CdL in Energy and Aeronautical Engineering
Modeling of Spray Drying using Computational

Fluid Dynamics with an Open-Source software

Supervisor: Jan Oscar Pralits
Co-supervisors: Matteo Colli, Joel Guerrero
Student: Stefano Pastorino

September 2016

Abstract

The work presented in this thesis is part of a newly started project aimed to
develop a numerical model of a spray dryer to be used in the framework of food
processing research at the department of civil, chemical and environmental engi-
neering at the university of Genoa. In particular, it is the aim to use open source
software, freely available and without license costs. The numerical platform cho-
sen is OpenFOAM which has a large variety of physical models and good capacity
to perform large scale simulations. A large part of the work has been dedicated to
carefully fine tune the numerical model with existing experimental data from the
literature in order to obtain a trustworthy numerical platform. Three-dimensional
simulations of the turbulent flow, accounting for variable temperature fields, lig-
uid drops as well as solid particles, with input data from experiments conducted
at the chemical engineering department, have been performed on a 16 proces-
sor work station, and validated with experimental data from the literature. The
work presents a large step towards a working numerical platform for spray dryer
simulations using a software free-of-charge and future challenges are outlined for
the continuation of the project.

Contents
1 Introduction
2 Description of a Spray Dryer

3 A brief introduction to Computational Fluid Dynamics (CFD)

3.1 Reference frames Lo
3.2 Governing equationso
3.3 Continuity equation
3.4 Momentum equation
3.5 Energyequation
3.6 Stateequation
3.7 Turbulence models
3.8 Heat transfer

3.8.1 Conduction

3.8.2 Convection
3.9 URANS
3.10 Coupling solution with particles
3.11 Heat and mass transfer between continuum and dispersed phase

4 A short description of OpenFOAM

4.1 Solvers and utilities structure in OpenFOAM
4.2 File structure of OpenFOAM cases
4.3 Basic input/output file formato
4.4 OpenFOAM programming language
4.5 Different types of boundaries in OpenFOAM
4.5.1 Basetypes
4.5.2 Primitive typeso
4.5.3 Derived types

5 Parallel computing

5.1 Running in parallel with OpenFOAM

6 The case study

6.1 Original geometry and parameters
6.2 The modified geometryo
6.3 Reference values of velocity and temperature

7 Mesh generation

7.1 Different cases

8 Numerical schemes and boundary conditions

8.1 Case with only the flow
8.2 Implementation of the temperature
8.2.1 Flow without heat transfer
8.2.2 Flow with heat transfer
8.3 Implementation of the particles

23
24
25
26
27
29
29
30
31

31
33

35
35
38
45

9 Results 67

9.1 Convergence study 67
9.2 Varying the geometryo L 69
9.3 Turbulence models 72
9.4 Implementation of the temperature 73
9.5 Implementation of the particles 7
9.5.1 Liquidcase 7

9.5.2 Solidcase 82

9.5.3 Comparison between liquid and solid case. 91

10 Conclusions 93
10.1 Final remarks 93
10.2 Future developmentso 93
Appendices 100
A Case with the only air flow - fvSchemes 100
B Case with the only air flow - fvSolution 101
C Implementation of the temperature - fvSchemes 102
D Implementation of the temperature - fvSolutions 103
E Implementation of the particles - ThermolncompressiblePoly 106
F Implementation of the particles - fvSchemes 107
G Implementation of the particles - fvSolutions 108

1 Introduction

The topic of this thesis concerns the area of spray drying which is the transforma-
tion of droplets to dried particles; the decrease in the moisture content is obtained by
feeding the droplets as a spray into a hot drying chamber. Despite spray dryers are
used in a wide range of industries like food manufactures, chemical and pharmaceutical
industry and other product processes, they are still designed by virtue of pilot exper-
iments which are expensive and time consuming to measure directly. Therefore, it is
currently thus important to develop a computational model for theoretical investiga-
tion allowing to predict the gas flow pattern and the particle history such as velocity,
temperature, humidity, particle size and residence time. In this respect advanced two-
and three-dimensional spray drying models based on Computational Fluid Dynamics
(CFD) have been proposed by several academic and industrial groups [1-18] over the
last few years. This approach permits to analyse problems that involve fluid flows in
complex geometry through numerical methods and algorithms applied to solve equa-
tions such as conservation of mass, momentum and energy. The aim is nowadays to
improve computational models to determine the size and the morphology of individual
particles as accurately as possible in order to predict the quality of the final product.

For example, an important bench mark in recent literature results GEA Niro
DRYNETICS™. The idea of this modern spray drying tool is to provide the solu-
tion by incorporating experimental data into the CFD software. These data collected
concern single droplets of a feed to determine its actual drying properties and they
are then transferred to the CFD software with the help of appropriate mathematical
models, in order to simulate the drying process with a considerable accuracy. This
has all been possible due to an experimental apparatus named DRYING KINETICS
ANALYZER™ (DKA) and based on the principle of ultrasonic levitation [36]. There-
fore investigations of the influence of different spray drying parameters being relevant
for the particle morphology formation are achievable by using DRYNETICS™ and this
also permits to obtain suitable data used for optimizing the design of new spray dryers.
All this is possible thanks to the coupling between the results of DKA measurements
and the commercial FLUENT™ CFD software and it is very important in order to be
able to modify the process parameters or the equipment design before the spray dryer
is produced.

2 Description of a Spray Dryer

Spray drying is a well established method for converting liquid feed materials into a
dry powder form. As mentioned in the chapter above, spray dryer is an important step
to control the final product quality, in fact it usually comes at the end-point of the
processing line. It has some advantages such as, rapid drying rates, a wide range of
operating temperatures, short residence times and the ability to control the particle size
distribution; all this characteristics depend on the spray dryer form anyway. The two
main designs of spray dryers can be identified in this regard: short-form and tall-form
as shown in Figure 2.1. Short-form dryers are characterized by a restrained aspect ratio
meaning that the height-diameter ratio is of around 2:1 while tall-form dryers have a
height-diameter ratio greater than 5:1. In the latter case dryers have less complex

flow patterns than short-form dryers, but they are afflicted by an higher percentage
of particles impacting on the cylindrical wall which is a negative effect on the final
product quality.

!—'I.-.—.-
z.
d a
1.
h d
\ g
\ ’ }
%]
N/
\L
a) bl

Figure 2.1: Spray dryer short-form a) and tall-form b) [23].

Spray drying involves four stages of operation for obtaining dried particles as shown
in Figure 2.2:

®

«—— Feed Liquid

Air » Furnace »
©,

—» Exhaustgas

O

/

IH'., | Cyclone
\ | separator
\

}

Product

Spray-drying 3)
chamber Q/

Figure 2.2: The process stages of spray drying [52].

1. atomisation of liquid feed into a spray chamber;
2. contact between the spray and the drying agent;
3. moisture evaporation;

4. separation of dried particles from air flow;

4

Atomisation is a process used to disperse the liquid or slurry into a controlled drop
size spray. An atomizer nozzle can take on many forms so that its choice is very
important to achieve a suitable quality of the product. The different types of atomizer
are centrifugal or rotary atomizer for which the size of droplets produced from the
nozzle varies directly with feed rate and feed viscosity and inversely with wheel speed
and wheel diameter, pressure nozzle atomizer in which droplet size varies directly again
with feed rate and feed viscosity, but inversely with pressure. Finally, atomization can
be obtained also through the two-fluid nozzle atomizer, meaning that a shear field
created by compressed air, atomizes the liquid and produces a wide range of droplet
sizes. [20,21].

During spray-air contact, the hot drying gas (air in most cases) can be blown in the
same direction as the sprayed liquid - co-current flow - or it can be against the flow
from the atomizer - counter-current flow -. The co-current flow is recommended for
the drying of heat-sensitive materials because the temperature of the dried particles at
the outlet is slightly lower than the exhaust air (drying medium) temperature. In fact
with this configuration the spray is in contact with the hot inlet air as soon as it enter
the dryer causing a very high rate of evaporation; as the content of moisture decreases,
the air temperature decreases and the droplets temperature is kept low allowing a
less thermal degradation of the products as well as a rapid spray evaporation. In
the counter-current arrangement, on the other hand, the spray inlet correspond to
the drying medium outlet and this arouses a final product temperature higher than
the exhaust drying agent temperature and that is why this configuration is used for
non-heat-sensitive products only.

Regarding the last stage, the separation of dried particles from air flow can be done
in different ways depending on the operating conditions such as particle size, shape,
bulk density and powder outlet position. For example, dried particles can be picked up
at the base of the dryer and absorbed by a cyclone separator or a screw conveyor. Other
equipment useful to collect the dry powder are bag filters and electrostatic precipitators
[22].

As previously said, different spray dryer’s models can be found in the literature, in
fact many models have been developed by various authors through the years by using
payment CFD software. After an accurate literature reading, some models have been
chosen as references for this work as it is briefly illustrated in table 2.1.

[Lg] surenm ¢

wepliN [f

‘ [Lg] monmqrustp werssner) ; YSHSURT DV,

[L7]'[o7] so4 S e XdD as sof 9002 ‘SATeH “H T (L

nozw .m

REUCLEIE I e

[0T] sek [g] poyreut o1ysepo)s weIBURIGRT-URLISING] Juany g as sok 0102 yores "N 'S

[L1] oprog T

[21] sok poymads jou urIduURISRT-URLIO[NY yuonyq az sok 0102 ‘Aaor] Y

{IOUOLIOYZOIN TN

[7g] so& [pg] 1deouoo Appe ojordstp uRISURISRT-URLIOMG JuenyJ as SoA Q007 Ivelueuysiniewrereypueny D

2] repumniy gy

[2] sok poymads jou urIdURISRT-URLIO[NY yuonyq ae sok 900¢ ‘rewiny 3

‘Sueny 1

[g] soA pogmads jou uerdueISeT-UBLISNG] XD ac soA 1661 [e] 1o1a013] "'
uoryerodesd MO} UL INY ordoy oyads o) uoryRIIqNJ

surpnouy J0 uonyenduro)) OuIRL] [PPOIN Oremyjog A1owoon PPOI se IoA1(Aridg JO Tedx SOy

S[epPOW 92UaIdJolI (1°g 9[qR],

3 A brief introduction to Computational Fluid Dy-
namics (CFD)

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numer-
ical analysis and algorithms to solve and analyze problems that involve fluid flows.
Computers are used to perform the calculations required to simulate the interaction of
liquids and gases with surfaces defined by boundary conditions. Numerical methods
are used to give predictions of typical parameter of the represented phenomenon such
as velocity, temperature and pressure profiles inside the system by solving, for example,
equations for the conservation of mass, momentum and energy. This approach is very
interest because it means that pilot measurements, that are very difficult and expensive
to obtain in large-scale, can be replaced with this accurate predictions. That is the
reason why by the 1990s, there has been a significant increase in computing power and
a considerable development in software and solutions.

CFD is also a powerful tool used to show , for example, the flow behaviour of fluid
with 3D images [19], that is very important in order to fully understand the behaviour
of the phenomenon.

Whatever the represented phenomenon is, the same basic procedure is followed:

e During preprocessing

— The geometry (physical bounds) of the problem is defined.

— The volume occupied by the fluid is divided into discrete cells (the mesh) in
which the governing equations will be solved.

— The physical modeling is defined — for example, the equations of motion
+ enthalpy + radiation + species conservation - and a suitable method to
discretize it, is choosen.

— Boundary conditions are defined. This involves specifying the fluid be-
haviour and properties at the boundaries of the problem. For transient
problems, the initial conditions are also defined.

e The simulation is started and the equations are solved iteratively as a steady-state
or transient

e Finally a postprocessor is used for the analysis and visualization of the resulting
solution

An important item above-mentioned is discretize governing equations. The equa-
tions are PDEs (Partial Differential Equations) meaning that they are a combination
of differential terms (rates of change) that describe a conservation principle. Without
loss in generality, all physical processes can be described by PDEs. Now, the CFD pro-
cess requires the discretization of the governing PDEs, i.e. the derivation of equivalent
algebraic relations that should faithfully represent the original PDEs. This is done by
transforming each differential term into an approximate algebraic relation. Some of
the discretization methods used are:

e Finite Difference Method (FDM)

e Finite Element Method (FEM)
e Finite Volume Method (FVM)

In particular as regards the finite difference method, governing equations are written
in differential form and the domain is structured with a grid; the partial derivatives are
replaced by approximations in terms of node values of the functions and one algebraic
equation per grid node is written so as to have a linear algebraic equation system. The
FDM is finally applied to the structured grid.

Instead, as concerns the finite element method, the solution domain is subdivided
into a finite number of elements, the governing equation is solved for each element and
then overall solution is obtained by “assembly”. Lastly, equations are multiplied by a
weight function before integrated over the entire domain.

Finally, the most versatile discretization techniques used in CFD, and also for this
thesis, is the finite volume method. Based on the control volume formulation of ana-
lytical fluid dynamics, the first step in the FVM is to divide the domain into a number
of control volumes (aka cells, elements) where the variable of interest is located at
the centroid of the control volume. The next step is to integrate the differential form
of the governing equations (very similar to the control volume approach) over each
control volume. Interpolation profiles are then assumed in order to describe the varia-
tion of the concerned variable between cell centroids. The resulting equation is called
the discretized or discretization equation. In this manner, the discretization equation
expresses the conservation principle for the variable inside the control volume. The
most compelling feature of the FVM is that the resulting solution satisfies the con-
servation of quantities such as mass, momentum, energy, and species. An example of
finite volume formulation is shown below: the computational domain V}, is divided into
non-overlapping cells or finite volumes V,. , r =1,.... N

Vi =U,V, (3.1)

Usually these cells are polygons (triangles, quadrilaterals) in 2-D and polyhedra (tetra-
hedron, hexahedron, prims, etc) in 3-D. Then the cell average value over the cell V; is

introduced:)
U = — [udz (3.2)
4
Vi

which is the basic unknown quantity in the finite volume method. Next step is to
define N (r) as the set of cells which share a common face with V,. and then write the
integral conservation law for cell V. :

du,
Vi T Z / finids =0 (3.3)
SGN(T)VTQVS

It now remains to approximate the flux integral and this can be achieved using for
example gaussian quadrature; taking p gaussian points:

p
/ finids = As,q Z wn FY (3.4)
m=1

VNV

where w,, are the gaussian weights and F' is an approximation to f;n,.

3.1 Reference frames

The commonly used modelling frames for a flow in a spray dryer are the Eulerian-
Eulerian and the Eulerian-Lagrangian methods, useful to represent the two-phase flow
(gas and droplets or gas and particles). The Eulerian-Eulerian method treats the
particle phase as a continuum, so that there are two Eulerian phases, one for the gas
and another for droplets, in fact this approach develops its conservation equations
on a control volume basis and in a similar form as that for the fluid phase. On the
other hand, the Eulerian-Lagrangian method considers particles as a discrete phase
and tracks the path of each individual particle (from their injection point until they
escape the domain), after calculating the gas field with the Eulerian approach [27].
To choose a suitable method for a certain problem depends heavly on the objective
and characteristics of the problem under examination. For example, the advantages
of the Eulerian-Eulerian approach are that turbulence can be modelled quite simply,
it is usually cheap regarding computational demands and it is recommended when
the high void fraction of the flow becomes a dominating flow controlling parameter.
However, the Eulerian method can be expensive when a separate set of transport
equations is solved for each particle size |25, 26|. In the case of spray dryer the Eulerian-
Lagrangian approach is usually used: the exchange of mass, momentum and energy
are calculated along the particle trajectories and then, if the gas and particle solutions
are coupled, these terms are added to the respectively source terms of the Navier-
Stokes equations of the gas flow. And therefore, it can better represent the behaviour
and residence times of single particles and can potentially approximate mass and heat
transfer more accurately. The Eulerian-Lagrangian model has also the advantage of
being computationally cheaper than the Eulerian-Eulerian method for a large range of
particle sizes, but on the other hand, the approach can be expensive if a large number of
particles have to be tracked (droplets or particles should not exceed 10% by volume of
the mixture contained in the spray dryer) [28|. Asregards the literature, opposing views
can be found: according to the authors Mostafa and Mongia [25], the Eulerian approach
performs better than Lagrangian method. Nijdam et al. [27] instead, found that both
Eulerian and Lagrangian approaches equally predict turbulent droplets dispersion and
agglomeration of sprays for a wide range of droplet and gas flows. Finally, Lagrangian
models are preferred because of their wider range of applicability.

3.2 Governing equations

The governing equations of fluid mechanics and heat transfer (i.e.,fluid dynamics) are
described below. The fundamental equations of fluid dynamics are based on the fol-
lowing universal laws of conservation:

e Conservation of Mass
e Conservation of Momentum
e Conservation of Energy

The equation that results from applying the Conservation of Mass law to a fluid flow
is called the continuity equation. The Conservation of Momentum law represents the

Newton’s Second Law. When this law is applied to a fluid flow, it yields a vector equa-
tion known as the momentum equation. The Conservation of Energy law is identical to
the First Law of Thermodynamics, and the resulting fluid dynamic equation is named
the energy equation. In addition to the equations developed from these universal laws,
it is necessary to establish relationships between fluid properties in order to close the
system of equations. An example of such a relationship is the equation of state, which
relates the thermodynamic variables pressure p, density p, and temperature T.

Historically, there have been two different approaches taken to derive the equations
of fluid dynamics: the phenomenological approach and the kinetic theory approach. In
the phenomenological approach, certain relations between stress and rate of strain and
heat flux and temperature gradient are postulated, and the fluid dynamic equations are
then developed from the conservation laws. The required constants of proportionality
between stress and rate of strain and heat flux and temperature gradient (which are
called transport coefficients) must be determined experimentally in this approach. In
the kinetic theory approach (also called the mathematical theory of nonuniform gases),
the fluid dynamic equations are obtained with the transport coefficients defined in
terms of certain integral relations, which involve the dynamics of colliding particles.
The drawback to this approach is that the interparticle forces must be specified in
order to evaluate the collision integrals. Thus a mathematical uncertainty takes the
place of the experimental uncertainty of the phenomenological approach. These two
approaches will yield the same fluid dynamic equations if equivalent assumptions are
made during their derivations.

The derivation of the fundamental equations of fluid dynamics will not be pre-
sented here. The derivation of the equations using the phenomenological approach is
thoroughly treated by Schlichting (1968), and the kinetic theory approach is described
in detail by Hirschfelder et al. (1954). The fundamental equations given initially in
this chapter were derived for a uniform, homogeneous fluid without mass diffusion or
finite-rate chemical reactions. In order to include these later effects it is necessary to
consider extra relations, called the species continuity equations, and to add terms to
the energy equation to account for diffusion.

3.3 Continuity equation

The Conservation of Mass law applied to a fluid passing through an infinitesimal, fixed
control volume (Fig. 3.3.1) yields the following equation of continuity:

0

PoLv - (pV)=0 (3.3.5)
ot
where p is the fluid density and V is the fluid velocity. The first term in this equation
represents the rate of increase of the density in the control volume, and the second term
represents the rate of mass flux passing out of the control surface (which surrounds the
control volume) per unit volume.

