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Abstract

The work presented in this thesis is integrated in a well started project

that Dott. Ing. Stefano Pastorino presented last year as his master

thesis. His work concerned the development of a numerical model of a

spray dryer with OpenFoam, an open-source CFD software freely avail-

able and without license costs. The usage of CFD technique allowed

to understand the complexity of flow fields of drying agent as well as

droplet/particle motion. In his work Stefano studied the evaporation of

water droplets and the motion of solid particles (olive pomace extract

mixed to maltodextrin) in a separated way. The aim of this work is to

start the implementation of a library in OpenFoam that is able to con-

sider the liquid phase as well as the solid phase in a two stage drying

model. A number of models of the two stage drying process were first

implemented and tested in a simplified environment (Python). Then
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one of the models tested with both drying stages has been implemented

in OpenFOAM R©, and a comparison of the first drying stage has been

made with a model already distributed with OpenFOAM R©.

Sommario

Il lavoro presentato in questa tesi si integra in un progetto ben avviato e

iniziato lo scorso anno dal Dott. Ing. Stefano Pastorino. L’obiettivo del

suo lavoro è stato quello di svulippare un modello numerico che simulasse

il funzionamento di uno Spray Dryer utilizzando OpenFOAM R©, un

software CFD completamente gratuito e scaricabile senza alcun costo di

licenza. L’utillizzo della fluidodinamica computazionale ha permesso di

capire la complessità del campo di moto dell’ aria utilizzata come agente

asciugante cos̀ı come il moto delle particelle inserite nel dominio com-

putazionale. Stefano, nel suo lavoro ha studiato separatamente l’evapora-

zione di gocce d’acqua e il moto di particelle solide. L’obiettivo di questo

lavoro è stato quello di studiare un modello di evaporazione basato su

due stadi, che fosse specifico per l’applicazione dello Spray Dryer, ovvero

per gocce che contengono una frazione iniziale di solido. Il primo sta-

dio riguarda l’evaporazione della componente liquida; quando viene rag-

giunto un valore critico di umidità il modello prevede la formazione di

una crosta solida, di spessore via via crescente, che avvolge un nucleo

contenente ancora una certa frazione di liquido.

Inizialmente il modello è stato implementato in un ambiente semplificato

(Python) che ha permesso una più immediata visualizzazione dei risul-

tati. Successivamente questo modello è stato inserito in OpenFOAM R©

e, i risultati forniti dalla nostra nuova applicazione, sono stati confrontati

nel caso di pure gocce d’acqua con quelli forniti da un solutore già im-

plementato nel software. La differenza fondamentale tra la nostra nuova

applicazione e quella già esistente è che le particelle che hanno una massa

al di sotto di un certo valore non vengono eliminate ma vengono conti-

nuamente tracciate all’interno del dominio di calcolo. A queste particelle

è applicato un modello di secondo stadio molto semplificato: infatti esse

vengono considerate come particelle completamente asciutte e quindi

solide, le quali tendono a scaldarsi in quanto in contatto con l’aria calda.
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Chapter 1

Introduction

The topic of this thesis concerns the area of spray drying which is a well-

established industrial process for converting liquid feed materials into a dry powder.

In particular we focused on the implementation of a two stage drying model for

liquid drops containing insoluble solids. Once compared with experimental data,

this model has been implemented in OpenFOAM R©, a CFD open-source software.

In spray drying operations, CFD simulation tools are now often used, because

measurements of air flow, temperature, particle size and humidity within the drying

chamber are very difficult and expensive to obtain in large-scale dryers [2]. In most

cases the spray dryer modelling is performed using a mixed Eulerian/Lagrangian

approach, in which the single phase Reynolds Averaged Navier Stokes (RANS) or

Unsteady Reynolds Averaged Navier Stokes (URANS) equations are solved to de-

termine the flowfield and the droplets are modelled using the Lagrangian technique

[9].

A large amount of literature exists about this topic, and very detailed studies

have been carried out by many research groups and authors. For example in [15]

and in [27] it is presented a study of the air flow inside a tall form spray dryer,

including the effect of different turbulence models and their influence on particle

trajectories and their residence time; in [19] there are studies on the interaction of

droplets with the spray dryer walls, modelling the rebound as a function of droplets

moisture content; also particles agglomeration can be important and it determines

the character of the final product as well described in [9]; moreover in [24], [22],

[20], [21] the description of accurate drying models are found both for insoluble

or dissolved solids with particular attention paid on the second stage, that is the

one related to the formation of a solid shell around a wet core. However, all these

CFD models use commercial software, especially ANSYS Fluent is the most used.
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Introduction

In this context Gea Niro, a core technology centre in GEA Process Engineering,

developed an ANSYS suit called DRYNETICS which is a very specific tool box for

spray drying modelling that is able to provide the solution by incorporating real-

world measurements into the CFD software. Their main idea is that every liquid

feed has its own characteristics, and these can be determined accurately only with

real tests;

The aim of this project is to continue the work of Stefano Pastorino that, in his

master thesis, began to treat spray drying modelling in OpenFOAM R©. Indeed he

focused on the construction of the geometry of a tall-form spray dryer, and he mod-

elled the evaporation of pure liquid drops, using a built-in OpenFOAM R© solver.

Our goal is to start the implementation of a new Lagrangian solver in OpenFOAM R©

suitable for modelling the drying kinetic of liquid drops with insoluble solids.

The thesis is organised as following:

• Part I: the aim of this part is to provide the fundamental concepts about

spray drying;

• Part II: this parts deals with the fundamental concepts about Computational

Fluid Dynamics, and with the introduction of the two stage drying model;

• Part III: in this part is given an overview of the open source CFD software

(OpenFOAM R©) is given with some details about the programming language;

• Part IV: here the numerical dicretization of the equations for the two stage

drying model and their implementation in the Python environment is dis-

cussed;

• Part V: in this part the case study is presented, with details about the modi-

fied geometry and the one developed by Stefano Pastorino and the implemen-

tation in OpenFOAM R© of the evaporation model;

• Part VI: finally the first section of this part presents the results about the

two drying stage model from the Python code and then in the second one the

results from the OpenFOAM R© simulations.
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Chapter 2

Description of a Spray Dryer

Transformation of a liquid feed containing solid fraction into particles by sup-

plying the feed as a spray into a chamber with a hot drying agent is named spray

drying. Spray drying is a widely used process in many industries, among them are

food manufactures, pharmaceutical, chemical and biochemical industries. The spray

drying process involves multiphase flow with heat, mass and momentum transfer be-

tween the three-dimensional, complex, swirling, drying gas flow (continuous phase)

and the discrete phase (droplets/particles). Fig.2.1 shows that spray drying usually

involves three stages of operation:

Figure 2.1: The process stages of spray drying [2].

• atomization of liquid feed into a spray chamber;

• contact between the spray and the drying agent;
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Description of a Spray Dryer

• separation of dried products from air stream;

The atomization process is essentially one in which bulk liquid is converted into

small drops. The quality of the final product is heavily dependent on the choice of

the atomizer type. An atomizer nozzle can take many forms: there are centrifugal or

rotary atomizer, pressure nozzle atomizer, two-fluid nozzle atomizer. For centrifugal

or rotary atomizer the size of droplets produced from the nozzle varies directly with

feed rate and feed viscosity and inversely with wheel speed and wheel diameter

Pressure nozzle atomizer in which droplet size varies directly again with feed rate

and feed viscosity, but inversely with pressure. Finally, atomization can be obtained

also through the two-fluid nozzle atomizer, meaning that a shear field created by

compressed air, atomizes the liquid and produces a wide range of droplet sizes.

During spray-air contact, the hot drying gas (air in most cases) can be blown in

the same direction as the sprayed liquid (co-current flow) or it can be against the

flow from the atomizer (counter-current flow). With the co-current configuration

the hot air and droplets are in contact from the beginning of the injection and,

because of high rate of evaporation, their temperature is kept low. Along the drier,

droplets moisture content decreases as well as air temperature resulting in smaller

heat transfer rate from the continuous phase to the dried particles. In the counter-

current arrangement, on the other hand, the spray inlet corresponds to the drying

medium outlet and this arouses a final product temperature higher than the exhaust

drying agent temperature and that is why this configuration is used for non-heat-

sensitive products only [2].

Regarding the last stage, the separation of dried particles from air flow can be

done in different ways depending on the operating conditions such as particle size,

shape, bulk density and powder outlet position. For example, dried particles can

be picked up at the base of the dryer and absorbed by a cyclone separator or a

screw conveyor. Other equipment useful to collect the dry powder are bag filters

and electrostatic precipitators. The two main designs of spray dryer commonly used

are the short-form and tall-form driers shown in Fig.2.2.
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Description of a Spray Dryer

Figure 2.2: Schematic description of main types of spray driers [7].

Short-form dryers are characterized by a restrained aspect ratio meaning that the

height-diameter ratio is of around 2:1 while tall-form dryers have a height-diameter

ratio greater than 5:1. In the latter case dryers have less complex flow patterns

than short-form dryers, but they are afflicted by an higher percentage of particles

impacting on the cylindrical wall which is a negative effect on the final product

quality.
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Chapter 3

Fundamental concepts in fluid

mechanics

3.1 Conservation laws

The principle of conservation states that for an isolated system certain physical

measurable quantities are conserved over a local region. This conservation principle

or conservation law is an axiom that cannot be proven mathematically but can be

expressed by a mathematical relation. Laws of this type govern several physical

quantities such as mass, momentum, and energy (the Navier-Stokes equations)[12].

The conservation laws involving fluid flow and related transfer phenomena can be

mathematically formulated following either a Lagrangian (material volume, MV)

or an Eulerian (control volume) approach. Assuming a continuous phase the most

common method of describing fluid flow is the fixed reference system Eulerian ap-

proach that is synthetically presented below. A short description of the Lagrangian

method will be introduced in the next section.

3.1.1 Continuity equation

The principle of conservation of mass indicates that in the absence of mass

sources and sinks, a region will conserve its mass on a local level [12]. Being ρ

the density, through the application of the Reynolds transport theorem, the general

expression for conservation of mass as applied to a control volume will be:∫
V

∂ρ

∂t
dV +

∫
S

ρV · ndS = 0, (3.1)

where S is the surface of the control volume V . Thanks to the divergence theorem

– and noticing that the conservation of mass should be respected for every control
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Fundamental concepts in fluid mechanics

volume – this equation can be written in a differential form, called the continuity

equation:
∂ρ

∂t
+∇ · (ρV) = 0 (3.2)

3.1.2 Conservation of Linear Momentum

Through application of the Reynolds transport theorem and divergence theorem,

the general expression for conservation of linear momentum as applied to a control

volume is:
∂(ρv)

∂t
+∇ · (ρvv) = f . (3.3)

Where f = fs + fb is the sum of the external surface forces fs and body forces fb

acting on the control volume.

Surface forces

The forces acting on the control volume surface are due to pressure and viscous

stresses which can be expressed in terms of the total stress tensor σ that in Cartesian

coordinates is given by:

σ =


σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

 =


−P 0 0

0 −P 0

0 0 −P

+


τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 = −pI + τ , (3.4)

where I is the identity tensor, p the pressure and τ is the deviatoric of viscous stress

tensor. The pressure is the negative part of the mean of the normal stresses and is

given by:

p = −1

3
(σxx + σyy + σzz). (3.5)

Hence the surface force acting on a differential surface element dS is:∫
S

fsdS =

∫
A

σ · ndA =

∫
V

∇ · σdV ⇒ fs = ∇ · σ = −∇p+ (∇ · τ ). (3.6)

Body forces

Body forces are forces per unit volume and the predominant ones are given below:

• Gravitational forces fb = ρg, due to the presence of a gravitational field

• Coriolis and centrifugal forces, respectively fb = −2ρ(ω×v)−ρ(ω× (ω× r)),

due to a rotating frame of reference

9



Fundamental concepts in fluid mechanics

Hence introducing the expressions of surface and body forces in Eq.(3.3) the

general conservative form of the momentum equation is obtained as:

∂(ρv)

∂t
+∇ · (ρvv) = −∇p+ (∇ · τ ) + fb. (3.7)

To procede further the type of fluid should be specified in order to relate τ with the

other flow variables. For a Newtonian fluid the stress tensor is a linear function of

the strain rate and is given by:

τ = µ(∇v + (∇v)T ) + λ(∇ · v)I, (3.8)

where µ is the molecular viscosity, λ the bulk viscosity coefficient usually set equal

to λ = 2
3
µ. Taking the divergence of Eq.(3.8) and substituting in Eq.(3.7) the final

conservative form of the momentum equation for Newtonian fluids becomes:

∂(ρv)

∂t
+∇ · (ρvv) = ∇ · (µ∇v)−∇p+∇ · (µ(∇vT )) +∇(λ∇ · v) + fb. (3.9)

For incompressible flows the divergence of velocity vector is zero, ∇ · v = 0, and for

constant molecular viscosity the momentum equation can be further simplified:

∂(ρv)

∂t
+∇ · (ρvv) = −∇p+ µ∇2v + fb. (3.10)

3.1.3 Conservation of Energy

The conservation of energy (the first law of thermodynamics) simply states that

energy can be neither created nor destroyed during a process; it can only change

from one form (mechanical, kinetic, chemical, etc.) into another. Consequently, the

sum of all forms of energy in an isolated system remains constant. Considering a

material volume MV of mass m, density ρ, and moving with a velocity v the total

energy E can be written as:

E = m(û+
1

2
v · v), (3.11)

where û is the internal energy per unit mass. The first law of thermodynamic states

that the rate of change of the total energy of the material volume is equal to the

rate of heat addition and work extraction through its boundaries:(dE
dt

)
MV

= Q̇− Ẇ . (3.12)

10
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Defining e = û+ 1
2
v · v as the total energy per unit mass and considering that:

Ẇ = Ẇs + Ẇb, (3.13)

Ẇs = −
∫
S

(fs · v)dS = −
∫
S

(σ · v) · ndS = −
∫
V

−∇ · (pv) +∇ · (τ · v)dV, (3.14)

Ẇb = −
∫
V

(fb · v), (3.15)

Q̇ = Q̇s + Q̇v, (3.16)

Q̇s = −
∫
S

q̇s · ndS = −
∫
V

∇ · q̇sdV, (3.17)

Q̇v =

∫
V

q̇vdV. (3.18)

Using the Reynolds transport theorem Eq.(3.12) becomes:(dE
dt

)
MV

= Q̇− Ẇ =

∫
V

(
∂

∂t
(ρe) +∇ · (ρve))dV =

= −
∫
V

∇ · q̇sdV +

∫
V

−∇ · (pv) +∇ · (τ · v)dV +

∫
V

(fb · v)dV +

∫
V

q̇vdV.

(3.19)

Collecting terms within the volume integral and setting the integrand equal to zero

gives:

∂

∂t
(ρe) +∇ · (ρve) = −∇ · q̇s −∇ · (pv) +∇ · (τ · v) + fb · v + q̇v. (3.20)

In order to write the energy equation with temperature as the main variable some

constraints have to be imposed [12]. Denoting with h the specific enthalpy and

assuming a Newtonian fluid it’s possible to express h = f(p, T ) the variation of

enthaply dh can be written as:

dh =
( ∂h
∂T

)
p
dT +

(∂h
∂p

)
T
dp. (3.21)

Using the thermodynamic relation:(∂h
∂p

)
T

= v − T
( ∂v
∂T

)
p
, (3.22)

where v is the specific volume, the expression for dh can be modified to

dh = cpdT +
[
v − T

( ∂v
∂T

)
p

]
. (3.23)

After some manipulation, in order to express Eq.(3.20) in terms of specific enthalpy

h and introducing Eq.(3.23), the energy equation with T as the main variable can

be written as:

cp

[ ∂
∂t

(ρT ) +∇ · (ρv)
]

= −∇ · q̇s −
( ∂(Lnρ)

∂(LnT )

)
p

Dp

Dt
+ (τ : ∇v) + q̇v. (3.24)

11



Fundamental concepts in fluid mechanics

The heat flux ∇ · q̇s represents heat transfer by diffusion, which is a phenomenon

occurring at the molecular level and is governed by Fourier’s law according to:

q̇s = −(k∇T ), (3.25)

where Ln is the natural logarithm and k is the thermal conductivity of the substance.

The above equation states that heat flows in the direction of temperature gradient

and assumes that the material has no preferred direction for heat transfer with the

same thermal conductivity in all directions (the medium is isotropic). Introducing

Eq.(3.25) in Eq.(3.24), defining Ψ and Φ as:

Ψ =
(∂u
∂x

+
∂v

∂y
+
∂w

∂z

)2

, (3.26)

Φ = 2
[(∂u
∂x

)2

+
(∂v
∂y

)2

+
(∂w
∂z

)2]
+
(∂u
∂y

+
∂v

∂x

)2

+
(∂u
∂z

+
∂w

∂x

)2

+
(∂v
∂z

+
∂w

∂y

)2

,

(3.27)

and expanding the double dot product the energy equation in terms of T becomes:

∂

∂t
(ρcpT ) +∇ · (ρcpvT ) =∇ · (k∇T )

+ ρT
Dcp
Dt
−
( ∂(ln ρ)

∂(lnT )

)
p

Dp

Dt
+ λΨ + µΦ + q̇v. (3.28)

This equation is rarely solved in its full form and depending on the physical sit-

uation several simplified versions can be developed. For example the dissipation

term Φ is negligible except for supersonic speed with large velocity gradient [12].

