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Chapter 1

Abstract

Compliant and slender surface coatings are widespread in nature and com-
monly seen in practical applications. They have recently generated interest
in the scientific community in that their features may promise interesting
fluid dynamical performances.

The aim of this thesis is to explore numerically how different structural
parameters of biological structures (mass, bending stiffness and permeability)
affect the dynamics of these tissues when exposed to fluid flows.

In order to perform a numerical investigation a finite volume code in
Matlab c© has been developed. As for similar works, an Immersed Boundary
(IB) approach has been exploited in order to efficiently handle elastic thin
structures interacting with a viscous incompressible fluid.

The code has been tested on a hinged permeable filament flapping in an
incoming uniform flow (commonly referred as the flag-in-the-wind problem).
Results clearly point out the stabilizing effect of permeability on this partic-
ular type of slender structure, quantifying its effects on both the kinematics
and dynamical behaviour of the filament.

Even though the code has been implemented to investigate permeability
as a flow control parameter, other important applications can be tackled
with the developed methodology. The first bio-engineering application has
been found in the simulation of eye retinal detachment. In this case, the
filament was clamped with a given angle to a moving plate simulating the
eye rotation. Two different configurations were considered and compared in
order to determine which case, and under what conditions, one is more prone
to detach compared to the other.

Finally, the code was then exploited to investigate the dynamics of a
spring-filament system similar to energy-harvesting devices. In this case, the
filament was allowed to move just in the direction transversal to the flow
and was connected by a spring to the equilibrium point. The aim of this
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study was to assess the optimal spring stiffness in order to trigger a resonant
condition between the flapping of the filament and the spring itself, thus
enhancing the efficiency of the device to extract energy from the flow.
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Chapter 2

Introduction

An object moving through a fluid is subject to an aerodynamic force
arising from the fluid pressure distribution and friction between fluid particles
and body surfaces. In aerodynamics it is common to decompose this force
into two components: drag in the direction of body motion, and lift in the
perpendicular plane.

Lift and drag are important phenomena we all experience in everyday
life (Figure 2.1.1): lift enables heavier-than-air airplanes to fly, helps better
cornering in competitive cars creating enforce, and raises out of the water
the hulls of racing trimarans. Lift is therefore considered a desirable effect.

On the other hand, drag is usually considered to be a negative effect: it
reduces swimmers velocity in water, opposes the thrust of a car engine and
causes bridges to collapse during floods. Nevertheless, without the terminal
velocity of raindrops would be nearly fifty times faster, and in cases such as
the functioning of parachutes drag turns out to be useful. However, in the
majority of practical applications drag is something to be reduced in order
to reduce fuel consumption or move faster.

2.1 History of Drag

Even though intuitive, a physical formulation of drag has been provided
only recently, well after that of lift. Potential (or inviscid) theory of fluid
motion (18th century state-of-the-art) explains the lift force on asymmet-
ric bodies but fails dramatically in predicting drag. In 1752 d’Alembert [1]
proved that, against all experimental evidence, potential flow resulted in the
prediction of zero drag on any non-lifting body (d’Alembert’s paradox).
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(a) (b)

(c) (d)

Figure 2.1.1: Examples of aerodynamical forces in action: in (a) the airplane
takes off thanks to the lift forces generated on its wings, in (b) the down-
force on the spoiler helps the car adhere to the pavement, in (c) hydrofoils
contribute in raising the trimaran hulls out of the water, while in (d) drag
force helps the parachutist reaching a limited terminal falling velocity.

It took more than another century to provide a theoretical explanation
for drag. The key idea was to look more closely at the body surface, where
the fluid-solid attraction force is greater than that between the fluid particles,
causing the velocity profile to have zero values with respect to the surface at
the contact point (no-slip condition). The notion of boundary layer (Figure
2.1.3), a very thin region of fluid near a solid wall where velocity changes very
quickly from the surface velocity to the free-stream velocity, was introduced
by Prandtl in 1904 [2], and was a breakthrough. Prandtl’s idea was to divide
the flow into two regions: an inviscid outer flow region where potential the-
ory still holds, and the boundary layer where viscous forces cannot be ignored.

Experimental evidence gives us a proportional relation between shear
strain rate εij = ∂vi/∂xj and shear stresses τij. For example, Newtonian
fluids are defined as those for which this dependence is linear, i.e.

τij = 2µεij,

where µ is the dynamical viscosity and is a characteristic of each fluid. Thus
shear stresses are a consequence of the no-slip condition.

A stationary fluid exerts only normal pressure forces on the surface of an
immersed body. Moving fluids, however, also exerts tangential shear forces
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(a) (b)

Figure 2.1.2: In the case of a flat plate aligned with the flow (a) the main
part of the drag is due to friction, whereas in the case of plate perpendicular
to the flow (b) the main part of the force is due to the pressure distribution
around the plate.

on the surface because of the no-slip condition caused by viscous effects.
Thus drag is, in general, due to the combined effects of pressure and wall
shear forces. This comes down directly from the constitutive equation for
fluids:

σij = −pδij + τij

where p is the fluid pressure on the surface and τij is called the deviatoric or
viscous stress tensor.

The part of drag that is due directly to wall shear stress τij is called skin
friction drag since it is caused by frictional effects, and the part that is due
directly to pressure p is called pressure drag (2.1.2),

FD = FD,friction + FD,pressure.

Both skin friction and pressure drag depend upon geometrical configuration:
the first one is proportional to the surface projection in the flow direction,
while the second is mainly related to the frontal area (Figure 2.1.2). There-
fore pressure is usually dominant for bluff bodies and small for streamlined
bodies, where the friction drag prevails.

The d’Alembert paradox could eventually be explained in that potential
theory does not satisfy the no-slip condition, ignoring skin drag completely.
Indeed, potential theory could just predict lift and the part of drag related
to pressure.
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(a)

(b)

Figure 2.1.3: Schematic of boundary layer (in yellow) around a solid object
(a), and boundary layer growing over a flat plate (b) with different regimes
of flow (not in scale).

2.2 Flow control

The ability to actively or passively manipulate a flow field to effect a
desired change can be numbered under the term of “flow control”. In 1961
Flatt [3] defined flow control as “any mechanism or process through which
the boundary layer of a fluid flow is caused to behave differently than it
normally would”. A particular control strategy is chosen based on the kind
of flow and the control goal to be achieved. Flow-control goals are strongly,
often adversely, interrelated, and there lies the challenge of making the tough
compromises [41]. Typical goals of flow control are drag reduction, lift en-
hancement, enhancing mixing of mass, momentum or energy, suppressing the
flow-induced noise, or a combination thereof. To achieve any of these end
results, laminar-turbulent transition may have to be delayed or advanced,
flow separation may have to be prevented or provoked, and finally turbu-
lence levels may have to be suppressed or enhanced.

There are several possible classification schemes for flow-control methods.
One is to consider energy expenditure: a control device can be active, requir-
ing auxiliary power, or passive, requiring no further energy other than that
required to generate fluid motion. Restricting the application field to drag
reduction and passive control techniques, several strategies have so far been
identified:

shaping the simplest method to control fluid flow around an aerodynamical
surface involves the use of a suitably shaped body in order to manip-
ulate the pressure distribution [10]. In order to postpone separation,
favorable pressure gradient extends to the longitudinal location of the
pressure minimum [41] (Figure 2.2.1, b),

riblets stream-wise microgrooves that act as fences to break up span-wise
vortices in turbulent boundary layer and reduce the surface shear stress
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by preventing eddies from transporting high speed fluid close to the
surface [42] (Figure 2.2.1, c),

turbolators A turbulent boundary layer is more resistant to separation than
a laminar one, and mostly for that reason transition advancement may
be desired in some situations [43]. The most common example is the
single, multiple or distributed roughness elements (serrations, strips,
bumps or ridges) typically placed near the airfoil’s leading edge,

super-hydrophobic coatings to achieve super-hydrophobicity a surface
must be structured so as to minimize the liquid-solid interactions. The
crucial aspect is that of maintaining a layer of gas in between the rough
wall and the liquid [17] (Figure 2.2.1, d). By hierarchically structuring
the solid surface both at a micro and at a nano-scale, a sufficiently large
apparent slip of the fluid at the wall can be achieved, thus reducing skin
friction. Consider for example the micro-structure of a lotus leaf,

compliant surfaces flexible coatings whose modulus of rigidity is low enough
so that surface waves are generated under the influence of the stress
field in the fluid have lately drawn interest ([12, 13],for a more com-
plete discussion, see [41], Chapter 7). The flow stabilization may be a
result of altering the phase relation between the instantaneous stream-
wise and normal velocity components in the viscous region, rather than
changing the curvature of the mean velocity profile at the wall,

porous materials permitting flow by-pass from high- to low-pressure re-
gions, thus modifying the pressure distribution in the near-wall region,
opens new possibilities of boundary layer control, in particular where
shock waves are expected [44]. This technique can be viewed as a pas-
sive suction in which mass is allowed to self-bleed, resulting in a reduced
pressure gradient with delayed flow separation (Figure 2.2.1, a).

This thesis will focus on the last two items of the list, compliant surfaces
and porous materials.

Some of these control techniques, such as suction, acoustic effects and
plasma actuators come from the attempt to modify the fluid flow by mean
of different physical phenomena. Others such as shaping, riblets, super-
hydrophobic coatings and the introduction of foreign substances descend di-
rectly from the observation of nature, which provides numerous instances
where drag reduction is essential for the survival of many species of avians
and nektons. Here the basic assumption is that drag-reduction adaptations
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(a) (b)

(c) (d)

Figure 2.2.1: Different passive flow control techniques: suction surfaces for
delaying transition (a), surface shaping for delaying boundary layer detach-
ment (b), different riblet pattern (c) and super-hydrophobic surface (d).

have evolved for improved efficiency of speed, or both, thereby aiding species
survival in a Darwinian sense (for instance catching the prey or escaping from
predators).

2.3 Biomimetics

Biomimetics is the field in which science seeks innovative solutions to
real-life problems by taking inspiration from nature. The strength of this
approach derives from the fact that every living organism has undergone a
process of evolution over an extended period of time so that what we observe
now is an optimized biological system whose structures and methods have
adapted in order to optimize a particular or a set of different functionals.

To understand the difference between Biology and Biomimetics let us
consider the well-known “flying machine” by Leonardo da Vinci. He would
have been only a great biologist and painter if his admiration for the anatomy
of birds and flight had only been confined to sketches and notes. His ingenious
and unconventional step was to depict “flying machines” which, he believed,
would enable human beings to fly [4].

Biomimetical solutions can be found in several fields, with applications
ranging from macro- to nano-scales. The Wright brothers [5] derived in-
spiration from observations of pigeons in flight, Swiss engineer Georges de
Mestral [6] first conceptualized Velcro after removing several burdock burrs
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(seeds) remained stuck to his clothes and his dog’s fur after returning from a
hunting trip. Researchers studying a scanned a termite mound discovered a
form of construction that could influence human building design [7]. Other
interesting applications are the noise-reducing fuselage shape of the Bullet
Train Shinkansen in Japan [9] and the application of the lotus effect [17] for
realizing super-hydrophobical surfaces gifted with astonishing aerodynamical
features.