It is convenient to use the substantial derivative
b0 _ 90

=S4V V() (3.3.6)

10

CONTROL
SURFACE

Figure 3.3.1: Control volume for Eulerian approach.

to change eq. (3.3.1) into the form

Dp
otV V) =0 (3.3.7)

Equation (3.3.1) was derived using the Eulerian approach. In this approach, a fixed
control volume is utilized, and the changes to the fluid are recorded as the fluid passes
through the control volume. In the alternative Lagrangian approach, the changes to
the properties of a fluid element are recorded by an observer moving with the fluid
element (see 3.1). The Eulerian viewpoint is commonly used in fluid mechanics.

For a Cartesian coordinate system, where u,u,w represent the x,y,z components of
the velocity vector, eq. (3.3.1) becomes:

9p Opu) | Opv) O(pw)
ot Ox y 0z

A flow in which the density of each fluid element remains constant is called incom-
pressible. Mathematically, this implies that

=0 (3.3.8)

Dp
— =0 3.3.9
Di (3.3.9)
which reduces Eq. (3.3.3) to
V-V=0 (3.3.10)
or for the Cartesian coordinate system
Ju Ov Ow
—+—+—=—=0 3.3.11
ox + y + 0z ()

For steady air flows with speed V< 100 m/s or M < 0.3 the assumption of incom-
pressibility is a good approximation.

3.4 Momentum equation

Newton’s Second Law applied to a fluid passing through an infinitesimal, fixed control
volume yields the following momentum equation:

%Jrv-pvv—mwvnij (3.4.1)

11

The first term in this equation represents the rate of increase of momentum per unit
volume in the control volume. The second term represents the rate of momentum
lost by convection (per unit volume) through the control surface. Note that pV'V is
a tensor, so that V - pV'V is not a simple divergence. This term can be expanded,
however as

V- pVV =pV-VV +V (V. pV) (3.4.2)

When this expression for V - pV'V is substituted into eq. (3.4.1), and the resulting
equation is simplified using the continuity equation, the momentum equation reduces
to: DV

The first term on the right-hand side of eq. (3.4.3) is the body force per unit volume.
Body forces act at a distance and apply to the entire mass of the fluid. The most
common body force is the gravitational force. In this case, the force per unit mass (f)
equals the acceleration of gravity vector g:

pf =rg (3.4.4)

The second term on the right-hand side of eq. (3.4.3) represents the surface forces per
unit volume. These forces are applied by the external stresses on the fluid element.
The stresses consist of normal stresses and shearing stresses and are represented by the
components of the stress tensor IL;

The momentum equation given above is quite general and is applicable to both
continuum and noncontinuum flows. It is only when approximate expressions are in-
serted for the shear-stress tensor that eq. (3.4.1) loses its generality. For all gases that
can be treated as a continuum, and most liquids, it has been observed that the stress
at a point is linearly dependent on the rates of strain (deformation) of the fluid. A
fluid that behaves in this manner is called a Newtonian fluid. With this assumption,
it is possible to derive (Schlichting, 1968) a general deformation law that relates the
stress tensor to the pressure and velocity components. In compact tensor notation,
this relation becomes:

811%'
8xj

an
&zzi

)+

) oM k=123 (3.4.5)

I = —poy; + H(I oy

where ¢;; is the Kronecker delta function (§;; = 1 if i = j and d;; = 0 if i # j); w,
uo, uz represent the three components of the velocity vector V';xi, xo, x3 represent
the three components of the position vector; p is the coefficient of viscosity (dynamic
viscosity), and g’ is the second coefficient of viscosity. The two coefficients of viscosity
are related to the coefficient of bulk viscosity K by the expression:

2
K= ST s (3.4.6)

In general, it is believed that K is negligible except in the study of the structure of
shock waves and in the absorption and attenuation of acoustic waves. For this reason,
we will ignore bulk viscosity for the remainder of the text. With K = 0, the second
coefficient of viscosity becomes:

- _Z 3.4.7
I S (3.4.7)

12

and the stress tensor may be written as

ou,; ou; 2 . Ouyg
Ty = —pby + 4| () + 50) = S0y | ijk=1,2,3 3.4.8
J PO+ 1 8xj)+8xi 3 Y 0xy, bl ()
The stress tensor

Hz’j = _p51] + Tz’j (349)

where T;; represents the viscous stress tensor given by:

Ou;, Ouj 2 Ouy .

= ~Shuat]| k=123 3.4.10

Upon substituting eq. (3.4.8) into eq. (3.4.3) the famous Navier-Stokes equation is
obtained:

B - Gl)]) aamras o

For a Cartesian coordinate system, eq. (3.4.11) can be separated into the following
three scalar Navier-Stokes equations:

e R I (I a L)

|
O R R)

(3.4.12)

The Navier-Stokes equations form the basis upon which the entire science of viscous
flow theory has been developed. Strictly speaking, the term Navier- Stokes equations
refers to the components of the viscous momentum equation [eq. (3.4.11)]. However,
it is common practice to include the continuity equation and the energy equation in
the set of equations referred to as the Navier-Stokes equations.

If the flow is incompressible and the coefficient of viscosity (u) is assumed constant,
eq. (3.4.11) will reduce to the much simpler form:

p% =pf — Vp+uVVv (3.4.13)

It should be remembered that eq. (3.4.13) is derived by assuming a constant viscos-

ity, which may be a poor approximation for the nonisothermal flow of a liquid whose

viscosity is highly temperature dependent. On the other hand, the viscosity of gases is

only moderately temperature dependent, and eq. (3.4.13) is a good approximation for
the incompressible flow of a gas.

13

3.5 Energy equation

The First Law of Thermodynamics applied to a fluid passing through an infinitesimal,
fixed control volume yields the following energy equation:
where F; is the total energy per unit volume.

The first term on the left-hand side of eq. (3.5.1) represents the rate of increase
of E, in the control volume, while the second term represents the rate of total energy
lost by convection (per unit volume) through the control surface. The first term on the
right-hand side of eq. (3.5.1) is the rate of heat produced per unit volume by external
agencies, while the second term (V - q) is the rate of heat loss by conduction (per unit
volume) through the control surface. Fourier’s law for heat transfer by conduction will
be assumed, so that the heat transfer g can be expressed as:

q=—-kVT (3.5.2)

where £ is the coefficient of thermal conductivity and T is the temperature. The third
term on the right-hand side of eq. (3.5.1) represents the work done on the control
volume (per unit volume) by the body forces, while the fourth term represents the
work done on the control volume (per unit volume) by the surface forces. It should
be obvious that eq. (3.5.1) is simply the First Law of Thermodynamics applied to the
control volume. That is, the increase of energy in the system is equal to heat added to
the system plus the work done on the system.
For a Cartesian coordinate system, eq. (3.5.1) becomes:

OE, 0 0

a_tt — 8—? —p(fau+ fyo + fow) + %(Etu + U — UTpy — VTTY — WTyy + Qo)+
0

+ a—y(Etv + U — UTyy, — VTYY — Wy + q)+

+ g (Byw + pw — uTy, — vTY2 — WTo, +q.) =0
z
(3.5.3)

which is in conservation-law form.
Using the continuity equation, the left-hand side of eq. (3.5.1) can be replaced by
the following expression:

D(Et/P) . OFE,
p Dt T +V . -EV (3.5.4)

which is equivalent to:
D(EJp) De D(V?[2)
—t =p—= _— 3.5.5
Dt Dt ' Di (3:5.5)
if only internal energy (e) and kinetic energy (V2/2) are considered significant as terms
of the total energy (E;). Forming the scalar dot product of eq. (3.4.3) with the velocity

vector V allows one to obtain:

DV

pﬁ-V:pf-V—Vp-V—i-(V-Tij)-V (3.5.6)

14

Now if egs. (3.5.4), (3.5.5), and (3.5.6) are combined and substituted into eq. (3.5.1),
a useful variation of the original energy equation is obtained:

D 0
ijer(V-V):a—?—V-q+V-(nj-V)—(V-nj)-V (3.5.7)
The last two terms in this equation can be combined into a single term, since
8ui
Ty =V (1 V)= (V) V (3.5.8)
J

This term is customarily called the dissipation function ® and represents the rate at
which mechanical energy is expended in the process of deformation of the fluid due to
viscosity. After inserting the dissipation function, eq. (3.5.7) becomes:

De Q)

— V-V)=—-V_. ® 3.5.9
Py T) =5 q+ (3.5.9)

Using the definition of enthalpy,
h—ed %’ (3.5.10)

and the continuity equation, eq. (3.5.9) can be rewritten as:

Dh Dp 0Q
—=—4+—=—-V_ o 3.5.11
"Di ~Di a+ (3:5.11)
For a Cartesian coordinate system, the dissipation function, which is always positive if
p = -(2/3)u, becomes:

ORI O CROR

Gyrae) + G o) 3ot 5+ 5|

(3.5.12)

If the flow is incompressible, and if the coefficient of thermal conductivity is assumed
constant, eq. (3.5.9) reduces to:

De @
pﬁj = a—cf FEVET 4+ @ (3.5.13)

3.6 State equation

In order to close the system of fluid dynamic equations it is necessary to establish
relations between the thermodynamic variables (p, p, T, e, h) as well as to relate the
transport properties (u, k) to the thermodynamic variables. For example, consider a
compressible flow without external heat addition or body forces and use eq. (3.3.4)
for the continuity equation, eqs. (3.4.12) for the three momentum equations, and eq.
(3.5.3) for the energy equation. These five scalar equations contain seven unknowns
p, p, T, e, u, v, w, provided that the transport coefficients u, k& can be related to the
thermodynamic properties in the list of unknowns. It is obvious that two additional
equations are required to close the system. These two additional equations can be

15

obtained by determining relations that exist between the thermodynamic variables.
Relations of this type are known as equations of state. According to the state principle
of thermodynamics, the local thermodynamic state is fixed by any two independent
thermodynamic variables, provided that the chemical composition of the fluid is not
changing owing to diffusion or finite-rate chemical reactions. Thus for the present
example, if we choose e and p as the two independent variables, then equations of
state of the form

are required.

For most problems in gas dynamics, it is possible to assume a perfect gas. A perfect
gas is defined as a gas whose intermolecular forces are negligible. A perfect gas obeys
the perfect gas equation of state

p = pRT (3.6.2)

where R is the gas constant. The intermolecular forces become important under con-
ditions of high pressure and relatively low temperature. For these conditions, the gas
no longer obeys the perfect gas equation of state. Therefore real gas effects, which is
not modelled by the ideal gas law, can be taken into account by using for example the
Peng-Robinson equation of state:

RT ao

Vin—b V2 =20V, —b? (3.6.3)

p:

0.457235R°T2 O,0TTT9RT, . T
a = ’ = —7 r - —
Pe Pe T,
2
o= ((1 k(1 — \/TT)) : — 0,37464 + 1, 54226w, — 0, 269924,

V. is the volume of 1 mole of gas, also known as molar volume, w, is an acentric factor,
p. and T, are the critical pressure and temperature and R is the universal gas constant
[41].

3.7 Turbulence models

Turbulence modeling is a key issue in most CFD simulations. Virtually all engineering
applications are turbulent and hence require a turbulence model. These turbulence
models used in most commercial CFD packages are based on the splitting up of instan-
taneous quantities into a time-averaged and a fluctuating part by a process known as
Reynolds decomposition.

The most common type of turbulence models are the two equations turbulence mod-
els, meaning that they include two extra transport equations to represent the turbulent
properties of the flow, and this is a fundamental aspect in order to represent turbulence
effects such as convection and diffusion. In two equations turbulence models the first
transported variable is the turbulent kinetic energy k£ while the second transported
variable depends on the model chosen: the choice commonly falls on the turbulent
dissipation € or on the specific dissipation w depending on the scale of turbulence that
could thus be lenght-scale or time-scale.

16

As concerns the turbulent dissipation e, four turbulence models are usually used
for simulating sprays: (i) standard k-e [29, 30] (ii) RNG k- ¢, [31] (iii) realizable k- e,
[32] (iv) Reynolds Stress Model (RSM) [33]. The standard k- € model focuses on the
mechanisms that affect the turbulent kinetic energy and it is the most common one
due to its simple implementation, accuracy and robustness (it has stable calculations
that converge relatively easily). However, this model has also some disadvantages such
as a poor prediction for swirling and rotating flows as well as it presents a simplistic
e equation and it valid only for fully developed turbulent flows. The transport of the
turbulence kinetic energy k and its dissipation rate € is given as follows:

Where G, is the generation of kinetic energy due to the mean velocity gradients. The
quantities o and o, are the turbulent Prandtl numbers for £ and € respectively and
(e , Oy are constant. The turbulent (or eddy) viscosity p; is calculated from x and e
as follows:

For calculating an approximate solution of fluid flow equations, the equations have to
be made discrete. For this, the flow domain is divided into number of control volumes.
This is called a grid and at each grid cell approximate solutions for the Navier-Stokes
and the continuity equations are calculated.

The RNG k- € turbulence model one of the improvement model based on the stan-
dard k- € model and is derived from the instantaneous Navier-Stokes equations, using a
mathematical technique called “renormalization group” (RNG). Some additional terms
and functions are added in the transport equations for k and e€; in particural, the form
is similar to the standard k- € equations, but it includes the effect of swirl on turbu-
lence, differential formula for effective viscosity and a new term for interaction between
turbulence dissipation and mean shear in € equation. These improvements ensure a
suitable prediction for transitional flows and mass and wall heat transfer.

In the realizable k- ¢ model, the word “realizable” underlines that it can satisfy
certain mathematical constraints on the normal stresses, consistent with the physics of
turbulent flows. This turbulence model has the same turbulent kinetic energy equation
as the standard k- ¢ model while it presents an improved e equation. It improves
therefore prediction for flows involving rotation, recirculation, boundary layers under
strong adverse pressure gradients and strong streamline curvature [19, 34].

The Reynolds Stress Model has likewise the same general form as the instantaneous
Navier-Stokes equations, with the velocities and other solution variables ensemble-
averaged (or time-averaged). In the RSM the eddy viscosity approach has been dis-
carded and the Reynolds stresses are directly computed and the exact Reynolds stress
transport equation accounts for the directional effects of the Reynolds stress fields. The

17

RSM is the most performing model for problems where anisotropy of turbulence has a
dominant effect on the mean flow such as for highly swirling flows [35].

Another frequently used turbulence model is the k-w model. In particular it is used
as a closure for the Reynolds-averaged Navier—Stokes equations (RANS equations) and
for the unsteady Reynolds-averaged Navier—Stokes equations (URANS equations).The
model attempts to predict turbulence by two partial differential equations for two
variables, k and w, with the first variable, as mentioned before, being the turbulence
kinetic energy (k) while the second (w) is the specific rate of dissipation (referred to
the turbulence kinetic energy k into internal thermal energy). Mathematically, this
turbulence model presents a modified version of the k equation compared to the k- €
model and a transport equation for w. The k-w model has more difficulty converging
and is quite sensitive to the initial guess at the solution; hence, the k- € model is often
used first to find an initial condition for solving the k-w model. The k-w model is
also useful in many cases where the k- € model is not accurate, such as internal flows,
separated flows, jets and flows that exhibit strong curvature.

Especially, for the purpose of this thesis it’s very important to analyze the shear
stress transport (SST) k-w turbulence model. The SST k-w turbulence model is a
two-equation eddy-viscosity model which use has become very common. The use of
a k-w formulation in the inner parts of the boundary layer makes the model directly
usable all the way down to the wall through the viscous sub-layer, hence the SST k-w
model can be used as a Low-Re turbulence model without any extra damping functions.
The SST formulation also switches to a k-e behaviour in the free-stream and thereby
avoids the common k-w problem that the model is too sensitive to the inlet free-stream
turbulence properties. In literature many authors agree that the SST k-w model has
good behaviour in adverse pressure gradients and separating flow, but it produces a bit
too large turbulence levels in regions with large normal strain, like stagnation regions
and regions with strong acceleration. This tendency is much less pronounced than
with a normal k-e¢ model though [50]. The turbulence kinetic energy equation and its
dissipation rate equation for the SST k-w model are represented respectively in eq. 3.4

and 3.5 . 9% 5% p 9%
- " — p. — B — —_— 4
ot Uigg = Do Bkt 5 (v + oyrr) = (3.4)
Ow ow o 5, 0 Ow 1 0k Ow
E"’Uja_xj =as BW +8_1‘J (V‘FO’MVT)a—xj] +2<]. Fl)O'wQaa—xja—xj (35)

Where v is the kinematic eddy viscosity, S is the mean rate of strain, and 3, 5*, o,

0w, 0, and « are constants. Fj is known as the blending function. It has a value of
one in the free stream and is zero in the boundary layer. This is how the k-w model
is activated in the boundary layer and turned off in the free stream. More detailed
explanations regarding model constants and derivation of the transport equations can
be found in [37]. The k-w SST is reported to perform well for both under-expanded
jets and heat transfer applications, see 38|, [39] and [40].

18

3.8 Heat transfer

In general, three different modes of heat transfer exist: conduction, convection and
radiation. Radiation is neglected in this case.

Heat transfer problems can be either steady state or transient. Solutions to steady
state problems only varies with location, while transient problems also varies with time.
Steady state problems are therefore easier to solve, since all derivatives with respect to
time is equal to zero.

3.8.1 Conduction

Heat transfer due to conduction takes place in solids and quiescent fluids. The heat
is transferred by diffusion and collisions between particles, without any mass flow [42].
Heat flows from a high- to a low-temperature region due to the temperature gradient
between those regions [43]. The heat transfer rate varies, depending on the material,
geometry, and the temperature gradient. Fourier’s law states the relationship between
the heat flow and the temperature gradient, here shown for a one-dimensional problem.

. dT
Qcond - _kcA% (381)

where and is the heat flux, k. is the thermal conductivity, which is a measure of a
materials ability to transfer heat by conduction. A is the cross-sectional area, and %
is the temperature gradient. The negative sign indicates that the heat flows in the
opposite direction of the temperature gradient.

Materials with the atoms closely spaced, such as solids, generally have the highest
thermal conductivity. Gases and vapors have the lowest conductivity due to greater
distance between the atoms [44].

The thermal conductivity is also temperature dependent. In many pure metals, it
tends to decrease with increasing temperature. In gases however, the opposite is true.
Higher temperatures results in greater thermal conductivity. For anisotropic materials,
k. also varies with orientation.