For incompressible fluids both Ψ and
(
∂(ln ρ)
∂(lnT )

)
p

are equal to zero and Eq.(3.28) is

reduced to
∂

∂t
(ρcpT ) +∇ · (ρcpvT ) = ∇ · (k∇T ) + q̇v +QT . (3.29)

For the case of a solid, the density is constant, the velocity is zero, and if changes in

temperature are not large then the thermal conductivity may be considered constant

and the equation of energy becomes:

ρcp
∂T

∂t
= k∇2T + q̇v. (3.30)

3.2 Turbulence modelling

Most of industrial applications involve turbulent flows. However a precise defi-

nition is somewhat difficult and all that can be done is a brief outline of some of its

characteristics [28]. One characteristic is the irregularity, or randomness, of all tur-

bulent flows. This makes a deterministic approach to problems including turbulence

12



Fundamental concepts in fluid mechanics

impossible; instead, and statistical methods have to be relied on. Another important

turbulence feature is its diffusivity that leads to rapid mixing, thereby increasing

transfer rates of momentum, heat and mass throught the flow domain. Turbulent

flows always occur at a large Reynolds number, and often originate as the instability

of laminar flows with increasing Reynolds numbers. Instabilities are related to the

interaction of viscous terms and nonlinear inertia terms in the equations of motion.

Turbulence is a 3-D phenomenon and there are no satisfactory 2-D approximation

for determining fine details of turbulent flows; all turbulent flows are inherently dis-

sipative and turbulence observe a cascade process whereby its kinetic transfer from

larger eddies to smaller eddies and the latter dissipate into heat due to molecular

viscosity. Turbulence is a continuum phenomenon governed by the equations of fluid

mechanics. Even the smallest scales in any turbulent flow are much larger than any

molecular length scale. Finally, turbulence is a flow feature, and not a fluid feature.

It is possible to estimate the magnitude of the smallest scale through dimensional

analysis. As stated above the cascade process involves a transfer of turbulent kinetic

energy k ( associated to fluctuating turbulent velocity) from larger eddies to smaller

ones. The smaller eddies should be in a state where the rate of receiving energy from

larger eddies is very nearly equal to the rate at which the smallest eddies dissipate

the energy to heat [30]. Hence the motion at the smallest scales should depend only

upon the rate at which the larger eddies supply energy, ε = −dk
dt

and the kineamtic

viscosity ν. Having established appropriate dimensional quantities for ε and ν one

can derive the Kolmogorov scales of length, time and velocity

η =
(ν3

ε

) 1
4
, τ =

(ν
ε

) 1
2
, υ = (νε)

1
4 . (3.31)

With dimensional analysis the dissipation rate ε could be related with k through:

ε ∼ k
3
2

l
, (3.32)

where l is the integral length scale of the largest eddies. Hence the ratio

l

η
∼ Re

3
4
t , (3.33)

with Ret being the turbulence Reynolds number based on l and k. Thus, the energy

cascade involves a number of scales proportional to N :

N = Re
9
4
t . (3.34)

It is now clear that in order to ensure that all the features of turbulence are pre-

dicted correctly, a large computational domain and a very dense grid are requested.

13
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This is a DNS (direct numerical simulation) approach and it is not affordable for

industrial applications because of the need to obtain results within a reasonable time

and because of the great request of computational resources. Hence a mathemati-

cal model is required to predict turbulent flow properties but modelling turbulence

involves statistical studies of the equations of fluid flow and always leads to the

closure problem: more unknowns than equations. In order to make the number of

equations equal to the number of unknowns, assumptions are imperative. Usually

there are two approaches: filtering in space or averaging in time. The first approach

called LES (large eddy simulation) consists on applying a spatial filter to Navier

Stokes equations with only the length scales smaller than the size of the filter mod-

elled. Nevertheless, nowadays time averaging is still the most common turbulence

model approach in industrial applications and all turbulent fluctuations need to be

modelled. The key approach is to decompose the flow variables into a time-mean

value component and a fluctuating one, substituting in the original equations, and

time-averaging the obtained equations. Expressing the instantaneous velocity as the

sum of a mean and a fluctuating part so that:

v(x, t) = v(x) + v′(x, t). (3.35)

The time-averaging properties lead to the following expression for the incompressible

RANS continuity, momentum, energy equations:

∇ · (ρv) = 0, (3.36)

∂ρv

∂t
+∇ · {ρvv} = −∇p+∇ ·

(
τ − ρv′v′

)
+ ρg, (3.37)

∂

∂t
(ρcpT ) +∇ · (ρcpvT ) = ∇ · (k∇T − ρcpv′T ′) + ST . (3.38)

Keeping the unsteady term
∂ρv

∂t
in the momentum equation usually brings to the

definitions of URANS (unsteady Reynolds averaged Navier-Stokes), but attention

should be maintained for those turbulent flows where there is no clear distinction

between timescale characteristic of slow variations of the mean flow and that related

to turbulent fluctuations. Indeed, the approximation

∂v(x, t)

∂t
≈ ∂v(x)

∂t
, (3.39)

is true if |v′| << |v|. This is always questionable, however using time averaging in

this manner is usefull for analysis especially for time marching numerical methods

implemented for solving fluid dynamics problems but a degree of caution must be
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exercised when fluctuations are not too small. Comparing Eq.(3.37) with Eq.(3.7)

and Eq.(3.29) with Eq.(3.38), one can note the appearance of new terms on the

right-hand-side. These terms are called Reynolds Stresses Tensor and turbulent

heat fluxes. So what Reynolds-averaging does is to introduce 9 new variables and

to solve the RANS (Reynolds averaged Navier-Stokes) equations, but additional

equations are required.

Here comes into play the Boussinesq Hypothesis which makes an analogy with

Newtonian fluids by assuming that the Reynolds stresses are a linear function of the

mean velocity gradients

− ρv′v′ = µT
[
∇v + (∇v)T

]
− 2

3
ρkI. (3.40)

This assumption reduces the number of unknown from 6 to 2: the turbulent eddy

viscosity µT and the turbulent kinetic energy k.

For incompressible flows, the equations can be rearranged by defining a turbulent

pressure p [12]:

p← p+
2

3
ρk. (3.41)

In this manner, the only unknown that remains to compute is the turbulent eddy

viscosity µT . The great variety of turbulence models derive from different ways

of evaluating µt. In a similar way, the turbulent thermal fluxes are calculated in

analogy with Fourier’s law such that

− ρcpv′T ′ = αt∇T, (3.42)

where αt is the turbulent thermal diffusivity.

In the following section are presented the principle and the capabilities of the

Shear Stress Transport (SST) k-ω model that is the one employed in this work.

However for a better understanding also the k − ε and the k − ω models are briefly

explained.

3.3 Shear Stress Transport k − ω Model

The k-ω family of linear eddy viscosity models seems to be by far the most widely

used ones. Before describing the SST k−ω model it is necessary to briefly introduce

standard k− ε and k−ω models, since SST is a combination of these two approach.

Both methods belong to the two-equations family of turbulence models. This class

involves the resolution of two additional partial differential equations in order to

locally compute the turbulent eddy viscosity µT and the turbulent thermal diffusivity

αt.
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k− ε

Like other models based on the Boussinesq Hypothesis, the k− ε model is based

on the following expressions for turbulent eddy viscosity µt and for turbulent thermal

diffusivity αt:

µt = ρCµ
k2

ε
, αt = cp

µt
Pr

, (3.43)

where Cµ is a calibration constant, k is the turbulent kinetic energy and ε is the

rate of dissipation of turbulent kinetic energy per unit mass due to viscous stresses.

Solving the following transport equations for k and ε a local value of µt can be

computed:
∂

∂t
(ρk) +∇ · (ρvk) = ∇ · ((µ+

µT
σk

)∇k) + Sk, (3.44)

∂

∂t
(ρε) +∇ · (ρvε) = ∇ · ((µ+

µT
σε

)∇ε) + Sε, (3.45)

It must be kept in mind that the construction of this model is based on two

important assumptions:

• fully turbulent flow

• negligible molecular viscosity effects

that establish the limits of this approach:

• validity only for high Reynolds

• inability to reach the wall

To account for this lack the so-called low Reynolds k− ε model have been devel-

oped. These models use damping functions to damp the turbulent viscosity while

getting close to the wall.

k− ω

In this model the equation for ε is substituted by an equation for ω, where ω is

called specific turbulent dissipation and represents the rate at which the turbulent

kinetic energy is converted into thermal energy per unit time and unit volume.

ω =
ε

Cµk
. (3.46)

The turbulent eddy viscosity and turbulent thermal diffusivity are then given by:

µT = ρ
k

ω
, kT =

µT
PrT

. (3.47)
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The two additional equations are:

∂

∂t
(ρk) +∇ · (ρvk) = ∇ · ((µ+

µT
σk

)∇k) + Sk, (3.48)

∂

∂t
(ρω) +∇ · (ρvω) = ∇ · ((µ+

µT
σω

)∇ω) + Sω. (3.49)

This new equation has three advantages [12]:

• it is easier to integrate;

• it is integrable also in the sub-layer without using damping functions ;

• it is capable to deal with weak adverse pressure gradients.

As pointed out by its inventor, the k − ω model is accurate for both free shear

flows and wall-bounded (attached boundary layer and mildly separation) [30]. But,

unfortunately, this model has a strong dependence on the free stream values.

Looking at capabilities and flaws of the two models, they seems to be ”comple-

mentary”. The k − ε model, thanks to its insensitivity to the free stream, predicts

with more accuracy away from the wall, while the k − ω behaves better in the

boundary layer and with weak adverse pressure gradients.

These considerations have led to the development of the Baseline (BSL) k − ω
model, that uses a blending function to switch from the k− ω and a rearrangement

of k − ε in terms of ω.

The Shear Stress Transport k−ω model represents a further improvement to the

Baseline, by limiting the shear stress in adverse pressure gradient flows. Menter, the

developer of these two methods, writes [23]: “It (BSL) has a performance similar to

the Wilcox model, but avoids that model’s strong freestream sensitivity. The second

model (SST) results from a modification to the definition of the eddy-viscosity in the

BSL model, which accounts for the effect of the transport of the principal turbulent

shear stress. The new model is called shear-stress transport-model and leads to major

improvements in the prediction of adverse pressure gradient flows.”

3.4 Near the wall treatment

On every solid surface, due to the fluid viscosity, a boundary layer develops. This

layer of fluid can be divided in three regions:
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• viscous sub-layer (0 < y+ < 5), where the effect of viscosity dominates;

• buffer sub-layer (5 < y+ < 30), where viscous and inertial effects are equal;

• inertial (log-law) sub-layer (30 < y+ < 500), where the effect of inertia domi-

nates.

These three sub-layers can be identified by the value of y+ that is the adimension-

alized normal distance (d⊥) from the wall:

y+ =
d⊥uτ
ν

, (3.50)

where uτ =
√
τw/ρ is the velocity scale.

This subdivision of the boundary layer is schematized in Figure 3.1.

Figure 3.1: Boundary layer subdivision and correspondent y+ ranges. (courtesy of Wolf

Dynamics srl)

Turbulence models avoid the buffer sub-layer, because the high turbulent pro-

duction, by placing the first cell center in the viscous sub-layer or in the inertial

sub-layer.

The first option leads to accurate prediction of the boundary layer, but requires

a very fine discretization near the wall, usually leading to unaffordable costs.

The second, combined by the definition an appropriate wall-value to each new

variable introduced, significantly reduces computational costs while giving a good

accuracy. This velocity profile is called wall function and its action is schematized

in Figure 3.2.
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Figure 3.2: Representation of the wall function approach. (courtesy of Wolf Dynamics srl)

3.5 Flow with particles

To numerically model a multiphase flow, it is often important to use separate

formulations for the different phases. The particle phase consists of bubble, particle,

or drops and the continuous phase is the fluid in which these particles are generally

immersed. The particle can be composed of solid, liquid, or gas, and the continuous

fluid can be a liquid or a gas. The coupling between the particle motion and its

surroundings can be used to classify the character of the multiphase flow, and thus

help determine appropriate numerical techniques. The broadest division is between

dispersed and dense flows, and refers to which coupling mechanism primarily de-

termines the particle motion. A multiphase flow can be considered dispersed if the

effect of particle–fluid interactions dominates the overall transport of the particles,

while it is said to be dense if particle-particle interaction dominates particles motion.

Dispersed flows includes one-way coupling (where the dispersed-phase motion is af-

fected by the continuous phase, but not vice versa) and two-way coupling (where the

dispersed phase also affects the continuous phase through the interphase coupling).

Dense flows usually have four-way coupling where mutual interactions between par-

ticles become significant and the effects of the particles on the continuous fluid are

weak and often neglected. As well described in [11] volume fraction of particles is

the main parameter to make the division between one, two or four way coupling and

therefore between dispersed and dense. The volume fraction is defined as Φp = MVp
V

where M is the number of particles, Vp is the volume of a single particle and V is

the volume occupied by particles and fluid:
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• for Φp < 10−6 there will be one-way coupling;

• for 10−6 < Φp < 10−3 there will be two-way coupling and the particles can

also increase or dump turbulence;

• for Φp > 10−3 there will be four-coupling and the flow will be considered as

dense.

Another important parameter that may contribute to the selection of the appropriate

model is the particle momentum Stokes number defined as the ratio between the

particle response time τp and that of the system τs:

St =
τp
τs
, (3.51)

τp =
ρpd

2

18ρfν
(only for Stokes flows), (3.52)

τs =
Ls
vs
. (3.53)

If St → 0, the particle behaves as a fluid tracer (momentum one-way coupling)

and if St → ∞ is unresponsive to the flow variations. One would define a Stokes

number not only for momentum but also for mass and temperature in order to

evaluate with more precision the mass coupling and energy coupling of particles with

the continuous phase. If two-way coupling is considered, it simply involves some

source terms in the continuous phase equations (momentum, energy, turbulence

models...) that are generally described in an Eulerian reference frame. For the sake

of simplicity, we have limited our interest to the one-way coupling.

3.5.1 Particle equations

Various treatments of the particle field can be employed. Particles could be

described in an Eulerian or Lagrangian reference frame and, as suggested by E.

Loth in his paper [18], distinctions could be done about the treatment of particle

surface forces. In this work only the Lagrangian approach will be discussed. With

this reference frame the particles are treated as individual and properties are updated

along the path of each particle. For the treatment of the surface forces, the point-

force treatment represents the flow over the particle with empirical and theoretical

treatments (specifying a drag or lift coefficient) to obtain the force on the particle.

For the resolved surface treatment, the fluid dynamics (e.g., pressure and shear stress

distributions) are fully resolved over the entire particle surface and then integrated

to obtain the overall hydrodynamic forces. Following the point-surface approach
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and defining xp as the particle centroid and mp the particle mass, the Lagrangian

particle equation of motion is:

mp
dv

dt
= F body + F surf . (3.54)

The left hand side represents the particle mass inertia and the right hand side

represents the sum of body forces and surface forces on the particle. Body forces

are those related to gravitational effects:

F body =
(ρp − ρ)πd3

p

6
g. (3.55)

Where dp are ρp are respectively the droplet diameter and droplet density. Surface

forces can be seen as the sum of different terms: drag, virtual mass, a term related to

pressure gradient and one to the ”history” of particle (Basset term). The expressions

for all these terms are listed below without a rigorous derivation:

• The drag force is:

FD,i =
1

2

πd2
p

4
ρfCd|u− up|(ui − up,i), Cd =

24

Rep
(1 +

3

16
Rep). (3.56)

• The pressure gradient force is:

FP,i =
1

6
πd3

pρf
Dui
Dt

. (3.57)

• The added mass force (virtual force) is:

FA,i =
πd3

p

12
ρf

(Dui
Dt
− dup,i

dt

)
. (3.58)

• The Basset force is:

FB,i =
3

2
d2
pρf
√
πν

∫ t

−∞

d

dτ
(ui − up,i)

dτ√
t− τ

, (3.59)

where Rep is the particle Reynolds number based on relative velocity:

Rep =
ρdp(u− up)

µ
, (3.60)

where ρ is the density of the continuous phase. A better description of all these

terms can be found in [18] and in [6].
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3.5.2 Kinetic of drying process

The dispersed phase can exchange not only momentum but also mass and heat

with the continuous phase. Such phenomena are discussed below in a complete

description of the entire drying kinetics for a single droplet. Before introducing the

model, a brief introduction to mechanism of mass and heat transfer involved in that

process is provided.