Today more and more attention is devoted to biomimetical approaches to
practical problems, both in academia and industry, where companies seeking
new innovative products are looking at nature as an inexpensive Research
and Development laboratory [8].

Human history has witnessed several cases of successful biomimetic ap-
proaches, however as pointed out in [16], two strong caveats have to be given
in order to achieve a final working product. First, the environmental con-
ditions in which the biological feature under consideration works may differ
from those in which the designed device is supposed to operate, resulting in
unexpected or unfavorable effects. Second, one has to be cautious about the
evolutionary history of the morphology under consideration. Indeed, the in-
vestigated attribute may be simply “passed on” from ancestors without any
specific significance. An indication of this situation is that where species shar-
ing the same ancestors but living in different environments presents a similar
feature. In this case the fact that the feature have evolved for one particular
purpose is questionable. Another possible source of a biased perception is to
expect only a single purpose for a biological feature, while multiple function
is the rule in biology. For example we may be interested in the aerody-
namical efficiency of a singularly shaped detail of an insect and realize only
afterwards that the feature was optimized for other functions, for example
courtship or scaring predators. Thus, in the early stages of a biomimetical
approach biologists can play a pivotal role by providing information on the
evolutionary history and potential functional value of the biological morphol-
ogy in question by conducting a comparative analysis of related species. In
the case where this process is able to exclude other reasons, the morphology
in question is likely to have a functional value in view of application to engi-
neering systems [16].

Examples of fluid-dynamical biomimetical approaches are countless (Fig-
ure 2.3.1): the simple observation of how different species of avians and nek-
tons control the flow around their body has provided inspiration for many
applications affecting everyday life. Observation of dermal denticles of shark
skin (Figure 2.3.1 (a)) took to the first application of riblets on the hull of
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the winner of the 1987 America’s Cup yacht race, the Star and Stripes [41].
A video-documentation of swimming penguins clearly shows that penguins
(Figure 2.3.1 (b)) exhale air before emerging at high speed from the sea. Ex-
haled bubbles then agglomerate around the body and remain there for several
seconds [18]. Following this and other examples a lot of research is currently
active in the field, mainly for the purpose of reducing the skin friction of
maritime transports [19, 20]. The occurrence of “morphological complexity”
in biologic surfaces can suggest a specialized shape adaptation for improved
aerodynamical performances. The humpback whale flipper presents peculiar
protuberances (or tubercles, Figure 2.3.1 (c)) located on the leading edge.
CFD (Computational Fluid Dynamics) simulations [15] showed that, for re-
gions downstream of the tubercle crest, separation was delayed almost to
the trailing edge. The property of delaying stall to higher angles of attacks
may explain the ability of this kind of whale to perform such acrobatic un-
derwater manoeuverings, and it is why WhalePower [21], a venture based
in Toronto, has begun integrating tubercles into the leading edges of wind-
turbine and fan blades. In addition the shape of the trailing edge greatly
affects the aerodynamical performance. Swallowtail butterflies (Figure 2.3.1
(d)), unlike other related species, have distinct tail-projections on the hind
wings that have drawn researches’ attention [16]. The aerodynamical effects
of these appendages in gliding flight was investigated for their ability to keep
the wing-tip vortices outboard. Further examples of intriguing biological
features and their fluid-dynamical analysis can be found in [16, 11, 14, 17].
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(a) (b)

(c) (d)

Figure 2.3.1: Shark dermal denticles arranged in in the flow direction (a),
penguins surrounded by water bubbles (b), humpback whale with character-
istic pectoral flippers (c) and the hindwing tails of the swallowtail butterfly
(d).

2.4 Aim of the work

The aims of this thesis are:

1. Design a numerical algorithm to take into account permeability in ad-
dition to other structural parameters (mass and bending stiffness) for
which different strategies have already been proposed in several works
[50, 52, 54, 65, 67].

As for similar works, an Immersed Boundary (IB) approach has been
exploited in order to handle efficiently moving objects interacting with
a viscous incompressible fluid. The IB approach has a long history in
modeling bio-fluidodynamical phenomena involving slender and com-
pliant structures as it was introduced by Peskin [50] in the early 1970s
to model blood flow in the heart and through heart valves. The IB
formulation avoids the need for creating body-fitted meshes by mak-
ing use of an Eulerian description for the fluid and a Lagrangian for
the object. The two descriptions are linked together by a smoothed
approximation of the Dirac Delta function.

In order to capture the essential evolution of the phenomena while
maintaining a moderate level of complexity and not involving huge
computational power, the developed code considers 1-d structures and
2-d fluid flows. Such a configuration is a good representation of the
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physical phenomena we want to model: a slender compliant structure
such as hair, a feather, or an appendage, interacts with a fluid flow that
is assumed to have no variation in the third direction. The same con-
sideration is valid for the structure: its configuration will be constant
in the direction normal to the 2-d domain. Thus, three-dimensional
effects cannot be taken in consideration with the present code.

(a)

(b)

(c)

Figure 2.4.1: (a) Zoom on the wing scales of a Viceroy butterfly with clearly
visible porous structures, (b) smooth muscle tissue, (c) solid stresses σz on
the cross-section of a deformed beam. Note that the configuration of the
deformed cross-section is planar, thus εz = −y/R.

2. Investigate numerically the aerodynamical performances of surfaces ex-
hibiting properties similar to biological tissues: mass, bending stiffness
and permeability.
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Throughout the work, the following mechanical properties of the sur-
face will be taken into account:

mass per unit volume, or density, of surfaces will be considered in this
work. Biological tissues exhibit different features depending on
whether they belong to animals or plants and on their function
and location. Contrary to this complex classification, from a me-
chanical point of view tissues are uniquely characterized by their
density and elastic modulus. In order to estimate tissue density
we look at its basic component, the cell, whose mass is composed
of 70% water, more or less independently from what tissues it be-
longs to. Thus, it is quite common that biological tissues in water
can be considered neutrally buoyant, i.e. with the same density
of the surrounding fluid. This particular condition has important
aftermath on the structural inertial term.

bending stiffness is not a material property, but it is defined for 1
and 2-d elements in order to model the third dimension effects. In
the 1-d elastic string theory bending stiffness is derived from the
elastic (or Young) modulus E, characteristic of the material:

M =

∫
A

σzydA = −E
R

∫
A

y2dA = Eχ

∫
A

y2dA = EIxχ (2.4.1)

where A is the cross-section of the 1-d element, χ = −1/R is the
local curvature, R is the curvature radius and

∫
A
y2dA is the sec-

ond moment inertia term of section A around x axis (cfr. Figure
2.4.1, (c)). In Equation 2.4.1, the constitutive relation σz = Eεz
(with σz solid stresses and εz solid deformations) and the hypoth-
esis of planar faces εz = −y/R has been used.

permeability i.e. the ability of a medium to permit a fluid flow
through it, comes into play in a wide variety of fields (e.g. earth
science, medicine, biology, chemistry) as a consequence of voids
in a solid matrix and a driving fluid pressure gradient. Ground-
water flows get enriched by minerals through fractures in rock
formations and blood undergoes filtration through the glomeru-
lar basement membrane of the kidneys thanks to filtration slits
between cells [22, 24].

Besides tissue mass and bending stiffness, which has been extensively
investigated in the literature using similar tools [65, 67, 54, 52], the nov-
elty of this work is to take into account also the mass transfer through
the connective voids of biological tissue.
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Nowadays several practical issues have been solved by a biomimetic
strategy involving permeability. Many chemical reactors take advan-
tage of the permeability of some particular media in order to maximize
surface area contact between fluid and solid and highways are covered
with permeable paving to maximize the asphalt drying rate. Moreover,
permeability plays a central role in membrane technology, widely used
in the food technology, biotechnology and pharmaceutical industries to
selectively separate different components based on their size or electric
charge [23].

Despite previous examples, in which permeability has been exploited
for different purposes, the aim of the present work is to shed some light
on how surface permeability affects aerodynamical performances.

3. Develop new control strategies borrowed from biology to significantly
enhance aerodynamical performances.

Slender and compliant bodies subject to an incoming flow exhibit a
peculiar control strategy for delaying boundary layer detachment that
can be defined as self-streamlining, ascribable to the compliant struc-
ture strategies. This feature is inherently passive in that the structure
has the freedom to adapt automatically to changes in the flow. Of
course, this capability depends on its inertia (mass) and bending stiff-
ness. Intuitively, the higher the mass the longer will be the time interval
in which the structure will react to changes in the flow. On the other
hand, more rigid structures (i.e. higher bending stiffness) will be able
to communicate local changes to the rest of the structure. While the
effects of mass and bending stiffness form a well-established frame in
the literature of fluid-structure interaction, the current thesis also ac-
counts for the permeability of tissues, thus paving the way to other
types of boundary layer control. By permitting a mass flow from high-
to low-pressure regions the pressure distribution on the surface can be
modified, thus enhancing its aerodynamical stability.

4. Realize a numerical code for the simulation of the interaction between
slender structures, not necessarily permeable, and incompressible fluid
flows.

A wide range of real-world phenomena, from paper production tech-
nology to bridge construction to prosthetic heart valves, not including
natural processes, exhibits slender structures interacting with a fluid
force (Figure 2.4.2). Our aim is to develop a generical numerical code
environment that can efficiently handle this kind of problems due to
the Immersed Boundary approach.
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(a) (b)

(c) (d)

Figure 2.4.2: Examples of slender structures interacting with a fluid flow:
prosthetic heart valves (a), cable-stayed bridge (b), wind turbine (c) and
dragonfly flight (d).

The previously listed aims will take shape in the applications described in
Chapter 7. In particular, the first application refers to the simulation of a
hinged permeable filament flapping in an incoming uniform flow (commonly
referred as the flag-in-the-wind problem), which is characterized by mass,
bending stiffness and permeability. In this case the main focus was the effect
of permeability regarding both the stability and the flapping dynamics. The
second application regards the simulation of two different types of retinal
detachment, a common pathology of the eye, in order to determine which
one is more prone to further detachment. Finally, in the third application,
we simulate a simple model of an energy harvesting device, trying to find the
best parameter set (mass, bending stiffness and spring stiffness) in order to
maximize the oscillations of the filament and thus energy extraction.