Another important material property is the thermal diffusivity, a. It is defined as
the thermal conductivity divided by density, p, times specific heat capacity, C,, [43].

ke

o =
pCyp

(3.8.2)

In transient problems, the thermal diffusivity is a measure of how quickly the heat is
conducted through the material. The quantity pC), is often referred to as the volumetric
heat capacity. Thus, the thermal conductivity is a measure of a materials ability to
conduct heat relative to its volumetric heat capacity. The distribution of heat due
to conduction is described by a parabolic partial differential equation, also known as
the heat equation. For an isotropic material without internal heat generation, the
one-dimensional heat equation becomes:

oT ke <a2T) _ a<82T)

ot o \ar) N\ a2 (38.3)

19

3.8.2 Convection

In the presence of bulk fluid motion, heat is transferred trough a fluid by convection.
It’s possible to distinguish between forced and natural convection. When the flow is
initiated by the buoyancy effect, we have natural convection. If the fluid motion is
caused by external means, such as a pump, we have forced convection [45]. It is also
usual to classify convection as either internal or external, depending on whether the
flow occurs over a plate or inside a pipe. Convection is the most complicated heat
transfer mode, and the rate of heat transfer depends on several fluid properties such
as: dynamic viscosity p, thermal conductivity k., density p, specific heat capacity C,
and fluid velocity. Other important variables are: geometry, surface roughness, and
whether the flow is turbulent or laminar. However, despite the complexity, the rate of
heat transfer due to convection is proportional to the temperature difference. This is
expressed in Newton’s law of cooling:

Qcom) - (T T) (384)

where h, is the convective heat transfer coefficient, A, is the surface area with heat
transfer, T} is the surface temperature and T, is the temperature in the fluid sufficiently
far from the surface. Even though this expression looks relatively simple, the convective
heat transfer coefficient is difficult to determine, since it depends on many of the above-
mentioned fluid properties.

3.9 URANS

All simulations tested in this thesis have been run in URANS mode, meaning that
Unsteady Reynolds-averaged Navier-Stokes equations have been solved. Let’s give a
brief definition of URANS equations starting from Reynolds-averaged Navier-Stokes
equations (RANS). The RANS equations are time-averaged equations of motion for
fluid flow; the idea behind the equations is Reynolds decomposition, whereby an in-
stantaneous quantity is decomposed into its time-averaged and fluctuating quantities.
The RANS equations are primarily used to describe turbulent flows and they can be
used with approximations based on knowledge of the properties of flow turbulence to
give approximate time-averaged solutions to the Navier—Stokes equations (eq. 3.4.13).
For a stationary, incompressible Newtonian fluid, the RANS equations can be written
in Einstein notation as follows:

pdjgz pfi+ - [poi; +u(§“; + a;ij) —puiat| (3.9.1)

The left hand side of this equation represents the change in mean momentum of
fluid element owing to the unsteadiness in the mean flow and the convection by the
mean flow. This change is balanced by the mean body force, the isotropic stress
owing to the mean pressure field, the viscous stresses, and apparent stress (—p@)
owing to the fluctuating velocity field, generally referred to as the Reynolds stress.
This nonlinear Reynolds stress term requires additional modeling to close the RANS
equation for solving, and has led to the creation of many different turbulence models.
The time-average operator - is a Reynolds operator.

20

The URANS equations are the usual RANS equations as in eq. 3.9.1, but the
transient term Ju; /0t is retained during computations. So, for URANS equations, eq.
3.9.1 becomes:

(5 3) =i+ 2

As will be more accurately seen in chapter 8.3, a one-way coupling between continuum
and dispersed phase will be applied. Mathematically, it means that no body forces
appear in the momentum equation, so f; is imposed equal to 0 and eq. 3.9.2 becomes:

(20) = 2 [a(25]

[Do + ,LL<§U; + 8;?) — puju] (3.9.2)

L

3.10 Coupling solution with particles

As mentioned in sub-chap. 3.1, Eulerian-Lagrangian method is very useful when simu-
lations of two-phase flows with a continuous and a dispersed phase are carried out: the
Eulerian approach calculates the continuum field, instead the Lagrangian approach
tracks the path of each single particle by integrating the force balance (eq. 3.10.2)
[57]. In the set of equations that solve particle field (location and velocity) heat and
mass transfer between particles are neglected, while particles are assumed as spheri-
cal. Moreover, the rotational motion of particles is neglected, while the translational
motion is calculated based on:

dz,

L= (3.10.1)

di,
My~
where 7, is the position vector of the particle, w, is its velocity and m, its mass. In
the right hand side of eq. 3.10.2 forces with more influence on particle trajectories are
represented; in particular Fp is the drag force, Fiz is the buoyancy force and Fy is the
gravitational force.
The drag force is implemented as follows:

= Fp+ Fp + Fg (3.10.2)

Fp===—.Cp(u—u,)|u— (3.10.3)

where U and p are respectively the fluid velocity and density, pp 1s the particle density
and d, is the particle diameter. The drag coefficient C'p depends on the flow regime and,
in this respect, when spherical particles are considered OpenFOAM uses a modified
empirical relation:

2 (14 §RG®) Re, <1000

Cp =
0.424 Re, > 1000
where the Reynolds number of the particle is defined as follows:
Re, = pdy(u, —)
1

21

Finally, the bouyancy and the gravitational forces are calculated together as shown
in eq. 3.10.4.
(pp - p)ﬂ'df’) _
- 9

Fp+ Fg = 5

(3.10.4)

where g is the gravitational acceleration.

3.11 Heat and mass transfer between continuum and dispersed
phase

The heat and mass transfer between the particles and the hot gas is represented by eq.

3.11.1. T y
mycy—L = hA,(T, = T,) + hfg% (3.11.1)
in which m,, is the mass particle, ¢, is the particle heat capacity, 7}, is the particle
temperature, A, is the particle surface area, hy, is the latent heat and h is the heat
transfer coefficient at the gas-particle interface. This latter parameter is extrapolated
from the Ranz-Marshall equation (3.11.2), referring to spherical particles [58].
_ hd,

Nu==F=2+ 0.6(Re,)"/?(Pr)'/? (3.11.2)

where Nu is the Nusselt number, k is the thermal conductivity of the gas, d,, is
the particle diameter, Re, is the Reynolds number (see chapter 3.10) and Pr is the
Prandtl number, calculated with the following empirical correlation:
Ky

k

where p is the kinematic viscosity of the gas.
Droplet evaporation causes a mass transfer between the two phases. The mass transfer
rate is given by eq. 3.11.3.

Pr =

dm,,
dt
where Y is the saturation umidity, Y; is the gas humidity and k. is the mass transfer
coefficient obtained from the Sherwood number:

k.d
Sh = Tp =2+ 0.6(Re,)?(Sc)/?
in which D; ,, is the diffusion coefficient of the ith-species in the mixture (gas phase)
and S, is the Schmidt number, defined as:

M
Sc =
¢ pDz,m

= kA (Y, — V) (3.11.3)

where p is the gas density.
The time-change of the droplet diameter is calculated including in eq. 3.11.3 the
density variation, determined by an incompressible, polynomial equations of state:

N-1
pp =Y al, (3.11.4)
i=0
where a; are polynomial coefficients.

22

4 A short description of OpenFOAM

OpenFOAM (for "Open source Field Operation And Manipulation") is a C+-+ toolbox
for the development of customized numerical solvers, and pre-/post-processing utilities
for the solution of continuum mechanics problems, including computational fluid dy-
namics (CFD) based on the finite volume method (FVM). The code is released as
free and open source software under the GNU General Public License. OpenFOAM
has an extensive range of features to solve anything from complex fluid flows involving
chemical reactions, turbulence and heat transfer, to acoustics, solid mechanics and elec-
tromagnetics [48]. In fact OpenFOAM is a collection of approximately 250 applications
built upon a collection of over 100 software libraries (modules) and each application
performs a specific task within a CFD workflow.

More deeply, the applications fall into two categories: solvers, that are each designed
to solve a specific problem in continuum mechanics; and wutilities, that are designed to
perform tasks that involve data manipulation. The OpenFOAM distribution contains
numerous solvers and utilities covering a wide range of problems such as incompress-
ible or compressible flow, multiphase flow, heat transfer and buoyancy-driven flows,
particle-tracking flows, combustion, stress analysis of solids etc [49].

One of the strengths of OpenFOAM is that new solvers and utilities can be created
by its users with some pre-requisite knowledge of the underlying method, physics and
programming techniques involved.

OpenFOAM is supplied with pre- and post-processing environments. The interface
to the pre- and post-processing are themselves OpenFOAM utilities, thereby ensuring
consistent data handling across all environments.

The overall structure of OpenFOAM is shown in Figure 4.1 .

Open Source Field Operation and Manipulation (OpenFOAM) C++ Library

Y

Solving

Meshing User Standard
Tools Applications|Applications

Post-processing

Others

ParaView |, . EnSight

Utilities

Figure 4.1: Overview of OpenFOAM structure [48].

23

4.1 Solvers and utilities structure in OpenFOAM

As mentioned above, the applications directory contained into the installation folder of
OpenFOAM, includes solvers and wutilities. The generic file solver Name.C'is located
in solverName folder and, as can be seen in Fig.4.1.1, it contains the source code, instead
the variable declarations, mimicking equations and the initialization commands of the
solution are located into the header files, having extension .H .

Wfuser-2.2.0/application/solvers

L solverName

solverName.C
header files (.H)

P —
Make

t files
options
Figure 4.1.1: Overview of a solver directory structure [49].

The Make directory contains files in which the name of the solver is specified as
well as the destination and the output directory and also the list of all source files used,
while the directories of files and libraries recalled from the solver are located in the
options folder.

The same applies to the directory that contains a generic utilityName, as can be

seen in the figure below:

fuser-2.2.0/application/utilities

L utilityName

utilityName.C
header files (.H)

Make

t files
options

Figure 4.1.2: Overview of an utility directory structure [49].

24

4.2 File structure of OpenFOAM cases

The basic directory structure for an OpenFOAM case, that contains the minimum set
of files required to run an application, is shown in Figure 4.2.1 and described as follows:

controlDict
fvSchemes
fvSolution

|j constant

‘ xProperties

- I_jl polyMesh

- boundary
— faces

neighbour
— owner
points

- |j time directories

Figure 4.2.1: Case directory structure [50].

The system directory is to set parameters associated with the solution procedure
itself. It contains at least the following 3 files: controlDict where run control parameters
are set including start/end time, time step and parameters for data output; fuSchemes
where discretisation schemes used in the solution may be selected at run-time, and
fvSolution where the equation solvers, tolerances and other algorithm controls are set
for the run.

As regards the constant directory, it contains a full description of the case mesh
in a subdirectory polyMesh and files specifying physical properties for the application
concerned.

Finally, individual files of data for particular fields can be found into the time
directories . The data can be initial values and boundary conditions that the user
must specify to define the problem or results written to file by OpenFOAM. It’s im-
portant to note that the OpenFOAM fields must always be initialised, even when the
solution does not strictly require it, as in steady-state problems. The name of each
time directory is based on the simulated time at which the data is written; without
getting into specifics, it is sufficient to say that since we usually start our simulations
at time ¢ = 0, the initial conditions are usually stored in a directory named 0.

25

4.3 Basic input/output file format

OpenFOAM needs to read a range of data structures such as strings, scalars, vectors,
tensors, lists and fields. The input/output (I/O) format of files is designed to be
extremely flexible to enable the user to modify the I/O in OpenFOAM applications as
easily as possible. The I/O follows a simple set of rules that make the files extremely
easy to understand, in contrast to many software packages whose file format may not
only be difficult to understand intuitively but also not be published anywhere.

The format follows some of the general principles of C-++ source code:

e Files have free form, with no particular meaning assigned to any column and no
need to indicate continuation across lines.

e Lines have no particular meaning except to a // comment delimiter which makes
OpenFOAM ignore any text that follows it until the end of line.

e A comment over multiple lines is done by enclosing the text between /* and */
delimiters.

Furthermore OpenFOAM uses dictionaries as the most common means of speci-
fying data. A dictionary is an entity that contains a set of data entries that can be
retrieved by the I/O by means of keywords. Most OpenFOAM data files are them-
selves dictionaries containing a set of keyword entries. Dictionaries provide the means
for organising entries into logical categories and can be specified hierarchically so that
any dictionary can itself contain one or more dictionary entries. The format for a dic-
tionary is to specify the dictionary name followed the entries enclosed in curly braces
as follows:

zdicticnaryName:=

{

- keyword entriea .

Another characteristic to underscore is that all data files that are read and written
by OpenFOAM begin with a dictionary named FoamFile containing a standard set of
keyword entries, listed in Table below:

H]
Keyword Description Entry
wversion /O formatversion 2.0
format Crata format a3scii /binary
location Pathto the file, in ™.." (optional)
claas OpenFOAM class constructed from the data file typically dictionary orafield,
concerned e.g.volVectorField
ocbject Filename e.g.controlDict

The table provides brief descriptions of each entry, which is probably sufficient for
most entries with the notable exception of class. The class entry is the name of the

26

C++ class in the OpenFOAM library that will be constructed from the data in the
file. Without knowledge of the underlying code which calls the file to be read, and
knowledge of the OpenFOAM classes, the user will probably be unable to surmise the
class entry correctly. However, most data files with simple keyword entries are read
into an internal dictionary class and therefore the class entry is dictionary in those
cases.

4.4 OpenFOAM programming language

The success of verbal language and mathematics is based on efficiency, especially in
expressing abstract concepts. For example, in fluid flow, we use the term “velocity
field”, which has meaning without any reference to the nature of the flow or any spe-
cific velocity data. The term encapsulates the idea of movement with direction and
magnitude and relates to other physical properties. In mathematics, we can represent
velocity field by a single symbol, e.g. U, and express certain concepts using symbols,
e.g. “the field of velocity magnitude” by |U|. The advantage of mathematics over verbal
language is its greater efficiency, making it possible to express complex concepts with
extreme clarity [49].

The problems that we wish to solve in continuum mechanics are not presented in
terms of intrinsic entities, or types, known to a computer, e.g. bits, bytes, integers.
They are usually presented first in verbal language, then as partial differential equations
in 3 dimensions of space and time. The equations contain the following concepts:
scalars, vectors, tensors, and fields thereof; tensor algebra; tensor calculus; dimensional
units. The solution to these equations involves discretisation procedures, matrices,
solvers, and solution algorithms.

As mentioned above, OpenFOAM is based on C++ programming language that is
an OOP (Object-Oriented Programming), meaning that it provides the mechanism —
classes — to declare types and associated operations that are part of the verbal and
mathematical languages used in science and engineering. Our velocity field introduced
earlier can be represented in programming code by the symbol U and “the field of
velocity magnitude” can be mag(U). The velocity is a vector field for which there
should exist, in an object-oriented code, a vectorField class. The velocity field U would
then be an instance, or object, of the vectorField class; hence the term object-oriented.

The clarity of having objects in programming that represent physical objects and
abstract entities should not be underestimated. The class structure concentrates code
development to contained regions of the code, i.e. the classes themselves, thereby
making the code easier to manage. New classes can be derived or inherit properties
from other classes, e.g. the wectorField can be derived from a wvector class and a
Field class. C++ provides the mechanism of template classes such that the template
class Field<Type> can represent a field of any <Type>, e.g. scalar, vector, tensor.
The general features of the template class are passed on to any class created from
the template. Templating and inheritance reduce duplication of code and create class
hierarchies that impose an overall structure on the code.

A central theme of the OpenFOAM design is that the solver applications, writ-
ten using the OpenFOAM classes, have a syntax that closely resembles the partial

27

differential equations being solved. For example the equation

d(pU)
ot

+V-(oU) -V -uVU = —Vp (4.4.1)
is represented by the code

solve
(
fvm: :ddt (rho, U)
+ fvm::div(phi, U)
- fvm::laplacian(mu, U)
- fver:igrad(p)
)i

This and other requirements demand that the principal programming language of
OpenFOAM has object-oriented features such as inheritance, template classes, virtual
functions and operator overloading. These features are not available in many languages
that purport to be object-orientated but actually have very limited object-orientated
capability, such as FORTRAN-90. C-++, however, possesses all these features while
having the additional advantage that it is widely used with a standard specification so
that reliable compilers are available that produce efficient executables. It is therefore
the primary language of OpenFOAM.

The four principal characteristics of an OOP are:

e Abstraction: it is a powerful methodology to manage complex systems. Abstrac-
tion is managed by well-defined objects and their hierarchical classification.

e Encapsulation: the idea of encapsulation is to keep classes separated and prevent
them from having tightly coupled with each other. Encapsulation binds the data
with the code that manipulates it and it keeps the data and the code safe from
external interference.

e Inheritance: it is the mechanism by which an object acquires the some/all prop-
erties of another object and it supports the concept of hierarchical classification.

e Polymorphism: it is usefull to process objects differently based on their data
type, in other words it means, one method with multiple implementation, for
a certain class of action. And which implementation to be used is decided at
runtime depending upon the situation (i.e., data type of the object). This can
be implemented by designing a generic interface, which provides generic methods
for a certain class of action and there can be multiple classes, which provides the
implementation of these generic methods.

28

4.5 Different types of boundaries in OpenFOAM

In this sub-section we discuss the way in which boundaries are treated in OpenFOAM
and this will be very important in order to better understand the boundary conditions
used in this thesis (see subchapter 6.2 and chapter 8). The subject of boundaries
is a little involved because their role in modelling is not simply that of a geometric
entity but an integral part of the solution and numerics through boundary conditions
or inter-boundary ‘connections’ [53].

We first need to consider that, for the purpose of applying boundary conditions,
a boundary is generally broken up into a set of patches. One patch may include one
or more enclosed areas of the boundary surface which do not necessarily need to be
physically connected.

symmetry
empty
Base t patTr wedge
ase type wa cyclic
l processor
fixedValue
fixedGradient
Primit; zeroGradient
rmitive type mixed
directionMixed
calculated
Derived type e.g. inletOutlet v

Figure 4.5.1: Patch attributes [53].

There are three attributes associated with a patch that are described below in their
natural order and Figure 4.5.1 shows the names of different patch types introduced at
each level of the hierarchy.

e Base type: the type of patch described purely in terms of geometry or a data
‘communication link’.

e Primitive type: the base numerical patch condition assigned to a field variable
on the patch.

e Derived type: a complex patch condition, derived from the primitive type, as-
signed to a field variable on the patch.

4.5.1 Base types

The base and geometric types are described below.

29

patch: the basic patch type for a patch condition that contains no geometric or
topological information about the mesh (with the exception of wall), e.g. an inlet
or an outlet.

wall: There are instances where a patch that coincides with a wall needs to be
identifiable as such, particularly where specialist modelling is applied at wall
boundaries. A good example is wall turbulence modelling where a wall must be
specified with a wall patch type, so that the distance from the wall to the cell
centres next to the wall are stored as part of the patch.

symmetryPlane: for symmetry plane.

empty: While OpenFOAM always generates geometries in 3 dimensions, it can be
instructed to solve in 2 (or 1) dimensions by specifying a special empty condition
on each patch whose plane is normal to the 3rd (and 2nd) dimension for which
no solution is required.

wedge: For 2 dimensional axi-symmetric cases, e.g. a cylinder, the geometry is
specified as a wedge of small angle (e.g. < 5) and 1 cell thick running along the
plane of symmetry, straddling one of the coordinate planes. The axi-symmetric
wedge planes must be specified as separate patches of wedge type.

cyclic: Enables two patches to be treated as if they are physically connected; used
for repeated geometries, e.g. heat exchanger tube bundles. One cyclic patch is
linked to another through a neighbourPatch keyword in the boundary file. Each
pair of connecting faces must have similar area to within a tolerance given by
the matchTolerance keyword in the boundary file. Faces do not need to be of the
same orientation.

processor: If a code is being run in parallel, on a number of processors, then
the mesh must be divided up so that each processor computes on roughly the
same number of cells. The boundaries between the different parts of the mesh
are called processor boundaries.