3.5.3 Mass transfer: diffusion and convection

Fick’s law of diffusion

Diffusion is the process by which molecules, ions, or other small particles spon-

taneously mix, moving from regions of relatively high concentration into regions of

lower concentration. This process can be analyzed through the Fick’s law of diffu-

sion that states that the rate of diffusion of a chemical species at a location in a

gas mixture (or liquid or solution) is proportional to the concentration gradient of

that species at that location. The following notation is coherent with [4] where the

concentration of a species can be expressed in a mass basis or mole basis way. On a

mass basis, concentration is expressed in terms of density ρ or in dimesionless form

in terms of mass fraction w:

ρi =
mi

V
, (3.61)

ρ =
∑

ρi, (3.62)

wi =
ρi
ρ
. (3.63)

On a mole basis, concentration is expressed in terms of molar concentration C or in

dimesionless form in terms of mole fraction y:

Ci =
Ni

V
, (3.64)

C =
∑

Ci, (3.65)

yi =
Ci
C
. (3.66)

The mass m and the mole number N are related by m = NM where M is the molar

mass. Therefore for the ith species i:

Ci =
ρi
Mi

, (3.67)

wi = yi
Mi

M
. (3.68)
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Following the Dalton’s law of pressure according to which the total pressure of a

gas mixture P is equal to the sum of the partial pressures Pi and reminding that

for ideal gas PV = NRuT , the mole fraction yi may be written as:

Pi
P

=
NiRuT/V

NRuT/V
= yi. (3.69)

The linear relationship between the rate of diffusion and the concentration gra-

dient was proposed by Fick in 1855. Considering a stationary binary mixture com-

posed by specie A and B the diffusive mass flux of species A, jA, in the specified

direction x is given by:

jA = −ρDAB
d(ρA/ρ)

dx
= −ρDAB

dwA
dx

, (3.70)

jA = −CDAB
d(CA/C)

dx
= −CDAB

dyA
dx

. (3.71)

If ρ = ρA + ρB and C = CA + CB is constant through the mixture:

jA = −DAB
dρA
dx

, (3.72)

jA = −DAB
dCA
dx

. (3.73)

(3.74)

For two three-dimensional cases, Fick’s law can conveniently be expressed in vector

form:

jA = −ρDAB∇wA, (3.75)

jA = −CDAB∇yA, (3.76)

where DAB is the diffusion coefficient usually determined experimentally.

Convection

Mass transfer problems usually involve diffusion in a moving medium, therefore

species are transported both by molecular diffusion and by the bulk motion of the

medium; that means by convection. Usually when dealing with this kind of problems

it is common to refer to some experimental correlations in such a way very similar

to the well known heat transfer convective correlations. Also, mass convection is

usually analyzed on a mass basis approach and for the sake of simplicity the attention

will be focused on fluids that are or can be treated as binary mixtures. The Schimdt

number is a dimesionless number that expresses the ratio between the momentum
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diffusivity and the mass diffusivity, hence it is a usefull parameter to compare the

velocity boundary layer and concentration boundary layer. The Shmidt number is

written

Sc =
ν

DAB

. (3.77)

It is important to stress that the real physical mechanism of mass transfer is con-

trolled by Fick’s law of diffusion because of the no slip boundary condition for the

bulk flow. However it is common to define a convective mass transfer coefficient

hmass in order to express the rate of mass convection as follow:

ṁconv = hmassA(ρAs − ρA∞). (3.78)

Where ρAs, ρA∞ are respectively the density of species A on the surface and out of

the concentration boundary layer. The hmass coefficient is expressed in terms of cor-

relations through the Sherwood number, a dimensionless parameter that represents

the effectiveness of mass convection at the surface. Defining a characteristic length

Lc the Sherwood number is:

Sh =
hmassLc
DAB

. (3.79)

For a given geometry and for a flow type, Sh is a function of the Reynolds number

and Schimdt number Eq.(3.77). A well known example is given by the Ranz-Marshall

correlation for mass transfer:

Sh = 2 + 0.6Re
1
2Sc

1
3 , 0 6 Re < 200. (3.80)

The use of Eq.(3.78) is valid only for low mass flux because of the no slip boundary

condition. This condition is still verified only if the rate of mass transfer of a

species is small relative to the flow rate of that species. However it is possible

to use with good approximation Eq.(3.78) for evaporation of water into air unless

the water temperature reaches the saturation temperature for the external pressure

condition. This for examples implies that Eq.3.78 can’t be used for evaporation of

droplets in combustion chambers or generally speaking to mass transfer in boilers

and condensers.

3.5.4 Heat transfer: diffusion and convection

Conduction

Heat transfer due to conduction takes place in solids and quiescent fluids. The

heat is transferred by diffusion and collisions between particles, without any mass
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flow [25]. Heat transfer conduction is controlled by Fourier’s law (see Eq.(3.25)) that

states the relationship between the heat flow and the temperature gradient through

the constant of proportionality kc that is the thermal conductivity that in general

varies with temperature. The 1D version of Eq.(3.30) without heat generation is:

ρcp
∂T

∂t
=

∂

∂x

(
kc
∂T

∂x

)
. (3.81)

If kc is constant with temperature then Eq.(3.81) reduces to:

1

α

∂T

∂t
=
∂2T

∂x2
, (3.82)

where α = kc
ρcp

is the thermal diffusivity and it’s a measure of how much heat is

conducted with respect to the heat stored within the body. For transient heat

conduction problems, α, together with a reference length Lc, is used to make the

distinction between ”early” regime and ”late” regime. Denoting with t the time

associated with the process involved, and with Fo the respective dimensionless time

it is possible to say:

Fo =
αt

L2
c

<< 1 ”Early regime”, (3.83)

Fo =
αt

L2
c

∼ 1 ”Transition”, (3.84)

Fo =
αt

L2
c

>> 1 ”Late regime”. (3.85)

For the ”late regime” the lumped approximation is suitable if the dimensionless Biot

number Bi = hLc

kc
6 0.1, therefore it is possible to assume a uniform temperature

distribution throughout the body. Hence Eq.(3.82) can be simplified:

mcp
dT

dt
= hA(T∞ − T ), (3.86)

where h is the convective heat transfer coefficient described in the next section.

The Biot number could be seen as the ratio between the heat convected to the

body and the heat conducted within the body. The smaller the Biot number the

more accurate the lumped approximation. For the ”early regime” and ”transition”

regime Eq.(3.82) should be solved with appropriate boundary conditions; analytical

solutions exist also in cylindrical and spherical problems, but they involve infinite

series which are difficult to deal with. For Fo > 0.2 the one term approximation

leads to small errors and solutions are also available in graphical form (Heisler’s

chart [4]).
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Convection

Heat transfer with the presence of bulk fluid motion is usually called convec-

tion, and the analogy with convection mass transfer will be clear at the end of this

section. The bulk fluid motion increases heat transfer since it brings hotter and

cooler fluid layers into contact and the higher the fluid velocity, the higher the rate

of heat transfer. Usually the rate of convection heat transfer is expressed through

the Newton’s law:

q̇conv = hA(Ts − T∞), (3.87)

where h is the convection heat transfer coefficient. Because of the no slip boundary

condition for fluid flow, heat is always transferred by conduction in the fluid layer

near the surface, and then convected away because of the fluid motion. Therefore a

rigorous definition of h is:

h =
−kfluid ∂T∂y |y=0

Ts − T∞
. (3.88)

The complete energy equation was presented in section 3.1.3, the resolution of which

could bring the information about temperature distribution. If the temperature dis-

tribution is unknown, h is determined through correlations very similar to those

described in mass convection section depending on the nature of fluid flow motion

(laminar, turbulent, external, internal, forced or natural convection). Correlations

usually involve adimensional numbers, such as the Prandtl’s number Pr = ν
α

and

Nusselt’s number Nu = hLc

kfluid
. Prandtl’s number is the ratio between momentum

diffusivity and thermal diffusivity and provides information about the thickness of

velocity and thermal boundary layers. The Nusselt number represents the enhance-

ment of heat transfer through a fluid layer as a result of convection relative to

conduction across the same fluid layer. The larger the Nusselt number, the more

effective the convection. Nu is a function of Re and Pr, for example the Ranz-

Marshall correlation for convective heat transfer is:

Nu = 2 + 0.6Re
1
2Pr

1
3 . (3.89)

3.5.5 Two-stage evaporation model

The overall drying process of droplets inside the spray dryer can be divided in

two stages. During the first stage droplets containing solids and great amount of

liquid enters the drying volume, gets sensible heat and evaporation occurs on the

surface resulting in droplet diameter shrinking. During this first stage the liquid

excess envelops the entire droplet volume and evaporation is very similar to the
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evaporation of pure water droplets [22]. When the droplet moisture content reaches

a critical value, according to the model adopted, a solid crust surrounding a wet core

is formed. At this point the droplet diameter is considered to be constant and only

the wet core shrinks until the droplet reaches the final moisture content. During

the second drying stage water vapour diffuses through the solid crust, and the rate

at which it reaches the droplet surface depends on the crust porosity. The entire

drying process is summarized in Fig.(3.3), where all features previously introduced

are stressed.

Figure 3.3: Two stage model of droplet drying [21].

3.5.6 First stage

Figure (3.3) shows that the first stage of evaporation can be considered as the

sum of two additional steps:

• Droplet initial heating, where the droplet temperature rises, the rate of evap-

oration is very low, and the droplet radius is approximately constant;

• Constant temperature evaporation period, where the rate of evaporation (and

therefore the rate at which heat is lost due to vaporization enthalpy) is enough

to balance the heat transfer rate from the surrounding hot air;

If both conditions for a lumped approximation are satisfied, (see section 3.5.4) that

means both Fo >> 1 and Biot < 0.1, the equation of energy conservation for the

droplet is:

hfgṁv + cp,dmd
dTd
dt

= h(Tair − Td)4πR2
d, (3.90)
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where hfg is the specific heat of evaporation, ṁv the vapour mass transfer rate,

md,cp,d, Td and Rd corresponding to mass, specific heat, temperature and radius of

the dried droplet and h is the heat transfer coefficient [20]. The rate of moisture

evaporation is controlled by Eq.(3.78) here specified for the specific case of single

droplet:

ṁv = −dmd

dt
= 4πR2

dhmass(ρv,s − ρv∞), (3.91)

where ρv,s is the saturation density of water at droplet surface and it is a function

of Td,s. ρv∞ is the vapour density in the surrounding air depending on its relative

humidity and hmass is the convective mass transfer coefficient. According to [8],

the water vapour densities of the droplet and the gas are given by the following

expressions:

ρv,s =
Mwpsat
RuTd,s

, (3.92)

ρv∞ =
Mwpv,air
RuTair

, (3.93)

where Mw is the water molecular weight, Psat is the saturation pressure of water at

droplet surface temperature, Pv,air is the vapour partial pressure in the surrounding

air and Ru is the universal gas constant. The convective mass transfer coefficient is

evaluated through the modified Ranz-Marshall correlation for spherical evaporating

droplets:

Sh =
ddhmass
Dv

= (2 + 0.6Re
1
2Sc

1
3 )(1 +B)−0.7. (3.94)

The factor (1 +B)−0.7 takes into consideration Stefan flow in the droplet boundary

layer and B = cp,v
(Tg−Td)

hfg
is the Spalding number [21]. The diffusion coefficient of

vapour in air in atmospheric conditions is evaluated as follows:

Dv = 3.564 10−10(Td,s + Tg)
1.75. (3.95)

For the convective heat transfer coefficient in Eq.(3.90) a correlation very similar to

Eq.(3.94) is used:

Nu =
ddh

kair
= (2 + 0.6Re

1
2Pr

1
3 )(1 +B)−0.7, (3.96)

where kair is the air thermal conductivity. The expression for droplet specific heat

cp,d in Eq.(3.90) takes into account the properties of the water and the solid fraction:

cp,d = (1− c)cp,w + ccp,s, (3.97)
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Where c is the mass concentration of solid that is connected to the droplet moisture

content, by:

x =
mw

ms

=
md

md,0

(1 + x0)− 1, (3.98)

c =
1

1 + x
, (3.99)

where x0 and md,0 are the droplet initial moisture content and initial mass. The

droplet diameter is shrinking due to evaporation and, for the mass conservation, it

can be computed from:
dRd

dt
= − ṁv

ρw4πR2
d

. (3.100)

Integrating Eq.(3.100) it is possible to follow also the evolution of the droplet mass:

md = md,0 − πρw
8

6
(R3

d,0 −R3
d). (3.101)

Usually a lumped approximation is acceptable for small droplets since Fo ∼ 1
R2

d
and

Biot ∼ Rd. However, if the droplets radius isn’t small enough, the Fo number at

the end of the initial heating period does not satisfy the lumped condition, therefore

the transient is too fast and the effect of temperature rise do not have interested all

the characteristic length of the droplet (radius), and the temperature profile within

the droplet may be considered. In this case the equation of energy conservation for

the initial heating is:

ρcp,d
∂Td(r, t)

∂t
=

1

r2

∂

∂r

(
kdr

2∂Td
∂r

)
, (3.102)

and the corresponding boundary conditions are:
∂Td
∂r

= 0 for r = 0,

h(Tg − Td) = kd
∂Td
∂r

for r = Rd.

At the end of the initial heating stage, when evaporation is considerable and the

droplet radius starts to shrink significantly, the droplet Fourier and Biot numbers

could rapidly exceed the lumped approximation limits and, for the subsequent evap-

oration stage at constant temperature, both radial and temporal variations of the

droplet can be neglected. From this point on this approach will be called ”Uniform

temperture approach”. This results in the following equation of energy conservation:

hfgṁv = h(Tg − Td)Ad. (3.103)
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Combining Eq.(3.103) with Eq.(3.78) and introducing Eq.(3.96), Eq.(3.94) and Eq.(3.92)

the following equation is obtained:

Tg − Td
hfg

=
2 + 0.6Re

1
2
d Sc

1
3

2 + 0.6Re
1
2
dPr

1
3

DvMw

kairRu

(pv,s
Td
− pv,∞
Tair

)
. (3.104)

Solving for Td the equilibrium evaporation temperature is obtained and droplet

properties could be tracked with Eq.(3.98), Eq.(3.100) and with Eq.(3.101). In the

case when lumped conditions are not satisfied, the fully transient approach is needed

and the energy conservation equation is applied to a time dependent spatial domain:

ρcp,d
∂Td(r, t)

∂t
=

1

r2

∂

∂r

(
kdr

2∂Td(r, t)

∂r

)
, (3.105)

and the corresponding boundary conditions are:
∂Td
∂r

= 0 for r = 0,

h(Tg − Td) = kd
∂Td
∂r

+ hfg
ṁv

Ad
for r = Rd.

3.5.7 Second stage

When the droplet moisture content falls below a certain critical value, a solid

crust starts to develop on the entire droplet surface. A wet core still exists but, from

now on, vapour diffuses through the crust that is considered to be porous [24]. For

this stage the fully transient approach is considered and both temperature variation

with time and radius are evaluated.

Figure 3.4: Details of the second stage.

During the second stage of evaporation the external diameter is constant while

the wet core shrinks because of evaporation and, as a result, the crust thickness
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increases. This problem is classified as a problem with internal moving evaporating

interface [24]. Therefore two energy equation are required: one for the crust and one

for the wet core. With respect to the crust region, the assumption of temperature

independent crust thermal conductivity leads to:

∂Tcr(r, t)

∂t
=
αcr
r2

∂

∂r

(
r2∂Tcr(r, t)

∂r

)
Ri(t) ≤ r ≤ Rp, (3.106)

and the corresponding boundary conditions are:
kcr

∂Tcr
∂r

= kwc
∂Twc

∂r
+ hfg

ṁv

Ai
for r = Ri(t),

Twc = Tcr for r = Ri(t),

h(Tg − Tcr) = kcr
∂Tcr
∂r

for r = RP ,

where RP is the fixed external radius, and h is the convective heat transfer coefficient

evaluated with Eq.(3.96). The wet core the energy conservation equation is:

ρwccp,wc
∂Twc(r, t)

∂t
=

1

r2

∂

∂r

(
kwcr

2∂Twc(r, t)

∂r

)
0 ≤ r ≤ Ri(t). (3.107)

The corresponding boundary conditions are:
∂Twc

∂r
= 0 for r = 0,

kcr
∂Tcr
∂r

= kwc
∂Twc

∂r
+ hfg

ṁv

Ai
for r = Ri(t),

Tcr = Twc for r = Ri(t).

The rate of interface receding is given by [8]:

dRi

dt
= − ṁv

ερw4πR2
i

, (3.108)

where ε is the crust porosity. The mass transfer rate from the spherical wet core

can be evaluated through the Stefan’s flow approximation [8] which leads to:

ṁv = − 8πεDvMwpg
R(Tcr,s + Twc,s)

RPRi

RP −Ri

ln

(
pg − pv,i

pg − Tcr,s
(

Ruṁv

4πMwhmassR2
P

+ pv,∞
Tg

)). (3.109)

The diffusion coefficient Dv is evaluated with Eq.(3.94). The particle moisture con-

tent and mass are given by:

x = mp
1 + x0

md,0

− 1, (3.110)

mp =
md,0

1 + x0

(
1− ρw

ρsolid

)
+

4

3
πρw(εR3

i + (1− ε)R3
P ). (3.111)
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According to the lumped approximation described for the first drying stage,

also here it is possible to track the droplet temperature with a simpler approach.

