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OUTLINE

Two phases:
4 months preparation with Professor Jan O. Pralits, Genoa

* 6 months internship at Daher-Socata, Aéroport de Tarbes-
Lourdes
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OUTLINE

* Introduction and Motivation
* Theory

* Methodology developed

* Test cases validation in 2D

* Test case validation in 3D

* Conclusions and Future Work
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INTRODUCTION & MOTIVATION

* Increase of aircraft efficiency to improve
the performances.

* In aerodynamics friction drag prediction
is important.

e Dragis directly linked to transition and turbulence. Laminar flow corresponds to
low drag and turbulent flow to larger drag.

* Increasing the laminar flow on the wings, winglets, tail, fin and nacelles can reduce
fuel consumption of 15% (potential to save money and environment)

* How and when a flow becomes turbulent is a classic unsolved problem in fluid
mechanics. Simplified methods for transition prediction exist.

* Objective: Validate a transition prediction process on 2D profiles and apply it on a
3D geometry, as applied to small aircraft wings.
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THEORY



THEORY

Transition is assumed to occur when the amplitude of small perturbations, which grow
as they propagate downstream, reaches a certain value.

e LAMINAR FLOW on wings means lower drag and reduced fuel consumption

 RECEPTIVITY: disturbances in the free stream enter the boundary layer as
unsteady fluctuations
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THEORY

Due to receptivity mechanisms disturbances enter the
laminar boundary layer, and might trigger unstable
disturbances in the boundary layer, such as:

* Tollmien-Schlichting waves: (2D flows)

— Instabilities develop as wave-like disturbances.
— Their periodic form grows exponentially.

— The first stage can be studied by linear theory.

— After they reach a finite amplitude and a random character.

*  CrossFlow instabilities: (3D flows)

— Typical of 3D flow so, for instance for a swept wing.
— Qualitatively the same phenomena but propagated
in a wide range of directions

— CFinstabilities appear as co-rotating vortices
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THEORY

Viscosity influences a very thin layer in the Prandtl’s idea of boundary layer is to divide the flow into
immediate neighborhood of the solid wall. two regions, the outer one is approximated with no viscosity
and one internal where the friction must be taken into
TURBULENT account. INVISCID
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— two-dimensional V=v,+V P=P,+P

— incompressible flow

ou' " dv' " aw' 0
ax dy 9z
. Continuity and Navier Stokes equations . . . e . I
are simplified considering: (Ou’ Uai+ L ou _ dp 1 [d"u  du N d°u

— Non linear terms of disturbances ot dx v Ay " 3x  Re 9x2 " dy? 9z
can be neglected.- . . v’ v’ apr 1 /8%y 3%v' 9%p"

— Mean flow quantities scale is { LU = — +— -t —+ —
significantly bigger than the dt dx dy Re\dx* 9dy* 9z%
disturbances’ one. ow' iy ow'  ap’ N 1 [3*w’ N *w' N *w"

L ot dx 8z Re\dx®  dy?  dz?

12/13/13 Marina Bruzzone 8



THEORY

These equations are expressed = §(y)ellax+Bz-wt) Normal Velocity

vl
through only two variables: n' = fi(y)eilax+bz=wt)  Vorticity

Knowing that @® + 8% = k3 and expressing the derivative in y as D, the equations for v’ and for n’ are:
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THEORY

At a given station, the total amplification rate of a spatially growing wave can be

defined as: x

In(A/A,) =f —a;(x)dx
A =wave amplitude o

* A, =X, position (where the wave begins to be unstable)

The envelope of the

total amplification curves is:

N = m}gx[ln (A/Ay)]
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METHODOLOGY DEVELOPED
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TEST CASES (2D)
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TEST CASES (2D)
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TEST CASES (2D)

NLFO416

Transition location in
the article
(“Transition-Flow-
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“A New Method”
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the separation

location.
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TEST CASE 3D
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TEST CASE (3D)

X - Transition %

SPHEROID

* NEW IDEA - study along the streamlines
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CONCLUSIONS

A methodology to predict transition based on physical mechanisms has
been implemented and verified in an industrial fluid solver (software)

* Validation is successful for 2D profiles, as NACA0012.

* Forthe NLF0416 profile we cannot be sure of the results since the
literature provide us only the boundary layer separation.

* Validation for the 3D geometries is more complicated for 3D effects.

 Same methodology along the streamlines is ok but far from the
symmetry plain.

* Forthe moment Nolot code works only on simple geometries like a
spheroid (axisymmetric), infinite swept wings.
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FUTURE WORK

* Manage the entire methodology to make it faster,
efficient and reliable.

* Make a study of the entire spheroid to see how much
the symmetry plane influences the flow close to it.

* Improving the Nolot code to use it along the
streamlines allows to extend the methodology from 2D
to 3D geometries.
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