4.5.2 Primitive types

The primitive types referring to an hypothetical field ¢ are listed below.

fixedValue: the value of ¢ is specified.

fixedGradient: the normal gradient of ¢ is specified.
zeroGradient: the normal gradient of ¢ is zero.
calculated: the boundary field ¢ derived from other fields.

mixed: mixed fized Value/fizedGradient condition depending on the value in val-
ueFraction.

directionMixed: a mized condition with tensorial valueFraction, e.g. for different
levels of mixing in normal and tangential directions.

30

4.5.3 Derived types

There are numerous derived types of boundary conditions depending on the primitive
types from which they derive. For example, many complex conditions are derived
from fized Value, where the value is calculated by a function of other patch fields, time,
geometric information, etc. Some other conditions derived from mized/directionMized
switch between fized Value and fizedGradient (usually zeroGradient).

In particular, the derived types conditions regarding the inlet and the outlet are
very useful for this thesis.

5 Parallel computing

In CFD computers are used to perform the calculations required to simulate the inter-
action of liquids and gases with surfaces defined by boundary conditions. To be honest
workstations replaced normal computers in order to achieve better and more accurate
solutions; in fact the workstation offers higher performance than mainstream personal
computers, especially with respect to CPU and graphics, memory capacity, and mul-
titasking capability. These characteristics make it suitable for technical or scientific
applications and, in particular, workstations were optimized for the visualization and
manipulation of different types of complex data such as 3D mechanical design, engi-
neering simulation (e.g. computational fluid dynamics), animation and rendering of
images, and mathematical plots.

It’s convenient to give a brief definition of some fundamental physical components
and concepts of a workstation so as to easily understand its potential performance.
Since the advent of multi-core technology, such as dual-cores and quad-cores, the term
processor has been used to describe a logical execution unit or a physical chip. A
multi-core chip may have several cores. With the advent of multi-core technology,
the term processor has become context-sensitive, and it is largely ambiguous when
describing large multi-core systems. Essentially a core comprises a logical execution
unit containing an L1 cache and functional units.

Another component of the workstation is the chip or CPU chip refers to the actual
integrated circuit (IC) on a computer; a chip mainly refers to execution unit that can
be a single core technology or a multicore technology.

Then, the socket refers to a physical connector on a computer motherboard that
accepts a single physical chip. Many motherboards can have multiple sockets that can
in turn accept multi-core chips.

A process is an independent program running on a computer; it has a full stack
of memory associated for its own use, and does not depend on another process for
execution. MPI (Message Passing Interface) processes are true processes because they
can run on independent machines or the same machine. A concept linked to the process
is the thread: it is essentially a process that does not have a full stack of memory
associated for it. The thread is tied to a parent process, and is merely an offshoot of
execution. Typically thread processes must run on the same computer, but can execute
simultaneously on separate cores of the same node.

In particular, two identical workstations "4U Dual Socket Intel - 8 bays SAS/
SATA - 1200W" (Figure 5.1) have been used for simulations run in this thesis.

31

The workstations have been named Amarok and Shabang by the Department of Civil,
Chemical and Environmental Engineering in University of Genoa.

An overview on the specifics of the workstations employed by this thesis can be seen
in the list below:

Architecture: x86 64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 32

On-line CPU(s) list: 0-31
Thread(s) per core: 2

Core(s) per socket: 8

Socket(s): 2

NUMA node(s): 2

Vendor ID: Genuinelntel
CPU family: 6

Model: 62

Model name: Intel(R) Xeon(R) CPU E5-2640 v2 @ 2.00GHz
Stepping: 4

CPU MHz: 1200.000
BogoMIPS: 4005.09
Virtualization: VT-x

L1d cache: 32K

L1i cache: 32K

L2 cache: 256K

L3 cache: 20480K

NUMA node0 CPU(s): 0-7,16-23
NUMA nodel CPU(s): 8-15,24-31

In summary, it can be possible to note that workstations employed for this thesis
use a total number of cores available after hyper threading (virtual cores) equal to 32,
a number of threads per core (hyper threading) amounting to 2, a number of cores per
socket (physical processor) equivalent to 8 and a number of sockets (physical processors)
equal to 2. So, remembering that:

Number of physical cores = Number of cores per socket X Number of sockets
in this case the number of physical cores is 16.

A common adopted technique in CFD area is parallel computing; it is a very ef-
ficient procedure which allows to solve larger and more complex problems (scale-up)
and drastically reduce time simulation and therefore costs simulation. Traditionally,
computer software has been written for serial computation. To solve a problem, an
algorithm is constructed and implemented as a serial stream of instructions. These
instructions are executed on a central processing unit on one computer. Only one
instruction may execute at a time—after that instruction is finished, the next one is
executed.

32

Figure 5.1: Workstation used for this thesis.

Parallel computing, on the other hand, uses multiple processing elements simul-
taneously to solve a problem. This is accomplished by breaking the problem into
independent parts so that each processing element can execute its part of the algo-
rithm simultaneously with the others. The processing elements can be different and
include resources such as a single computer with multiple processors, several networked
computers, specialized hardware, or any combination of them.

In summary, finding the solution with the parallel computing means that firstly, a
problem is broken into discrete parts that can be solved concurrently and each part
is further broken down to a series of instructions. Then, these instructions from each
part execute simultaneously on different processors and an overall control /coordination
mechanism is employed [51].

5.1 Running in parallel with OpenFOAM

To take full advantage of the hardware, it is necessary to use the maximum number of
physical cores when running in parallel, while using the maximum number of virtual
cores, OpenFOAM will run but it will be slower in comparison to running with the
maximum number of physical cores (or even less cores).

To run operationally in parallel with OpenFOAM it is necessary to follow some
specific step [54]:

e Decompose the domain: decomposePar utility is used and it is based on the de-
composeParDict which is a dictionary located in the system directory. (Example
in Figure 5.1.1)

e Distribute the jobs among the processors or computing nodes: OpenFOAM uses
the public domain OpenMPI implementation of the standard message passing
interface (MPI). By using MPI, each processor runs a copy of the solver on a
separate part of the decomposed domain.

33

e Reconstruct the domain: reconstructPar utility is used to obtain the final result.
(Example in Figure 5.1.2)

The method of parallel computing used by OpenFOAM is known as domain de-
composition, in which the geometry and associated fields are broken into pieces and
distributed among different processors. The main goal is to break up the domain with
minimal effort but in such a way to guarantee a fairly economic solution; in other words,
the purpose is to minimize the inter-processors communication and the processor work-
load. In the decomposeParDict dictionary the user must set the number of domains
in which the case should be decomposed. It is indicated with N P and, usually, it
corresponds to the number of physical cores available. Then a set of subdirectories will
be created, one for each processor: the directories are named processorN where N =
0, 1, 2, 3, and so on. Each directory contains the decomposed fields, namely the mesh
information, boundary and initial conditions and the solution for that processor.

!

decomposePar
Processor(processorl processor? processor3

Figure 5.1.1: Decomposition - Subdomains [54].

When the case is reconstructed, all the information contained in the decomposed
case are glued together.

34

!

reconstructPar

!

Figure 5.1.2: Reconstruction [54].

In this thesis, solutions have been achieved by decomposing the domain represented
by the spray dryer and the associated field using 16 processors (maximum number of
physical cores) or 32 processors (maximum number of physical and virtual cores) based
on need to run one or two different simulations at the same time.

6 The case study

The choice of the spray dryer’s geometry to take as basis for the case study has been
meticulous and complicated by the fact that in the literature information about the
project details (in particular details about the design of the inlet and the outlet of the
spray dryer) are not reported. Therefore, even though all the articles considered have
taken as reference the same experimental set-up, it has been impossible to reconstruct
it adequately.

6.1 Original geometry and parameters

Most of the information has been obtained from Anandharamakrishnan|24|, Huang |7]
and Kieviet’s geometry [4] represented in figures 6.1.1, 6.1.2 and 6.1.3. As can be seen,
this spray dryer is characterized by a short-form geometry (see chapter 2), in fact the
dimensions of the main body (cylinder and cone parts) are well known.

Besides the geometry, inlet data-setup regarding inlet air turbulence condition,
liquid spray and chamber wall conditions have been extrapolated from reference articles
[3], [7], [24]. This is very important in order to have suitable guidelines that will allow

35

to compare final results with references; the complete setup is provided in detail in
table 6.1 .

Feed liquid

Hntarinlgt‘ :

:*J:-'."J'—"-‘-"-"-f-f-'-f-f-f—‘-‘- f AR R R

0.2864 m

2005 m

F A B R A A R TR AR

A A PR P S F R R EERT T

'\lu.l.-l'
&

Figure 6.1.2: Huang’s geometry [7].

36

p—— 172 50 om —s—— 200 50 &m

N e TN §
& top lid (removed)
wire mesh -
" 22150 cm L
o o _'_?;:;.-'f ||. J
e [
= nozzle
Yl s el = uE & - &
5 « >»7.18
Figure 6.1.3: Kieviet’s geometry [4].
Inlet Air
Air inlet temperature 468 (K)
Air mass flow rate 0.336 (kg/s)
Air axial velocity 7.5 (m/s)
Air radial velocity -5.25 (m/s)
Air total velocity 9.15 (m/s)
Outlet Condition
Outflow and reference at outlet -100 (Pa)
Turbulence inlet condition
Turbulence k-value 0.027 (m?/s?)
Turbulence e-value 0.37 (m?/s%)
Liquid spray from nozzle
Liquid feed rate (spray rate) 0.0139 (kg/s)
Feed Temperature 300 (K)
Spray angle 76 (deg)
Minimum droplet diameter 10 (um)
Maximum droplet diameter 138.0 (um)
Average droplet diameter 70.5 (um)
Droplet velocity at nozzle exit 59 (m/s)
Rosin-Rammler parameter 2.05

37

Chamber wall conditions

Chamber wall thickness 0.002 (m)
Wall material Steel

Overall wall-heat transfer coefficient 35 (W/m?K)
Air temperature outside wall 300 (K)

Interaction between wall and droplet Escape

Table 6.1: Boundary Condition in references [24].

6.2 The modified geometry

As mentioned above, in the literature there is limited information about the details of
the atomiser and, subsequently, about all surfaces constituting the inlet, as well as for
the outlet pipe. That is the reason why different configurations have been carefully
studied so as to find the appropriate geometry able to reproduce the inlet data-setup.
Before looking at the selected configuration in more detail, it’s necessary to take an
overview of all the patches forming the spray dryer.

Figure 6.2.1: Overview of the whole geometry.

38

Single patches constituting the whole geometry are briefly described in the follow-
ing list and represented in figures below. Details about boundary conditions will be
reported later.

e type wall:

— Wall: it’s the side surface of the chamber of the spray dryer;

— WallCone: it’s the side surface of the cone in the lower part of the spray
dryer;

— WallTop: it’s the top surface of the cylinder;

— Pipe: it’s the pipe through the exhausted air goes away;

— PipeTurn: it’s the last part of the pipe, that turns from the horizontal
direction to the bottom:;

— AtomizerInletCone: it’s the part of the truncated cone in front of the inlet;
— AtomizerBot: it’s the base of the truncated cone;

— AtomizerCone: it’s the truncated cone that is between the AtomizerInlet-
Cone and the AtomizerBot. From one of its bases the sprayer comes out;

— AtomizerPipe: it’s the little pipe of the sprayer;

— AtomizerInletFood: it’s the sprayer in itself, it is set as a wall in this first
step;

e type inlet:

— AtomizerInletAir: it’s the air inlet;

— InletPipe: it’s the pipe inlet, air is apired in;
e type outlet:

— QutletCone: where to heavy food particles are collected;

— QutletPipe: to the cyclon separator, air is aspired out;

Dimensions of each patch are reported in the table below:

Patch Dimension (m)
Wall h = 2.005
r=1.1075

WallCone h =1.725

r = 1.107

ro = 0.086

Pipe D =0.172
distance from WallTop= 3.005

PipeTurn ry = r9 = 0.086

39

AtomizerCone h =0.1914

r = 0.2058
h =0.1914
AtomizerInlet Air h =0.021
r; = 0.2059
ry = 0.2179
AtomizerInletCone h =0.021
ry = 0.2179
re = 0.2479

Table 6.2: Dimensions of patch.

Minor an major radius reported in table 6.2 (r; and ry) for both AtomizerinletAir
and AtomizerInletCone are better illustrated in Figure 6.2.2.

puua e
N
Y

=,

RS S AT
R Ty
SRS S

R
N RS
o s

(b) Difference between the two radii of the Atomizerin-
letCone.

Figure 6.2.2: Radii of the two atomizer patches.

40

AtomizerPipe

)

b

(

AtomizerInletFood

)

a

(

AtomizerCone
AtomizerInletAir

)

d

(
(1)

Figure 6.2.3: Different parts of the atomizer.
41

AtomizerBot

)

AtomizerInletCone

C

(
)

[§]

(

(a) WallTop (b) Wall (c) WallCone

Figure 6.2.4: External wall.

355 360 365 370 375

(a) Position (b) Overview of the atomizer

Figure 6.2.5: Atomizer.

(c) OutputPipe length (d) PipeTurn

Figure 6.2.6: Pipe for the exhausted air and outlet surfaces.

42

As stated above, some parts of the geometry have been varied in the most appro-
priate way because of the absence of reliable data in literature; let’s now proceed to
the description of the modified geometry, subject of this thesis, by detailing the step
process.

As concerns the atomiser, different configurations have been studied. In the litera-
ture take as a base reference [3|, |7], [24], the atomizer is an annulus and the velocity
has been described via its components in polar coordinates. In the case study, the
lateral surface of a truncated cone has been chosen to use as inlet. The surface has
normal direction, parallel to the velocity vector. In addition, it has been maintained
the same extension of the surface of the inlet in the literature, so as to obtain the same
average velocity by imposing the same airflow as inlet condition.

Another component that has been varied in the geometry under consideration is
the vertical part of the pipe. This component is the first piece of duct that absorbs
particles evolving into the spray dryer and it has been named PipeDown as shown in
Figure 6.2.7 (highlighted in blue):

Figure 6.2.7: PipeDown.

In particular, three different configurations of the PipeDown have been tested in
order to choose the one which was able to approach literature data with most successful.
Three different simulations have been run as the length of the PipeDown changes, as
can be seen in Figure 6.2.8. These lengths have been chosen so as to try a wide range
of cases:

case A) Lpipepown = 0.5D
case C) Lpipepown = 2D

case D) Lpipepouwn = 0.3m

where D = 0.172 m is the pipe diameter.
Finally, the choice fell on the case C) for which Lpjepown = 2D = 0.344 m. The
reason of this selection will be better explained in chapter 9.

43

Figure 6.2.8: Different configurations of the PipeDown. case A) on the left - case C)
in the middle - case D) on the right

Again with regard to the pipe, its output length aside from the spray dryer chamber
(Figure 6.8 - (c)) was not exactly specified in reference models, so it has been decided
to impose it as the same length of the cylinder radius 1 = 1.107 m, as shown in Figure
6.2.9:

Figure 6.2.9: Pipe output length.

44

6.3 Reference values of velocity and temperature

Besides reference geometry, it has been very important to find the corresponding ref-
erence values of velocity and temperature in order to compare results of the case study
with the literature . In particular, results reported by Anandharamakrishnan 24| have
been taken as baseline for this thesis. These results have been calculated in two different
cross sections of the spray dryer as shown in Figure 6.3.1:

e Near Outlet: cross section 1.7 m away from the OutletCone

e Near Inlet: cross section 3.4 m away from the OutletCone

(a) Near Outlet (b) Near Inlet

Figure 6.3.1: Reference sections

Anandharamakrishnan’s references are now represented below; notice that in Figure
6.3.2 are reported results belonging to different models, but all obtained with the same
geometry; in particular Kieviet’s experimental measurements [3], Huang’s simulation
prediction 7] and different simulation predictions from two distinct Anandharamakr-
ishnan’s models [24] can be distinguished.

45

(b) 7 1 ——Anandharamakrishnan model-X
----- Anandharamakrishnan model-Y
Kieviet (199 imental
(a) — Anandharamakrishnan modet -X * ta- (1997) experimen
e —~ —+—Huang et al.(2004)-Y
EA «+++ Anandharamakrishnan model -Y %
I ¢ Kieviet (1997) experimental
E data-Y T .
< —+— Huang et al.(2006)-Y 2
3)
2 <
-E 13
= 2
g K]
z k
£ >
o .
2 K / LU R S - - b
e i T T —0 T T T T ! ' 12 -1 08 -06 04 -02 02 04 06 08 1 12
-12 -1 -08 -06 -04 -029 (02 04 06 08 1 12 -1
(a) Velocity profile Near Inlet. (b) Velocity profile Near Outlet.
420 ——Anandharamakrishnanmodel -X
480 - (®) W — .- Anandharamakrishnan model-Y
(a) Anandharamakrishnan model-X
& Kieviet (1997) experimental
480 1 ax ----- Anandharamakrishnan model-Y data <Y
——+—Huang et al.(2006)-Y
& Kieviet (1997) experimental _ et
—~ data-Y < N
I3 —+——Huang et al. (2006)-Y = \
° e
- 3
§ £
8 = 2
-3 : - E
E)
= =
340 §

— X —920 " i T ' — - —320
12 09 06 03 0 03 06 09 12 42 09 06 03 0 03 06 09 12
Radial position (m) Radial position (m)

(c) Temperature profile Near Inlet. (d) Temperature profile Near Outlet.

Figure 6.3.2: Results reported by Anandharamakrishnan [24].

One of the key points of this thesis will be the comparison between the results of the
case study and the Kieviet’s experimental measurements, so as to verify the validity
of the model developed in this thesis; it will be also essential to compare the current
results with those of Huang and Anandharamakrishnan in order to take into account
the limits of the CFD code compared to the real case.

46

7 Mesh generation

In this chapter one of the most important step of this thesis, as concerns the accuracy
of the solution, is presented.

Mesh generation consists in dividing the physical domain into a finite number of discrete
regions called control volumes or cells in which the solution is sought. The mesh can
be internal or external, in this case the study regards internal aecrodynamics, so that
the only internal volume of the spray dryer geometry has been meshed.

Moreover, the choice fell on an unstructured mesh, meaning that it only requires as
input the element size on the lines and surfaces that define the geometry. Unstructured
meshes are generally hybrid meshes composed of different types of cell; in particular,
meshes used in this work are mainly composed of hexahedral cells, and to a lesser
extent tetrahedral cells, pyramids, prisms and polyhedra cells.