When the critical moisture content is reached, the wet particle turns into a non

evaporating dry particle. This nonevaporating particle and the drying gas continue

their interaction by convective heat transfer until thermal equilibrium. The particle

temperature is determined from the following heat balance equation:

mpcp
∂Tp
∂t

= 4πR2
ph(Tg − Tp). (3.112)

Because there is no more evaporation, the particle mass during this period remains

invariable as well as its radius and its moisture content. This is a great simplification,

the wet core is neglected and the crust does not grow, but this can provide some

preliminary informations about the wet particle temperature rise.
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Chapter 4

OpenFOAM

4.1 About OpenFOAM

OpenFOAM R© (Open source Field Operation And Manipulation) is an open

source finite volume software for computational fluid dynamics (CFD), owned by

the OpenFOAM R©Foundation and distributed exclusively under the GNU General

Public Licence (GPL)[1]. That means it is freely available and according to the GNU

general public license principles the users can modify and share the source code that

is freely distributed. Generally speaking OpenFOAM R© is a C + + library, used

to solve partial differential equations (PDEs), and ordinary differential equations

(ODEs). Its primary usage is to create executables, known as applications that fall

into two categories: solvers, that are each designed to solve a specific problem in

continuum mechanics, and utilities, that are designed to perform tasks that involve

data manipulation[1]. The OpenFOAM R© distribution has an extensive range of

features to solve anything from complex fluid flows involving combustion and chem-

ical reactions, multiphase flows and mass transfer, turbulence and heat transfer,

particle methods (DEM,DSMC,MD) and lagrangian particles tracking to acoustics,

solid mechanics and electromagnetics. It includes tools for meshing in and around

complex geometries, and for data processing and visualisation, and more. Almost

all computations can be executed in parallel as standard to take full advantage

of today’s multi-core processors and multi-processor computers. OpenFOAM R© is

supplied with pre- and post-processing environments. The interface to the pre- and

post-processing are themselves OpenFOAM utilities, thereby ensuring consistent

data handling across all environments. [1]. The overall structure of OpenFOAM R©

is shown in Figure 4.1.

Hence it is clear that OpenFOAM R© capabilities mirror those of commercial
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Figure 4.1: Overview of OpenFOAM structure [1].

CFD applications, but there are still some disadvantages compared to them, such

as the lack of a native GUI, not much available documentation and, in wider terms,

it is less user friendly; however, as the users have complete access to the source

code, they have total freedom to modify existing solvers or use them as the starting

point for new ones with some pre-requisite knowledge of the underlying method,

physics and programming techniques involved. Summing up some of the features of

OpenFOAM R© are listed below taken from the official web-site [1]:

• Fluid Dynamics & Physical Modelling

– Turbulence modelling (Reynolds-Averaged (RANS), Large-Eddy Simula-

tion (LES), Detached-Eddy Simulation (DES,DDES,etc)

– Thermophysical modelling

– Transport/rheology

– Multiphase flows

– Rotating flows with multiple reference frames (MRF)

– Rotating flows with arbitrary mesh interface (AMI)

– Dynamic meshes

– Compressible/thermal flows

– Conjugate heat transfer

– Porous media

– Lagrangian particle tracking
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– Reaction kinetics/chemistry

• Geometry & Meshing

– Mesh generation for complex geometries with snappyHexMesh

– Mesh generation for simple geometries with blockMesh

– Mesh conversion tools

– Mesh manipulation tools

• Numerical Solution

– Numerical method

– Linear system solvers

– Ordinary Differential Equation system solvers

• Computing & Programming

– Equation syntax

– Libraries of functionality

– Parallel computing

• Data Analysis

– ParaView post-processing

– Post-processing command line interface (CLI)

– Graphs and data monitoring

4.2 OpenFOAM case structure

The basic directory structure for a OpenFOAM R© case, with the minimum set

of files to run an application, is presented in Figure 4.2.

The roles of the main directories, contained in the case folder, are listed below:

• system, it contains the dictionaries to set up the entire solution procedure

(from meshing to solving); at least it must contain three files:

– fvSchemes to specify (run-time) the numerical schemes to discretize the

equations;
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Figure 4.2: Structure of an OpenFOAM R© case [1].

– fvSolution to set equation solvers, tolerances and other algorithm con-

trols;

– controlDict to control (run-time) the simulation run (start/end time,

time-step, function objects etc.)

• constant, it contains a folder (polyMesh) with the full description of the case

mesh and files that specify the physical properties involved (transport and

turbulence properties, gravity, dynamic properties etc.)

• time directories, it contains files that represent the specific fields at initial

condition (e.g. 0 folder) or computed by OpenFOAM R© (e.g. 0.01, 0.02,

... folders1) at consecutive times; it must be underlined that OpenFOAM R©

always require fields to be initialized, even in steady-state problems

A lot of pages should be written to exhaustively explain OpenFOAM R©, but

that is beyond the scope of this thesis. For further details the CFD direct website

[1] is suggested.

1The name of the folder corresponds to the simulated time at which data are written.
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4.3 The programming language of OpenFoam

4.3.1 Why C++

C++ is an Object-Oriented Programming language that attemps to provide tech-

niques for managing enormous complexity, achieving the aim of the reuse of software

components. As an Object-Oriented Programming languages is based on three pillars

of the object-oriented development [17]:

• encapsulation

• inheritance

• polymorphism.

Encapsulation

C++ supports the properties of encapsulation through the creation of user-

defined types, called classes. Once created a well defined class acts as a fully encap-

sulated entity and it is used as a whole unit. The actual inner workings of the class

should be hidden. Users of a well defined class do not need to know how the class

works; they just need to know how to use it.

Inheritance

C++ supports inheritance; a new type (class), which is an extension of an ex-

isting type, can be declared. This new subclass is said to derive from the existing

type (sometimes is called a derived type) and inherits all its qualities, but the user

can add new ones as needed.

Polymorphism

C++ supports the idea that different objects (belonging to the same class) do

”the right thing” when the user chooses one of them. Being more exhaustive, in

n programming languages, polymorphism means that some code or operations or

objects behave differently in different contexts.

A clarifier example inherent to a CFD code is relative to a velocity field. The

expression encapsulates the idea of movement with direction and magnitude and

relates to other physical properties. In mathematics, we can represent a velocity

field by a single symbol, e.g. U , and express certain concepts using symbols, e.g.
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“the field of velocity magnitude” by |U |. The advantage of mathematics over verbal

language is its greater efficiency, making it possible to express complex concepts

with extreme clarity. The problems that we wish to solve in continuum mechanics

are not presented in terms of intrinsic entities, or types, known to a computer,

e.g. bits, bytes, integers. They are usually presented first in verbal language, then

as partial differential equations in 3 dimensions of space and time. The equations

contain the following concepts: scalars, vectors, tensors, and fields thereof; tensor

algebra; tensor calculus; dimensional units. The solution to these equations involves

discretisation procedures, matrices, solvers, and solution algorithms. Programming

languages that are Object-Oriented, as stated in the introduction to this chapter,

provide the mechanism to declare types -classes- and associated operations that

are part of the verbal and mathematical languages used in science and engineering.

The velocity field introduced earlier can be represented in programming code by the

symbol U and “the field of velocity magnitude” can be mag(U). The velocity is a

vector field for which there should exist, in an Object-Oriented, a vectorField class.

The velocity field U would then be an instance, or object, of the vectorField class ;

The clarity of having objects in programming that represent physical objects and

abstract entities should not be underestimated. The class structure concentrates

code development to contained regions of the code, the classes themselves, thereby

making the code easier to manage. New classes can be derived or inherit properties

from other classes, e.g. the vectorField can be derived from a vector class and a

Field class. C++ provides the mechanism of template classes such that the template

class Field<Type> can represent a field of any <Type>, e.g. scalar, vector, tensor.

The general features of the template class are passed on to any class created from

the template. Templating and inheritance reduce duplication of code and create

class hierarchies that impose an overall structure on the code [5].
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Chapter 5

Numerical discretization

5.1 First drying stage

In section 3.5.6 three different models for the first drying stage of water droplets

with insoluble solids have been presented, which differ from one another depending

on if the lumped conditions are satisfied. In this section the discretization of all

equations for the three different approaches is described. Table 5.1 outlines what

models will be treated within this section (IH denotes the initial heating period):

Table 5.1: First stage models.

Model T=f(r) T=f(t) Simplification

Lumped No Yes High

IH + Uniform T Only for IH Only for IH Mid

Complete Yes Yes Low

5.1.1 Lumped approximation

The lumped approximation is usually adopted for micron sized droplets since

both Fourier and Biot numbers respect the lumped conditions even from the be-

ginning of the process. The energy equation, the mass transfer governing equation

and the radius tracking equation are solved using a Euler implicit integration scheme

with an iterative method derived from the one described in [24] and in [10]. Time

has been discretized with a timestep ∆t that leads to:

t = n∆t n = 0, . . . , N. (5.1)
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The set of equation being discretized is given below:

hn+1
fg ṁn+1

v + cn+1
p,d m

n+1
d

T n+1
d − T nd

∆t
= hn+1An+1

d (Tair − T n+1
d ) (5.2)

ṁn+1
v = hn+1

mass(ρ
n+1
v,s − ρv,∞)An+1

d (5.3)

Rn+1
d −Rn

d

∆t
= − ṁn+1

v

ρw4π[R2
d]
n+1

(5.4)

Where hn+1
fg = f(T n+1

d ) is the specific heat of evaporation, cp,d = cp,w(1−c)+cp,solidc

is a function of the solid concentration c, and the convective heat transfer and mass

transfer coefficients come from Eq.(3.96) and Eq.(3.94).

The algorithm for the numerical solution is given in Fig.5.1.

n = 0

First guess:

Rn+1
d = Rguess

Calculation of ṁn+1
v from

Eq.(5.3) (all coefficients

involved in Eq.(5.3)

with T n and Rguess)

Calculation of

T n+1
d from (5.2)

Calculation of

new coefficients in

Eq.(5.3) with T n+1
d

Calculation of new

ṁn+1
new,v from Eq.(5.3)

with the new coefficients

Res1 = | ṁ
n+1
new,v−ṁn+1

v

ṁn+1
new,v

| ≤ E

Calculation of

ṁn+1
v,2 from Eq.(5.4)

Res2 = | ṁ
n+1
v,2 −ṁ

n+1
new,v

ṁn+1
v,2

| ≤ E
Newton’s method for

new guess of Rn+1
d

x ≤ xcr n = n + 1

No

Yes

No

Yes

No

Figure 5.1: Flow chart for the numerical solution.
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The Newton’s method in the above flowchart must give the right ”direction”

along which to choose a new guess for the droplet radius. Imagine to have an objec-

tive function to reduce under a certain tolerance, as an example, for the algorithm,

Res2. The simplest way to proceed is just to take two guesses for the radius, Rguess,A

and Rguess,B, and evaluate two values for Res2 that, for example, are Res2,A and

Res2,B. The numerical derivative is computed as:

∆Res2

∆Rguess

=
Res2,A −Res2,B

Rguess,A −Rguess,B

. (5.5)

The new value for Rguess,C is computed as:

Rguess,C = Rguess,B −
Res2,B

∆Res2
∆Rguess

. (5.6)

With the value obtained from Eq.(5.6) we could update the value of Eq.(5.5)

However this is not the exact way we proceeded on. The above numerical deriva-

tive is analytically computed; since ṁn+1
v,2 is expected to converge to some finite value,

our objective function to reduce is ∆ṁv = ṁn+1
v,2 − ṁn+1

new,v and it is evaluated only

by replacing the numerical value coming from the first loop mn+1
new,v. If we denote by

x = Rguess then we can write

∆ṁv = x3 −Rn
dx

2 +
mn+1
new,v

4πρw
. (5.7)

The derivative is then computed analytically as:

∆ṁ

dx
= 3x2 − 2xRn

d . (5.8)

Finally Rguess,new is computed as:

Rguess,new = Rguess −
∆ṁ(Rguess)

∆ṁ
dx
|Rguess

. (5.9)

Another temporal dicretization has been also implemented. This algorithm con-

sists in a second order accurate time integration scheme using the explicit multistep

Adams-Bashforth method.

T n+2
d = T n+1

d +
3

2
∆t
hn+14π(Rn+1

d )2(Tair − T n+1
d )− hn+1

fg ṁn+1
v

(cn+1
p,d m

n+1
d )

(5.10)

− 1

2
∆t
hn4π(Rn

d )2(Tair − T nd )− hnfgṁn
v

(cnp,dm
n
d)

,

Rn+2
d = Rn+1

d +
3

2
∆t

ṁn+1
v

ρw4π(Rn+1
d )2

.− 1

2
∆t

ṁn
v

ρw4π(Rn
d )2

(5.11)

For ṁn
v the following equation is used:

ṁn
v = hnmass(ρ

n
v,s − ρv,∞)And . (5.12)

43



Numerical discretization

5.1.2 Initial heating and uniform evaporation temperature

The Fo number associated with the initial heating period may not satisfy the

lumped approximation and it could be grater than 0.1. This means that the droplet

characteristic time associated with the initial heating is greater than the physical

time and therefore, if also the Biot number is greater than 0.1, the temperature pro-

file within the droplet should be considered. The discretization of Eq.(3.102) consists

of two parts: spatial and temporal discretization. After some algebra Eq.(3.102) is

written as:

ρdcd,p
∂Td(r, t)

∂t
=

2kd
r

∂Td(r, t)

∂r
+ kd

∂2Td(r, t)

∂r2
. (5.13)

Since the above equation is not defined in r = 0, using the Hospital’s rule the mid

term in the above equation may be approximated as follows:

1

r

∂Td(r, t)

∂r

∣∣∣
r=0

=
∂
∂r

(∂Td(r,t)
∂r

)
∂r
∂r

∣∣∣∣∣
r=0

=
∂2Td(r, t)

∂r2

∣∣∣
r=0

. (5.14)

Hence in r = 0:

ρdcd,p
∂Td(r, t)

∂t
= 3k

∂2Td(r, t)

∂r2
. (5.15)

Spatial discretization

The spatial discretization has been made using a second order central finite

differences scheme has been adopted. The radius discretization leads to:

r = i∆r i = 0, . . . ,M. (5.16)

In order to use the central finite differences approximation also in r = 0, an artificial

node is added before the first node:

ρdcd,p
∂T0(t)

∂t
= 3k

(T−1(t)− 2T0(t) + T1(t)

∆r2

)
. (5.17)

The symmetry boundary condition for Eq.(3.102), in r = 0 and therefore for i = 0

states:
∂T (t)

∂r

∣∣∣
r=0

=
T−1(t)− T,1(t)

2∆r
= 0 =⇒ T−1(t) = T1(t). (5.18)

Substituting Eq.(5.18) in Eq.(5.17) yields:

ρdcd,p
∂T (t)

∂t
=

6k

∆r2
(T1(t)− T0(t)) for r = 0 (5.19)

For r 6= 0 Eq.(3.102) becomes:

ρdcd,p
∂Ti(t)

∂t
=

2k

i∆r

Ti+1(t)− Ti−1(t)

2∆r
+ k

Ti+1(t)− 2Ti(t) + Ti−1(t)

∆r2
i = 1, . . . ,M.

(5.20)
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The convective boundary condition is discretized using again an artificial node be-

yond the last node:

k
TM+1(t)− TM−1(t)

2∆r
+ hTM(t) = hTair. (5.21)

Evaluating Eq.(5.20) in i = M , and substituting Eq.(5.21) in Eq.(5.20), it is possible

to have the condition for the last node:

ρdcd,p
∂TM(t)

∂t
=

k

M∆r

TM+1(t)− TM−1(t)

∆r
+

+ k
TM+1(t)− 2TM(t) + TM−1(t)

∆r2

=⇒ ρdcd,p
∂TM(t)

∂t
=

k

M∆r

2∆r

k
h(Tair − TM(t)) +

k

∆r2
(2TM−1(t)+

+
2∆r

k
h(Tair − TM(t))− 2TM(t))

=⇒ ρdcd,p
∂TM(t)

∂t
=

2h

M∆r
(Tair − TM(t)) +

k

∆r2
(2TM−1(t)+

+
2∆r

k
hTair −

2∆r

k
hTM(t)− 2TM(t))

=⇒ ρdcd,p
∂TM(t)

∂t
=

2h

M∆r
Tair −

2h

M∆r
TM(t) +

k

∆r2
2TM−1(t)+

+
2

∆r
hTair −

2

∆r
hTM(t)− 2k

∆r2
TM(t)

=⇒ ρdcd,p
∂TM(t)

∂t
=

2k

∆r2
TM−1(t) + (− 2h

∆r
− 2k

∆r2
− 2h

M∆r
)TM(t)+

+ (
2h

M∆r
+

2h

∆r
)Tair. (5.22)

Temporal discretization

Two temporal discretizations have been implemented:

• Second order explicit Adams-Bashforth;

• First order implicit Euler;

As regards the explicit method we have:

ρdcd,p
∆T n+2

i − T n+1
i

∆t
=

3

2

2k

i∆r

T n+1
i+1 − T n+1

i−1

2∆r
+ (5.23)

+ k
T n+1
i+1 − 2T n+1

i + T n+1
i−1

∆r2
− 1

2

2k

i∆r

T ni+1 − T ni−1

2∆r
+

+ k
T ni+1 − 2T ni + T ni−1

∆r2
i = 1, . . . ,M.
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Numerical discretization

As well known, the explicit Adams-Bashforth method requires small timestep to

guarantee numerical stability. Therefore the Euler implicit method, that is uncon-

ditionally stable, allows more flexibility in choosing separately the timestep and the

number of points along the radius. The implicit method requires to solve, in each

timestep, the linear system:(α∆t

∆r2

(1

i
− 1
))
T n+1
i−1 +

(
1 +

2α∆t

∆r2

)
T n+1
i + (5.24)

+
(
− α∆t

∆r2

(1

i
+ 1
))
T n+1
i+1 = T ni i = 1, . . . ,M − 1,

(
1 +

6α∆t

∆r2

)
T n+1

0 − 6α∆t

∆r2
T n+1

1 = T n0 i = 0, (5.25)

(
1 +

4hα∆t

kM
+

2α∆t

∆r2
+

2hα∆t

∆rk

)
T n+1
M − (5.26)

− 2α∆t

∆r2
T n+1
M−1 = T nM +

(4hα∆t

kM
+

2hα∆t

∆rk

)
i = M.

