the oscilla-
tion of the leading edge, that will be linked with elastometers to external fixed
boundaries. Thus, we can write the mean produced power over a period T as:

_
Pf?LFw% (6.3.3)

where F and v are respectively the force exerted by the external links and the
velocity of the leading edge. Moreover we can write F from a simple force
balance as

F = kx + vk + mX,

where k and v are respectively the elastometer elastic and viscous constant while
m is possible mass on the filament tip (usually mush greater than the filament
mass itself). If we consider that the filament tip is compelled to move only in
the span-wise direction we can write

T

Given that the cyclic integral (line integral on a closed line) of the product
between a quantity and its derivative is null, the above relation becomes

_ 12
P=—= [ i%d. 6.3.4
Tk (6:34)

Equation (6.3.4) clarifies the important of the elastometers viscous part: with-
out it, it would be impossible to extract energy from this device since the force
F and the velocity v (see equation 6.3.3) would be in quadrature. Unfortunately,
the mean power extracted P does not scales linearly with the viscous coefficient
v in that the integral (i.e. the dynamics of the leading edge) will decay with
higher v.

_ 1
P:—/ (kx + vi + mi) zdt.
T

Following equation (6.3.4) we are able to compare the device performance
with different spring stiffness k. As an example, Figure 6.3.10 shows both the
leading edge position and squared velocity during one oscillation cycle for Re =
200 and k = 0.25. The instantaneous extracted power (oc ©2) is null when the
leading edge reaches one of the two oscillation extrema.

In Figure 6.3.11 the mean extracted power P, normalized with its maximum
value, is shown as a function of the spring stiffness k. As expected it resembles
closely the flapping amplitude graph (see Figure 6.3.5, left), except that the
mean power peak is found for £ = 1.5 while the flapping amplitude peak was
for k =1.3.
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Figure 6.3.11: Mean extracted power P as a function of the spring stiffness k
for Re = 200. The peak value is found for £ = 1.5.

6.3.4 Conclusions

In this study we have applied our developed numerical code to a self-sustained
flapping energy harvester. The working principle of this kind of device is the
onset of a flutter instability between the elastic force of the connecting springs

135



CHAPTER 6. APPLICATIONS AND RESULTS

and the fluid forces exerted by the incoming flow. In this way, the leading
edge of the filament begins to oscillate in the span-wise direction making the
connecting link to stretch, thus producing energy. Our primary aim is thus to
find an optimal value for the spring stiffness k in order to trigger a resonant
condition by making the spring natural frequency nearer and nearer to the fluid
force frequency.

Through numerical simulations we have been able to follow (Figure 6.3.4)
the time evolution of both the leading and the trailing edges. Once a steady
self-sustained oscillation is reached, both the curve of oscillation amplitude and
frequency versus bending stiffness (Figure 6.3.5) show a non-symmetric maxi-
mum for £ = 1.3, confirmed also by the Fourier analysis shown in Figure 6.3.6.

As the incoming flow condition varies between 100 < Re < 200 (Figures
6.3.7 and 6.3.8) the optimal value of k increases with the Reynolds number
while its maximum oscillation amplitude decreases slightly. Interestingly, after
the onset of the lock-in the oscillations of the spring-filament system have the
same features for a given spring disregarding of the Reynolds number. In this
range of Reynolds number the dependence of the optimal spring stiffness k& with
the Reynolds number can be predicted with the simple relation (6.3.2) proved
in Section 2 (see Figure 6.3.9). If we further decrease the Reynolds numbers
(Re < 50, Figures 6.3.7 and 6.3.8), however, the optimal %k increases while its
maximum oscillation amplitude decreases.

In the end, some energetic considerations are drawn. For a self-sustained
flapping energy harvester the net mean power extracted for the wind can be
computed following equation (6.3.4). Following this equation, Figure 6.3.11
shows the mean power P extracted from the device for different values of the
spring stiffness k. Even if this curve resembles the one for the oscillation ampli-
tude (Figure 6.3.5, left), the maximum value is found for a slightly higher spring
stiffness, £k = 1.5. Quite interestingly this value coincide with the location of
the maximum for the trailing edge oscillation amplitude (Figure 6.3.5, right,
green curve). This tell us that even if the power is extracted from the motion
of the leading edge, it’s the dynamics of the whole filament that determines its
amount.
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7

Conclusions and future
developments

This thesis aims to be an original contribution to the understanding of how
different structural parameters of biological surfaces (mass, bending stiffness and
permeability) play a role in the overall fluid-dynamical behavior when exposed
to the action of a flow. As we are taking into account slender and compliant
structures, the common thread of the thesis is fluid-structure interaction, the
two-way coupling between fluid and structure in terms of both forces and dis-
placements.

The numerical investigation has been carried out through a finite volume
code developed in the Matlab® environment. As for similar works, an immersed
boundary approach has been exploited in order to efficiently handle elastic and
compliant structures interacting with a viscous incompressible flow. In order to
limit the required computational power, the developed code takes into account
1D structures surrounded by a 2D flow. This numerical tool fits well with
the physical phenomenon under study in that feathers, hair and other biological
appendages can be regarded as a 1D slender structure immersed in a surrounding
2D fluid. As a result, both the structure and the flow are supposed to be constant
in the direction normal to the simulation plane.

Several methodologies considering mass and bending stiffness have been pro-
posed in the literature. The original contribution of the present thesis is an
innovative and numerically stable way to include permeability along with the
other parameters. The resulting numerical code is thus able to consider mass,
bending stiffness and permeability at the same time.

In particular this thesis focuses on the effects of permeability on the aero-
dynamical properties in terms of stability and transmitted forces. In this sense
permeability can be regarded as a new control strategy of the fluid-structure
interaction by allowing a mass flux and thus the modification of the pressure
distribution on the surface.

The numerical tool developed during this thesis has also proven to be efficient
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for simulating fluid-structure problems involving both fixed and moving rigid
objects (such as free-falling bodies) with elastic and permeable appendages as
in [70, 112]. Indeed it has been adapted to simulate the dynamics of retinal
detachment, one of the most frequent causes of blindness in Western countries.
For this application, two different detachment configurations (“tear” and “hole”)
have been taken into consideration in order to determine which one is more prone
to further deterioration.

Finally the present code has been exploited to design the optimal param-
eters for a spring-filament system, a slender structure with the leading edge
constrained to a spring, inspired by devices used to harvest energy. The oper-
ating principle of the optimized system consists of the triggering of a resonant
behavior between the fluid forces acting on the filament and elastic forces ex-
erted by the spring. In this way, the displacements of the leading edge and thus
the energetic efficiency of the device are maximized.

A possible and straightforward development of the code would be the inser-
tion of the 3-dimensional direction, although this step would involve a plan to
overcome computational limits. Some possible strategies are (a) the migration
from an interpreted language as Matlab®© to a more efficient compiled language
(C++, Fortran, ...), (b) the use of parallel computing.

An interesting development of the code, which would not necessarily involve
previous extensive modifications, would be the implementation of 2-dimensional
structures in a 2-dimensional flow as in [113, 114] by following an Immersed
Boundary approach. This extension would permit not only the analysis of slen-
der membranes but also compliant blunt elastic structures, thus multiplying the
possible applications of the code.

DNS simulations are confined to low Reynolds numbers (~ 0(102?)) by the
spatial resolution of the grid. In order to simulate the behavior at higher
Reynolds numbers, a possible solution would be to migrate from DNS to LES
[115] or RANS [116] with the implementation of suitable turbulence models.
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