2.5 Structure of the thesis

For better readability, contents of this work has been subdivided into
five modular chapters. Chapter 3 will introduce the main concepts of fluid
structure interaction (FSI), while in Chapter 4 the governing equations of
incompressible fluid flow will be presented along with the numerical method
(Fractional Step Method) used to achieve the pressure-velocity coupling. The
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immersed boundary (IB) approach will be treated in detail in Chapter 5.
Chapter 6 describes the implementation of a finite volume (FV) code for the
direct numerical simulation (DNS) of the interaction between a fluid flow
and an elastic body. Finally, code applications and numerical results will be
presented and discussed in Chapter 7.
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Chapter 3

Fluid Structure Interaction

Fluid-structure interaction (FSI) problems arise every time a fluid flow
impacts on a body surface. Depending both on the body’s structural pa-
rameters and on the resolution of our study, we may want to consider the
deformations of the body. These deformations, in turn, will simultaneously
change both the domain and the boundary conditions of the fluid flow. Thus,
a simulation that could have easily been achieved with, at most, an unsteady
flow solver on a fixed domain, now requires a solver capable of simultaneously
handling both structural deformations and mesh motion.

The first studies of FSI trace back to Aeroelasticity, defined by Arthur
Roderick Collar [45] in 1947 as “the study of the mutual interaction that
takes place within the triangle of the inertial, elastic, and aerodynamic forces
acting on structural members exposed to an airstream, and the influence of
this study on design.”

As with every engineering discipline, FSI was both born and developed by
the time people realized it was needed to solve such a problem. In particular,
at the beginning of the XIX century, current technologies were ready to allow
humans to fly with the first airplanes. At that time nobody knew that when
a slender and flexible structure (as an aircraft wing) is subject to a fluid flow
they begin to interact. Depending on the parameters, for instance the flow
velocity or wing bending stiffness, this interaction can be damped or ampli-
fied, leading to catastrophic effects. The second failure of Samuel Langley’s
prototype plane on the Potomac has been attributed to aeroelastic effects
(specifically, torsional divergence), the same as those that plagued aircraft
during the First World War. As a first approximation, these problems were
solved largely by trial-and-error and ad-hoc stiffening of the wing, but FSI
reason for existence was outlined. In 1926 Hans Reissner published his the-
ory of wing divergence, leading to a significant amount of further theoretical
research on the subject. In the 1970’s predictions of flutter and other similar

20



aeroelastic phenomena were required in the aerospace field. Since then FSI
has been successfully applied to a vast range of applications, including civil
engineering (bridges and suspended cables) [25, 26, 27, 73], process engineer-
ing (nuclear reactor steam generator tube bundles, rotor dynamics, singing
hydrofoils) [28, 29, 30, 31], shape optimization studies [32, 33] and a vast
number of biomedical applications (arterial blood flow, aortic heart valves,
heart and ventricle, lung modeling, aortic aneurysms, snoring treatment)
[34, 35, 50, 36, 37, 38, 39].

3.1 Resonance

Before discussing resonance, let us give the definition of natural frequency
as the frequency at which an ideal system (i.e. with no damping) tends to
oscillate in the absence of any driving force.

Mathematically speaking, natural frequencies correspond to the eigen-
values of the system matrix. Eigenvalues and eigenvectors can indeed be
thought of as frequencies and modes of the free response to the initial con-
dition of an unforced dynamical system. This can be seen in the following
example.

k1

m1

x1

k2

x2

 
m2

Figure 3.1.1: Dynamical system made up of two masses m1 and m2 linked
by springs of different elastic constant k1 and k2 to an external wall.

With respect to figure 3.1.1 we can write the dynamical equation as{
m1ẍ1 + k1x1 − k2(x2 − x1) = 0

m2ẍ2 + k2(x2 − x1) = 0
, (3.1.1)

by introducing vector x = [x1 x2]T we can write (3.1.1) in matrix form[
m1 0
0 m2

]
ẍ = −

[
k1 + k2 −k2

−k2 k2

]
x. (3.1.2)
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The system’s dynamical equation can be written M ẍ = −Kx. We now
assume harmonic motion, i.e. that both masses oscillate with same frequency
ω albeit different amplitudes A, and write

x = A exp(iωt), (3.1.3)

from which we obtain
(K − ω2M)A = 0.

This is an eigenvalue problem for the eigenvalue ωN (natural frequencies)
and corresponding eigenvector AN (natural modes). We note that discrete
systems (such as the one under consideration) having N degrees of freedom,
have N natural frequencies and N natural modes, that become infinite in
continuous systems.

The above tells us that if we start our dynamical system from the initial
condition AN , both masses will evolve periodically as stated in (3.1.3) with
the frequency ωN corresponding to AN . For a generic initial condition (3.1.3)
will still hold but all frequencies and modes will come into play. In particular,
as the initial condition can be seen as a linear combination of natural modes
AN (eigenvectors), system oscillations will be ruled by a linear combination
of the corresponding natural frequencies ωN (eigenvalues).

In general resonant frequencies ωR and natural frequencies ωN are not
the same, since natural frequencies depend only on system parameters (i.e.
the structure), while resonant frequencies also take into account the coupling
with the forcing system (i.e. the fluid flow). For example, fluid flow around
the wing also introduces some viscous damping in the dynamics that makes
in general ωR 6= ωN . However, when damping is negligible the resonant
frequency ωR is approximately equal to the natural frequency of the system
ωN .

Resonance is the state of a system forced at particular frequencies, known
as resonant frequencies ωR, in which its oscillations are greater with respect
to other frequencies. Specifically, a periodic driving force at a resonance
frequency produces larger amplitude oscillations compared to any other fre-
quency, no matter the magnitude of that force.

To evidence the latter, let us consider an ideal dynamical system (no
damping) driven by an external periodic force. After a transient, its oscil-
lation frequency coincides with the driving force frequency. Let us consider
now the oscillation amplitudes.
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Figure 3.1.2: Unforced (left) and forced (right) spring-mass system.

Let us derive the law of motion for the unforced system. By assuming
an ideal behaviour (i.e. without considering friction), its dynamical equation
reads

mẍ = −kx.

As x = 0 is a stable fixed point, in order to trigger the motion we have to
initially displace the mass. By making the following Ansatz:

x = A cos(ωN t),

(where A is the mass initial displacement) we obtain

ωN =

√
k

m
,

where ωN is the system natural frequency, i.e. the characteristic frequency
at which it oscillates naturally, without being forced.

Now let us consider the forced system, whose dynamical equation reads

mẍ = −kx+ F,

where the driving force F is assumed to be periodic with an imposed fre-
quency ωF :

F = F0 cos(ωF t).

In this case, as stated above, the system will oscillate with the same frequency
ωF :

x = A cos(ωF t),

from which we obtain

−Amω2 cos(ωt) = F0 cos(ωt)− kA cos(ωt)

and

A =
F0

(k −mω2)
=

F0

m(ω2
N − ω2

F )
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stating that when the forcing frequency ωF approaches the system natural
frequency ωN , the oscillation amplitude |A| diverges.

0
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3
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10

0 5 10 15 20

|A
|

Figure 3.1.3: Theoretical oscillation amplitude magnitude as a function of the
imposed driving force frequency ωF . The peak in correspondence of natural
frequency ωN is clearly visible.

However, this theoretical prediction of oscillation amplitudes does not
include energy dissipations and other forms of energy present in real-world
phenomena and that avoid amplitude to diverge, even if a maximum is al-
ways present.

3.2 Flag-in-the-wind problem

The flag-in-the-wind problem has been studied theoretically, numerically
and experimentally as the paradigm for the instability of an elastic structure
subject to a fluid flow. This phenomenon, known as flutter, is caused by a
positive feedback between the body’s deflection and forcing exerted by the
fluid flow. A wide spectrum of forcing frequencies are triggered by the uni-
form flow affecting the body, which begins to resonate when its own natural
frequency has been excited.

Despite its simplicity, the system’s dynamics is very rich (Figure 3.2.1): an
elastic one-dimensional boundary is tethered at one end in a two-dimensional
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laminar flow, moving at the local velocity and exchanging forces with the
surrounding fluid. Vortices are shed from the free end of the filament, trans-
ported downstream by the flow, and are diffused by viscosity in the vortex
street. As a result, the long-term motion of the filament can result both in
a fixed-point stability, a limit-cycle flapping or a chaotic motion, depending
on the governing parameters of the system.

Starting from Rayleigh’s first theoretical approach in 1879 [64] involv-
ing the evolution of a two-dimensional vortex sheet, the stability of the flag
has been enriched by inertial and structural mechanical properties and has
composed one of the main subjects in the study of theoretical aeroelasticity
[70, 72, 73, 74].

More recently, increasingly accurate numerical studies (most of all using
an immersed boundary approach) have come to support analytical results. In
particular, Zhu and Peskin [65] first pointed out the important role of length
and mass on the onset of flapping, and described the bistable behavior of
the flapping. Both Kim and Peskin [54] and Huang et al. [52] developed
methods to handle massive filaments in a more efficient way. The first nu-
merical study taking into account permeability was by Kim and Peskin [67],
in which the dynamics of a massless 2-d parachute not resisting bending was
investigated. Despite simplifications, the stabilizing role of permeability has
been fully addressed. In the present work, we propose an innovative way
for handling simultaneously permeability and bending resistance and mass
which overcomes some of the major drawbacks of previous methods (see Sec-
tion 5.4). A more complete report on the efforts in shedding light regarding
the dynamics of slender interacting body with fluid flows may be found in
Shelley and Zhang [75].
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Figure 3.2.1: Vorticity iso-contours around impermeable flapping filament
(Re = 200, positive vorticity in black, negative in gray) obtained with the
code presented in Section 7.1.
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In order to study the time-dependent behavior of the fluid-structure cou-
pled system, it is useful at this point to inspect the governing equations of
the solid structure. Without considering the complete equations of solid me-
chanics we can take advantage of the fact that slender structures such as
those considered here (a hair, a feather, an appendage) usually have one di-
mension prevailing over the others. Therefore, we can resort to the classical
beam theory which describes the dynamical behavior of a beam endowed
with bending stiffness and subject to a given external load.

3.3 The Euler-Bernoulli beam theory

Let us consider a 1-d beam subject to an external load F(s) (Figure
3.3.1, a). For engineering applications it is useful to derive an equation for
the evolution of its geometrical configuration X(s), where s is the curvilinear
abscissa.

s 

F(s)

ds 

Fn(s)

M M+dM 

S

S+dS

(a) (b)

Figure 3.3.1: 1-d beam with a distributed load F(s) along its axis (a) and
an infinitesimal element of the beam with its internal strains S and torque
M(b).

We may want to consider the local normal n (sometimes called curvature
vector in that it points towards the local curvature center) and tangent τ
unit vector (Figure 5.3.1), defined as

τ =
∂X

∂s
= φ, n =

∂τ
∂s∥∥∂τ
∂s

∥∥ =
∂2X
∂s2∥∥∂2X
∂s2

∥∥
n and τ are perpendicular to each other and, together with the binormal
vector b (in the 3-d world) form the so-called Frenet-Serret or TNB frame,
Figure 3.3.2.
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Figure 3.3.2: Local tangential τ and normal n unit vectors. By definition N
and T reactions are aligned with these vectors.