It should be noted that the droplet temperature increases until the evaporation

temperature is reached but, according to this model without evaporation during the

initial heating, this temperature is imposed from an equilibrium equation derived

from the uniform temperature approximation (Eq.(3.103)). This approximation is

based on the assumption of constant equilibrium evaporation temperature of the

droplet (see Fig.3.3). Eq.(3.103) is a nonlinear equation in the variable Td that one

can solve with any preferred method (Newton, secant method, regula falsi etc...).

A first order implicit Euler method and a second order Adams-Bashforth method

have been adopted for temporal discretization (Eq.(3.100)) resulting in:

Rn+1
d −Rn

d

∆t
= − ṁv

ρw4π[R2
d]
n+1

(5.27)

Rn+2
d = Rn+1

d +
3

2
∆t

ṁn+1
v

ρw4π(Rn+1
d )2

− 1

2
∆t

ṁn
v

ρw4π(Rn
d )2

.

The droplet mass can be computed by solving with Eq.(3.101).

5.1.3 Complete

In the case a non-uniform droplet temperature is assumed during the evaporation

period of the first drying stage, the partial differential equation Eq.(3.105) applied

to the time-dependent spatial domain 0 ≤ r ≤ Rd must be solved simultaneously

with its boundary conditions, Eq.(3.5.6), and additional equations Eq.(3.100) and
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Numerical discretization

Eq.(3.91) [24]. The numerical solution is complicated by the presence of a variable

spatial domain 0 ≤ r ≤ Rd due to droplet evaporation. The procedure adopted to

solve this mouving boundary problem is described in [10] and in appendix A of [24].

The main idea is to apply a coordinate transformation in order to remove the time

dependence from the boundary condition. A Landau’s transformation is adopted:t = τ = ψ(ξ, τ),

r = ξRd(τ) = φ(ξ, τ).

With 0 ≤ ξ ≤ 1.

Td(r, t)→ Td(ξ, τ), (5.28)

∂

∂r
=

1

Rd(τ)

∂

∂ξ
, (5.29)

∂2

∂r2
=

1

R2
d(τ)

∂2

∂ξ2
,

∂

∂t
=

∂

∂τ
− ξ

Rd(τ)

dRd(τ)

dτ

∂

∂ξ
.

Substituting Eq.(5.28) and using the above formulas in Eq.(3.105) with kd 6= f(r)

we get:

∂Td(ξ, τ)

∂τ
=
[ ξ

Rd(τ)

dRd(τ)

dτ
+

2αd
ξR2

d(τ)

]∂Td(ξ, τ)

∂ξ
+

αd
R2
d(τ)

∂2Td(ξ, τ)

∂ξ2
. (5.30)

Restoring t = τ we obtain

∂Td(ξ, t)

∂t
=
[ ξ

Rd(t)

dRd(t)

dt
+

2αd
ξR2

d(t)

]∂Td(ξ, t)
∂ξ

+
αd
R2
d(t)

∂2Td(ξ, t)

∂ξ2
. (5.31)

The boundary conditions become:
∂Td(ξ,t)
∂ξ

= 0 for ξ = 0

h(Tg − Td)4πR2
d(t) = −kd ∂Td∂ξ 4πRd(t) + hfgṁv for ξ = 1

The spatial domain, now in the transformed variable, 0 ≤ ξ ≤ 1 and time are

discretized as follows:

ξ = i∆ξ i = 0, . . . ,M, (5.32)

t = n∆t n = 0, . . . , N.
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The Euler implicit discretization of Eq.(5.30) gives:

(Td)
n+1
i − (Td)

n
i

∆t
=

[
i∆ξ

Rn+1
d

Rn+1
d −Rn

d

∆t
+

2αnd
i∆ξ(Rn+1

d )2

]
(Td)

n+1
i+1 − (Td)

n+1
i−1

2∆ξ
+ (5.33)

αnd
(Rn+1

d )2

(Td)
n+1
i+1 − 2(Td)

n+1
i + (Td)

n+1
i−1

∆ξ2
.

We denote by:

An+1
i =

(αd)
n∆t

∆ξ2[(Rd)n+1]2
, (5.34)

Bn+1
i =

i(Rn+1
d −Rn

d )

2Rn+1
d

+
An+1
i

i
, (5.35)

and substitute these expressions into Eq.(5.33). The following linear system to

solve is obtained:

(Td)
n
i = (Bn+1

i −An+1
i )(Td)

n+1
i−1 +(1+2An+1

i )(Td)
n+1
i −(Bn+1

i +An+1
i )(Td)

n+1
i+1 . (5.36)

Following the same approach described in section 5.1.2, an approximation of

Eq.(5.31) in ξ = 0 is needed. The term 1
ξ
∂Td(ξ,t)
∂ξ
|ξ=0 is set equal to ∂2Td(ξ,t)

∂2ξ
|ξ=0

and then, for i = 0 along with the symmetry boundary condition (Td)−1 = (Td)1,

Eq.(5.31) gives the condition for the first node:

(Td)
n+1
0 =

6An+1
0

1 + 6An+1
0

(Td)
n+1
1 +

1

1 + 6An+1
0

(Td)
n
0 . (5.37)

The boundary condition for ξ = 1 is discretized as follows:

hn+1[Tair − (Td)
n+1
M ]4π(Rn+1

d )2 = −kn+1
d

(Td)
n+1
M+1 − (Td)

n+1
M−1

2∆ξ
4πRn+1

d + hn+1
fg ṁn+1

v .

(5.38)

Thus, evaluating Eq.(5.31) for i = M , and using Eq.(5.38), the condition for the

last node is evaluated as:

(Td)
n+1
M =

(Td)
n
M + 2An+1

M (Td)
n+1
M−1 + 2∆ξ(Bn+1

M + An+1
M

[
Bin+1Tair −

hn+1
fg ṁn+1

v

4πkn+1
d (Rd)n+1

]
1 + 2An+1

M + 2∆ξBin+1(Bn+1
M + An+1

M )
,

(5.39)

where Bin+1 =
hn+1Rn+1

d

kn+1
d

is the Biot number. The linear system is now solved

using a backward elimination Gauss algorithm [12],[25],[24].

(Td)
n+1
i = an+1

i (Td)
n+1
i+1 + bn+1

i , (5.40)
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Being a and b the Gauss coefficients:

For 1 ≤ i ≤M − 1 :

an+1
i =

An+1
i +Bn+1

i

1 + 2An+1
i − an+1

i−1 (An+1
i −Bn+1

i )
bn+1
i =

(Td)
n
i + (An+1

i −Bn+1
i bn+1

i−1

1 + 2An+1
i − an+1

i−1 (An+1
i −Bn+1

i )
,

For i = 0 :

an+1
0 =

6An+1
0

1 + 6An+1
0

bn+1
0 =

1

1 + 6An+1
0

(Td)
n
0 ,

For i = M :

an+1
M = 0 bn+1

M =
(Td)

n+1
M + 2An+1

M bn+1
M−1 + 2∆ξ(Bn+1

M + An+1
M

[
Bin+1Tair −

hn+1
fg ṁn+1

v

4πkn+1
d Rn+1

d

]
1 + 2An+1

M (1− an+1
M−1) + 2∆ξBin+1(Bn+1

M + An+1
M )

.

Then, starting from the last node, where (Td)
n+1
M = bn+1

M , we can evaluate at

each time step the droplet temperature for all points along the radius. Finally using

Eq.(5.3) and Eq.(5.4) it is possible to evaluate mass transfer and droplet shrinkage

rates. The algorithm for the solution of this problem is shown in Fig5.4.
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n = 0

First guess:

Rn+1
d = Rguess

Calculation of ṁn+1
v from

Eq.(5.3) (all coefficients

involved in Eq.(5.3)

with (Td)
n
i and Rguess)

Calculation of Gauss

coefficients an+1
i , bn+1

i

and therefore (Td)
n+1
i

Calculation of

new coefficients in

Eq.(5.3) with (Td)
n+1
i

Calculation of new

ṁn+1
new,v from Eq.(5.3)

with the new coefficients

Res1 = | ṁ
n+1
new,v−ṁn+1

v

ṁn+1
new,v

| ≤ E

Calculation of

ṁn+1
v,2 from Eq.(5.4)

Res2 = | ṁ
n+1
v,2 −ṁ

n+1
new,v

ṁn+1
v,2

| ≤ E
Newton’s method for

new guess of Rn+1
d

x ≤ xcr n = n + 1

No

Yes

No

Yes

No

Figure 5.2: Flow chart for the numerical solution.

5.2 Second Stage

The numerical solution of the set of PDEs described in section 3.5.7 is complex

by the presence of variable spatial domain for each particle region due to evaporating

moving crust-wet core interface and by unknown temperature of this interface. Sim-

ilarly to the droplet evaporation period, applying the Landau’s transformation [10]

allows fixing the position of the crust-wet core interface. For the region of particle
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Numerical discretization

wet core we use: t = τ = ψ1(ξ1, τ),

r = ξ1Ri(τ) = φ1(ξ1, τ).

Consequently:

Twc(r, t)→ Twc(ξ1, τ), (5.41)

∂

∂r
=

1

Ri(τ)

∂

∂ξ1

,

∂2

∂r2
=

1

R2
i (τ)

∂2

∂ξ2
1

,

∂

∂t
=

∂

∂τ
− ξ1

Ri(τ)

dRi(τ)

dτ

∂

∂ξ1

.

For the region of particle crust:t = τ = ψ2(ξ2, τ),

r = Ri(τ) + ξ2[Rp −Ri(τ)] = φ2(ξ2, τ).

As a result:

Tcr(r, t)→ Tcr(ξ2, τ), (5.42)

∂

∂r
=

1

Rp −Ri(τ)

∂

∂ξ2

,

∂2

∂r2
=

1

[Rp −Ri(τ)]2
∂2

∂ξ2
2

,

∂

∂t
=

∂

∂τ
− 1− ξ2

Rp −Ri(τ)

dRi(τ)

dτ

∂

∂ξ2

.

The transformation of equation Eq.(3.107) gives:

∂Twc(ξ1, t)

∂t
=
[ ξ1

Ri(t)

dRi(t)

dt
+

2αwc
ξ1R2

i (t)

]∂Twc(ξ1, t)

∂ξ1

+
αwc
R2
i (t)

∂2Twc(ξ1, t)

∂ξ2
1

, (5.43)

with 0 ≤ ξ1 ≤ 1. The boundary conditions become:
∂Twc(ξ1,t)

∂ξ1
= 0 for ξ1 = 0,

Twc(ξ1, t) = Tcr(ξ2, t) for ξ1 = 1.

In Eq.(5.2) the condition of heat balance at the crust-wet core interface is omitted

since its transformation is discussed separately below. The tranformation of equation

Eq.(3.106) gives:

[Rp −Ri(t)]
∂Tcr(ξ2, t)

∂t
=
[
(1− ξ2)

dRi(t)

dt
+

2αcr
Ri(t) + ξ1[Rp −Ri(t)]

]∂Tcr(ξ2, t)

∂ξ2

+

(5.44)

+
αcr

Rp −Ri(t)

∂2Tcr(ξ2, t)

∂ξ2
2

,
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with 0 ≤ ξ2 ≤ 1.Tcr(ξ2, t) = Twc(ξ1, t) for ξ2 = 0,

h[Tg − Tcr(ξ2, t)] = kcr
Rp−Ri(t)

∂Tcr(ξ2,t)
∂ξ2

= 0 for ξ2 = 1.

The set of equations described above are solved using the fully implicit finite differ-

ences scheme with fixed time step described in [24] and [10]. According to Landau’s

transformation the spatial domain and time are discretized as follows:

ξ1 = i∆ξ1 i = 0, . . . ,M1, (5.45)

ξ2 = j∆ξ2 j = 0, . . . ,M2,

t = n∆t n = 0, . . . , N.

The Euler implicit discretization of Eq.(5.43) gives:

(Twc)
n+1
i − (Twc)

n
i

∆t
=

[
i∆ξ1

Rn+1
i

Rn+1
i −Rn

i

∆t
+ (5.46)

+
2αnwc

i∆ξ1(Rn+1
i )2

]
(Twc)

n+1
i+1 − (Twc)

n+1
i−1

2∆ξ1

+
αnwc

(Rn+1
i )2

(Twc)
n+1
i+1 − 2(Twc)

n+1
i + (Twc)

n+1
i−1

∆ξ2
1

.

If we denote by:

En+1
i =

(αwc)
n∆t

∆ξ2
1 [(Ri)n+1]2

, (5.47)

F n+1
i =

i(Rn+1
i −Rn

i )

2Rn+1
i

+
En+1
i

i
, (5.48)

and substitute these expressions into Eq.(5.46) we get the following linear system

to solve:

(Twc)
n
i = (F n+1

i − En+1
i )(Twc)

n+1
i−1 + (1 + 2En+1

i )(Twc)
n+1
i − (F n+1

i + En+1
i )(Twc)

n+1
i+1 ,

(5.49)

with 1 ≤ i ≤ M1 − 1. Following the same approach described in section 5.1.2, an

approximation of Eq.(5.43) in ξ1 = 0 is needed. The term 1
ξ1

∂Twc(ξ1,t)
∂ξ1

|ξ1=0 is set equal

to ∂2Twc(ξ1,t)
∂2ξ1

|ξ1=0 and then, for i = 0 and using the symmetry boundary condition

(Twc)−1 = (Twc)1, Eq.(5.43) gives the condition for the first node:

(Twc)
n+1
0 =

6En+1
0

1 + 6En+1
0

(Twc)
n+1
1 +

1

1 + 6En+1
0

(Twc)
n
0 . (5.50)

Assuming that the temperature at crust-wet core interface is a parameter (it will

be calculated later in this section), the linear system is solved using a backward

elimination Gauss algorithm [12],[25],[24]:

(Twc)
n+1
i = dn+1

i (Twc)
n+1
i+1 + en+1

i , (5.51)

52



Numerical discretization

being d and e the Gauss coefficients:

For 1 ≤ i ≤M1− 1 :

dn+1
i =

En+1
i + F n+1

i

1 + 2En+1
i − dn+1

i−1 (En+1
i − F n+1

i )
en+1
i =

(Twc)
n
i + (En+1

i − F n+1
i )en+1

i−1

1 + 2En+1
i − dn+1

i−1 (En+1
i − F n+1

i )
,

For i = 0 :

dn+1
0 =

6En+1
0

1 + 6En+1
0

en+1
0 =

1

1 + 6En+1
0

(Twc)
n
0 .

Then, if we suppose that (Twc)
n+1
M1 is known, it is possible to evaluate all (Twc)

n+1
i in

reversed order, beginning from i = M1 − 1 and finishing by i = 0. What concerns

the crust region (Eq.(5.42)) the Euler implicit discretization gives:

(Tcr)
n+1
j − (Tcr)

n
j

∆t
=

[
(1− j∆ξ2)

(Rj)
n+1 − (Rj)

n

∆t
+ (5.52)

+
2(αcr)

n

(Rj)n+1 + j∆ξ2[Rp − (Rj)n+1]

]
(Tcr)

n+1
j+1 − (Tcr)

n+1
j−1

2∆ξ2[Rp − (Rj)n+1]
+

+
(αcr)

n

[Rp − (Rj)n+1]2
(Tcr)

n+1
j+1 − 2(Tcr)

n+1
j + (Tcr)

n+1
j−1

∆ξ2
2

.