As regards the mesh quality, no single standard benchmark or metric can effectively
evaluate it, but users can rely on suggested best practices by assessing certain mesh
properties that can jointly give a sense of mesh quality [54]. These mesh quality metrics
are:

e Orthogonality
e Skewness
e Aspect Ratio

As shown in Figure 7.1, mesh orthogonality is the angular deviation of the vector S
(located at the face center f) from the vector d connecting the two cell centers P and
N. In very practical terms mesh orthogonality affects the gradient of the face center f,
it adds diffusion to the solution and it mainly affects the diffusive terms.

L]
N

Figure 7.1: Mesh orthogonality [54].

In accordance with Figure 7.2, skewness is the deviation of the vector d that con-
nects the two cells P and N, from the face center f. The deviation vector is represented
with A and f; is the point where the vector d intersects the face f. Skewness also adds
diffusion to the solution, and besides it affects the interpolation of the cell centered
quantities to the face center f and it influences the convective terms.

47

Figure 7.2: Mesh skewness [54].

As concerns the aspect ration AR, it is the ratio between the longest side Az and
the shortest side Ay referring to Figure 7.3. Large AR are suitable if gradients in the
largest direction are small, while high AR smear gradients.

Ax

Figure 7.3: Mesh aspect ratio [54].

Another important aspect of the mesh is its refinement level near the wall depending
on the turbulence near the wall and therefore on the "Law of the wall" (Figure 7.4).
This law states that the average velocity of a turbulent flow at a certain point is
proportional to the logarithm of the distance from that point to the "wall", or the
boundary of the fluid region. The "Law of the wall” can be analytically expressed as:

1
ut = z Iny" +C* (7.0.1)
where u™ is a dimensionless velocity and it represents the velocity u parallel to the wall
as a function of y (distance from the wall), divided by the friction velocity ..
yT is the wall coordinate expressed as the distance y to the wall, made dimensionless
with the friction velocity u, and kinematic viscosity v:

yt =20 (7.0.2)

14

where the friction velocity is expressed as a function of the fluid density and the wall

shear stress 7,,:
- N1/2
w = <_w> 7.0.3
p (7.0.3)

48

1
ut="Inyt L&
K

20 <

10’ 10° 10°

+

Y

1 B

Wiscous sublayer Buffer Log-law layer
Layer

Inner region Duter region

Figure 7.4: Law of the wall [54].
Different layers shown in 7.4 are better illustrated in Figure 7.5 .

Quter region

O Log-law layer
30 <y+ <300

Boundary layer

s O .
e

———= __ | Bufferlayer
QDGQQC) 10 <y+<30

Viscous sublayer
y+<10

Figure 7.5: Wall layers [54].

In CFD it is usual to employ a different near-wall treatment according to the avail-
able range of y*. In particular if:

e y" < 6 the boundary layer is resolved.
e 30 < y* < 300 wall functions are used.

Resolving the viscous sublayer involves the full resolution of the boundary layer and
therefore requires a high refinement level near the wall, while using wall functions

49

means that the boundary layer is modelled using a log-law wall function and a lower
refinement level is enough. This is efficiently shown in Figure 7.6.

Outer raglen Quter reglan

G Liog-law layer O Log-law layer
0 < ye <200 0 <y <300

yYyYyYv*7v%

O

e R} S
== .| Sufferuayer
Wy T0

G_ad
Sge™H

5

Boundary layer
Boundary i yor

No wall-functions Wall-functions

Viraus sabayer
¥e <10

Figure 7.6: Different near-wall treatments [54].

As it will be seen in chapter 8, wall functions have been chosen for tested cases
because in drying process internal aerodynamics are more relevant than the forces or
the heat transfer on the walls.

As regards the mesh generation, OpenFoam provides the right tools: blockMesh and

snappyHexMesh utilities have been used to generate the mesh. The snappyHexMesh
utility generates 3-dimensional meshes containing hexahedra (hex) and split-hexahedra
(split-hex) automatically from triangulated surface geometries, or tri-surfaces, in Stere-
olithography (STL) or Wavefront Object (OBJ) format. The mesh approximately con-
forms to the surface by iteratively refining a starting mesh and morphing the resulting
split-hex mesh to the surface. The specification of mesh refinement level is very flexi-
ble and the surface handling is robust with a pre-specified final mesh quality [56]. In
order to run snappyHexMesh a background hex mesh which defines the extent of the
computational domain and a base level mesh density is required. This is achieved by
using the blockMesh utility.
In Figure 7.7 it is possible to see the final step of the mesh generation. High refinement
levels have been employed where more accuracy is required as shown in Figure 7.8. In
fact the Inlet and the external and internal surface of the Pipe are the most sensitive
and turbulent regions of the spray dryer.

20

\ l A / RN LZANZAY A FAN § INKNKN
(a) Inlet refinement (b) Pipe refinement

Figure 7.8: Refinements overview.

o1

7.1 Different cases

As previously said in chapter 6.2, three different configurations of the PipeDown have
been tested (see Figure 6.2.7), so likewise meshes have been realized. Figure 7.1.1 shows
the pipe refinement detail of the three different meshes as the lenght of the PipeDown

changes.

As for the specific details of the mesh, in table 7.1.1 and in table 7.1.2 are respec-
tively illustrated the mesh statistics and the value of the mesh properties for the three

different cases.

case A) | case C) | case D)
points 296’161 | 318’957 | 314’361
faces 859’861 | 9217221 | 908’811
internal faces | 828’191 | 886058 | 874331
total cells 2817975 | 301’260 | 297’354
hexaedra 268’543 | 287219 | 283’506
prisms 2’946 2858 2'834
pyramids 3’056 2’907 2’932
tetrahedra 3’148 27990 3’016
polyhedra 4’282 5286 5’066

Table 7.1.1: Mesh statistics.

case A) | case C) | case D)

non-Orthogonality max 71.2438 | 71.3278 | 83.4707
average | 7.03507 | 6.98172 | 7.01623

max Aspect Ratio 13.3881 | 13.6445 | 34.5057
max Skewness 2.46379 | 2.48323 | 3.23615

Table 7.1.2: Mesh quality metrics.

Returning to the earlier remarks about the Law of the wall, it is not possible to
know a priori the y* value; in fact, preliminar simulations have been run for a few time-
steps to get an estimate of it. The implementation of wall functions is then justified
by y* values calculated for certain patches of each different simulation, as can be seen
in table 7.1.3 (values reported in this table have been evaluated respectively for each

latest time of simulation).

02

B IV B B BN B el I el Y R Y

(b) case C)

NSNS NS RNNN

(c) case D)

Figure 7.1.1: Different mesh refinements varying the lenght of the PipeDown.

23

"S9SRD JUAISJIP 10] senfea _fi :¢ T°) 9[qR],

8EG'EY | CLT'6SC | €10 | 0L5°09 | L8V LLC | 669C | T96°G8 | ¢CL66C | LELO odig

L86'8¢ | GLEITT | L2000 | 999°LC | TL8°E0T | GEL'C | 8EVET | 66L°14C | 4C0°0 [OSSOA

6¢9°6€ | 0796 | SIV'T | LTSIV | LOV'S8 | 9I6°L | CG6C€EV | TSGP'86 | GL8°0 TZTWOy

96018 | OVSG'€0T | ¢TT'EL | G6T°€0T | POL'60T | TPS'86 | FI0'CY | S9E€°E0T | ¥LV G | POOAIS[UIRZITNOTY
o8eIoAr Xeul Ul | o8eloAr Xeul ur | o8eIoAe Xeul uru
((oseo (D oseod (y oseo

o4

8 Numerical schemes and boundary conditions

In this chapter numerical schemes and boundary conditions used for this thesis are
presented. Firstly, a brief introduction to numerical schemes generally used in Open-
FOAM are described in order to easily understand those chosen for this work as the
case studies change; same goes for boundary conditions, already introduced in chapter
4.5.

Numerical methods are at the heart of the CFD process. Researchers dedicate
their attention to two fundamental aspects in CFD: physical modeling and numerics.
In physical modeling, we seek a set of equations or mathematical relations that allow
to close the governing equations. On the other hand, the focus in numerics is to devise
efficient, robust, and reliable algorithms for the solution of PDEs.

Numerical schemes have to be set for terms that are calculated during a simulation,
such as derivatives in equations. In this regard, in OpenFOAM the schemes are specified
in the fuSchemes dictionary in the system directory. The terms that must typically be
assigned a numerical scheme in fuSchemes range from derivatives, e.g. gradient V, to
interpolations of values from one set of points to another. The aim in OpenFOAM is to
offer an unrestricted choice to the user, starting with the choice of discretisation practice
which is generally standard Gaussian finite volume integration. Gaussian integration
is based on summing values on cell faces, which must be interpolated from cell centres.
The set of terms, for which numerical schemes must be specified, are subdivided within
the fuSchemes dictionary into the categories below.

. . . 2
e ddtSchemes: schemes for first and second time derivatives , e.g. %, %

— steadyState: sets time derivatives to zero.

— Euler: transient, first order implicit, bounded.

— backward: transient, second order implicit, potentially unbounded.

— CrankNicolson: transient, second order implicit, bounded,

— localEuler: pseudo transient for accelerating a solution to steady-state using
local-time stepping; first order implicit.

e gradSchemes: schemes for gradient discretization, V

— Gauss linear: the Gauss entry specifies the standard finite volume discretisa-
tion of Gaussian integration which requires the interpolation of values from
cell centres to face centres. The interpolation scheme is then given by the
linear entry, meaning linear interpolation or central differencing.

— cellLimited Gauss linear: cellLimited scheme limits the gradient such that
when cell values are extrapolated to faces using the calculated gradient, the
face values do not fall outside the bounds of values in surrounding cells.
A limiting coefficient is specified after the underlying scheme for which 1
guarantees boundedness and 0 applies no limiting.

e divSchemes: schemes for divergence discretization, V-

— Gauss linear: second order, unbounded.

25

— Gauss linearUpwind: second order, upwind-biased, unbounded (but much
less so than linear), that requires discretisation of the velocity gradient to
be specified.

— Gauss limitedLinear: linear scheme that limits towards upwind in regions
of rapidly changing gradient; requires a coefficient, where 1 is strongest
limiting, tending towards linear as the coefficient tends to 0.

— Gauss upwind: first-order bounded, generally too inaccurate to be recom-
mended.

e snGradSchemes: schemes for gradient discretization in direction perpendicular
to the boundary

— corrected: orthogonality requires a regular mesh, typically aligned with the
Cartesian co-ordinate system, which does not normally occur in meshes for
real world, engineering geometries. Therefore, to maintain second-order ac-
curacy, an explicit non-orthogonal correction can be added to the orthogonal
component, known as the corrected scheme. The correction increases in size
as the non-orthonality, the angle a between the cell-cell vector and face
normal vector, increases.

— limited corrected: as a tends towards 90°, e.g. beyond 70°, the explicit
correction can be so large to cause a solution to go unstable. The solution
can be stabilised by applying the limited scheme to the correction which
requires a coefficient v, where =0 corresponds to uncorrected and =1
corresponds to corrected.

laplacianSchemes: schemes for Laplace operator discretization, V2

— Gauss linear corrected: the Gauss scheme is the only choice of discretization
and requires a selection of both an interpolation scheme for the diffusion
coefficient and a surface normal gradient scheme.

— Gauss linear limited corrected

interpolationSchemes: schemes for interpolating from cell centers to cell faces

— linear

fluxRequired: quantities for whom the flux is computed

wallDist: distance to wall calculation, where required.

OpenFOAM includes a vast number of discretisation schemes, those just listed are
typically recommended for real-world, engineering applications.

Another important file is the fuSolution utility in which are stored parameters for
solving system of linear equations and parameters for numerical method. The most
important parameters contained in fuSolution are listed below arrenged for sections:

e solvers: this section defines which linear system solvers are used to compute quan-
tities (partial differential equations are transformed to system of linear equations)

26

— solver: it defines which linear solver is used choosing between GAMG (gen-
eralised geometric-algebraic multi-grid), smoothSolver (solver that uses a
smoother), PCG/PBiCG (reconditioned (bi-)conjugate gradient, with PCG
for symmetric matrices, PBiCG for asymmetric matrices) and diagonal (di-
agonal solver for explicit systems)

— preconditioner: it defines preconditioner of linear system solver

— relTol: it defines relative tolerance of linear system solver (order of residual
decrease for each iteration)

— tolerance: it defines absolute tolerance of linear system solver (initial resid-
ual is checked)

relaxationFactors: relaxation factors for individual quantities are defined here

PISO, SIMPLE or PIMPLE: in this section algorithm and convergence criteria
are defined

— nNonOrthogonalCorrectors: it defines the number of non-orthogonal correc-
tors in order to have a suitable convergence on non-orthogonal meshes (0
for orthogonal mesh and 20 for strongly non-orthogonal mesh)

To finally reach the setup simulation involving air flow and particles together, dif-
ferent cases have been tested starting from a simplified configuration regarding the
only flow evolution, introducing ever more parameters so as to efficiently approach to
the real case.

For reasons of simplification, single patches presented in sub-chapter 6.2, have been
regrouped for each case as follows; it is also indicated the corresponding base type of
boundaries (see paragraph 4.5.1) for every patch.

AtomizerInletAir - type inlet
AtomizerInletFood - type wall

Atomizer: it includes AtomizerCone, AtomizerInletAir, AtomizerBot and Atom-
1zerPipe - type wall

Vessel: it includes WallTop, Wall and WallCone - type wall
Pipe: it includes QutputPipe length, PipeTurn, and PipeDown - type wall
OutletPipe - type outlet

OutletCone - type outlet

As regards the turbulence model implemented, after a preliminary comparison with
the kEpsilon model, the kOmegaSST has been chosen as the model used for all different
configurations tested in this thesis because it allows to combine the advantages of both
kEpsilon and kOmega models. For more informations about turbulence models, see
chapter 3.7.

57

8.1 Case with only the flow

Once the suitable setup geometry has been found (see sub-chapter 6.2), the first set
of simulations has been run. In this case the only air flow (incompressible flow) has
been investigated in order to search a fully developed solution, or rather a steady or
statistically steady solution which can be used as basis for following simulations.

OpenFOAM does not have a generic solver applicable to all cases, in fact users must
choose a specific solver for a class of problems to solve. The solver pimpleFoam has
been chosen as the most suitable for this case; it is a large time-step transient solver
for incompressible flow, and its name reflects the algorithm used, namely PIMPLE
algorithm, which is an hybrid between SIMPLE and PISO algorithms [48]. PIMPLE
allows transient solutions of higher Courant numbers, it iterates and under-relaxes the
solution of pressure-velocity coupling within a time step and PIMPLE-loop ends by
reaching either a static number of iterations or a residual limit e.

Let’s give a brief definition of the Courant number: in mathematics, the Courant-
Friedrichs-Lewy (CFL) condition is a necessary condition for convergence while solving
certain partial differential equations numerically by the method of finite differences. It
arises in the numerical analysis of explicit time integration schemes, when these are
used for the numerical solution. As a consequence, the time step must be less than
a certain time in many explicit time-marching computer simulations, otherwise the
simulation will produce incorrect results. The principle behind the condition is that,
for example, if a wave is moving across a discrete spatial grid and its amplitude at
discrete time steps of equal duration must be computed, then this duration must be
less than the time for the wave to travel to adjacent grid points. As a corollary, when
the grid point separation is reduced, the upper limit for the time step also decreases.
That is why the Courant number is introduced; for a general n-dimensional case:

n u)
C=At < Craa 8.1.1
;Am < (8.1.1)

where At is the time step and Auxz; is the spatial variable. The value of C),4,
changes with the method used to solve the discretised equation, especially depending
on whether the method is explicit or implicit. If an explicit (time-marching) solver
is used then typically C,,.,=1. Implicit (matrix) solvers are usually less sensitive to
numerical instability and so larger values of ()., may be tolerated.

URANS model (see sub-chap. 3.9) allows to use a higher Courant numbers, because
with this model it is possible to neglect small-scales turbulence and, therefore, it is
possible to use an high value of the time step (eq 8.1.1). In fact the value used in this
case has been C,,,, = 2, so as to have a faster simulation without losing accuracy.

In this configuration, the calculated flow physical variables are the turbulent ki-
netic energy k, the specific dissipation w, the vorticity z, the pressure p, the velocity
magnitude U and its components U, U, U, and the turbulent viscosity vr (that is not
a physical property). The temperature and therefore the heat transfer are neglected in
this case.

The boundary conditions and the initial conditions for these quantities are shown
in table 8.1.1.

o8

ATUO MOJ - SUOIIPUOD AIRpUNO(q pue [RIJIUT T 9[(R],

[—z] 0 wopiun :onpea [erur
14

[—z] 0 woyiun :onpea perytur
14

[—z] 0 woyiun :onpea reryiur
14

{La} - Ky1s00s1A JuaNqINY

pojemores poye[nores UOTOUTL[[RANINT
5T o- : T an- :
JIOTPRIN0IOZ [7] 8¢'% wuojrun :onfea rerjrut [7] 8¢'% ttiojrun :onyea renrur {m) - woryedissip oymwads
aN[eA PoxY UoTOUN J[[eA\ BSoUIO
JUSTPRIN0IIZ _NE_ £e0 0 HHORHR .@MMWM EMMHM _NE_ =00 ESMMWUMMEWEEMHM {31} - A8xouo oryoury jusnqIny
]] [BAPOXY] Bun AR MY P
[£] (0 0 0) waogrun onpea reyrut | [] (0 0 0) wogrun ouyea fenrut | [] (0 0 0) WLIOJIUN GNRA [RTIUL 2} - fyonion
pojemoren poyernores pojemores < o
S . — 5 .
[l (0/0/0) wmzogtun, :OUODINO 105 ONIEAPOXY - FE_ ST70 SIRUNMOLIPHIDHIO: [@] (0 0 0) wojun onyep poxy {a} - £fyoorea
ad1g1e(9In() I0J JUSIPRIN)OISZ K)TOO[DA JOTUTOIR Y MO <
=~ - ad o
NE 00T~ TLOHTUR -0CdIOBNO 103 ON[EAPOXY _ JUSTPRIN)0IDZ juotpernotaz | {,d} - omssoid pazipeurrou-d
QU0 JO[IN() I0] JUSIPRINOIIZ
Jo[IMO0 jorur S[Tem

29

The primitive types boundary conditions such as zeroGradient, fixedValue and cor-
rected are already described in paragraph 4.5.2 . The last two conditions are very
intuitive while for the first one is reminded that it extrapolates the quantity to the
patch from the nearest cell value; the meaning is, the quantity is developed in space
and its gradient is equal to zero in direction perpendicular to the patch (perpendic-
ular to the boundary). Translated into matematical expression, for example for the
p-normalized pressure, it results as follows:

Ipx _

= 1.2
5 =0 (8.1.2)

As concerns k, w and vr, in 8.1.1 there are also reported kgRWallFunction, omega Wall-
Function and nutkWallFunction that are respectively the wall functions for each vari-
able regarding the SST k-w turbulent model. These wall functions impose a wall-value
to each variable; for example the value of the specific dissipation w becomes:

6v
Wwall = 10— (813)
By?
where § = 0.075, v is the kinematic viscosity and y is the distance to the first cell
center normal to the wall.