Usually engineers are interested in beam displacements perpendicular to
its axis (n direction). Under the assumptions of small deformations, the nor-
mal and perpendicular problems can be decoupled. Thus, by imposing the
translational and rotational equilibrium for an infinitesimal element perpen-
dicularly loaded (Figure 3.3.1, b) and neglecting higher order infinitesimal
contributions, we get the following:

dS = Fn(s)ds ; dM = −Sds

from which
dS

ds
= Fn(s) (3.3.1)

dM

ds
= −S (3.3.2)

Assuming that plane sections conserve their planarity and are normal to the
deflected beam axis, we can express the moment M as a function of the
curvature κ:

M = γκ = γ
∂φ

∂s
= −γ ∂

2Xn

∂s2
(3.3.3)

where the bending stiffness γ = EI with I moment of inertia of the beam’s
cross-section, E the Young modulus, κ is the curvature and φ is the angle of
rotation of the section (defined as φ = −∂Xn/∂s). By gathering equations
(3.3.3)-(3.3.2) we can write

Fn(s) = γ
∂4Xn

∂s4
, (3.3.4)

which is called the static beam equation. In order to obtain the dynamical
beam equation we simply add the inertial term ∂2Xn/∂t

2:

∂2Xn

∂t2
= −γ ∂

4Xn

∂x4
+ Fn(s) (3.3.5)
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So far we made the hypotesis of small deformations, i.e. that the beam
displacement from the initial (undeformed) configuration are small enough
not to consider the normal reaction (aligned with the beam axis) into the
equation for the displacement perpendicular to the axis. When this hypoth-
esis is no more acceptable we have to take into account also the normal
reaction (i.e. tension) N . In vectorial form, equation (3.3.5) becomes

∂2X

∂t2
=

∂

∂s

(
N
∂X

∂s

)
− γ ∂

4X

∂s4
+ F (3.3.6)

We can write (3.3.6) as

∂2X

∂t2
=

∂

∂s

(
N
∂X

∂s

)
− ∂2

∂s2

(
γ

∥∥∥∥∂2X

∂s2

∥∥∥∥ ∂2X
∂s2∥∥∂2X
∂s2

∥∥
)

+ F,

thus, using the previous definitions of the TNB frame,

∂2X

∂t2
=

∂

∂s
(Nτ )− ∂2

∂s2
(Mn) + F

∂2X

∂t2
=

∂

∂s
(Nτ )− ∂

∂s

(
∂M

∂s
n +

∂n

∂s
M

)
+ F

∂2X

∂t2
=

∂

∂s
(Nτ )− ∂

∂s

(
Tn− γκ2τ

)
+ F

∂2X

∂t2
=

∂

∂s
(Nτ )− ∂

∂s
(Tn) + F (3.3.7)

that represents the dynamical equation for a beam (if N � γκ2).

Let us recover now the classical equilibrium equations of Solid Mechanic
textbooks. From equation (3.3.7) we get

N
∂τ

∂s
+ τ

∂N

∂s
− T ∂n

∂s
− ∂T

∂s
n + F = 0

From the Frenet-Serret formulas we have

∂τ

∂s
= κn,

∂n

∂s
= −κτ

where κ is the curvature. So by substitution we get

N
∂φ

∂s
n + τ

∂N

∂s
+ T

∂φ

∂s
τ − ∂T

∂s
n + F = 0 (3.3.8)
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Equation (3.3.8) is vectorial. If we decompose it into the parallel and per-
pendicular components we get

∂N

∂s
+ T

∂φ

∂s
+ Fτ = 0

N
∂φ

∂s
− ∂T

∂s
+ Fn = 0

. (3.3.9)

3.4 Beam dynamical analysis

Studying the beams natural modes of oscillation corresponds to finding
the solution to the dynamical beam equation without the forcing term:

∂2v

∂t2
= −γ ∂

4v

∂x4

We can solve this equation with the separation of variables technique, i.e. by
supposing v(s, t) = A(s)B(t), where A(s) takes into account the spatial and
B(t) the temporal behavior of the beam. By doing so we can write

ABII = −γAIVB,

and by dividing both members by AB we get

BII

B
= −γA

IV

A
.

where superscripts denote derivatives. Since the left-hand side does not de-
pend on s and the right-hand does not depend on t both terms are constant.
Let us name it c and use the temporal equation to discuss its sign:

BII − cB = 0

This will result in an exponential function if c > 0, sinusoidal if c < 0, so
we look at solutions for which c < 0. Since the system will oscillate with
frequency

√
−c, we will replace c with −ω2

N , because they are the beam’s
natural frequencies. We can now focus on the equation leading to the spatial
solution A(x):

AIV − kNA = 0

where k4
N = ω2

N/γ. The general solution of this equation is a linear combi-
nation of trigonometric functions:

A(s) = C1 cos(kNs) + C2sin(kNs) + C3 cosh(kNs) + C4sinh(kNs) (3.4.1)
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where the constraints Ci are derived from the imposed boundary conditions
from the particular physical problem.

In the following paragraphs we will investigate two configurations in which
the beam is often found in practical applications, the clamped and the hinged
beam. Thus, equation (3.4.1) will be specialized for the particular boundary
conditions. Theoretical results from the next paragraphs show good agree-
ment (see Paragraph 6.5.5) with the numerical outcome from the numerical
code described in Chapter 6.

3.4.1 Clamped beam

The clamped beam (also known as cantilever) is a beam with a free end
where no constraints are applied, so that it can freely deflect and rotate, and
an anchored end with zero prescribed displacement and rotation. In this case
the boundary conditions are the following:

• no displacement at the fixed end, i.e. A(0) = 0;

• no rotation at the fixed end, i.e. AI(0) = 0;

• zero torque at the free end, i.e. AII(L) = 0, see eq. (3.3.3);

• zero shear at the free end, i.e. AIII(L) = 0, see eqs. (3.3.3) and (3.3.2);

From these boundary conditions we can write a system of four equations
for the four constants in (3.4.1). Since this system is homogeneous, the only
way to avoid the trivial solution is to have infinite solutions (i.e. making the
coefficient matrix singular):

C2 = −C1
cos(kNL) + cosh(kNL)

sin(kNL) + sinh(kNL)

C3 = −C1

C4 = C1
cos(kNL) + cosh(kNL)

sin(kNL) + sinh(kNL)

along with the singularity condition that will be used to obtain natural fre-
quencies ωN of the system.

cos(kNL) + cosh(kNL) = −1 (3.4.2)

Solutions to the previous equation give us both the natural frequencies of the
system (Table 3.4.1) along with their corresponding natural modes (Figure
3.4.1).
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mode kNL ωNL
2/
√
γ

1 1.8751 3.5160
2 4.6941 22.0345
3 7.8548 61.6973
4 10.9955 120.9019
5 14.1372 199.8596
6 17.2788 298.5555

Table 3.4.1: First natural frequencies of the clamped beam.

Regarding the solution A(s), i.e. the natural modes of the system, it will
be defined up to a constant as expected:

A(s) = C1

[
[cos(kNs)− cosh(kNs)] +

cos(kNL) + cosh(kNL)

sin(kNL) + sinh(kNL)
[sinh(kNs)− sin(kNx)]

]
(3.4.3)
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Figure 3.4.1: First natural modes of oscillations for the clamped beam nor-
malized by the maximum amplitude.

3.4.2 Hinged beam

The hinged beam is similar to the clamped beam, but with the anchored
end able to rotate. In this case the boundary conditions are the following:

• no displacement at the fixed end, i.e. A(0) = 0;

• zero torque at the fixed end, i.e. AII(0) = 0, see eq. (3.3.3);

32



• zero torque at the free end, i.e. AII(L) = 0, see eq. (3.3.3);

• zero shear at the free end, i.e. AIII(L) = 0, see eqs. (3.3.3) and (3.3.2);

From which we get 
C1 = 0

C2 = C4
sinh(kNL)

sin(kNL)

C3 = 0

along with the singularity condition that will be used to obtain natural fre-
quencies ωN of the system.

tan(kNL) = tanh(kNL)

As for the clamped beam, from the solution to this equation we will ob-
tain both the natural frequencies of the system (Table 3.4.2) along with
their corresponding natural modes (Figure 3.4.2). Please note that the first
mode corresponds to the trivial solution A(x) = 0, corresponding to the first
solution of the singularity condition. From a physical point of view, this
corresponds to the system having one degree of instability (a rigid rotation
around the anchored end).

mode kNL ωNL
2/
√
γ

1 0 0
2 3.9266 15.4182
3 7.0686 49.9648
4 10.2102 104.2478
5 13.3518 178.2698
6 16.4934 272.0309

Table 3.4.2: First natural frequencies of the hinged beam normalized by the
maximum amplitude.

A(x) = C4

[
sinh(kNL)

sin(kNL)
sin(kNx) + sinh(kNx)

]
(3.4.4)
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Figure 3.4.2: First natural modes of oscillations for the hinged beam.

3.5 Numerical methods for FSI

Traditionally two different ways have been introduced to achieve the two-
way coupling needed for FSI: monolithic and partitioned.

In the monolithic approach a single system for the entire problem has to
be formulated on the same variables and solved, thus the non-linear govern-
ing equations of both fluid and solid have to be linearized and discretized
on the same mesh. Provided that the non-linearities of the subsystems can
be resolved, the monolithic approach enables mathematical analysis of the
coupled systems and leads to improved solution stability. Drawbacks of this
approach are an higher degree of complexity of the solver even for very simple
configurations and the possibility of getting an ill-conditioned system matrix
due to mesh and rigidity differences between fluid and solid.

On the other hand the partitioned approach (which is by far the most
used) considers separate domains for the fluid and solid (time-varying and
whose union constitute the entire domain), with the possibility to discretize
and solve them on different meshes using different methods (for instance fi-
nite volumes for fluid and finite elements for the solid) and solvers (linear
or non-linear). The main drawback of this approach is the time lag between
the solutions for fluid and for solid. As the solution of the fluid-solver sys-
tem has to be consistent in terms of continuity of displacements and tensions,
partitioned solvers differentiate into “weak” and “strong” coupled, where the
“strength” of the coupling refers to the degree of convergence of the variables
across the fluid-solid interface. In a weak coupling there is no iteration be-
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tween solvers, so that once the fluid domain is solved stresses are transferred
to the solid and displacements are found. In a strong coupling algorithm,
once displacements are computed the flow solver is run again on a deformed
mesh and with different boundary conditions (i.e. solid velocity at the inter-
face) with the result of finding slightly different stresses on the solid. In this
way the loop continues until some convergence criteria is met. Unfortunately
even the strictest convergence will lead to a time lag between the two solu-
tions, so it is clear how loosely coupled schemes suffer from instability, while
tightly coupled schemes contain computationally expansive sub-iterations.