If we denote by:

sn+1 = Rp − (Rj)
n+1, (5.53)

Gn+1
j =

(αcr)
n∆t

∆ξ
(
2s
n+1)2

,

Hn+1
j =

(1− j∆ξ2)[(Rj)
n+1 − (Rj)

n]

2∆ξ2sn+1
+

∆ξ2s
n+1Gn+1

j

(Rj)n+1 + j∆ξ2sn+1
,

and substitute these expressions into Eq.(5.52) we get the following linear system

to solve:

(Tcr)
n
j = (Hn+1

j −Gjn+ 1)(Tcr)
n+1
j−1 +(1+2Gn+1

j )(Tcr)
n+1
j −(Hn+1

j +Gjn+ 1)(Tcr)
n+1
j+1 ,

(5.54)

with 1 ≤ j ≤ M2. Because it is assumed that the value of temperature at the

crust-wet core interface, Tcr(0, t) is a parameter, only the boundary condition at the

particle outer surface is considered. The discretization of this boundary condition

yields:

hn+1[Tg − (Tcr)
n+1
M2 ] =

(kcr)
n+1

sn+1

(Tcr)
n+1
M2+1 − (Tcr)

n+1
M2−1

2∆ξ2

(5.55)

(Tcr)
n+1
M2+1 = (Tcr)

n+1
M2−1 + 2∆ξ2(Bicr)

n+1[Tg − (Tcr)
n+1
M2 ],
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where (Bicr)
n+1 = hn+1sn+1

kn+1
cr

is the crust Biot number. Substituting Eq.(5.55) in

Eq.(5.54) the condition for the last node is evaluated as follows:

(Tcr)
n+1
M2 =

(Tcr)
n
M2 + 2Gn+1

M2 (Tcr)
n+1
M2−1 + 2∆ξ2(Bicr)

n+1(Hn+1
M2 +Gn+1

M2 )Tg

1 + 2[Gn+1
M2 + ∆ξ2(Bicr)n+1(Hn+1

M2 +Gn+1
M2 )]

. (5.56)

The linear system is solved using a backward elimination Gauss algorithm [12],[25],[24]:

(Tcr)
n+1
j = fn+1

j (Tcr)
n+1
j+1 + gn+1

j , (5.57)

where f and g are the Gauss coefficients:

For 2 ≤ j ≤M2− 1 :

fn+1
j =

Gn+1
j +Hn+1

j

1 + 2Gn+1
j − fn+1

j−1 (Gn+1
j −Hn+1

j )
gn+1
j =

(Tcr)
n
j + (Gn+1

j −Hn+1
j )gn+1

j−1

1 + 2Gn+1
j − fn+1

j−1 (Gn+1
j −Hn+1

i )
,

For j = 1 :

fn+1
1 =

Gn+1
1 +Hn+1

1

1 + 2Gn+1
1

gn+1
1 =

(Tcr)
n
1 + (Gn+1

1 −Hn+1
1 )(Tcr)

n+1
0

1 + 2Gn+1
1

,

For j = M2 :

fn+1
M2 = 0 gn+1

M2 =
(Tcr)

n
M2 + 2∆ξ2(Bicr)

n+1(Hn+1
M2 +Gn+1

M2 )Tg + 2Gn+1
M2 g

n+1
M2−1

1 + 2[Gn+1
M2 + ∆ξ2(Bicr)n+1(Hn+1

M2 +Gn+1
M2 )]− 2Gn+1

M2 f
n+1
M2−1

,

then, starting from the last node, where (Tcr)
n+1
M2 = gn+1

M2 , it is possible to evaluate

(Tcr)
n+1
j in reverse order, beginning from j = M2 and finishing by j = 1. There is

also a supplementary condition, which must be satisfied for the both crust and wet

core regions of the particle. This condition is the energy balance at the crust-wet

core interface. This is the second equation in boundary conditions (3.5.7). That

equation can be discretized as follows:

(kcr)
n+1
0

Tcr(∆ξ
∗
2)n+1 − (Tcr)

n+1
0

∆ξ∗2s
n+1

= (kwc)
n+1
M1

(Twc)
n+1
M1 − Twc(1−∆ξ∗1)n+1

∆ξ∗1(Ri)n+1
+

(hfg)
n+1ṁn+1

v

4π[(Ri)n+1]2
,

(5.58)

where ∆ξ∗1 and ∆ξ∗2 are dimensionless distances from the crust-wet core interface.

These parameters are connected by the following relationship:

∆ξ∗1(Ri)
n+1 = ∆ξ∗2s

n+1. (5.59)

Assuming that ∆ξ∗2 = ∆ξ2, and since Tcr(∆ξ
∗
2)n+1 and Twc(1 − ∆ξ∗1)n+1 must be

equidistant from the both sides of the crust-wet core interface in the spatial domain

(see Fig.5.3), ∆ξ∗1 = ∆ξ2
sn+1

(Ri)n+1 . This value must be obtained through the help of an

interpolation. Now it is possible to evaluate the residual in the following equation:

Resn+1 = 1−
(kwc)

n+1
M1

(Twc)n+1
M1 −Twc(1−(∆ξ∗1)n+1)

∆ξ1∗(Ri)n+1 +
(hfg)n+1(ṁv)n+1

4π[(Ri)n+1]2

(kcr)
n+1
0

Tcr(∆ξ∗2)n+1−(Tcr)n+1
0

∆ξ∗2s
n+1

. (5.60)
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Figure 5.3: Determination of ∆ξ∗1 [24].

Numerical expressions for evaluation of mass transfer and wet core shrinkage

rates are obtained by discretization of equations Eq.(3.108) and Eq.(3.109).

(Ri)
n+1 − (Ri)

n

∆t
= − 1

4πε(ρwwc)
n+1[(Ri)n+1]2

(ṁv)
n+1 (5.61)

(ṁv)
n+1 = − 8πε(Dv)

n+1MwpgRp(Ri)
n+1

Ru[(Tcr)M2 + (Twc)M1]n+1sn+1
∗ (5.62)

∗ ln

[
pg − (pv,i)

n+1

pg −
[

Ru

Mw(hD)n+14π(Rp)2
ṁn+1
v + p∞v

Tg

]
(Tcr)

n+1
M2

]
.

The numerical algorithm is presented in the figure 5.4:
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n = 0

First guess:

Rn+1
i = Rguess

Calculation of ṁn+1
v

from Eq.(5.61)

Calculation of (Twc)
n+1
M1

from Eq.(5.62)

Calculation of Gauss coeffi-

cients dn+1
i , en+1

i ,fn+1
i ,

gn+1
i and therefore

(Twc)
n+1
i and (Tcr)

n+1
j

Calculation of

new coefficients in

Eq.(5.3) with (Td)
n+1
i

Calculation of new

ṁn+1
new,v from Eq.(5.61)

with the new coefficients

Res1 = | ṁ
n+1
new,v−ṁn+1

v

ṁn+1
new,v

| ≤ E

Calculation of Res2

from Eq.(5.60)

Res2 ≤ E
Newton’s method for

new guess of Rn+1
i

x ≤ xf n = n + 1

No

Yes

No

Yes

No

Figure 5.4: Flow chart for the numerical solution.

56



Part V

The case study



Chapter 6

Original and modified geometry

The choice of the spray dryer geometry comes from the master thesis from which

this work has been constructed. In the following section is presented the original

geometry on which several tests have been conducted and represents a well validated

case. Most of the informations were obtained from [2], [13] and [16].

Figure 6.1: Anandharamakrishnan’s geometry [2].
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Figure 6.2: Huang’s geometry [16].

Figure 6.3: Kieviet’s geometry [13].

The original geometry used, for the spray dryer CFD simulation, has been the

result of a very accurate study, especially regarding the inlet region and the outlet
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pipe from which dried particles are absorbed and for which the literature did not

provide details. The geometry presented in Fig.6.4 was able to reproduce the inlet

data-setup in Table 6.1 and to validate the velocity and temperature profiles along

some radial sections available in literature [2]. Figures 6.5 and 6.6 show some details

regarding the critical inlet and outlet parts of the all geometry.

Inlet Air

Air inlet temperature 468 (K )

Air mass flow rate 0.336 (kg/s)

Air axial velocity 7.5 (m/s)

Air radial velocity -5.25 (m/s)

Air total velocity 9.15 (m/s)

Outlet Condition

Outflow and reference at outlet -100 (Pa)

Turbulence inlet condition

Turbulence k-value 0.027 (m2/s2)

Turbulence ε-value 0.37 (m2/s3)

Liquid spray from nozzle

Liquid feed rate (spray rate) 0.0139 (kg/s)

Feed Temperature 300 (K)

Spray angle 76 (deg)

Minimum droplet diameter 10 (µm)

Maximum droplet diameter 138.0 (µm)

Average droplet diameter 70.5 (µm)

Droplet velocity at nozzle exit 59 (m/s)

Rosin-Rammler parameter 2.05

Chamber wall conditions

Chamber wall thickness 0.002 (m)

Wall material Steel

Overall wall-heat transfer coefficient 3.5 (W/m2K)

Air temperature outside wall 300 (K)

Interaction between wall and droplet Escape

Table 6.1: Boundary Condition from [2].
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Figure 6.4: Overall geometry.

Figure 6.5: Air inlet patch detail.
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Figure 6.6: Outlet pipe detail.

Since this work, regardind the CFD , deals with an implementation in OpenFOAM R©

of an evaporation model, we decided to use a simplified geometry that allowed us to

manipulate the case study with more simplicity. Indeed this geometry is easier to

construct, to mesh and therefore encourages reproducibility by users. The modified

geometry is a cylinder that respects the proportions of the original geometry and it

is presented in Fig.(6.8). Please note that the reference system is such that the z

axis is upward oriented.
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Figure 6.7: Modified geometry.

Figure 6.8: Inlet patch detail.
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The dimensions of the geometry are listed in the table below:

Cylinder Heigth= 3.5 [m]

Diameter= 2 [m]

Inlet Diameter= 0.2 [m]

Outlet Diameter= 0.2 [m]

Table 6.2: Modified geometry dimensions.

6.0.1 Case with only the flow

The case concerning only the air flow is here presented. The objective is to com-

pute a statistical steady developed flow that will be the basis for further simulations.

The solver: BuoyantPimpleFoam

As described within the source code of the solver (freely distributed with the

download of OpenFOAM R©), this is a transient solver for buoyant, turbulent flow

of compressible fluids for ventilation and heat transfer. This solver, in addition to

the mass conservation and momentum conservation equations in the compressible

form (see Chapter 2 for details), also solves the energy equation in terms of enthalpy

or internal energy. Therefore, before running the case, we need to define the ther-

modynamical properties of the working fluid and the temperature field. As a remark

about the implementation in OpenFOAM R© of the momentum conservation equa-

tion, the pressure gradient and gravity force terms are rearranged in the following

form:

−∇p+ ρg = −∇(prgh + ρg · r) + ρg (6.1)

= −∇prgh − (g · r)∇ρ

Where prgh = p−ρg ·r and r is the position vector. The name of the solver suggests

that the PIMPLE algorithm is used. PIMPLE is one of the pressure based solver for

Navier-Stokes equations implemented in OpenFOAM R©. It is an hybrid between the

SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) and PISO (Pres-

sure Implicit with Splitting Operators) and is formulated for very large timesteps

and pseudo-transient simulations [5]. The temporal dicretization scheme used for

this time dependent simulation is the first order accurate Euler implicit method with

adjustable time-step. Implicit numerical methods are unconditionally stable hence
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the CFL number does not have to be bounded under certain low values. However

using Euler implicit method doesn’t mean that a time step of any size can be chosen.

The timestep must be chosen in such a way that it resolves the time-dependent fea-

tures, and it maintains the solver stability. The solver uses the URANS equations

with a k−ω SST turbulence model and the CFL could be set greater than 1 since

all turbulence scales are modelled and only the transient behaviour of the mean flow

can be observed. However the maximum CFL number in this simulation was set

equal to 1 in order to gain stability and to be able to capture the very transient

behaviour of this flux. Moreover, this solver requires the dictionary thermophysi-

calProperties that contains the definition of the physical properties of the working

fluid. Within the subdictionary thermoType, the thermophysical models is specified.

Thermophysical models are concerned with energy, heat and physical properties and

they are constructed in OpenFOAM R© as a pressure-temperature (p-T ) system from

which other properties are computed. OpenFOAM R© includes a large set of pre-

compiled combinations of modelling, built within the code using C++ templates.

This coding approach assembles thermophysical modelling packages beginning with

the equation of state and then adding more layers of thermophysical modelling that

derive properties from the previous layer(s) [29]. The thermoType model used in

this thesis is described in the following list:

• heRhoThermo: a thermophysical model based on density ρ.

• const : a transport model which assumes a constant dynamic viscosity µ and

a Prandtl number Pr = cpµ

k
.

• hConst : a thermodynamic model which assumes a constant cp.

• perfectGas : it concerns the equation of state of the working fluid. In this case

the perfect gas equation is used to compute the density field ρ.

• sensibleEnthalpy : it selects the energy variable (enthalpy in this case). The

word sensible means that in the (sensible) energy heat of formation is not

included

In this configuration, the calculated flow physical variables are the turbulent

kinetic energy k, the specific dissipation ω, the pressure p, the dynamic pressure

prgh, the velocity components Ux, Uy, Uz, the temperature T , the turbulent viscosity

νT (that is not a physical property), the effective turbulent thermal diffusivity αT

(that is not a physical property). The boundary and initial conditions for all these

calculated variables are presented in the next section.
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The linear solver, already implemented in OpenFOAM R©, for the solution of the

previous variables are really standard. Depending on if the matrix is symmetric (e.g

pressure) or asymmetric (e.g velocity, turbulent kinetic energy, specific dissipation,

enthalpy ...) the solvers are:

• GAMG (geometric-algebraic multi-grid) with the smoother Gauss Seidel for

symmetric matrices with tolerance 10−8

• SmoothSolver with the smoother symGaussSeidel for symmetric matrices with

tolerance 10−8

Initial and Boundary conditions

The geometry is given on STL format and this file is composed by 5 patches:

• Inlet : This is the patch through which the hot air enters the computational

domain;

• Outlet : This is the patch through which the hot air goes out the computational

domain;

• Wall lower : This patch is the inferior base of the cylinder with an hole corre-

sponding to the Outlet patch;

• Wall upper : This patch is the superior base of the cylinder with an hole cor-

responding to the Inlet patch;

• Wall side: This is the patch that includes the lateral surface of the cylinder;

According to this division inside the STL, Table 6.3 summarizes the initial and

boundary conditions used for this simulation.

The zeroGradient boundary condition simply extrapolates the quantity to the

patch from the nearest cell value by setting the gradient equal to zero for the vari-

able of interest in the direction perpendicular to the boundary. What concerns k, ω,

νT , αT the turbulent wall function kqRWallFunction, omegaWallFunction, nutkWall-

Function, alphatWallFunction are respectively the wall functions for each variable

regarding the kω SST turbulent model. These wall functions impose a wall-value

to each variable; for example the value of the specific dissipation ω becomes:

ωwall = 10
6ν

βy2
, (6.2)
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where β = 0.075, ν is the kinematic viscosity and y is the distance of the first cell

center normal to the wall.

It should be noted that for all the wall patches the WallHeatTransfer condition

is applied with a value of alphaWall very low in order to simulate an adiabatic

wall condition. This is a small variation from the conditions described in Tab.6.1

but this is a good approximation for this case. The Unit Measure of alphaWall in

OpenFOAM R© is [ W
m2 ] that is a bit unusual for this physical properties therefore

it is likely to impose a very low value of heat flux per unit area through the wall

patches.

Concerning the dynamic pressure prgh the boundary condition applied to the wall

is fixedFluxPressure. This boundary condition adjusts the pressure gradient such

that the flux on the boundary is that specified by the velocity boundary condition.

At the outlet a depression of 100[Pa] satisfies the condition for the original geometry.

The air inlet temperature T = 470 [K] and the mass flow rate of 0.4 [Kg
s

] comes

from literature values in Tab.6.1.
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Mesh

Since the geometry has no particular features, the mesh process is quite fast and

it is easy to get a mesh with very good quality. The open source mesher utilized

is cfMesh which is a cross-platform library for automatic mesh generation that is

built on top of OpenFOAM R© [14]. In particular with the utility cartesianMesh

an unstructered mesh is obtained, consisting of predominantly hexahedral cells with

polyhedra in the transition regions between the cells of different size. cfMesh doesn’t

require a background mesh and seemed to be faster than the other utilities that come

with OpenFOAM R©. The mesh quality is controlled by three main parameters that

can be extrapolated using the OpenFOAM R© utility checkMesh:

• Mesh orthogonality : This parameter is related to angular deviation of the cell

face normal vector from the vector connecting two consecutive cell centres.

Usually this parameter is kept below 70.

• Mesh skewness : Skewness is the deviation of the vector that connects two cell

centres from the face centres. Usually this parameter is kept below 8.

• Aspect ratio: Aspect ratio AR is the ratio between the longest side ∆x and

the shortest side ∆y of the cell. Large AR are good if gradients in the largest

direction are small.

All these mesh features can be viewed in Fig.6.9.

(a) Mesh orthogonality (b) Mesh skewness (c) Aspect ratio

Figure 6.9: Main mesh quality parameters.

Three different meshes have been tested in order to perform a convergence study.

Figure 6.10 shows a slice of all meshes and it is possible to see an increasing refine-

ment level near the inlet and outlet region of the computational domain.
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(a) Coarse mesh (b) Fine mesh

(c) Very fine mesh

Figure 6.10: Meshes with different refinement levels.
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The main features of all these meshes are reported in Tab.6.4

Table 6.4: Mesh features.

Coarse mesh Fine mesh Very fine mesh

Cells 93184 214804 457084

HexaHedra 92176 209440 448648

Prisms 224 672 2048

Pyramids 560 840 760

Tetrahedra 224 336 304

Polyhedra 0 3516 5324

Non-orthogonality
Max= 35.6423

Average= 2.5941

Max= 37.886

Average= 3.5087

Max= 53.8612

Average= 4.2559

Max skewness 0.503481 0.925743 1.60281

Max AR 6.650601 7.20404 27.3225

Number of layers 0 3 5

y+

Wall lower(average)

Wall upper(average)

Wall side (average)

346.627

119.939

142.605

112.479

15.302

41.828

5.111

0.171

2.177

y+ values are only indicatives since we are not interested in resolving the bound-

ary layer but rather in the mixing in the internal region of the cylinder. However the

refinement purpose was to increase the accuracy of the solutiohn and the scalable

wall functions for the k − ω SST turbulence model ensures good results indepen-

dently from the grid spacing.
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Particles implementation in

OpenFOAM

The model for the two-stage drying process previously described have been imple-

mented and verified in OpenFOAM R©. In particular the first stage has been verified

with the evaporation model existing in ReactingParcelFoam. In order to test only

the behaviour of the drying process the same velocity and temperature field have

been used when running with ReactingParcelFoam and the newly developed version

of the dryin process.