Regarding the numerical schemes, part of the fuSchemes utility is reported in A.
Same goes to the fuSolution utility reported in B.

60

8.2 Implementation of the temperature

In this chapter the examination of the case of the air flow with the implementation of
the temperature is presented. Temperature is one of the most important variable in
spray drying process, it affects the resultant particles in a relevant way, particularly in
relation to the moisture content. The idea has been to run this case first without heat
transfer and then putting in practice it by varying therefore the boundary conditions.

The implementation of the temperature led to change the solver used; the choice fell
on buoyantPimpleFoam, a transient solver for buoyant, turbulent flow of compressible
fluids for ventilation and heat-transfer, that uses PIMPLE algorithm [48].

In the two cases represented below, a ()., = 2 is also imposed.

8.2.1 Flow without heat transfer

In this configuration, the physical quantities that have been calculated are the tem-
perature T, the turbulent diffusity ar, the turbulent kinetic energy k, the specific
dissipation w, the turbulent viscosity vr, the vorticity z, the pressure p, the velocity
magnitude U and its components U, U, U..

Initial and boundary conditions for these parameters are reported in table 8.2.1.
Please note that the boundary condition for temperature without heat transfer should
be zeroGradient but in this case a wallHeatTransfer condition has been imposed in
order to gain confidence with the heat transfer phenomenon. The wallHeat Transfer
condition provides an enthalpy condition for wall heat transfer and it requires as input
the wall temperature 7j,s and the thermal diffusivity ov,q;. This latter parameter has
been imposed as very low value so as to neglect the heat transfer (see table 8.2.1) and
so, walls can be considered as adiabatic surfaces.

Another new boundary condition that has been set is fired FluzPressure for dynamic
pressure: this boundary condition adjusts the pressure gradient such that the flux on
the boundary is that specified by the velocity boundary condition. The predicted flux
to be compensated by the pressure gradient is evaluated as (¢ — ¢p/4), both of which
are looked-up from the database, as is the pressure diffusivity used to calculate the

gradient using:
QA — @

~ [SfID,
in which ¢ is the flux, D, is the pressure diffusity and Sf is the patch face area [m?).

V(p) (8.2.1)

The values of the air inlet temperature (7" = 468K) and of the air temperature
outside walls (7" = 300K) have been extrapolated from literature as shown in table 6.1

Numerical schemes concerning this case are reported in appendices C and D.

61

I9JSURI} 101 oYM dInjeroduo) - SUOIIPUOD AIRPUNOQ pUR [RINU] :T°g'] O[qR],

_ _ () WLIOJIUN :9NJeA [BI}TUI

(5 _ () ULIOJIUN :ON[RA [RI}IUI

|5y _ () WLIOJIUN :9NJeA [BI}TUI

{Lr } - Ky1500s1A JUBINGINY

Ppojemore) _ pojemore) UOTPOUTL[[RAAINU
JUATPRIN 0197 [7] 8¢'% mwrojiun :onfea rerjrur m_ Q7 ¥ WLIOJIUN :ON[RA [eI}IUl
- on[eApoxy OO J[[E A B0 {m} - nonedssip oywods
JUDIPRIN) 0107 [@] L2070 uwwiopun :onyea reryrut _M‘M_ 120°0 ULIOJIUN :ON[RA [RI}IUL)
on[eA poxT - y} - AS10U0 d190ULy JUS[NCIN)
m_ (0 0 0) WwIOJUN ONJRA [RIIIUL g ORI A DY
UBE:.U ?m _L (0 0 0) wIOFIUN ONRA [RIjIUL m_ (0 0 0) ULIOJIUN dN[eA [RT}IUL
pore[oTed poYeInOTeD {z} - £&yo1y108

[2] (0 0 0) wrojun :onyea
oU0)IO[IN() 10 ON[BAPOXY

FWS_ G0 918 MO OTI}OWN]OA

[] (0 0 0) wIojTUN ONRA POXT]

{n} - £aopa

odr o1 10J JUDIPRINOIOZ A3100[9 A JOTUTOYRY MOY
[pd| ¢zzT01 wiojum
ad1ge1InQ I10J oN[RAPIXY zow
[D] GZETOT WIojIUN :onyeA [eIjIuL JUSIPRIN)0ISZ _ GZET(T wIojun :anjea [errut (wd J - q
OU0)IO[IN() 10J SINSSAIJXN][PIXT] - 9INSSOIJXN]POXT] anssoxd orureudAp
N%S

%

_ GCCTOT wIojiun anjfeA [erjrur

%E GZETOT WLIOJIUN :oNJeA [BIJTUI

JUIPBIN)OISZ
PoajeInore) poYenOTED {d} - omssoxd
JUDTPRIN0I0Z |55] 0 waojum ongea eryrur st 68 0=11g
porTRT ﬁﬂ_ ' EM&ES oniEa T {Lo} - Lysnygip reurtayy
(5 7] 100°0=1""0 osoqsm:@\(ﬁﬁaﬁm
goom = Jup [55] 100 0=1""0
E_oom = Jup

[31] 00¢ wIojtun :onyea rerjrul

[37] 89% wLiojrun :onyea

[37] 00¢ wIoJTUN :onTeA [eTITUT

{1} - emjernduroy

QU0 10} IoJsueI] JeOF[[eM ONPAPOXY S[rem I9Y30 IO -
adIJ391IN(Q) 9} I0] JUSIPRINOIZ @Mwm ohgpwmmqf%amem:@&

I 10J JUSIPRIN)OIOZ

JoIN0 jorul s S[rem

62

8.2.2 Flow with heat transfer

Implementing the heat transfer, initial and boundary conditions are the same reported
in table 8.2.1 for the previous case, except for the temperature of the Vessel wall (see
list in chap.8 pag. 48, and Figure 6.2.2). For this patch the externalWallHeatFluz-
Temperature condition has been imposed; this BC supplies a heat flux condition for
temperature on an external wall. The idea is to calculate the heat flux ¢ [W/m?] by
fixing the heat transfer coefficient h [W/m?/K| and the ambient temperature T, [K]
as shown in eq. 8.2.2.

¢ = h(T, —T,) (8.2.2)

where T, is the temperature on the wall, while the heat transfer coefficient and the
ambient temperature have been extrapolated from literature: (see also table 6.1)

h =35 [W/m?/K]
T, = 300 [K]

As regards the numerical schemes, the fuSchemes and the fuSolution utilities are
the same of the case without the heat transfer, respectively shown in appendices C and
D.

8.3 Implementation of the particles

Finally, the last implementation step is presented. Particles are injected and compu-
tational calculations start from the average field of a developed flow (calculated from
a previous simulation 8.2.2). In this case air flow and particles evolve together in
the spray dryer, and that is the reason why the choice fell on the reactingParcelFoam
solver that is a transient PIMPLE solver for compressible, laminar or turbulent flow
with reacting multiphase Lagrangian parcels [48].

This kind of solver uses the thermophysical model library by reading the ther-
mophysical Properties dictionary. Thermophysical models are concerned with energy,
heat and physical properties and they are constructed in OpenFOAM as a pressure-
temperature (p-T') system from which other properties are computed. There is one
compulsory dictionary entry called thermoType which specifies the package of thermo-
physical modelling that is used in the simulation. OpenFOAM includes a large set of
pre-compiled combinations of modelling, built within the code using C+-+ templates.
This coding approach assembles thermophysical modelling packages beginning with
the equation of state and then adding more layers of thermophysical modelling that
derive properties from the previous layer(s) [55]. The thermoType used in this thesis
is described in the following list:

e heRhoThermo: it is a thermophysical model for reacting mixture, based on p.

e reactingMixture: it specifies the mixture composition. It is used for mixtures with
variable composition and so, it requires the thermophysical models coefficients to
be specified for each specie within sub-dictionaries named after each specie.

e polynomial: it is a transport model evaluating dynamic viscosity u, thermal
conductivity k and thermal diffusivity a. Polynomial model calculates p and k

63

as a function of temperature T from a polynomial of any order N, e.g.:

N-1
p=> aT (8.3.1)
=0

where a; are polynomial coefficients.

e hPolynomial: it is a thermodynamic model evaluating the specific heat C,, from
which other properties are derived. hPolynomial model calculates C), as a function
of temperature by a polynomial of any order N, e.g.:

N—-1
Cp=> aT (8.3.2)
=0

e sensibleEnthalpy: it selects the energy variable (enthalpy in this case). The word
sensible means that in the (sensible) energy heat of formation is not included.

e icoPolynomial: it is an incompressible, polynomial equation of state, e.g.:
p=Y aT’ (8.3.3)

e specie: the basic thermophysical properties are specified for each species from
input data. Data entries must contain the name of the specie as the keyword,
e.g. O2 or H20 mixture, followed by sub-dictionaries of coeflicients, including
specie: it contains, i.e., number of moles of the specie and molecular weight in
units of g/mol.

As concerns the interactions such as the collisions between the particles in the
dispersed phase, they are not taken into account in any cases tested in this thesis.
Moreover, the coupling between the continuum phase and the dispersed phase (see
equations in chapter 3.10) can be treated differently depending on the nature of the
flow and on the nature of the particles. The effect of the dispersed phase on the con-
tinuum phase has been assumed not significant according to a preliminary study on
the Stokes number that will be briefly presented.

Before that, let’s summarise what has been stated: a one-way coupling has been con-
sidered sufficient because particle-particle interactions and the effect of the dispersed
phase on the fluid flow are negligible. In this case, no additional body forces f; appear
in the momentum equation of the continuum phase (eq. 3.9.1), so the term f; is im-
posed equal to 0 as is shown in eq. 3.9.2.

The Stokes number is a dimensionless number characterising the behavior of particles
suspended in a fluid flow and it is defined as the ratio of the characteristic time of
a particle (or droplet) named response time 7,, to a characteristic time scale of the
surrounding flow 7,:

St="1 (8.3.4)

Ta

64

The particle response time 7, is a crucial parameter in evaluating the particles trajec-
tories that depends on the particle mass, the fluid viscosity and the particle Reynolds
number as can be seen in eq. 8.3.5:

_ pody
Tp = 2/3
18410(1 + 0.15Re2)

(8.3.5)

where p, is the particle density, f, is the fluid dynamic viscosity and the particle
Reynolds number is defined as:

B dp}'vp — va‘

Re, = (8.3.6)

Va

in which d,, is the particle diameter, v, is the fluid cinematic viscosity and ‘vp - 'va| is
the magnitude of relative particle-to-air velocity. Instead, the characteristic time scale
of the surrounding flow 7, is defined as follows:

Ta = (ﬁ)m (8.3.7)

€

where € is the turbulent dissipation.

A particle with a low Stokes number follows fluid streamlines (perfect advection), while
a particle with a large Stokes number is dominated by its inertia and it continues along
its initial trajectory.

The Stokes number has been evaluated on three different sections of the spray dryer:
cross section Near Outlet (Figure 6.3.1 - case a), cross section Near Inlet (Figure 6.3.1
- case b) and the Inlet Pipe (Inlet of PipeDown shown in Figure 6.2.7 - case C).

An approximate, but reliable evaluation of this parameter has been possible on the
basis of numerical results obtained from previous simulations (8.2.2) and thanks to
experimental measurements regarding dried particles (olive pomace extract mixed to
maltodextrin) provided by the Material Engineering Laboratory of DICCA - University
of Genoa. These measurements have been carried out using a Mini Spray Dryer B-
290.

Variables have been considered in order to have a suitable range of the Stokes number
for each sections, estimating the minimum and the maximum value as reported in table
below:

Near Inlet | Near Outlet | InletPipe
Stmin | 0.01 5.98e-06 8.86e-04
Stimaz | 4.34 2.35 21.52

Table 8.3.1: Evaluation of Stokes number.

As can be seen from table 8.3.1, the range of the Stokes number is restrained and
very close to 1 meaning that it is possible to neglect the effect of the dispersed phase
on the continuum phase.

Concerning the Courant number, the C,., is imposed equal to 2, as was the case
with the only flow (sub-chap.8.1).

65

An important issue in the particles implementation is clearly represented by the
injection model. The injection model can deeply influence the drying process, in fact
injection settings have been entirely extrapolated from the literature (see table 6.1) in
order to have comparable results. The model chose is, therefore, the Conelnjection-
Model so as to use all the available informations; in fact the ConelnjectionModel is a
multi-point injection model in which users specifies the time of start of injection, the
list of injector positions and directions (along injection axes), parcel velocities, inner
and outer spray cone angles, parcel diameters obtained by distribution model (Rosin
Rammler, see table 6.1) and number of parcel to inject per injector (one in this case,
see Figure 6.2.4 - case a and b). The latter information is the only variable. Please,
note that parcel means a group of particles, but in this thesis they are imposed as the
same.

Once the fundamental aspects such as the ThermoType equatioins, the coupling
between the two phases, and the injection model was imposed, different cases have
been tested by varying the dispersed phase (liquid or solid), the number of injected
particle per second and the wall interaction model for Vessel and Pipe patches (see list
in chap. 8 - pag. 48).

In particular, treated cases are illustrated in table 8.3.2 :

dispersed phase | wall interaction model number of injected
particles per second
case 1 | liquid rebound 2’000
case 2 | liquid stick 2’000
case 3 | liquid rebound 20’000
case 4 | liquid stick 20’000
case b | solid rebound 2’000
case 6 | solid stick 2’000

Table 8.3.2: Different treated cases for particles implementation.

where:
e stick: it assigns zero velocity to the particles that impact on the wall.
e rebound: it specifies elasticity and restitution coefficients.

and the dispersed phases that have been tested are water droplets (liquid) and olive
pomace extract mixed to maltodextrin particles (solid). As concerns the initial and

boundary conditions of the physical quantity calculated, it is possible to consult the
previous case about the implementation of the temperature with heat transfer (8.2.2)
because conditions imposed are the same. In this case, the thermophysical model needs
more informations about species at stake because of the polynomial equations used (see
appendix E).

Numerical Schemes are illustrated in appendices F and G.

66

9 Results

The main results of this work are now presented. First, the convergence criteria are
explained showing some numerical examples and then, the simulation results are il-
lustrated for each case (as outlined in chap. 8) as well as a comparison between the
different cases.

9.1 Convergence study

In CFD analysis, the convergence of the iterative solution is defined by looking at
Residual values because they directly quantifies the error in the solution of the system
of equations. The residual measures the local error of a conserved variable in each
control volume. Therefore, every cell in the model will have its own residual value for
each of the equations being solved. In an iterative numerical solution, the residual will
never be exactly zero. However, the lower the residual value is, the more numerically
accurate the solution. In particular, residual reference values of best practice have been
set in different cases studied in this thesis, as can be seen in table 9.1.1. When the
solver reaches these values, it stops iterations and it moves to the next instant.

turbulent kinetic | turbulent specific
energy dissipation
residual value | 1e-06 1e-08 1e-08 1e-08

pressure | velocity

Table 9.1.1: Residual values for different physical quantities.

An example of the evolution of the residuals is reported in Figure 9.1.1. This figure,
referring to the case C' (see Figure 6.2.7), reports the initial values of the residuals in
order to have a precautionary approach because initial values are also higher values.

Residuals
0.1 T
oy —
(15
Uz —
k [
0.01F D]
omega ——
— 0001 F
i
i}
)
-—
[
[uf}
S0.0001 B
-
m
-—
=
-—
s
= 1e-05F E
Le-06 b \li ma| kA .]}v.v|
18-07 n n n n n n n n n
ol z 4 2] 3 1n 1z 14 16 15 =
Time [s1

Figure 9.1.1: Residual values for case C.

67

Moreover, simulations have been found to be time-dependent having no periodic
state response. That is the reason why analyses are performed over a statistical steady-
state regime, reached after an initial transient stage. The statistical steady-state regime
has been confirmed by the convergence analysis shown in Figure 9.1.2; the magnitude
velocity plot has been calculated as the time window changes until a suitable overlap
has been found between different profiles. This kind of analysis has been done for
velocity magnitude profiles calculated in two different sections (Near Outlet and Near
Inlet as can be seen in Figure 6.3.1) in order to have more accurate results.

9 T T T T T T T 9 T T T T T T T
40s-200s 40s-200s
8 I 60s-200s b 8 60s-200s b
80s-200s 80s-200s --------
7r 100s-200s T 7r 100s-200s T
120s-200s % 120s-200s
6 140s-200s 7 6 140s-200s 7
@ 160s-200s & 160s-200s - - - -
€ 5r literature & € 5r literature 2~
5 4r 1 3 4f 1
3t . 3t .
2 b - 2 F Sﬁi»\ N
0 0 TR 1 1 LS S
-1 -08 -06 04 02 0 02 04 06 08 1 -1 -08 -06 04 02 0 02 04 06 08 1
y [m] y [m]
(a) Near Inlet (b) Near Outlet

Figure 9.1.2: Velocity magnitude on different time windows.

As can be seen in Figure 9.1.2; the statistical steady-state regime for the case C
has been reached after 200 seconds, while for other cases (see Figure 6.2.7) convergence
has been reached earlier: 20 seconds for case A and 30 seconds for case D.

As stated above, no periodic state response has been found. To verify that, a
spectral analysis has been implemented. As it can be seen in Figure 9.1.3, referring to
the case C, no dominant frequency has been found.

68

Feriodogram Using FFT
40 T T T T T T T T T

oF -. -

20k 1. _

Power/Frequency (dB/Hz)

EOF-_ -

a0 A S S SN SR SR SN
1 g 3 4 3 6 7 g 3 10
Freguency (Hz)

Figure 9.1.3: Spectral analysis for case C.

9.2 Varying the geometry

Different simulations have been run varying the geometry as reported in chapter 6. In
particular different configurations of the air inlet and of the vertical part of the pipe
(see Figure 6.2.7) have been studied because of the absence of reliable data in the
literature.

As concerns the angle of the air inlet, results are not presented because a variation of
this parameter does not affect the results.

On the contrary, interesting results emerge varying the length of the PipeDown (see
Figure 6.2.6). In Figure 9.2.1 the magnitude velocity profile is reported for each case;
each plot has been calculated for the respective time convergence.

As regards the inlet (a), no relevant differences are noted, while for the outlet (b)
the case C was found to be the configuration that better approaches to the literature
data. That is the reason why case C' has been chosen as basis for the cases in which
temperature variations and particles are accounted for.

69

g T T T T T g T T T T T
case A case A
8 I A M case C —— - 8 I case C —— -
4\ l case D case D
7r : \ literature] 7r literature]
IS O N

o B " i o L i

E° v \ E° ,

S 4r R 5 4r / i
3t ‘ . 3t / .
2 j | - 2 ,// -
1+ / \ . 1+ / .
0 1 . 0 1 1 1 i T 1

1 0.5 0 0.5 1 -1 -0.5 0 0.5 1
y [m] y [m]
(a) Near Inlet (b) Near Outlet

Figure 9.2.1: Velocity magnitude profiles for different cases.

A detailed analysis of case C' is found in Figure 9.2.2, where different colour plots
have been taken into account for each variable of the problem in order to better under-
stand the internal aerodynamics and thermodynamics. As shown in Figure 9.2.2, the
colour plots have been evaluated in a y-z plane sectioning the spray dryer.