In the present work a partitioned FSI solver has been developed in Matlab c©

for research purposes. This solver exploits a particular technique called
immersed boundary (IB), first introduced by Peskin in 1972 [50]. The method
is based on a mathematical formulation which employs a coupled Lagrangian-
Eulerian formulation where information is effectively passed through a discre-
tized version of the Dirac delta function. Since then several versions of the
IB has been proposed by different authors, each with particular advantages
and drawbacks. Since all of them are joined by the description of the solid
geometry with a set of Lagrangian points moving in the background of an
Eulerian mesh, they avoid any need for body-fitting meshes nor re-meshing
(one of the most time-consuming steps of a standard FSI solver).
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Chapter 4

Modeling the fluid flow

The motion of a viscous incompressible flow is described by the Navier-
Stokes equations, a set of partial differential equations obtained from the
application of conservation of mass and momentum of a fluid flow in a given
control volume, 

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u

∇ · u = 0
, (4.0.1)

where u is the velocity, p is the fluid pressure, t represents time and Re is
the Reynolds number, defined as

Re =
UL

ν

where U and L are respectively velocity and length scales characteristic of
the problem and ν is the fluid kinematic viscosity. The complete derivation
of (4.0.1) can be found in every undergraduate textbook. As [40] comments,
“the Navier-Stokes equation is the cornerstone of fluid mechanics. It may
look harmless enough, but it is an unsteady, nonlinear, second-order partial
differential equation. If we were able to solve this equation for flows of any
geometry, this book would be about half as thick.”

To date, analytical solutions of (4.0.1) are unobtainable except for very
simple flow fields. Moreover, mathematicians have not yet proved that
smooth solutions always exist, or that if they do exist, they have bounded
energy per unit mass. This is called the Navier-Stokes existence and smooth-
ness problem.

Since understanding the Navier-Stokes equations is considered to be the
first step to understanding the elusive phenomenon of turbulence, the Clay
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Mathematics Institute made this problem one of its seven Millennium Prize
problems in mathematics.

As an exact solution of (4.0.1) is not currently available, to obtain an
approximate (but still useful) solution we dicretize it in a system of alge-
braic equations, which can then be solved on a computer. This technique
is known as Computational Fluid Dynamics (CFD). In particular, the nu-
merical simulation carried on in the present work can be defined as direct
numerical simulation (DNS) since (4.0.1) are solved without recurring to the
the Reynolds average technique and to any turbulence model.

Several discretization methods have been derived both before and after
the birth of CFD, each of them designed with a specific application in mind.
In the field of incompressible flow simulations one of the techniques for ob-
taining the pressure-velocity coupling of the Navier-Stokes equations is the
projection method based on a multi-step time integration. In particular the
Fractional Step Method has emerged for both its elegance and numerical
efficiency.

4.1 The Fractional Step Method

The Fractional Step Method is an effective finite-difference method for
solving (4.0.1). It was originally introduced by Alexandre Chorin in 1967
[46] and independently by Roger Temam [51], and afterwards improved by
Perot [49] as a block LU decomposition.

This algorithm is based on the Helmholtz decomposition of any vector
field u into a solenoidal part usol and an irrotational part uirr and is based
on two steps.

The Fractional Step Method has proved to be first order accurate both
in time and space with general boundary conditions. A notable exception
is when periodic boundary conditions are in effect, where it reaches second
order accuracy both in time and space. In this thesis we shall refer to the
matrix interpretation made by Perot in [49].

Let us consider the dimensionless unsteady incompressible Navier-Stokes
equations (see for example [47], §1.6). Using an explicit Adams-Bashforth
scheme for the non-linear convective terms and an implicit Crank-Nicholson
(trapezoidal) scheme for the diffusive terms (Euler forward will be used for
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the first time step, see Section 6.3), (7.1.1) can be discretized in time as

(un+1 − un)

∆t
+

[
3

2
N(un)− 1

2
N(un−1)

]
=

= −G(pn+1) +
L(un+1) + L(un)

2Re
+ bcmom

D(un) = bccont

(4.1.1)

where N , G, L and D are respectively the non-linear convective, gradient,
Laplacian and divergence spatial operators. Moreover, bccont and bccont are
the boundary conditions arising in the respective equations from discretiza-
tion of spatial operators near solid walls. Manipulation of (4.1.1) leads to

un+1

∆t
− L(un+1)

2Re
+G(pn+1) =

=
un

∆t
−
[

3

2
N(un)− 1

2
N(un−1)

]
+
L(un)

2Re
+ bcmom

D(un+1) = bccont

(4.1.2)

and having defined

A =
1

∆t
− L

2Re
; rn =

un

∆t
−
[

3

2
N(un)− 1

2
N(un−1)

]
+
L(un)

2Re{
A(un+1) +G(pn+1) = rn + bcmom

D(un) = bcmom
(4.1.3)

The above-written system can be discretized in space by specifying the spatial
operators A, G and D.[

A G
D 0

] [
un+1

pn+1

]
=

[
rn

0

]
+

[
bcmom
bccont

]
(4.1.4)

As said in [53], systems of the form similar to 4.1.4 are known as Karush-
Kuhn-Tucker (KKT) systems that appears in constrained optimization prob-
lems in that they minimized a term similar to the kinetic energy

min
un+1

[
1

2
(un+1)TAun+1 − (un+1)T (rn + bcmom)

]
s.t. Dun+1 = 0 + bccont

It is interesting that the discrete pressure p does not play a direct role in
time advancement, but acts as a set of Lagrange multipliers to minimize the
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system energy and satisfy the kinematic constraint of divergence-free velocity
field.

We recall here that energy conservation requires the divergence and gra-
dient operators to be skew-adjoint, i.e. GT = −D. This condition plays an
important role in the choice of the spatial discretization as pointed out in
Section 6.1. Equation (4.1.4) can be factored into a block LU decomposition[

A 0
D −∆t D G

] [
I ∆t G
0 I

] [
un+1

pn+1

]
=

[
rn

0

]
+

[
bcmom
bccont

]
with an error of (∆t/2Re)LGpn+1 in the upper leftward term, thus making the
method only first order accurate in time. However, as pointed out in [49], it is
possible to use this information to create a second-order method. Moreover,
when periodic boundary conditions are in effect, the fractional method will
recover second-order accuracy in time (for a more detailed discussion see [49],
end of chapter 6).We can then split the large indefinite system (4.1.5a) into
two smaller, far better behaved problems[

A 0
D −∆t D G

] [
u∗

pn+1

]
=

[
rn

0

]
+

[
bcmom
bccont

]
(4.1.5a)[

I ∆t G
0 I

] [
un+1

pn+1

]
=

[
u∗

pn+1

]
(4.1.5b)

that can be also written as

A u∗ = rn + bcmom
∆t D G pn+1 = D u∗ − bccont

un+1 = u∗ −∆t G pn+1

(4.1.6)

Equations (4.1.6) bear a close resemblance to the traditional Fractional Step
Method usually presented as a semi-discrete method for time splitting and
represent the steps actually performed in the numerical code. In particular,
the first equation gives the intermediate velocity u∗ that does not satisfy
the incompressibility constraint. In the second a Poisson equation has to be
solved in order to get the new pressure field pn+1, whereas in the third the
pressure pn+1 is used to project the intermediate velocity u∗ onto a space of
divergence-free velocity fields to obtain the updated velocity field un+1.

In the following paragraphs the discretization of both spatial operators
and boundary conditions will be discussed. As the staggered arrangement
allows all spatial operators to be evaluated through centered differences, the
spatial accuracy of the method will be second order.
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Chapter 5

The Immersed Boundary
approach

The immersed boundary (IB) method is a mathematical approach used for
problems in which a slender structure interacts with a viscous incompressible
flow. It turns out to be very effective in handling moving or deforming bodies
with complex surface geometry. Peskin [50] first introduced the method
in 1972 to simulate blood flow inside a heart with flexible valves. Since
then it has been used in a wide variety of applications, especially in bio-
fluid dynamics problems where complex geometries and immersed elastic
membranes or structures are present and make traditional computational
approaches difficult.

The key point of the IB approach consists of describing the flow field
on a Eulerian grid, while representing the immersed surface with a set of
Lagrangian points. The Eulerian grid is not required to conform to the body
surface (so that it can be structured Cartesian) as the information between
the two grids is passed through a discretization of the Dirac Delta function.
The no-slip condition is enforced at the Lagrangian points by introducing
appropriate surface forces in the Navier-Stokes equations.

Let x = (x, y) ∈ Ω be the Cartesian physical coordinates, with Ω denoting
the physical domain; let s ∈ Γ be the Lagrangian curvilinear coordinate, with
Γ denoting the body surface; let X(s, t) = (x(s, t), y(s, t)) ∈ Γ denote the
physical position of each material point of curvilinear coordinate s at time t
(Figure 5.0.1). The main equations of the IB method can thus be summarized
as
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X(s, t)

ρ, ν
Γ

Ω

Figure 5.0.1: IB Γ (in red) described by a set of Lagrangian points X(s, t)
(in green) in fluid region Ω with background Cartesian mesh.


∂u

∂t
(x, t) + u(x, t) · ∇u(x, t) = −∇p(x, t)

+
1

Re
∇2u(x, t) + f(x, t)

∇ · u(x, t) = 0

(5.0.1)

f(x, t) =

∫
Γ

F(s, t)δh(x−X(s, t))ds, (5.0.2)

Uib =
∂X

∂t
=

∫
Ω

u(x, t)δh(x−X(s, t))dΩ, (5.0.3)

where the Navier-Stokes equations describing fluid motion (5.0.1) are consid-
ered together with an artificial forcing f to enforce the no-slip condition and
solved on the background cartesian structured mesh preserving numerical
efficiency. The momentum forcing f derives from the convolution between
the solid stress term F and the discretized version of Dirac Delta function
δh (5.0.2). Analogously, the velocity of immersed boundary comes from the
convolution of δh with the surrounding flow field (5.0.3). The convolution
with the discretized Dirac Delta function δh is a weighted interpolation and
represents an effective way to link the Lagrangian variables F and Uib with
their Eulerian counterparts f and u. For simplicity’s sake, in the following
the subscript h will be dropped.

Among a wide choice of synthetic Delta functions, we made use of the
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one proposed by Roma in [68]:

δh(r) =



1

6∆r

5− 3
|r|
∆r
−

√
1− 3

(
1− |r|

∆r

)2
 if 0.5∆r ≤ |r| ≤ 1.5∆r

1

3∆r

1 +

√
1− 3

(
|r|
∆r

)2
 if |r| ≤ 0.5∆r

0 otherwise.

(5.0.4)

Starting from this basic idea, several implementations of the IB have been
documented in literature. In the following we will describe in depth the three
of them we used for the applications described in Chapter 7: the projection
approach (Section 5.1), the original IB by Peskin and coworkers (Section 5.2)
and IB by Huang, Shin and Sung (Section 5.3).

5.1 The IB projection approach

This approach was introduced by Taira & Colonius and described properly
in [53], where they illustrated how their work can be seen as a valuable
extension of the Fractional Step method by Chorin [46] and Temam [51]
described in 4.1.

As stated in [53], since the discretized Navier-Stokes equations (4.1.4)
are observed to be a KKT system with pressure acting as a set of Lagrange
multipliers to satisfy constraint, one can image appending additional algebraic
constraints by increasing the number of Lagrange multipliers, i.e. incorporate
the no-slip constraint through the solid stress term F.