7.1 Background fluid flow field

The background fluid flow simulation has been run for a time long enough in

order to let the initial transient develop and vanish. Figures 7.1 and 7.2 show the

signal of temperature and of the vertical velocity component as a function of time.

This signal comes from two points inside the computational domain which locations

are shown in Fig.7.3; After 160 seconds it can be seen that a steady state condition

is reached since the there are no more oscillations of the plotted variables in time.

However we decided to run the simulation until 170 seconds and to use this final

solution as starting point for all further simulations with particles.
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Figure 7.1: Temperature as a function of time extracted at the two positions shown in

Fig.7.3.

Figure 7.2: Velocity component in the z-direction as a function of time extracted at the

two positions shown in Fig.7.3.
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Figure 7.3: Location of two points inside the domain used for the acquisition of velocity

and temperature temporal signal.

A better view of the fluid motion and of the thermodynamic inside the cylinder

can be obtained through the analysis of the velocity and temperature fields plotted

in Fig 7.4 for solution at t = 170 [s]. Despite the colour visualisation of the tem-

perature field, it is possible to say that all the domain has a temperature of about

470 [K]. Moreover the analysis of velocity components show that there is consider-

able recirculation zone near the bottom region that brings the air up almost until

the top.
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(a) Temperature field. (b) x velocity component.

(c) y velocity component. (d) z velocity component.

(e) Magnitude of velocity.

Figure 7.4: Eulerian fields for the final solution at t = 170s.

75



Particles implementation in OpenFOAM

Fig.7.5 shows the plot of the final residuals for velocity components and dynamic

pressure, ensuring that each time step the convergence criteria (10−8 for the plotted

variables is reached.

Figure 7.5: Initial and final residuals: convergence criteria are reached through final resid-

uals.

At this point particles are injected in the computational domain, and their prop-

erties are computed through two different Lagrangian solvers:

• ReactingParcelFoam: This is a transient solver for compressible, turbulent flow

with a reacting, multiphase particles cloud [5].

• MA BuoyantKinematicParcelFoam: This is a new transient solver that uses

the model for the drying kinetic described in chapter 3 and in chapter 5.

Let us underline that this solver continues to follow the evolution of the back-

ground flow field, hence Eulerian fields are still computed each time step through

the use of the PIMPLE algorithm. The boundary conditions and the simulation set

up for these Eulerian fields are always the same described in the previous Chapter.

7.2 OpenFOAM R© solver: ReactingParcelFoam

ReactingParcelFoam is a Lagrangian solver that is able to model several physical

processes like combustion, radiation, chemistry reactions and with the inclusion of

76



Particles implementation in OpenFOAM

a Lagrangian cloud of particles. The purpose within this thesis is to use this solver

to model the evaporation of pure liquid droplets and compare the results with the

new two-stage drying process solver. Also this solver requires a thermophysical-

Properties dictionary that is almost the same used for the previous simulation with

buoyantPimpleFoam but with some modifications regarding the transport and ther-

modynamic models which take into account for temperature dependencies of the

air dynamic viscosity and specific heat. However, in this case another dictionary

named reactingCloudProperties for evaporating droplets is required. Inside this

dictionary it possible to find the core of the Lagrangian set up and the parameters

that are significant for this thesis are shown in the list below:

• coupling : This keyword enables or not the coupling between the continuous

and the dispersed phase. For this work the coupling is always set to false and

this means that a one-way coupling is performed.

• interpolationSchemes : This subdictionary refers to the interpolation scheme

between cell centres values and particles-droplets positions. The option cell,

that assumes cell-centre values constant over the cell, has been used for all

variables except the velocity U for which the cellPoint option has been chosen.

(cellPoint concerns with a linear weighted interpolation using cell values).

• integrationSchemes : This is related to the integration with time of particles

velocity and temperature. By default these are setted to Euler for velocity

and analytical for temperature.

• subModels : In this section it is possible to specify a number of models but the

only relevant for this work are those about the forces applied to the particles

(sphereDrag), the injection inside the domain (coneInjectionModel) and the

particles interaction with wall (stick).

– The sphereDrag model imposes a drag coefficient depending on Reynolds

particle number. CD = 0.424Re Re > 1000

CD = 24(1 + 1
6
Re

2
3 ) Re < 1000

– coneInjectionModel : The coneInjectionModel is a multi-point injection

model in which users specifies the time of start of injection, the list of

injector positions and directions (along injection axes), parcel velocities,
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inner and outer spray cone angles, parcel diameters also obtained by dis-

tribution model and number of parcel to inject per injector. Please, note

that parcel means a group of particles, but in this thesis they are imposed

as the same. The injections parameters have been taken from literature

(see Tab.6.1) and adapted for the application with this simplified geom-

etry. The table below summarizes the choices about the main injection

parameters:

Table 7.1: Injection parameters.

Start of injection (SOI) 0

Duration 2 s

parcelsPerInjector 4000

Umag 59 m
s

positionAxis (0, 0, 3.45) (0, 0,−1)

thetaInner 0

thetaOuter 76

sizeDistribution
type: fixedValue

fixedValueDistribution: value 70µm

heatTransferModel RanzMarshall

phaseChangeModel liquidEvaporation

– stick : For all wall patches it has been set a stick boundary condition that

assigns a zero velocity to the particles that impact on the wall.

As a final remark the interactions, such as the collisions between the particles in the

dispersed phase, are not taken into account in any cases tested in this thesis.

7.3 MA BuoyantKinematicParcelFoam

This solver is a new OpenFOAM R© application implemented for this thesis with

the purpose to add to the already existing BuoyantPimpleFoam solver for the so-

lution of the Eulerian fields, the evolution of a Lagrangian cloud of particles. This

allowed us to include the specific evaporation model described in chapter 2. Despite

the great importance of knowing the structure of the code to implement a new model,

this is not of great interest from a physical point of view and we will avoid its descrip-

tion. On the other hand, it is needed to describe how the code works to understand
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where our evaporation model (see section 4.1.1) is implemented. OpenFOAM R©

handles the simulation of the particles dynamics reducing as much as possible the

interactions with the solution of the fluid equations: the advantage of this choice is

that the kind of the underlying fluid simulation has a very little influence on how

the particles-classes work. Let us consider now the general case of a time dependent

simulation, we can identify these different steps:

• the governing equations of the fluid are solved in a standard way with a given

Eulerian time step ∆t.

• here the Lagrangian loop starts. To evaluate the new particle position the

given Eulerian time step is divided in a certain number of Lagrangian time

steps δt. For each Lagrangian time step an interpolation of the Eulerian fields

(stored in cell centres) is made in the position of the particle. Then, considering

the list of forces acting on the particle, the particle velocity up is evaluated.

• knowing the particle velocity and a given Lagrangian time step an estimation

is made for the new particle position x∗.

x∗ = x(t) + δtup(t) (7.1)

Here the code checks if the particle crosses a cell boundary. If not, the new

particle position is actually the previous estimation and the Lagrangian time

step is definitely fixed.

x(t+ δt) = x∗ (7.2)

If yes, the code performs a series of additional checks (for examples if it is a

domain boundary or a partition between different parallel domains) and the

effective Lagrangian time step is a fraction of the initial one.

δt→ δt∗ (7.3)

x∗ = xn + δt∗up

• for the new position, the new particle velocity is computed according to the

steps described at the beginning of the loop (interpolation of Eulerian fields,

evaluation of forces acting on particle).

• until the particle has moved for a time equal to a Eulerian time step (that is

the sum of all Lagrangian time steps) the loop is repeated.
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The evaporation model is integrated within the Lagrangian loop, precisely after

the interpolation of the Eulerian fields to the particle position, when the Lagrangian

timestep is fixed. This timestep is used for the time integration of the droplets

energy and radius shrinking equations (see chapter 3 for further details) resulting

in the evaluation of new droplets diameter, temperature and moisture content. The

Lagrangian loop and, the point in which the new evaporation model is included, is

shown in Fig.7.6.
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Solution of the Eulerian phase

Inside the Eule-
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cell boundaries and
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n = n + 1

n ∗ δt = ∆t

Writing of the new position
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Figure 7.6: Flow chart for the Lagrangian loop.
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Chapter 8

Results

8.1 First drying stage

As described in Chapter 5, three different models for the first drying stage of

liquid drops with insoluble solids have been tested. In this section we present the

results obtained from these models obtained with a Python code and a comparison

with experimental data. Details about the experimental set up and the model

implemented in literature can be found in [26]. There is a main difference from

Nesic’s model: unlike us the author solves the diffusion equation for the solid species

in order to evaluate a solid concentration profile inside the droplet and to have a

good estimation for the critical moisture content for which a solid shell begins to

build. As pointed by [3], for the description of the insoluble solid phase processes

it would be better to use the notion of a number density distribution n(t, r), which

describes the number of nanoparticles in an infinitesimal volume. This number is

affected by different processes such as the drying of the droplet, mass transfer of

solid particles (diffusion), and particle formation in the interior of the droplet. All

these aspects are not taken into account in our model and the first stage finishes

when a critical moisture content calculated from a simple expression based on solid

porosity is reached. The insoluble solid dispersed in droplets is the silica SiO2

that experimentally showed evaporation rates and temperature levels very similar

to water. However silica at a concentration of 40% turns into a gel structure that

stops all internal recirculation flows induced by the air drag force. This results in

an slight increase in temperature during the first evaporation stage that our model

is not able to capture. The are a lot of thermophysical properties for air, water and

solid and some of which are not easy to extrapolate from literature to reproduce the

same experimental set up. The main choices for this model are listed in table 8.1:
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Droplet

Initial droplet radius 1 mm

Initial droplet mass 4.3 mg

Initial solid content 0.3

Air

Velocity 1.4 m
s

Temperature 451 K

Density 1 Kg
m3

Thermal diffusivity 36.94e−6 m2

s

Kinematic viscosity 2.5e−5 m2

s

Relative humidity 0.4%

Thermal conductivity 0.0326 W
mK

Water

Specific heat 4187 J
KgK

Density 1000 Kg
m3

Solid (silica)

Specific heat 770 J
KgK

Density 939 Kg
m3

Porosity 0.3

Table 8.1: First drying stage set up.

8.1.1 Lumped

The main assumption in this model is that the droplet temperature is not a

function of the radius and it can vary only with time. This approximation leads to

the well known simplified lumped model. Indeed there is no possibility to have infor-

mation about the droplet centre temperature and this could be a problem for large

drops for which it might exist a consistent difference. Evaporation is enabled from

the beginning of the simulation and it can be seen that the equilibrium temperature

is reached with great accuracy if compared with experimental data. Even if the

lumped approximation should be rigorously applied only if the Biot number is less

than 0.1, in this case with an initial Biot number of 0.14, the surface temperature

results seem to be correct. Information about the Fourier number, that is the other
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parameter that makes it possible to understand if the applicability of the lumped

model is correct, will be given in the next two sections, where it will be clear that we

are committing an error disregarding the temperature profiles within the droplet.

The energy equation that governs the evolution in time of the droplet temperature

is Eq.(3.90) and two different time integration schemes (first order implicit, second

order Adam Bashforth explicit) have been tested for this equation; there are no

significant differences between the two schemes and this is also confirmed by the

green and red lines shown in Fig.8.1, which are pratically superimposed. However

for the implicit algorithm (see flowchart in Fig.5.1), attention should be paid on

the choice of the initial guess for droplet radius that must be proportionate to the

time step in order to gain faster convergences, and of course, faster results. What

concerns the droplet mass reduction there is a little difference from the experimen-

tal data and from Nesic’s model, probably due to differences between the original

experimental set up and the parameters in table 8.1. The shrinkage of the droplet

diameter and the reduction of moisture content are plotted in Fig.8.3 and in Fig.8.4.

The first evaporation stage ends when a critical moisture content, calculated from

Xcr = ρw
ρs

ε
1−ε , is reached. This model is the one chosen for the implementation in

OpenFOAM R© where, dealing with micron sized droplets, the lumped approxima-

tion is in the majority of cases correct, and where the injection of thousands drops,

requires the simplest model to reduce the computational costs.

Figure 8.1: Evolution in time of droplet temperature for the lumped model.
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Figure 8.2: Evolution in time of droplet mass for the lumped model.

Figure 8.3: Evolution in time of droplet moisture content for the lumped model.
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Figure 8.4: Evolution in time of droplet diameter for the lumped model.

8.1.2 Initial heating and uniform temperature approach

This model is based on two main assumptions:

• constant evaporation temperature;

• no evaporation during the initial heating period;

At the end of the initial heating period the calculated Fourier number is Fo = 0.38

and the Biot number is Bi = 0.14; hence it is expected a certain radial dependence of

temperature. This can be observed in Fig.(8.5) and in Fig.(8.6) that show the evolu-

tion in time of the temperature within the droplet for two different time integration

schemes of Eq.(5.13) (Implicit Euler method and Explicit Adam-Bashforth method,

see section 4.1.2 for further details). It can be observed that there is a difference of

about 5 − 6◦C between the centre and the surface of the droplet, confirming that

the previous model was incomplete because it disregarded the core temperature and

it imposed a constant value for the whole drop. However, since there is no evapora-

tion during the initial heating period, these values are overestimated and this will

be observed in the next model. There are 50 grid points along the radius and the

∆t is set equal to 0.001. The choice of ∆t is related to the numerical stability of

the explicit method, for which the time step can not be chosen independently from

spatial discretization. The stability criteria for the second order Adam-Bashforth
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method is not as simple as for traditional first order Euler explicit method and it is

out of the scope of this work. Fig.8.7 also shows the analytical solution of Eq.(5.13)

together with the two last profiles of Fig.8.5 and in Fig.8.6. A good agreement is

seen between numerical and analytical solutions also for the implicit method, that

is first order accurate. As a final remark about the analytical solution, it should

be underlined that it is obtained through the one term approximation of an infinite

series according to the procedure described in [4];

Figure 8.5: Temperature profiles with the explicit Adam-Bashforth method.

Figure 8.6: Temperature profiles with the implicit Euler method.
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Figure 8.7: Comparison between analytical solution and last profile for the explicit Adam-

Bashforth method.

Additional results for this model are presented in terms of evolution in time

of surface temperature (Fig.8.8), mass (Fig.8.9), diameter (Fig.8.11) and moisture

content (Fig.8.10). The effect of excluding evaporation during the initial heating pe-

riod involves constant values for the mass, the diameter and the moisture content.

It is also possible to note in Fig.8.8 that this assumption leads to the result that

the evaporation temperature is reached by droplet surface after a shorter time than

the experimental data; when evaporation temperature is reached, the evaporation

is enabled within the model and it is possible to catch the diameter shrinkage and

consequently the mass and moisture content reduction. Also in this case when the

critical moisture content is reached the simulation ends. There are very small dif-

ferences between the implicit and explicit model, and this results in two overlapping

lines in Figs.8.8-8.10.
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Figure 8.8: Evolution in time of droplet temperature for the initial heating and uniform

evaporation temperature model.

Figure 8.9: Evolution in time of droplet mass for the initial heating and uniform evapora-

tion temperature model.
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Figure 8.10: Evolution in time of droplet moisture contentfor the initial heating and uni-

form evaporation temperature model.

Figure 8.11: Evolution in time of droplet diameter for the initial heating and uniform

evaporation temperature model.
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8.1.3 Complete

This model is able to compute, at each time step, the temperature profiles within

the droplet without any simplification (see Fig.8.12). The greatest complexity of

this approach is to deal with a moving boundary condition on the droplet surface.

Comparing Fig.8.15 with Fig.8.8 it is possible to note that there are no considerable

differences regarding the evaluation of the droplet surface temperature. However,

Fig.8.15 shows also the evolution in time of centre temperature that is different

from the external one during the transient period. This can be justified analysing the

trend of the Fourier number and Biot number in Fig.8.13 and in Fig.8.14 respectively.

The Fourier number is inversely proportional to the square of droplet radius while the

Biot number has simple linear relation. Therefore, during the initial heating period

when evaporation is very low and the radius is constant (Fig.8.18), their values

do not satisfy the lumped approximation and a difference of about 5 − 6◦C exists

between the centre and the surface but, if compared with Fig.8.5 and Fig.8.6 the

boundary temperature values are 10◦C smaller. However, at the end of this transient

period, as the droplet radius start to shrink, the Fourier number increases and also

the Biot number starts to decreases. The temperature profiles become flat and from

now on the lumped approximation would be correct. For this complex problem only

the implicit method for moving boundary problem has been implemented and the

numerical algorithm can be found in section 5.1.3 and follows the one described

in [10]. As before also results in terms of reduction of droplet mass, diameter and

moisture content (Fig.8.16, Fig.8.17, Fig.8.18), are presented but no great differences

from the other models can be noted.
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Figure 8.12: Temperature profiles using the complete model.

Figure 8.13: Evolution in time of the Fourier number using the complete model.
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Figure 8.14: Evolution in time of the Biot number using the complete model.

Figure 8.15: Evolution in time of droplet surface and centre temperature using the complete

model.
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Figure 8.16: Evolution in time of droplet mass using the complete model.

Figure 8.17: Evolution in time of droplet moisture content using the complete model.
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Figure 8.18: Evolution in time of droplet diameter using the complete model.