70

/’ Vort mag

turb viscosity
0.045 -

Figure 9.2.2: Overview of the results of each calculated variable for case C. a) the
magnitude of the velocity U - b) z velocity component U, ; it is the most relevant one
- ¢) pressure p - d) the magnitude of the vorticity Z - e) the turbulent kinetic energy
k - f) the specific turbulent dissipation w - g) the turbulent viscosity vr

71

9.3 Turbulence models

At the beginning of this work, a preliminar study on turbulence models has been done
in order to appreciate the most performing one. The k-¢ model used in the literature
[3], [7], [24], has been compared to the SSTk-w model on equal terms (same geometry
and same mesh). From Figures 9.3.1 and 9.3.2 it is possible to deduce that the two
turbulent models return the same values for both the inlet and the outlet sections.
Finally, the choice fell on the SSTk-w because it puts together the advantages of the
k-w and k-e models (see chapter 3.7).

6

U1 s ol
st Sl
at al
3t 3l
2} Jl
1F 1+
y [m] y [m]
s ~1.0 ~0.5 0.0 0.5 To s s ~10 ~os 0.0 05 10 15

(a) Near Inlet

(b) Near Outlet

Figure 9.3.1: Velocity magnitude profiles calculated with SSTk-w model.

U] (e 01t
5k 5k
at ol
3t 3l
2t 2}
1t il
y [m] y [m]
i)145 -1.0 -0.5 0‘.0 0.5 1.0 15 =15 —Il.O —(I).S 0‘.0 0‘.5 lI.O 15

(a) Near Inlet

(b) Near Outlet

Figure 9.3.2: Velocity magnitude profiles calculated with k-e model.

72

9.4 Implementation of the temperature

In this chapter results of the temperature implementation are presented. The first step
has been to add only the temperature variable to the developed solution of the Case
C, considering therefore an adiabatic case. Then, also the heat transfer on the external
walls has been implemented. The last cases are compared to the case C' (only the flow)
and to the literature data as shown in Figure 9.4.1.

10

U] [m/s]

T T T T T T 10
heat transfer
adiabatic

case C -------- i 8

literature

U] [m/s]

-1

-0.8 -06 -04 02 0
y [m]

(a) Near Inlet

02 04 06 08 1

T T T
heat transfer
adiabatic
case C --------
literature O

-1

02 04 06 08 1

0.8 -06 -04 02 0
y [m]

(b) Near Outlet

Figure 9.4.1: Velocity magnitude profiles for different cases.

Moreover, Figure 9.4.2 shows the effect of the heat transfer on the temperature
profile evaluated near inlet and near outlet.

500

450

400

TIK]

350

300

500

Heat transfe‘r
adiabatic -------
______ literature e

ﬁ.\\ 450

/ ’_\‘-‘
£ 400

° ° . . . -

L]
350
300
e 05 0 05 1 15 .

y[m]

(a) Near Inlet

Heat transfe‘r
adiabatic -------
literature ®
r// T
° ° . ° ¢ ° . o i o
1.5 -1 -0.5 0 0.5 1 1.5
y[m]

(b) Near Outlet

Figure 9.4.2: Temperature profiles for different cases.

In addition to the velocity and temperature fields, also a spectral analysis has been
conducted. Neither of the two temperature simulations have a dominant frequency
(Figures 9.4.3 and 9.4.4) in accordance to what was verified for the case C.

73

Fower/Frequency (dB/Hz)

Power/Frequency (dB/Hz)

40

30

2l

10

-10

-20

-30

-50

-60

40

20

Feriodogram Using FFT

-0

T T T T T T T T T
L Il .. _
I bl il
i [l :
....................... 18 [i
h
| | | | | | | | |
1 2 3 4 a] 7] 9 10
Freguency (Hz)
Figure 9.4.3: Spectral analysis for the adiabatic case.
Feriodogram Using FFT
T T T T T T T T T

1 g 3 4 3 6 7 & 3 10
Fregquency (Hz)

Figure 9.4.4: Spectral analysis for the case with heat transfer.

74

Colour plots for both adiabatic and heat transfer cases are now reported. The im-
plementation of the temperature justifies also an increase in problem variables. The
temperature field and the turbulent diffusity ar are added compared to Figure 9.2.2
(that represents the case with only the flow). Moreover, temperature and velocity have
not been calculated as instantaneous fields, but the mean fields have been considered.

UMean Mag UMean Z
= 2 .

4 =
£31.5 P— | a _
! i 21 , 1 0
10.5 vk E-1 vk

2 = 1.02e+05

0 = -2

Vort mag
- 100

" 0

turb viscosity
-0.03

Figure 9.4.5: Color plots the adiabatic case. Please, note that in picture i) "alphat"
means the turbulent diffusity a7, and also in picture f) "omega" means the specific
turbulent dissipation w. Regarding the other figures see caption of Figure 9.2.2.

75

UMean Mag UMean Z
- 42 -2

315 — £l
!i 21 0
10.5 L -1
3 =N 3
=2

Vort mag
[

=0

turb viscosity
-0.03

Figure 9.4.6: Color plots for the case with heat transfer. Please, note that in picture
i) "alphat" means the turbulent diffusity ar, and also in picture f) "omega" means
the specific turbulent dissipation w. Regarding the other figures see caption of Figure
9.2.2.

76

9.5 Implementation of the particles

The implementation of the particles has involved different studied configurations ob-
tained by varying the dispersed phase (liquid or solid), the number of injected particle
per second and the wall interaction model for Vessel and Pipe patches (see table 8.3.2).
In particular, cases 2, 4 and 5 have been chosen as the most realistic cases between
those listed in table 8.3.2, and their main results are now represented.

9.5.1 Liquid case

Two different cases have been studied considering the same wall interaction model
(droplets stick to the walls) and considering also water as the dispersed phase, while
the number of injected particles per second has been changed. First, results for 2’000
particles per second are presented and then those for 20’000 particles per second.

Let’s start with the case 2’000 part/s.
Figure 9.5.1 represents the number of evaporated droplets normalized by the total
number of the injected droplets, as a function of the evaporated particle age. It is
possible to note that all droplets evaporate before t=0.8 seconds.

I:IZ T T T T T T T

-F'article e

=
iy
o0

=
iy
[=7]

=
=

=
iy
]

0.0g

0.06

Mormalized number of paricles
=

0.04

0.0z

e
0 0.1 0.z 0.3 0.4 0.5 0.6 0.7 0.5 0.3 1
Evaporated paricle age (sec)

Figure 9.5.1: Liquid case - 2’000 part/sec - Distribution of the evaporated particles age
normalized by the total number of evaporated particles.

In Figure 9.5.2, the particle age is presented as the droplet diameter changes. In
particular, the total range of the droplet diameters has been divided in six classes. It
is evident that, in the spray dryer, droplets with a bigger diameter survive longer than
the others.

7

IRl o]

06]

Paricle age (sec)
=
on
|

04t - | 4
|
03t : .
0zt ! : .
==

01r — I .

= A
L=

3e-05 Se-05 Te-05 9e-05 0.00011 000013

Particle diameter (m)

Figure 9.5.2: Liquid case - 2’000 part/sec - Particle age divided in diameter classes.

Figure 9.5.3 represents the same results obtained in the histogram of Figure 9.5.1,
but in a more directly and intuitive way, adding also information about droplet posi-
tions. In fact, the spatial distribution of the droplets at the moment of the evaporation
is represented as the droplet age changes. As stated above, it is possible to note that
evaporation has a relevant effect and water droplets are all evaporated at t=0.8s.

78

age = 0,133 sec, sample size = 4663 age = 0.267 sec, sample size = 22334 age = 0.400 sec, sample size = 1002

age = 0667 sec, sample size = 30 age = 0.800 sec, sample size = 0
35~ TR
= IR
254 25
i 7.
E | £
R B M5
1 1
054 054
0.l 0
0, 1
fg,
¥ (m) y (m)

Figure 9.5.3: Liquid case - 2’000 part/sec - Spatial distribution of the evaporated
particles.

The same analysis has been made for the case with 20’000 part/sec and similar
results have been obtained.

79

| i o0

0.08

0.06

Mormalized number of particles

0.04

n.0z

—l 1 1

I 01 n.z 0.3 0.4 0a 0.6 ny 0.8 0.9 1
Evaporated particle age (sec)

Figure 9.5.4: Liquid case - 20’000 part/sec - Distribution of the evaporated particles
age normalized by the total number of evaporated particles.

nar -
0&r -

0.7]
|
|

0:5— T Ell i
0.4 r — E -

[|
= - -
B |
T T
01 = e 7
== L
3e-05 5e-05 Te-05 Se-05 0.00011 0.00013
Farticle diameter {m)

Faricle age (sec)

Figure 9.5.5: Liquid case - 20’000 part/sec - Particle age divided in diameter classes.

80

age = 0.133 sec, sample size = 100235 age = 0.267 sec, sample size = 48807 age = 0400 sec, sample size = 20174

age = 0.667 sec, sample size = 66 age = 0.600 sec, sample size = 0

3.5 \";..Z g 35

Figure 9.5.6: Liquid case - 20’000 part/sec - Spatial distribution of the evaporated

particles.

Taking into account Figures 9.5.4, 9.5.5 and 9.5.6, it is possible to conclude that the
increase of the injected particles number does not really affect the evaporation phase.

81

9.5.2 Solid case

Results for the solid case are now presented. As concerns the nature of the particle
under consideration, olive pomace extract mixed to maltodextrin has been chosen as
dispersed phase and its physical properties have been obtained thanks to experimental
measurements provided by the Material Engineering Laboratory of DICCA - University
of Genoa. As it will be seen in chapter 9.6, the different density (psouq =~ 100kg/m?
evaluated at the reference inlet value of the temperature) affects the results in a relevant
way. The rebound condition has been chosen as the most realistic wall interaction
model; moreover, the injection model has been set in order to constantly add 2’000
part /sec.

Contrary to the liquid case, in Figure 9.5.7 is represented the number of the collected
particles normalized by the sample size of the injected particles, as a function of the
collected particle age. The reason is that the heat transfer model is neglected in the
solid case, so particles do not increase temperature and do not evaporate. Therefore,
a larger number of particles can reach the outlet.

I:|25 T T T T T T T

-F'article ane

0.z

015

01

Maormalized number of paricles

0.0a

0 0.5 1 1.5 g 2.5 3 3.5 4 4.5 5
Collected paricle age (sec)

Figure 9.5.7: Solid case - 20’000 part/sec - Distribution of collected particles age nor-
malized by the total number of collected particles.

Figure 9.5.8 represents the injected and the collected particles distributions, both
respectively normalized by the sum of the injected or collected particles. Indeed, in
doing so, the two cases are not comparable, but this figure is useful to find the peak of
the range of the particle diameters for both injected and collected particles.

82

004 T

002

Injected Farticles Distribution

0 0.5 1 1.5

Particle diameter () 1I:|-+
b

n.04

n.oz

Caollected Particle Distribution

1] 0.5 1 1.5

Particle diameterm) 1IZI-+
b

Figure 9.5.8: Solid case - 20’000 part/sec - Injected particles distribution normalized
by the sum of the injected particles - on the top. Collected particles distribution
normalized by the sum of the collected particles - on the bottom.

Instead, the comparison between the injected and the collected particles distribu-
tions is illustrated in Figure 9.5.9. In fact, the number of the injected and collected
particles are now both normalized by the sum of the injected particles. Different time
windows with same size (1 sec) have been represented in order to look for a steady state
of the collected particles. It is possible to note a relevant variation of the collected par-
ticles profile (highlighted in green in Figure 9.5.9) between t=4 sec and t=6 sec, while
starting from this latter instant the collected particles profile is more or less constant,
confirming a steady behavior. That is the reason why the simulation has been stopped
at t=10 sec. As concerns the injected particles, the distribution (highlighted in blue in
Figure 9.5.9) is the same in all the time windows; minor variations are a consequence
of the random injection model.

83

Ok
- {w) Jaswelp aaned
il L co oo
r ER)
r 1200
r 1 E00
il vmﬁm:ou_H_ 1 ¥00

oot
S00
3017356

Ok
- {w) Jaswelp aaned
s L co oo
r _ - ‘_ ER)
r 1200
r 1 E00
H umEm_Eu_H_ 4 ¥00

napoalul I
S00
Six=59
OF=

H Paia=100 [
umEm_EI

(w) Jalawelp aoned

500

Sp==3g

uopngusg a1 aued uopngusg a1 aued

UoRnguisIq aRed

4
5

Of=

() Jaawep ajomey

il um#um__ou_H_
|
64240
oL
- () Jaawep ajomey
ch

[Pala=00 [
umﬁ_m_c_l
59=1=55
oL
IS () Jajawe|p ajame 4
ch

Reva21100 [
umﬁ_m_c_l

sEx=E2

200

0o

¥00

500

200

0o

¥00

500

oo

200

c0o

00

500

uopngusg a1 aued uopngusg a1 aued

UoRnguisIq aRed

oL
- () Jaawep ajomey
cr L 50 1}
H umﬁm__au_H_ 4
G |
sg=gess
oL
- () Jaawep ajomey

[Par=100 [1

umﬁ_m_c_l
552=51
oL

IS () Jajawe|p ajame 4

ch I 50 1}

[Pa=100 []
umﬁ_m_c_l

2=l

¥00

500

¥00

500

c0o

00

500

uopngusg a1 aued uopngusg a1 aued

UoRnguisIq aRed

Figure 9.5.9: Solid case - 20’000 part/sec - Particles distributions normalized by the

sum of the injected particles.

84

Finally, to better understand the behavior and the trend of the particles in time for
the solid case, a set of figures are now presented. In Figure 9.5.10 particle tracks are
shown for the total range of diameters (from 10 pym to 137 um) evaluating them for
different instants. The same images have also been taken for four different classes of
diameters in order to appreciate the influence of the particle dimension on the particle
trajectories as it is shown in Figures 9.5.11, 9.5.12, 9.5.13 and 9.5.14.

85

Figure 9.5.10: Total range of particles as a function of time: 1.5s on the top left - 2.5
on the top right - 3.5s on the middle left - 4.5s on the middle right - 5.5s on the bottom
left - 6.5s on the bottom right.

86

d
7y 4.20-05.

1.00e-05

al N\ | d

; . ;

1.00e-05 1.00e-05

Figure 9.5.11: First class of particle diameters as a function of time: 1.5s on the top
left - 2.5 on the top right - 3.5s on the middle left - 4.5s on the middle right - 5.5s on
the bottom left - 6.5s on the bottom right.

87

d
4 7.40e-05-

4.20e-05 4.20e-05

d
5 7.40e-05-

4.20e-05 4.20e-05

d
. 7.40e-05.

4.20e-05 4.20e-05

Figure 9.5.12: Second class of particle diameters as a function of time: 1.5s on the top
left - 2.5 on the top right - 3.5s on the middle left - 4.5s on the middle right - 5.5s on
the bottom left - 6.5s on the bottom right.

88

d d
].066—045 &].069-045

; : ;

7.40e-05 7.40e-05

7.40e-05

d
, 1.06e-04.

7.40e-05° 7.40e-05°

Figure 9.5.13: Third class of particle diameters as a function of time: 1.5s on the top
left - 2.5 on the top right - 3.5s on the middle left - 4.5s on the middle right - 5.5s on
the bottom left - 6.5s on the bottom right.

89

Figure 9.5.14: Fourth class of particle diameters as a function of time: 1.5s on the top
left - 2.5 on the top right - 3.5s on the middle left - 4.5s on the middle right - 5.5s on
the bottom left - 6.5s on the bottom right.

90

9.5.3 Comparison between liquid and solid case.

A brief comparison between the liquid and the solid phase is now presented. The main
aspect that can be compared is the trend of the droplets and particles positions, that
are affected in a relevant way by the particles density, as mentioned in chapter 9.5.2.

In Figure 9.5.15, it is possible to note how a lower density (solid case) reduces
the particles injected inertia, causing a vertical tight trajectory from the atomizer to
the pipe, where particles rebound and start recirculating. On the contrary the higher
density of the H20 allows the droplets to spread out following the conic form imposed
by the injection model (see table 6.1). That is why the left column of Figure 9.5.15
(liquid case) shows a larger scatter of the particles in the spray dryer volume.

91

d d
 1.37e-04. 1.37e-04-

1.00e-05

d

1.00e-05

Figure 9.5.15: Comparison between liquid and solid phase. Images in left columns
represent liquid phase, while those in right columns represent solid phase. Figures on
the top represent instant t=1.5s, those in the middle t=4.5s and those on the bottom

t=6.5s.
92

10 Conclusions

10.1 Final remarks

Despite spray dryers are used in a wide range of industries like food manufactures,
chemical and pharmaceutical industry and other product processes, they are still prin-
cipally designed by virtue of pilot experiments. CFD models developed through the
last years are based on expensive software. That is the reason why the aim of this
thesis is to develop a model of spray drying using CFD with an open-source software,
freely available and without license costs.

To achieve this, different step have been gradually followed. First, an original
geometry has been created starting from the data literature; different geometries of the
atomizer and of the length of the PipeDown have been studied. The latter parameter
resulted more important, influencing the results in a relevant way.

Moreover, mesh and grid generation and also the turbulence model have been tested
in order to have the best setup able to accurately approach the velocity and the tem-
perature profiles founded in the literature. Once this goal has been achieved, particles
have been implemented. Two different dispersed phases have been tested: liquid and
solid varying principally the number of the injected particles per second. As concerns
the liquid case, it has been noticed that the increasing of the injected particles does
not affect the evaporation phase. Regarding the solid case, a steady behavior of the
collected particles has been reached for a time simulation t=6 sec. Finally, a brief
comparison between the liquid and solid case has been presented, showing the relevant
influence of the particle density on its trend position in the spray dryer volume.

10.2 Future developments

The course of the work has been made in such way that the initial parts regarding the
creation of the geometry, flow solution and temperature solution are in accordance with
data found in the literature. For this reason these parts can be regarded developed
and do not need much work for the continuation of the project.

The modeling part regarding particles, liquid/solid, do need further development.
At the present stage particles are treated as liquid or solid, collisions are not accounted
and rotational motion is neglected. The most crucial part to incorporate is the lig-
uid/solid two-stage evaporation process. This essentially means that a drop is treated
as liquid initially and, at full evaporation, turns in to the solid phase. Models for this
do exist but needs further implentation and verification. The other parts mentioned
above are also of interest but considered of less priority for the next step in developing
this numerical spray drying tool.

93

References

[1] D.E. Oakley, R.E. Bahu, Computational modelling of spray dryers, Computers and
Chemical Engineering 17 (Suppl. 1) (1993) 493-498.

[2] F.G. Kieviet, P.J.A.M. Kerkhof, Using computational fluid dynamics to model prod-
uct quality in spray drying: air flow, temperature and humidity, in: A.S. Mujumdar
(Ed.), Drying’96-Proceedings of the 10th International Drying Symposium (IDS’96),
vol. A, Lodz Technical University, Lodz, 1996, pp. 259-266.