In this case the IB formulation is written as

∂u

∂t
(x, t) + u(x, t) · ∇u(x, t) = −∇p(x, t) +

1

Re
∇2u(x, t)+

+

∫
Γ

F(s, t)δ(x−X(s, t))ds, (5.1.1)

∇ · u(x, t) = 0, (5.1.2)

Uib(s, t) =

∫
Ω

u(x, t)δ(x−X(s, t))dΩ, (5.1.3)

where Uib(s, t) is the imposed boundary velocity, that can be either given or
calculated (as for a free falling body).

As in (4.1.4), this system of equations can be summarized in a matrix
form
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A G −H
D 0 0
E 0 0

 qn+1

p
F

 =

 rn + bcmom
bccont
Un+1
ib

 (5.1.4)

where H F corresponds to the last term in equation (5.1.1) and E qn+1 is
related through a scaling to the left-hand-side of the no-slip condition (5.1.3).

The advantage of this method is that one can show (see Appendix of [53])
that through ad-hoc scaling the system matrix can be made skew-adjoint as
for the original Fractional Step Method in that D = −GT and −H = ET .
This enables us to introduce the variable Q = [G,ET ] so that the system can
be simplified into the KKT form:[

A G
Q 0

] [
qn+1

λ

]
=

[
r1

r2

]
(5.1.5)

where

λ =

[
qn+1

p

]
r1 = rn + bcmom r2 =

[
qn+1

p

]
This method can be regarded as a monolithic approach to the FSI prob-

lem as it summarizes in one linear system both fluid, structure and their
interaction. The main benefit of this method is numerical stability, which
enables the use of large time-steps (up to CFL1= 0.5). Unfortunately, this el-
egant formulation cannot be used for deformable bodies in that the equations
do not take into account structure deformations.

5.2 The IB approach by Peskin & coworkers

5.2.1 Neutrally buoyant membrane

The original IB formulation initially presented by Peskin to study heart
valves leaflets was designed to take into account a neutrally buoyant boun-
dary (i.e. same density for fluid and membrane). For an elastic boundary
its discretization was made through the introduction of a discrete number of
forces acting on straight-line segments connecting specified pairs of boundary
points.

Since the boundary is neutrally buoyant an equation for the force between
fluid and solid F the equilibrium condition on an infinitesimal part of the
membrane gives

1The Courant-Friedrichs-Lewy number, defined as U∆x/∆t (where U is a representa-
tive velocity, ∆x is the mesh-grid size and ∆tis the time step), is a quantity of uttermost
importance in CFD as it is related to the numerical stability of a temporal integration
scheme
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s(b)− s(a)

T (a)τ (a)

T (b)τ (b)−Ftot

Figure 5.2.1: Equilibrium condition on a small element of membrane.

∑
i

Fi = 0⇒ −Ftot + T (a)τ (a) + T (b)τ (b) = 0⇒
∫ b

a

F(s, t) dŝ = [Tτ ]ba

(5.2.1)
where τ (s, t) = (∂X/∂s)/ ‖∂X/∂s‖ is the unitary tangent vector to the boun-
dary at the points b and a, respectively and T (s, t) is the tension. Using the
Fundamental Theorem of Calculus equation (5.2.1) can be rewritten as∫ b

a

(
F(s, t)− ∂Tτ

∂s

)
dŝ = 0,

or

F(s, t) =
∂

∂s
(T (s, t)τ (s, t)) . (5.2.2)

Assuming the reference configuration to be unstressed and that the mechan-
ical behavior of the material is well described by a Hookean material, the
tension would be

T (s, t) = κ

(∥∥∥∥∂X

∂s

∥∥∥∥− 1

)
(5.2.3)

where κ is a large numerical parameter needed to enforce the inextensibility
of the boundary up to a desired value (according to literature no more than
0.1%).

The main advantage of this method is that the no-slip condition on the
boundary is enforced by definition (Lagrangian points move with the local
fluid velocity). As we can see by inspecting the governing equations, this
method suffers from the lack of equations describing structure dynamics. In
turn, this causes problems both in the enforcement of the inextensibility con-
dition and on the resolution of solid forces. Moreover, given that Lagrangian
points are connected by stiff springs, the time step for the numerical inte-
gration has to be small enough not only to satisfy the stability of the fluid
solver, but also to effectively solve the spring oscillations, whose characteris-
tic period is proportional to κ−1/2, κ being the spring stiffness.
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5.2.2 Massive membrane

With the massless assumption, however, we cannot approach many other
problems for which the boundary mass is important (it is usually the case
for elastic boundaries immersed in air). Thus, different strategies have been
developed in order to overcome this issue.

Zhu & Peskin proposed a method based on a non-uniform distribution
of density spread by the usual discretized Delta function, that in the dimen-
sional form read as

ρ(x, t) = ρf +

∫
Γ

ρ1δh(x−X(s, t))ds

Please note that mass density ρ1 is the structure density in addition to fluid
density ρf , i.e. ρ1 = ρf − ρsA where ρs is the density of the structure and A
is the membrane cross-section. It is indeed in the spirit of the IB formulation
to add something (the immersed boundary) to an already filled-with-fluid
domain.

Unfortunately, because of the non-uniform density fast solvers such as
FFT-based methods cannot be employed here.

In order to retain the use of the FFT solver, Kim & Peskin proposed
an alternative way to give mass to the elastic boundary called the penalty
immersed boundary method. To derive this method the starting equations
are the same as for the method by Zhu & Peskin:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u + f

ρ(x, t) = ρf +

∫
Γ

ρ1δh(x−X(s, t))ds

We substitute the density definition in the momentum equation and separate
the left-hand side into two terms: one involving the constant density ρ0

and the other containing the singular part that comes from the immersed
boundary. In dimensionless form we then write

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u + f −

∫
Γ

ρ1

ρ0L

Du

Dt
δh(x−X(s, t))ds

where L is a characteristic length scale of the problem and D/Dt is the
material derivative. Using another form of the no-slip condition

∂2X

∂t2
=
Du

Dt
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we can then write

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u + f − fD

fD =

∫
Γ

ρ1

ρ0L

∂2X

∂t2
δh(x−X(s, t))ds

where fD can be interpreted as an Eulerian body force obtained by using the
Dirac delta function to transform the Lagrangian expression

FD =
ρ1

ρ0L

∂2X

∂t2

which is known as the D’Alembert force.
The key idea of this method is to split the immersed boundary conceptu-

ally into two Lagrangian components, one massless and interacting with the
fluid and the other carrying mass and bounded by massless springs to the
first boundary. An accurate presentation of this method is found in [54].

Advantages and drawbacks of these methods derive from the original
implementation of the method by Peskin, plus an additional arbitrary pa-
rameter given by the stiffness of springs connecting the two boundaries.

5.3 The IB approach by Huang, Shin & Sung

The approach proposed by Huang, Shin & Sung [52] presents a substan-
tial difference from the previous ones in that the dynamics of the structure
is explicitly taken into consideration (thus considering directly its mass).
Moreover, the inextensibility condition

∂X

∂s
· ∂X

∂s
= 1

is fully satisfied by using the tension as a Lagrangian multiplier (in the same
spirit of pressure for incompressibility). In this method the forces acting on
the filament are calculated by means of Goldstein’s feedback law [58]:

F = α

∫ t

0

(Uib −
∂X

∂t
)dt′ + β(Uib −

∂X

∂t
)

where α and β are large negative constants, Uib is the fluid velocity inter-
polated at the immersed boundary. This methodology, whose advantages
and drawbacks will be discussed in Section 5.4.2, has also been exploited in
[56, 57].
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This method was developed specifically for the dynamics of a hinged/clamped
filament, so it considers a massive inextensible filament described by

ρ1
∂2X∗

∂t∗2
=

∂

∂s∗

(
T ∗
∂X∗

∂s∗

)
− ∂2

∂s∗2

(
γ∗
∂2X∗

∂s∗2

)
+ ρ1g − F∗ (5.3.1)

surrounded by a viscous incompressible fluid described as

ρ0

(
∂u∗

∂t∗
+ u∗ · ∇u∗

)
= −∇p∗ + µ∇2u∗ + f∗ (5.3.2)

where T ∗ is the tension along the filament axis, γ∗ is the bending rigidity
and F is the Lagrangian forcing exerted by the filament on the surrounding
fluid (the description given in [52] at the beginning of page 2209 is incorrect
on this point). As in Section 5.2, ρ1 denotes the density difference between
the filament and the surrounding fluid, so ρ1 = 0 represents the neutrally
buoyant case. In the case of neutrally buoyant boundaries equation 5.3.1
loses the temporal term, so the time integration of the filament position X
becomes harder. In this case the original approach by Peskin and coworkers
(see Section 5.2) becomes preferable.

Equations (5.3.1) and (5.3.2) can be made dimensionless by introducing
the following characteristic scales: the reference filament length L for length,
the far-field velocity U∞ for velocity, L/U∞ for time, ρ0U

2
∞ for pressure p∗,

ρ0U
2
∞/L for the Eulerian momentum forcing f∗, ρ1U

2
∞/L for the Lagrangian

momentum forcing F∗, ρ1U
2
∞ for the tension T ∗ and ρ1U

2
∞L

2 for the bending
rigidity γ∗ (their dimensionless counterparts will drop the star):

∂2X

∂t2
=

∂

∂s

(
T
∂X

∂s

)
− ∂2

∂s2

(
γ
∂2X

∂s2

)
+ Fr

g

g
− F (5.3.3)

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u + f (5.3.4)

where Fr is the Froude number defined as gL/U2. Note that two different
densities, ρ0 and ρ1, have been used for structure and fluid equations: this
difference will be considered in the spreading from the Lagrangian to the
Eulerian grid:

f(x, t) = ρ

∫
Γ

F(s, t)δ(x−X(s, t))ds

where ρ = ρ1/(ρ0L) comes from the different non-dimensionalization scales
chosen for Equations 5.3.2 and 5.3.1. In this method the tension force T
is determined by a Poisson equation derived by inserting the constraint of
inextensibility into the beam dynamical equation:

∂X

∂s

∂2

∂s2

(
T
∂X

∂s

)
=

1

2

∂2

∂t2

(
∂X

∂s

∂X

∂s

)
− ∂2X

∂t∂s

∂2X

∂t∂s
− ∂X

∂s

∂

∂s
(Fb−F) (5.3.5)
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Where Fb = − ∂2

∂s2
(γ∂X2/∂s2) denotes the bending force. Equations (5.3.3)

and (5.3.5) for filament dynamics are solved respectively for X and T at
Lagrangian (•) and interface (|) points.

x

y

X

T

Figure 5.3.1: Filament Γ described by a set of Lagrangian points X(s, t).

5.4 Permeability

Besides elasticity and mass, biological tissues are characterized by perme-
ability in that they consist of dispersed cells separated by connective voids
which allow normal mass transport. Moreover, there are several technological
applications of porous synthetic membranes, mostly in separation industry.