8.2 Second stage

8.2.1 Lumped

Also for the second stage, a lumped approximation has been implemented. When

the critical moisture content Xcr is reached, the droplet turns into a completely non

evaporating particle with a constant mass and radius. This is obtained by disabling

the evaporation inside the previous first stage lumped model and the result is a steep

temperature increase that is visible in Fig.8.22. As before, results are identical for

the implicit and explicit model. Despite its simplicity this model shows a good

agreement with experimental data and Nesic’s model, whose approach was a little

different from the one adopted in this section. Even if Nesic used a lumped approx-

imation and therefore did not take into account the temperature profile inside the

droplet, he does not set to zero the vapour mass flow rate but he uses an additional

’crust’ diffusion coefficient that is considerably smaller than the convection diffusion

coefficient [26]. This new diffusion coefficient models the resistance enhancement to

vapour diffusion through the solid crust and in the original paper it is set to 10−6;

it should be underline that our approach is a great simplification since the wet core

is completely neglected.
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Figure 8.19: Evolution in time of droplet temperature with second stage included using a

lumped model.

8.2.2 Complete

This approach is accurately described in section 3.5.7, and through the appli-

cation of a numerical scheme for boundary moving problem ([10]) similar to that

used for first stage, it is possible to have informations about the temperature profile

inside the droplet, and the rate at which the crust recedes towards the centre. These

informations can be found in Fig.8.20 and Fig.8.21, where respectively the last tem-

perature profile and the interface measure from the centre are presented. When a

final moisture content is reached, that is in this case X = 0.05, the evaporation

stops and the droplet behaves like a solid particle which increases its temperature

because it is subject to convective thermal exchange with the surrounding air.
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Figure 8.20: Temperature profile inside the wet core and the crust using the complete

second stage model.

Figure 8.21: Evolution in time of wet core crust interface using the complete second stage

model.

Fig.8.22 shows the evolution in time of the droplet temperature only during the

period in which evaporation is enabled and it is possible to note that there exists

a temperature difference between the centre and the surface but the rate at which

temperature increases is underestimated if compared with experimental data. This

could be due to difficulties to model the vapour diffusion through the crust porosity
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especially because there is no information about the diffusion coefficient that governs

the vapour Stefan flow used in this case. Fig. 8.23 shows the evolution in time of

the droplet surface temperature, and it can be seen a steep increase of temperature

when the evaporation stops that is similar to the one described for the previous

lumped model.

Figure 8.22: Evolution in time of the droplet temperature during the solid crust formation

period. The results are obtained using the complete second-stage model.
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Figure 8.23: Evolution in time of the droplet surface temperature. Results are obtained

using the complete second-stage model.

8.3 Grid dependency of the background fluid flow

solution

To ensure that the solution is independent from the grid resolution, three different

meshes have been tested. A convergence study is always needed for CFD simulations

but it can involve high computational costs, especially for cases similar to the one

studied in this work where the physical simulated time is long. Indeed, if the mesh

is refined also the time step must be reduced because of the CFL condition and this

leads to very long simulations. To have an order of magnitude of the computational

time, the case with the coarser mesh needed two days to reach 170 seconds, but

with the finest mesh it took almost 10 days. To test the effect of grid refinement, we

present temperature and velocity profiles at the same height of the points in Fig.7.3.

What concerns the temperature profiles shown in Figs.8.24-8.25, it is clear that for all

meshes at the end of simulation there are no variations along the radius, confirming

that all the domain is at 470 [K]. Analysing the velocity profiles in Figs.8.26-8.27,

a rigorous study on grid refinement dependency would suggest a test with a finer

mesh, since, especially for the velocity peak, there are still large differences. However

the background fluid flow is not the main objective of this work and, also because
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of the high computational costs, we decided not to further refine the mesh and to

take the last solution with the finer one as the starting point for the simulation with

particles. When compared with the others, the velocity profiles for the finest mesh

are also more symmetrical and this is expected for this geometry.

Figure 8.24: Temperature profiles near the inlet for three different meshes.

Figure 8.25: Temperature profiles near the outlet for three different meshes.
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Figure 8.26: Vertical component of velocity profiles (Uz) near the inlet for three different

meshes.

Figure 8.27: Vertical component of velocity profiles (Uz) near the inlet for three different

meshes.

8.4 Implementation of the particles in OpenFOAM

The main objectives of this section are:

• a comparison between two different Lagrangian solvers on the first drying
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stage:

– ReactingParcelFoam: the one already implemented in OpenFOAM R©;

– MA BuoyantKinematicParcelFoam: the one implemented for this thesis

that is able to model the two evaporation stages;

• the presentation of some results about the coupling of the first and simplified

second drying stage;

8.4.1 First drying stage

In order to carry out a validation of our Lagrangian solver MA BuoyantKinema-

ticParcelFoam, we decided to make a comparison with the solution that the solver

ReactingParcelFoam provides for pure liquid droplets. To make this comparison,

within our solver, where the specific two stage evaporation model is implemented,

the concentration of solids inside the liquid drop has been set to a very low value

(0.003). This results in an initial moisture content of 332.3 that is high but far for

the ideal infinite value that is characteristic of pure liquid droplets. As described

in chapter 2 and in chapter 4, when the critical moisture content is reached, the

first drying stage ends and the second one is applied to the dried particles. All the

tests have been conducted with 2000 particles per second, injected for 2 seconds

inside the computational domain. In order to get into a limit case, we decided to

make simulations with our solver with perfectly dry air. This is obtained by set-

ting to 0 the partial pressure of vapour in the drying air but we left the standard

settings for ReactingParcelFoam (initial mass fraction of H20 = 0.01 ). The solver

MA BuoyantKinematicParcelFoam has two variants based on the two algorithms

described in section 5.1. When the explicit time integration scheme is applied, it

has been modified to first ored explicit Euler method instead of the second order

Adam-Bashforth method. The implicit algorithm is quiet complex and not strictly

necessary in this case, but tests have been conducted also with this method because

it is really similar to the one described in section 5.1.3 that is the most complete

approach that can provide information about the temperature inside the droplet.

Therefore a simulation carried out with this method is easily extended to the most

complete case only with some modifications inside the code. However, with this

method we encountered some convergence problems inside an intermediate while

loop when the droplet radius was too small, and this resulted in a final moisture

content of 20, quite far from critical one that was 0.45. This problem could be solved
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by decreasing the time step but clearly this leads to very high computational costs

especially for longer simulations with much more particles injected. The explicit

method has been more stable, and allowed us to reach the critical moisture content

also with smaller computational costs. Since results for the explicit and implicit

model are identical at least as long as there were no convergence problems, only re-

sults for the explicit method are presented. Fig.8.28 shows the evolution of droplet

temperature as a function of droplet age. Age is a parameter that has straightfor-

ward meaning since it is the time from which the droplet has been injected in the

domain. Hence it is possible to note that the trend of the two curves is very similar

but there is a difference regarding the evaporation temperature and the maximum

droplet age. These differences may come from a different initial value of drying air

humidity that has a strong influence on the temperature. Smaller humidity values

enhance evaporation and this leads to smaller equilibrium temperature. It should

be underlined that our solver enables evaporation only for droplets with moisture

content values greater than the critical one. This corresponds to a droplet diameter

of about 20 µm, hence a selection using this cut off value has been made on the

ReactingParcelFoam cloud. Since the droplets with greater ages have the smallest

diameters as shown in Fig.8.29, the difference regarding droplets age is related to

the rate at which diameter shrinks, and that is probably related to the evaporation

temperature and to the evaporation rate mentioned above.
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(a) ReactingParcelFoam

(b) MA BuoyantKinematicParcelFoam

Figure 8.28: Droplets temperature history.
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(a) ReactingParcelFoam

(b) MA BuoyantKinematicParcelFoam

Figure 8.29: Droplets diameter shrinkage history.

Fig.8.30 shows that for the two solvers the equilibrium temperature is reached

near the injection zone that is located at an height of 3.45 [m].
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(a) ReactingParcelFoam

(b) MA BuoyantKinematicParcelFoam

Figure 8.30: Droplets temperature as a function of their vertical coordinate.

Figures 8.31 and 8.32 suggest some considerations. Two interpretation keys are

possible:

• if we consider droplets with the same diameters, Fig.8.31 confirms that the
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one related to ReactingParcelFoam are located in a range of vertical coordi-

nate that is lower than the new solver; this can be explained by keeping in

mind that droplets with the same diameter, but computed with the two dif-

ferent solvers, have different ages, and the the biggest values are those for

ReactingParcelFoam solver;

• if we consider droplets with the same ages, Fig.8.32 confirms that they assumes

the same vertical coordinate range in the domain.

From these considerations it is possible to conclude that the small mass differences

(due to diameter differences) between the particles with the same age but, computed

with the two different solvers, do not affect the dynamic of the droplets.
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(a) ReactingParcelFoam

(b) MA BuoyantKinematicParcelFoam

Figure 8.31: Droplets diameter as a function of their vertical coordinate.
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(a) ReactingParcelFoam

(b) MA BuoyantKinematicParcelFoam

Figure 8.32: Droplets vertical coordinate as function of age.

Moreover, the new solver implemented provides also information about the mois-

ture content and the rate at which it is reduced from the high initial value of 300

until the critical one of 0.45. This is shown in Fig.8.33.
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Figure 8.33: Droplets moisture content history.

Figures 8.34 and 8.35 show the shape of the droplets cloud. The main difference

is in the region near the injection zone, where the droplets cloud for Reacting-

ParcelFoam is more concentrated. Indeed there are some differences in the way that

the solvers treat the background Eulerian fields, and this may result in different

velocity fields that governs the droplet dynamics. The droplets that reached the

critical moisture content are still kept within the domain and treated as non evap-

orating solid particles (Fig.8.36). Because of the bottom recirculation zone, also

shown in Fig.7.4, the particles are dragged up to half of the domain.
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Figure 8.34: Droplets cloud for ReactingParcelFoam.
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Figure 8.35: Droplets cloud for MA BuoyantKinematicParcelFoam.
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Figure 8.36: Droplets cloud for MA BuoyantKinematicParcelFoam. The black dots repre-

sent the droplets that reached the critical moisture content and could therefore be regarded

as solid particles.

In order to show the influence on the evaporation temperature and on the droplets

diameter history, we also made some tests by setting the value of air relative humidity

to 0.2%. Fig.8.37 shows that the equilibrium temperature reaches 319 [K] which is

similar to the results from ReactingParcelFoam. Also the diameter shrinkage rate

(Fig.8.38) reduces and assumes values comparable to those shown in Fig.8.29(a). In

coclusion this shows that the relative humidity of the air is an important parameter.
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Figure 8.37: Droplets temperature history with modified drying air relative humidity.

Figure 8.38: Droplets diameter shrinkage history with modified drying air relative humidity.

8.4.2 Second drying stage

The results for the second drying stage are shown after making some changes to

the set up of the previous case in order to present a more realistic condition. Indeed
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the initial solid content within the droplets is set to 0.3, which is the same value used

for the all the tests in chapter 4 and it is 100 times smaller than before. As shown in

Fig.8.40 and Fig.8.41 the main feature, about the first drying stage, that is different

from the previous case is that the droplets reach the critical moisture content very

near the injection zone and with a much greater diameter (60% higher). However,

when the critical value is reached, the droplets turn into non evaporating particles

and their temperature starts to increase until the drying air temperature is reached

(Fig.8.39). It should mentioned that this is a very simplified approach and only a first

attempt to model in a CFD code a very complex process. Indeed the real physical

process involves a solid crust formation and a wet core still exists; the main difficulty

is to track the wet core shrinkage and the vapour diffusion through this receding

interface. Thus this approach can only provide information about the droplets

temperature (whose prediction could be also quite accurate) but usually, in spray

drying, the moisture content of drying powder is an important parameter; therefore

knowing where the particles with a certain amount of moisture content are inside the

domain could be really important to construct an optimized geometry that provides

powder with the required moisture content. However temperature information could

be important if we are treating heat sensitive products, and in this case the goal

is also to avoid increasing the powder temperature too much. However since there

is no more evaporation the diameter is kept constant by the solver and this results

in the horizontal line in Fig.8.40 and Fig.8.41. Figure 8.43 shows the particles with

a moisture content greater than the critical one and finally the complete cloud is

presented in Fig.8.44 where the particles treated as solid remains confined in the

bottom region. This is a difference from the previous case, see Fig.8.36, but it is

consistent since now particles are more massive and the recirculation can not carry

them up.
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Figure 8.39: Droplets temperature history.

Figure 8.40: Droplets diameter history.

117



Results

Figure 8.41: Droplets diameter as a function of their vertical coordinate.

Figure 8.42: Droplet vertical coordinate as a function of age.
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Figure 8.43: Droplets cloud for MA BuoyantKinematicParcelFoam. Only particles with

X > Xcr are shown.
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Figure 8.44: Droplets cloud for MA BuoyantKinematicParcelFoam. The black dots rep-

resent the droplets that reached the critical moisture content and can be considered solid

particles.
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Developments

During this thesis a two stage drying model for droplets containing insoluble

solids has been implemented. The specific case of silica slurry droplets with diameter

of 2 [mm] is treated throughout the first part of the work because of the possibility

of an experimental data comparison.

The first part of the results concerns the validation of three different approaches

for the first drying stage of a motionless drop with an increasing approximation

level, showing a good agreement with temperature experimental data for all models.

The main assumptions for this stage is that the mixing inside the drop is consid-

ered to be ideal without recirculation, and the critical moisture content is evaluated

through a simplified approach based on a critical averaged solid-liquid ratio.

In the second part the second drying stage has been implemented, and the solid

crust formation with the receding wet core interface has been modelled. We assume

a Stefan flow type for the evaluation of the vapour mass transfer rate through the

solid crust porosity, and the wet core interface is still considered to be in saturation

condition. According to this model it is possible to note a difference between the

central wet core and the surface temperature, and this can lead to considerable

thermal stresses inside the droplet. When the final moisture content is reached the

droplet is considered to be completely dried.

Indeed more detailed models in literature are able to predict the particle breakage

due to thermal stresses, to model the vapour diffusion through the crust capillaries

and also to evaluate the possible pressure rising inside the wet core at elevated

temperatures of the drying agent.

A simplified model of the second drying stage has been also implemented; when

the critical moisture content is reached, the drop is considered to be completely solid

and the wet core is neglected. The droplet temperature showed good agreement with

experimental data, but the very important information about the droplet moisture
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content and the rate at which the interface recedes are finally lost.

These preliminary studies have been the basis for the implementation of the

two stage evaporation model in OpenFOAM R©, resulting in the new application

MA BuoyantKinematicParcelFoam. The new implemented application uses the lum-

ped approximation both for the first and second drying stage. The computational

domain is a cylinder that respects the proportion of the tall-form spray drier de-

scribed by Stefano Pastorino in his master thesis; 2000 droplets per second with

an initial diameter and temperature of respectively 70 µm and 292 [K] have been

injected for 2 seconds when a steady state condition of the surrounding flow was

reached; this has led to the need to evolve the flow up to 170 [s] and then a one way

coupling Lagrangian particle tracking is performed.

The comparison of the first drying stage, carried out with pure liquid droplets, be-

tween the new application and the OpenFOAM R© built in solver ReactingParcelFoam

showed a good agreement in terms of temperature droplets history and diameter

shrinkage rate, and tests have been also made with different air relative humidity

showing its importance on the equilibrium evaporation temperature.

After this comparison, the simpler second stage model has been added to the

first one, resulting in the evaluation of droplets temperature raise until the one of the

drying agent. Regardless the model applied for this stage, the innovation respect to

the built-in OpenFOAM R© solver is that particles are kept inside the computational

domain and tracked until the end of the simulation, rather than being considered

completely evaporated under a certain mass value.

The implementation of the first drying stage have to be improved by adding

the diffusion process of the solid within the droplet, in order to predict with accu-

racy when the critical moisture content is reached on the droplet surface. Also the

OpenFOAM R© implementation needs further developments; simulations must be

carried out with much more particles injected, and the new solver has to be tested

in the geometry proposed by Stefano. The second stage model included in this appli-

cation is simplified; we think that the way of lumped approximation could be right

also for the second stage if no particle breakage model are used, but the diffusion

of vapour through the crust must be included. In this way the particle moisture

content is always evaluated, in order to know, when the final value is reached, and

where the particles with that moisture content are in the domain.

At the present stage collisions between the particles are neglected, but for more

dense fluid they can affect particles trajectories. Moreover since the particle Stokes

number is less than 1 (St ∼ 0.12 near the inlet), the effect of turbulent fluctuations
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on particles trajectories is in general not negligible. The solution of RANS-URANS

equations does not provide information about the instantaneous velocity field, but

this approach has been adopted in the present study because of its simplicity and low

computational cost. The most straightforward way to overcame this limitation is to

describe the fluid using LES, where most of the large scales of the fluid are described

and a model is employed for the smaller scales only: the resulting instantaneous

velocity is much more similar to the actual one. Another possible way is to adopt a

dispersion model, which takes into account the effects of the turbulent fluctuations.

It can be done, for instance, by adding a correction to velocity field seen by the

particles. Both these approaches can be easily adopted in OpenFOAM, once the

evaporation has been implemented, but for time reason they have not been studied

in the present thesis.

It would also be appropriate to modify the wall boundary conditions in order to

include rebound coefficients depending on moisture content that can predict better

the particle wall deposition.
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