[3] F.G. Kieviet, P.J.A.M. Kerkhof, Air flow, temperature and humidity patterns in
a co-current spray dryer: modelling and measurements, Drying Technology 15 (1997)
1763-1773.

[4] F.G. Kieviet, Modelling Quality in Spray Drying. Ph.D. Thesis, Eindhoven Univer-
sity of Technology, Netherlands, 1997.

[5] L. Huang, K. Kumar, A.S. Mujumdar, A parametric study of the gas flow patterns
and drying performance of co-current spray dryer: results of a computational fluid
dynamics study, Drying Technology 21 (2003) 957-978.

[6] L. Huang, K. Kumar, A.S. Mujumdar, Use of computational fluid dynamics to
evaluate alternative spray dryer chamber configurations, Drying Technology 21 (2003)
385-412.

[7] L. Huang, K. Kumar, A.S. Mujumdar, A comparative study of a spray dryer with ro-
tary disc atomizer and pressure nozzle using computational fluid dynamic simulations,
Chemical Engineering and Processing 45 (2006) 461-470.

[8] F. Ducept, M. Sionneau, J. Vasseur, Superheated steam dryer: simulations and
experiments on product drying, Chemical Engineering Journal 86 (2002) 75-83.

[9] T.A.G. Langrish, D.F. Fletcher, Spray drying of food ingredients and applications
of CFD in spray drying, Chemical Engineering and Processing 40 (2001) 345-354.

[10] T.A.G. Langrish, T.K. Kockel, The assessment of a characteristic drying curve for
milk powder for use in computational fluid dynamics modeling, Chemical Engineering
Journal 84 (2001) 69-74.

[11] D.B. Southwell, T.A.G. Langrish, D.F. Fletcher, Use of computational fluid dy-
namics techniques to assess design alternatives for the plenum chamber of a small spray
dryer, Drying Technology 19 (2001) 257-268.

[12] D.F. Fletcher, B. Guo, D.J.E. Harvie, T.A.G. Langrish, J.J. Nijdam, J.Williams,
What is important in the simulation of spray dryer performance and how do current
CFD models perform? Applied Mathematical Modelling 30 (2006) 1281-1292.

[13] I. Zbicinski, Development and experimental verification of momentum, heat and
mass transfer model in spray drying, Chemical Engineering Journal 58 (2) (1995)
123-133.

[14] 1. Zbicinski, X.Y. Li, Conditions for accurate CFD modelling of spray-drying pro-
cess, Drying Technology 24 (2006) 1109-1114.

94

[15] M. Mezhericher, A. Levy, 1. Borde, Droplet—droplet interactions in spray drying
using 2D computational fluid dynamics, Drying Technology 26 (2008) 265-282.

[16] M. Mezhericher, Drying of Slurries in Spray Dryers. Ph.D. Thesis, Ben Gurion
University of the Negev, Israel, 2008.

[17] M. Mezhericher, A. Levy, 1. Borde, Modelling of droplet drying in spray chambre
using 2D and 3D computational fluid dynamics, Drying Technology 27 (3) (2009)
359-370.

[18] M.W. Woo, W.R.W. Daud, A.S. Mujumdar, Z.H. Wu, M.Z.M. Talib, S.M. Tasirin,
CFD evaluation of droplet drying models in a spray dryer fitted with a rotary atomizer,
Drying Technology 26 (2008) 1180 1198.

[19] Anderson, J. D. (1984). Computational fluid dynamics e The basics with applica-
tions. New York: McGraw-Hill Inc.

[20] Masters, K. (1991). Spray drying. Essex: Longman Scientific Technical / John
Wiley Sons Inc.

[21] Mujumdar, A. S. (1987). Handbook of industrial drying. New York: Marcel
Dekker.

[22| Fellows, P. J. (1998). Food processing technology-principles and practice. Cam-
bridge: Woodhead Publishing Limited.

[23| Langrish, T. A. G., Fletcher, D. F. (2001). Spray drying of food ingredients
and applications of CFD in spray drying. Chemical Engineering and Processing, 40,
345e354.

[24] C. Anandharamaskrishnan (2008). Experimental and Computational Fluid Dy-
namics Studies on SprayFreeze-Drying and Spray-Drying of Proteins.

[25] Mostafa, A. A., Mongia, H. C. (1987). On the modeling of turbulent evaporating
sprays: Fulerian versus Lagrangian approach. International Journal of Heat and Mass
Transfer, 30(12), 2583e¢2593.

[26] Jakobsen, H. A., Sannaes, B. H., Grevskott, S., Svendsen, H. F. (1997). Mod-
elling of vertical bubbledriven flows. Industrial Engineering Chemistry Research, 36,
4052e4074.

[27] Nijdam, J. J., Guo, B., Fletcher, D. F., Langrish, T. A. G. (2006). Lagrangian
and Eulerian models for simulating turbulent dispersion and coalescence of droplets
within a spray. Applied Mathematical Modelling, 30, 1196e1211.

[28] Bakker, A. (2002). Computational fluid mixing. Lebanon, NH, USA: Fluent Inc.

[29] Launder, B. E., Spalding, D. B. (1972). Lectures in mathematical models of
turbulence. London, UK: Academic Press.

[30] Launder, B. E., Spalding, D. B. (1974). The numerical computation of turbulent
flows. Computer Methods in Applied Mechanics and Engineering, 3, 269e289.

[31] Yakhot, V., Orszag, S. A. (1986). Renormalization group analysis of turbulence:
i. basic theory. Journal of Scientific Computing, 1, 1e51.

95

[32] Shih, T. H., Liou,W.W., Shabbir, A., Zhu, J. (1995). A new ke3 eddyviscosity
model for high Reynolds number turbulent flows e model development and validation.
Computers Fluids, 24(3), 227e238.

[33] Launder, B. E., Reece, G. J., Rodi, W. (1975). Progress in the development of a
reynoldsstress turbulence closure. Journal of Fluid Mechanics, 68, 537e566.

[34] Fletcher, A. J. (2000). Computational techniques for fluid dynamics, (2nd ed.).
New York: SpringerVerlag.

[35] Bakker, A. (2002). Computational fluid mixing. Lebanon, NH, USA: Fluent Inc.

[36] J. Sloth (2010). Method for Improving Spray Drying Equipment and Product
Properties.

[37] H. Versteeg and W. Malalasekera, An introduction to computational fluid dynam-
ics. Harlow, England: Pearson Education Ltd., 2007.

[38] J. Jaramillo, C. Pérez-Segarra, A. Oliva and K. Claramunt, ’Analysis of different
RANS models applied to turbulent forced convection’, International Journal of Heat
and Mass Transfer, vol. 50, no. 19-20, pp. 3749-3766, 2007.

[39] X. Liu, A. Godbole, C. Lu, G. Michal and P. Venton, ’Source strength and disper-
sion of CO2 releases from high-pressure pipelines: CFD model using real gas equation
of state’, Applied Energy, vol. 126, pp. 56-68, 2014.

[40] B. Xu, J. Zhang, J. Wen, S. Dembele and J. Karwatzki, Numerical Study of a
Highly Underexpanded Hydrogen Jet, 1st ed. London: School of Engineering, Kingston
University, 2005.

[41] Wikipedia, 'Equation of state’; 2015. [Online].

[42] Thermalfluidscentral.org, 'Thermal-FluidsPedia | Heat and mass transfer | Ther-
malFluids Central’, 2015.

[43] D. Hahn and M. Ozisik, Heat conduction. Hoboken, N.J.: John Wiley Sons, 2012.

[44] Thermalfluidscentral.org, "Thermal-FluidsPedia | Basics of heat conduction | Ther-
malFluids Central’, 2015.

[45] Y. Cengel and A. Ghajar, Heat and mass transfer. New York: McGraw-Hill, 2011.

[46] B. Guo, T.A.G. Langrish, D.F. Fletcher, Simulation of turbulent swirl flow in an
axisymmetric sudden expansion, ATAA J. 39 (2001)96-102

[47] Gosman, A.D., Ioannides, E., 1983, Aspects of computer simulation of liquid-
fuelled combustors, J. Energy, 7(6): 482-490.

[48] http://www.openfoam.com

[49] CFD Direct - OpenFOAM User Guide: 4.1 File structure of OpenFOAM cases -
http://cfd.direct /openfoam /user-guide /case-file-structure /

[50] http://www.cfd-online.com
[51] https://computing.llnl.gov

[52] R. Kuriakose, C. Anandharamakrishnan, Computational fluid dynamics (CFD)
applications in spray drying of food products, 2010

96

[53] CFD Direct - OpenFOAM User Guide: 5.2 Boundaries - http://cfd.direct /openfoam/
user-guide /boundaries/

[54] http://www.wolfdynamics.com/

[55] CFD Direct - OpenFOAM User Guide: 7.1 Thermophysical models - http://cfd.direct/
openfoam /user-guide/thermophysical /

[56] CED Direct - OpenFOAM User Guide: 5.4 Mesh generation with the snappy-
HexMesh utility - http://cfd.direct /openfoam /user-guide /snappyhexmesh /

57 F. Greifzu, C. Kratzsch, T. Forgber, F. Lindner R. Schwarze - Assessment of
particle-tracking models for dispersed particle-laden flows implemented in OpenFOAM
and ANSYS FLUENT (2016)

[[58] Ranz, W.E., Marshall, W.R., Evaporation from Drops, Chem.Eng.Prog,48 (1952),22,
pp.141-146]

97

Nomenclature

Acronyms

CFD Computational Fluid Dynamics

CPU Central Processing Unit

DK A Drying Kinetics Analyzer

FDM Finite Difference Method

FEM Finite Element Method

FV M Finite Volume Method

GNU GNU is Not Unix

I1C Integrate Circuit

M PI Message Passing Interface)

NP Number of Physical cores

OOP Object-Oriented Programming

OpenFOAM Open source Field Operation And Manipulation
PDUFEs Partial Differential Equations

PISO Pressure Implicit with Split Operator

RANS Reynolds-averaged Navier—Stokes equations

RNG Re-Normalisation Group

RSM Reynolds Stress Model

SIMPLE Semi-Implicit Method for Pressure Linked Equations
SST Shear Stress Transport

STL STereoLithography

URANS Unsteady Reynolds-averaged Navier—Stokes equations
Greek Symbols

Q@ turbulent diffusity

€ turbulent dissipation
K turbulent kinetic energy
1 dynamic viscosity

98

kg/(m-s)
m? /g3
m? /s

kg/(m - s)

v kinematic viscosity
w turbulent specific dissipation
) hypothetical field

Roman Symbols

P pressure
T temperature

t time

U velocity magnitude
A vorticity magnitude
Subscripts

a ambient

D particle

T Turbulent

w wall

99

m? /s

1/s

Pa

Appendices

A Case with the only air flow - fvSchemes

ddtSchemes
{
default Euler;
}
gradSchemess
{
default Fauzss linear;
grad (1) Fazuss linear;
}
divSchemes
{
default none;
diw{phi, T) Fauss linearUpwind grad(lU);
diwi{phi, k) Fazuss upwind;
divw {phi, omega) Zauss upwind;
diwvi{phi, B) Fauzss limitedLinear O0_777;
diwvi{R) Fauszss linear;
diwvi{phi, nuTilda) Gauss limitedLinear 0.777;
diwv{{nuEff*dev (T {grad(U))))) Gauss linear;
}
laplacianSchemess
{
default Fauss linear corrected;
}
interpoclationSchemes
{
default linear;
1
anEradSchemes
{
default corrected;
}
fluxBegquired
{
default no;
Er
}

100

B Case with the only air flow - fvSolution

soplirars

=nlrer
tolerance
relTol
=moother

nPredwesps
nPostiwesps

GRME:

le-06:

0.0l
FauzsSeide];
:

.
iL -

cachebgglomeration on:

agglomerator

facabragPair;

noell=Inlpar=e=tlevel 10;

mergelevel s
1
pFimal
[
spi
toleranoce
relTol
1
"(F| k| omega) ™
[
=oluver
=smoother
toleranoe
relTol

(0| k|omega) Einal ™
[
50
tolerance
relTol

1
PIMFLE

[

nHonlrthogonalCorrectors 2:

1:

l=a-E:
LE

smoothIolrer:
srmEans=teide] ;
le-08:

0.001:

l=-8:

nCorrectors Z:
1
potential Flow
[
nHonlrthogonalCorrectors 10:
]
cache
[
qrad (7] :

101

C Implementation of the temperature

ddtSchemes

default Euler;
1

gradSchemes

{

default celllLimited leastSquares 1.0;
grad(U) celllLimited leastSquares 1.0;

linearUpwind grad(U) ;
upwind;
upwind;
upwind;
upwind;
upwind;

divi (muEff*dev2(T(grad(U))))) Gauss linear;

}

divSchemes

{
default none;
diviphi,U) Gauss
diviphi,K) Gauss
diviphi,h) Gauss
diviphi,T) Gauss
div(phi,k) Gauss
div(phi,omega) Gauss

1

laplacianSchemes
default Gauss 1

1

interpolationSchemes

inear limited 0(0.5;

default linear;
)i
snGradSchemes
default limited 0.5;
1
fluxRequired
default no;
p_rgh;
}

102

- fvSchemes

D Implementation of the temperature - fvSolutions

solvers
{

"rho.*"

{
solver PCG;
preconditioner DIC;
tolerance Q;
relTol Q;

}

P

{
solver GAMG;
tolerance le-6;
relTol 0.001;
smoother GaussSeidel ;
nPreSweeps Q;
nPostSweeps 2;
cacheAgglomeration on;
agglomerator facelAreaPair;
nCellsInCoarsestlLevel 10;
mergelevels 1;

i

pFinal

{
$p:
tolerance le-6;
relTol o;

i

p_rgh

{
solver GAMG;
tolerance le-6;
relTol 0.001;
smoother GaussSeidel ;
NP reSweeps o;
nPostSweeps 2;
cacheAgglomeration on;
agglomerator facelAreaPair;
nCellsInCoarsestlLevel 10;
mergelevels 1;

i

103

p_raghFinal
{
$p_rgh;
relTol o;

}

“(Ulh|k|T|omega) "
{

solver smoothSolver;
smoother symGaussSeidel ;
tolerance la-8;
relTol 0.001;
1
“(Ulh|k|T|omega)Final"
{
$U;
tolerance la-8;
relTol Q;
}
1
SIMPLE
{
nionOrthogonalCorrectors ©;
pRefCell 0;
pRefValue Q;
}
PIMPLE
{
nNonOrthogonalCorrectors 3;
nCorrectors 2;
pRefPoint (68 8);
pRefValue Q;
residualControl
"(Ulh|k|T|omegal|p|p_rgh)"
{
tolerance le-14;
relTol O
}
1
1

104

potentialFlow

{ nionQrthogonalCorrectors 10;
ielaxationFactors
fields
{
rho 1;
p_ragh 0.3;
1
equations
{
U 0.7;
h 0.7;
"(k|epsilon|omega) " 0.7;
1
i
cache
grad(U) ;
i

105

E Implementation of the particles - Thermolncom-
pressiblePoly

Hz20
{
specie
{
nMoles 1;
molWeight 18.0153;
equation0fState
{
rhoCoeffs<B= (2.5039 -0.010587 2.0643e-05 -1.8761e-08 6.42372-12 0 0 @);
¥
thermodynamics
{
Hf -13423000;
ST 10482;
CpCoeffs<B= (1563.1 1.604 -0.0029334 3.2168e-06 -1.1571e-09 0 0 O);
¥
transport
{
muCoeffs<B= { 1.5068e-06 6.1598e-08 -1.8188e-11 0 0 0 0 O);
kappaCoeffs<B= [0.0037972 0.00015336 -1.1859=-08 0 0 0 0 @);
¥
¥
air
{
specie
{
nMoles 1;
molWeight 28.85;
1
equation0fState
{
rhoCoeffs<E= (4.0097 -0.016954 3.3057e-05 -3.0042e-08 1.0286e-11 0 0 0);
1
thermodynamics
{
Hf o;
ST o;
CpCoeffs<E= (948.76 0.3917]1 -0.00095999 1.393e-06 -6.2029=-10 0 0 0);
1
transport
{
muCoeffs<G= (1.5061e-06 6.162-08 -1.819e-11 0 0 @ 0@ @);
kappaCoeffs<t= 0.0025219 8.5062-05 -1.312e-08 0 0 0 0 @);
}
}

106

F Implementation of the particles

ddtSchemes
default

1

gradSchemes

{
default
grad(l)

1

divSchemes

{
default
diviphi,U)
diviphi,K)
diviphi,h)
diviphi,T)
diviphi, k)

div(phi,omega)
div(phi,¥i h)

div(((rhc*ﬁuEff)*devE(T(grad(U))))) Gauss linear;

}

laplacianSchemes
default

}

interpolationSchemes

default

snGradSchemes

Euler;

cellMDLimited Gauss linear 1.0;
cellMDLimited Gauss linear 1.0;

none;
Gauss linearUpwind grad(U) ;

Gauss upwind;
Gauss upwind;
Gauss upwind;
Gauss upwind;
Gauss upwind;
Gauss upwind;

Gauss linear limited 0.5;

linear;

default limited 0.5;

}
fluxReguired

{
default

P
Phi;

wallDist
{

method meshWave;

}

no;

107

- fvSchemes

G Implementation of the particles - fvSolutions

solvers
{

"rho"

{
solver PCG;
preconditioner DIC;
tolerance 0;
relTol 0;

rhoFinal

{
$rho;
tolerance 0;
relTol 0;

1

P

{
solver GAMG;
tolerance le-5;
relTol 0.01;
smoother GaussSeidel ;
NP reSweeps o;
nPostSweeps 2;
cacheAgglomeration on;
agglomerator faceAreaPair;
nCellsInCoarsestlLevel 10;
mergelLevels 1;

}

pFinal

{
$p;
tolerance le-6;
relTol @a;
minlter 1;

1

"(Ulh|k|T|omega) "
solver smoothSolver;
smoother symGaussSeidel ;
tolerance le-8;
relTol 0.001;

}

108

“(Ulh|k|T|omega)Final"
1

$U;
tolerance le-8;
relTol Q;
minlter 1;
¥
Phi
{
$p;
¥
"(Yijair|02|H20) "
solver PBiCG;
preconditioner DILU;
tolerance le-6;
relTol o;
i
al
{
$Y1i;
relTol Q;
}
hFinal
{
$vi;
minlter 1;
}
}
PIMPLE
{
momentumPredictor yes;
nNonOrthogonalCorrectors Z;
nCorrectors 5;
pRefPoint (B0 08);
pRefValue o;
residualControl
{
“(Ulh|k|T|omega|p|p_rah)"
{
tolerance 1le-14;
relTol 0O;
!
!
¥

109

potentialFlow

{
nNonOrthogonalCorrectors 10;
¥
relaxationFactors
fields
{
rho 1;
p 0.3;
}
equations
{
W] 0.8;
h 0.8;
"({k|epsilon|omega) " 0.8;
!
¥
cache
{
grad(U) ;
I

110