Permeability, i.e. the ability of a medium to allow a fluid flow through
it, comes into play in a wide variety of fields (e.g. earth science, medicine,
biology, chemistry) as a consequence of voids in a solid matrix and a driv-
ing fluid pressure gradient. Ground-water flows get enriched in minerals
through fractures in rock formations and blood undergoes filtration through
the glomerular basement membrane of the kidneys thanks to filtration slits
between cells. Permeability plays a central role in membrane technology,
widely used in the food technology, biotechnology and pharmaceutical in-
dustries to selectively separate different components based on their size or
electric charge.

Despite previous examples, in which permeability has been exploited for
different porpuses, this thesis is aimed at investigating how permeability
affects the performances of elastic objects. As already pointed out by the
work of Kim and Peskin [67], pressure redistribution from high to low pressure
zones modifies the near-wake region behind bluff bodies, enhancing their
stability.

In the following sections we will describe the only approach currently
available in literature to include permeability in the framework of the IB
method, along with the approach that has been developed during the current
thesis.
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5.4.1 The velocity approach

In this section we will cover the approach introduced by Kim and Peskin
[67] in order to model the permeability of a parachute canopy. As this ap-
proach places itself in the IB method described in Section 5.2, the authors
model permeability as a relative slip velocity in the direction normal to the
boundary between the fluid and the boundary itself. In this way a normal
flux through the boundary is naturally achieved, while a force reduction can
be seen in an indirect way.

The need to include a no-slip velocity can be demonstrated by considering
the force equilibrium on a massless token of canopy of length ds. Since there
are no inertial terms, the equilibrium gives

(p1 − p2)

∣∣∣∣∂X

∂s

∣∣∣∣ ds+ F · nds = 0 (5.4.1)

Starting from the basic assumption of the validity of Darcy’s law, i.e. of a
linear dependence between flux and pressure difference across the membrane
through a coefficient called aerodynamic conductance γ, we get

βγ(p1 − p2)ds =

(
U− ∂X

∂t

)
· n
∣∣∣∣∂X

∂s

∣∣∣∣ ds (5.4.2)

where βds is the number of pores in the interval (s, s+ ds), while the factor
|∂X/∂s| appears because, the authors say, |∂X/∂s|ds is the arc length of the
segment (s, s + ds). Combining equations (5.4.1) and (5.4.2) we finally get
the expression for the normal component of the slip velocity on the boundary:(

U− ∂X

∂t

)
· n =

βγ

|∂X/∂s|2
F · n (5.4.3)

while the authors assign a no-slip condition in the tangential direction by
assuming pores oriented normal to the surface of the shell. Lacking other
more elaborated model, by assuming βγ proportional to |∂X/∂s|2 by a factor
λ, we can rewrite

∂X

∂t
= U + λ (F · n) n (5.4.4)

This approach is neat and simple to implement. However except for some
controlled cases equation (5.4.4) causes numerical problems when plugged
into the IB formulation described in Section 5.2 since the Lagrangian quan-
tity F is usually very noisy (Figure 5.4.1), thus making X noisier at every
new time step. As in turn F depends on X through the constitutive equation
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of the boundary, equation (5.4.4) leads to numerical instability.
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Figure 5.4.1: Lagrangian forces F along the curvilinear abscissa s of a simply
hinged filament subject to an incoming flow. In this simulation 2 Lagrangian
points per Eulerian grid were approximately used to describe the surface.

The noisy nature of F seems to derive from the discretization of the fil-
ament as a series of springs disconnected from one another, so that it is
possible that the ith spring is compressed while the (i + 1)th is extended.
This leads to the peak-to-peak classical appareance of F. Possible strategies
to overcome this issue, such as the application of a low-pass filter, have been
considered. In order not to lose or gain momentum, such filters have to pre-
serve the integral value of F. However, this strategy did not lead to positive
results since the application of a filter added new free constants (e.g. the
threshold frequency) that needed to be determined, and this approach has
been discarded in favor of that described in the next section.

5.4.2 The force approach

Given the limitations of the velocity approach we tried to tackle the prob-
lem by using a dualistic approach based on the reduction of forces instead of
velocities. In order to do so, our new approach needed to be inserted in an
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IB formulation different from that described in Section 5.2, and in particular
we found an effective approach in the one described in 5.3.

We would like to point out the difference between the two approaches,
both of which contains advantages and drawbacks. In the original approach
by Peskin the no-slip condition is enforced by definition in that Lagrangian
boundary points are passively transported by the surrounding fluids, and the
filament is composed of stiff springs preventing Lagrangian points not getting
too far away or too near. The approach of Huang, Shing and Sung, on the
other hand, solves the beam dynamical equations satisfying the inextensibil-
ity constraint starting from the aerodynamical loads on the filament.

The first difference between the two approaches is that while the solid
solver for Peskin [66] takes as input the point velocity ∂X/∂t and returns
the Lagrangian forces F, the solid solver in the case of Huang, Shing and
Sung [52] needs the Lagrangian forces as input and gives back the velocity
of the filament points. The second difference is that while the approach by
Peskin satisfies the no-slip condition to machine precision but fails to fulfill
the inextensibility of the filament, the approach by Huang, Shing and Sung
does exactly the opposite.

By placing itself in the Huang, Shing and Sung approach, we model per-
meability by decreasing the normal component of momentum transferred
from the fluid to the filament:

F = (1− λ) · (Fimp · n)n + (Fimp · τ )τ (5.4.5)

where Fimp represents the force exerted by the fluid on an impermeable fil-
ament, n and τ are the unit versor normal and tangent to the filament,
while F is the reduced force because of permeability. Eq.(5.4.5) is physically
motivated by the fact that while tangential stresses on a solid surface come
from the tangential component of velocity normal derivative (∂u/∂n) · τ ,
the normal part derives only from pressure differences across the surface, so
permeability affects only this component by reducing the pressure drop.

We want to stress the duality of this approach with the one used by Pe-
skin and coworkers since a relative slip velocity will decrease the momentum
transferred to the filament, while the present approach based on the reduc-
tion of momentum will lead to a slip velocity.
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Chapter 6

Code description

This Chapter describes the implementation of a Finite Volume (FV) code
for the Direct Numerical Simulation (DNS) of the interaction between a fluid
flow and an elastic body.

The governing equations for the fluid motion (Navier-Stokes equations)
are solved on a staggered grid using the fractional step method, while the inte-
raction with the solid body is handled via an Immersed Boundary method.

Sections 6.1 represents the numerical discretization of the Fractional Step
Method described in 4.1, while Saspaections 6.2 and 6.3 deal with the tech-
nical details on how spatial operators, boundary conditions and time inte-
gration are implemented in the code. An illustration of the storage system
of both fields and operators is made in Section 6.4. Finally, validation cases
are described in Section 6.5.

6.1 Spatial discretization

6.1.1 Staggered grid

The set of discrete locations at which the variables are to be calculated
define the so-called numerical grid, which is essentially a discrete represen-
tation of the geometric continuous domain in which the problem is to be
solved.

The obvious choice is to evaluate all the variables (pressure and veloc-
ity) on the same set of grid points (such a grid is called co-located), but
despite its computational advantages this arrangement leads to some sig-
nificant drawbacks regarding the solution of the pressure field, given by a
Poisson equation.

Since energy conservation requires GT = −D, it is possible to show [47],
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§7.5.2 that a co-located grid approach would result in a discretization of
the Poisson equation on a grid twice as coarse as the original one, and the
equation would be split into four unconnected systems, one with i and j both
even, one with i and j both odd, one with i even and j odd and one with i
odd and j even (checkerboard pressure scheme). Each of these systems give
a different solution, resulting in spurious “pressure oscillations” even with
smooth velocity fields.

In Cartesian coordinates, the staggered grid introduced by Harlow and
Welsh (1965) offers several advantages over the co-located grid, the biggest of
which is the strong coupling between the velocities and the pressure, avoiding
oscillations in pressure field. The numerical approximation on a staggered
grid with central derivatives is also kinetic energy conservative, with the
advantages that were discussed earlier. Moreover both the pressure and dif-
fusion terms are very naturally approximated by central differences without
interpolation, since the pressure nodes lie at cell centers and horizontal and
vertical velocity components lie at the center of cell faces.

This grid choice has a few drawbacks on the data structure: depending on
the particular boundary conditions, velocity and pressure fields do not have
the same size and their computational domain may change. In the following
description, and also in the code, we will label the face coordinates (xn±1/2,
yn±1/2) as “geometry” and the face centers (xn, yn) as “center” (see Figure
6.1.1).

x

y

xi−1 xi xi+1

yj−1

yj

yj+1

xi−3/2 xi−1/2 xi+1/2

yj−3/2

yj−1/2

yj+1/2

Figure 6.1.1: Staggered grid. x-velocity component ux is evaluated at →,
y-velocity component uy at ↑, whereas pressure at ×.
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Stretched grid

Numerical simulations are memory-demanding and time-consuming, de-
pending mainly on the dimension of the domain being resolved and on the
resolution at which the solution is sought. Moreover, the time step is also a
direct consequence of the grid resolution through the CFL number.

One possible way to speed-up our code without degrading the precision
of the solution in the region near the body comes from stretched grids. Since
a good solution requires high resolution in the presence of high gradients we
can design our numerical grid in order to have high resolution where needed,
and making it coarse elsewhere.

The main drawback of this grid arrangement is the loss of accuracy of
differential operators: it can be shown ([47], §3.3.4) that the central deriva-
tive scheme does not maintain a second-order accuracy when applied to a
stretched grid but, naming stretching factor r the ratio between two neigh-
bor grid spacings (∆i+1 = r∆i), this error is proportional to ∆i(r − 1).

For this reason and in order to simplify the Eulerian-Lagrangian data
transmission, the grids used here will be uniform, i.e. r = 1, in the region
next to the body, while it will be stretched by a factor & 1 far away from it.

Spatial operators

All the differential operators described in Section 4.1 need to be discreti-
zed on the numerical grid in order to be applied on a discretized field. As the
mesh is structured, the fields can be stored in a regular matrix, in which the
column-wise direction corresponds to the x-axis, and the row-wise direction
to the y-axis. In our code, all but the non-linear operator N(·) = u ·∇(·) are
defined as matrices and the effect of an operator on a certain field is given
by the row-column product of the two matrices.

For computational reasons it is also useful to define some interpolation
operators by which we can evaluate the same variable at different locations:
from cell faces (velocity nodes) to cell centers (pressure nodes) and from
cell faces to cell corners. Even if other choices are possible, these operators
are written in a local form (i.e. looping over the whole domain instead of
considering all nodes at the same time).

Table 6.1.1 reports the action of each spatial operator including the spatial
location of points on which it operates and at which it returns the output. We
stress the importance of this asymmetry, since pressure gradient operators Gx

and Gy (that operate at cell centers × where the pressure field p is defined)
will be needed to evaluate the velocity field at cell faces (→ and ↑).

Conversely, the divergence-free constraint will be evaluated at cell centers
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× by applying the divergence operators Dx and Dy on velocity fields ux and
uy that are defined respectively at → and ↑.

Operator Operates on Returns values at Size

Dx → × (Nx ×Nx − 1)
Dy ↑ × (Ny ×Ny − 1)
Gx × → (Nx − 1×Nx)
Gy × ↑ (Ny − 1×Ny)
Lx → → (Nx − 1×Nx − 1)
Ly ↑ ↑ (Ny − 1×Ny − 1)

Table 6.1.1: Size of spatial operator matrices with Dirichlet Boundary con-
ditions: p is computed at the center of the cell, while u and v respectively at
the vertical and horizontal faces of the cell.

As an example, let us calculate the gradient of the pressure field p in the
x direction and for simplicity let us assume periodic boundary conditions. As
previously described, this operation results in the row-column product Gxp.
As stated in Table 6.1.1 and Figure 6.1.1, the pressure field is evaluated at
cell centers ×, while its gradient along x will result on cell faces →.

Let us call ngx and ngy the number of geometries and ncx and ncy the
number of centers along x and y (refer to Section 6.1.1 for definitions), so p
will have dimensions (ncx, ncy) and ux (ngx, ncy). The operator Gx will then
have dimensions (ngx, ncx). The effect of the product between the ith row of
Gx on the jth column of p will be the pressure gradient in the x direction
evaluated at the ux node (→) located at the ith value of geometries and at
the jth value of centers (Figure 6.1.2).
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Figure 6.1.2: Action of the matrix operator to evaluate the differential oper-
ator at a particular point of a generic input field.

In the following we will describe all discrete spatial operators, including
the part of the code in which they come into play.

Divergence The divergence operator returns the divergence of the input
velocity field u = (u, v). It is used to compute the known column
vector of the Poisson equation in the second step of the Fractional Step
Method and to check the flow incompressibility at each time step. This
operator is applied at velocity nodes and returns the value at pressure
nodes.

Gradient The gradient operator returns the gradient of the input pressure
field p. It partially forms the known column vector r of the first step
of the Fractional Step Method. This operator is applied at pressure
nodes and returns the value at velocity nodes.

Laplacian The Laplacian operator returns the Laplacian of each component
of the input velocity field u = (u, v). It partially forms the known
column vector r of the first step of the Fractional Step Method. This
operator is applied at velocity nodes and returns the value at the same
location.

Non-linear operator The non-linear operator is written in the conserva-
tive form as

u ·∇u = uj
∂ui
∂xj

=
∂

∂xj
(uiuj) = (

∂u2

∂x
+
∂uv

∂y
,
∂uv

∂x
+
∂v2

∂y
) ' (Nx, Ny)i,j
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x

y

Figure 6.1.3: Non-linear operator stencil (in blue) for an x-component veloc-
ity node (in red).

and is discretized with a two-step Adam-Bashforth (or with a Euler
forward at the first time step), appearing in the known column vector
r of the first step of the Fractional Step Method. The evaluation of this
operator requires the interpolation of ux and uy at both cell centers (×)
and cell corners (+). The stencil for Nx is shown in Figure 6.1.3.

6.2 Boundary Conditions

To fully understand the reason for boundary terms to appear we need to
introduce the so-called computational domain, the ensemble of all grid nodes
at which variables are unknown.

The stencil of the spatial operators, i.e. the set of points needed to
compute the value of a differential operator, usually overflow the computa-
tional domain involving nodes on the boundary or beyond. In the case of
points near boundaries, stencils have to be modified in order to be consid-
ered at boundary nodes. In this way values of variables or their derivatives
at boundaries, the so-called boundary conditions needed to solve differential
equations, become part of the right-hand-side of our linear system (bc).

In the following we present the most used kinds of boundary conditions.
As stated in [49], §3, by implementing boundary conditions before any split-
ting takes place, no boundary conditions on intermediate velocity u∗ and p
are required. Thus, only boundary conditions on velocity u are required.

In order to simulate an open flow around a flexible body, the following
boundary conditions are used; Dirichlet boundary at inlet, symmetric boun-
dary conditions at sides and convective boundary conditions at outlet. These
boundary conditions are discussed in detail in the following sections.
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Symmetric b.c.

Symmetric b.c.

Figure 6.2.1: Staggered grid with applied boundary conditions (b). The
dashed line encloses the computational domain.

6.2.1 Symmetry Boundary Conditions

It is sometimes useful to impose this kind of condition on boundaries
through which there is no mass flux, but where no solid walls are present.
This can be the case of external flows with boundaries very far from the
body. This kind of condition implies

(u · n)Γ = 0 ;
∂(u · τ )

∂n

∣∣∣
Γ

= 0

i.e. the velocity component normal to the boundary is required to be zero
(Dirichlet condition), while the normal derivative to the boundary of the
tangential component is zero (Neumann condition). These are homogeneous
boundary conditions, and generate no boundary condition vectors in the
discretized equations.

6.2.2 Dirichlet Boundary Conditions

The velocity of the fluid is usually known at inlets, and therefore it is
convenient to use it as a boundary condition, resulting in inhomogeneous
Dirichlet boundary conditions.

u|Γ = f(s)

where s is the curvilinear coordinate of the boundary.
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6.2.3 Convective Boundary Conditions

Boundary conditions at outlets are often modeled with a homogeneous
Neumann boundary condition (i.e. ∂u/∂n) for steady simulations. However,
this condition is not satisfactory in an unsteady case, where it is better to
apply a convective boundary condition. A number of such conditions have
been tried but the one that appears to work well is also one of the simplest
([47], p. 273):

∂u

∂t
+ U

∂u

∂n
= 0

where U is a velocity independent of the location and chosen such that overall
mass in the domain is conserved. This is a particular case of the Dirichlet
boundary condition in which the boundary value changes in time.

In the numerical discretization the previous boundary condition can be
implemented by using antime explicit time scheme:

un+1
b − unb

∆t
+ UD(u)nb = 0

where D is the spatial derivative operator. Since the derivative has to be
extrapolated from the computational domain, we can obtain the stencil by
the Method of Undetermined Coefficients ([85], §1.2).

6.3 Time discretization

In computing unsteady flows, we have a fourth coordinate direction to
consider: time. As with spatial coordinates, it must be discretized. We can
consider the time ”grid” as discrete points in a prescribed time interval, just
like the spatial discretization.

The major difference between the time and the space coordinates lies in
the direction of influence: whereas a force at any space location may (in
elliptic problems) influence the flow anywhere else, forcing at a given instant
will affect the flow only in the future, i.e. there is no backward influence.
Unsteady flows are, therefore, parabolic in time, so all solution methods
advance in time in a step-by-step or ”marching” manner.

When trying to solve a PDE (partial differential equation) with both
time and spatial derivatives, we can first evaluate all spatial operators and
then treat them as forcing (known) terms: in this way we can think of the
evolution in time as ruled by an ODE (ordinary differential equation) with
an initial value problem.

Here we use an explicit two-point Adams-Bashforth scheme, as in [49],
to evaluate convective terms and an implicit Crank-Nicholson (trapezoidal)
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scheme for diffusive terms (Euler forward is used for the first time step).
This is because the Laplacian operator (diffusive terms) is linear, so it can
be directly written in a matricial form, whereas the non-linear operator (con-
vective term) would have required a further linearization to be inverted.

Crank-Nicholson method This method approximates the integral with a
straight line interpolation between the initial and final points to con-
struct the approximation

φn+1 = φn +
∆t

2
[f(tn, φn) + f(tn+1, φn+1)]

This method is implicit (φn+1 appears on the right hand side) and is
called two-level method because it involves the values of the unknown
at only two times (φn+1 and φn).

Two-point Adams-Bashforth method This method belongs to the so-
called multipoint methods, that approximate the integral by integra-
tion of a polynomial function created via Lagrangian interpolation at a
certain number of points (in this case tn and tn−1). This can be written
as

φn+1 = φn +
∆t

2
[3f(tn, φn)− f(tn−1, φn−1)]

This method is explicit (φn+1 does not appear on the right hand side)
and is a three-level method because it involves the values of the un-
known at three times (φn+1, φn and φn−1). The major drawback of
this method is that, because it requires data from many points prior
to the current one, it cannot be started using only data from initial
conditions. Other methods have to be used to compute the initial time
steps.

6.4 Matrix description

In order to perform operations in a simple and effective way, both data
fields and spatial operators are described by matrices.

6.4.1 Data storage

Each data field is described by a matrix having the number of columns
equal to the number of computational nodes along the x-direction, and
the number of rows equal to number of computational nodes along the y-
direction.
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Figure 6.4.1: Computational domain (a) and data field storage in matrix
form (b), where Lx = Nx∆x, Ly = Ny∆y.

Data field size

u (Nx − 1×Ny)
v (Nx ×Ny − 1)

cell centers (p) (Nx ×Ny)
cell faces (Nx − 1×Ny − 1)

Table 6.4.1: Dimensions of data matrices using Dirichlet Boundary Condi-
tions, as for example in Figure 6.2

Depending on the particular boundary conditions we have different matrix
dimensions for different data fields.

Periodic Boundary Conditions In this simple case the computational
domain is the same as the physical domain, so each data field has
to be evaluated at Nx ×Ny computational nodes.

Dirichlet Boundary Conditions In this case the computational domain
differs from the physical domain, and each data field has different
computational dimensions (Table 6.4.1).
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Spatial operator Input matrix Output matrix
(size) (size) (size)

Gx uu Gx · uu
(Nx − 1×Nx) (Nx ×Ny) (Nx − 1×Ny)

Gy vvT (Gy · vvT )T

(Ny − 1×Ny) (Ny ×Nx) (Nx ×Ny − 1)
Dx uv Dx · uv

(Nx ×Nx − 1) (Nx − 1×Ny − 1) (Nx ×Ny − 1)
Dy uvT (Dy · uvT )T

(Ny ×Ny − 1) (Ny − 1×Nx − 1) (Nx − 1×Ny)
Lux u Lux · u

(Nx − 1×Nx − 1) (Nx − 1×Ny) (Nx − 1×Ny)
Luy uT (Lux · uT )T

(Ny ×Ny) (Ny ×Nx − 1) (Nx − 1×Ny)
Lvx v Lvx · u

(Nx ×Nx) (Nx ×Ny − 1) (Nx ×Ny − 1)
Lvy vT (Lvy · vT )T

(Ny − 1×Ny − 1) (Ny − 1×Nx) (Nx ×Ny − 1)
Iuc u Iuc · u

(Nx ×Nx − 1) (Nx − 1×Ny) (Nx ×Ny)
Iun uT (Iun · uT )T

(Ny − 1×Ny) (Ny ×Nx − 1) (Nx − 1×Ny − 1)
Ivc vT (Ivc · vT )T

(Ny ×Ny − 1) (Ny − 1×Nx) bo(Nx ×Ny)
Ivn v Ivn · v

(Nx − 1×Nx) (Nx ×Ny − 1) (Nx − 1×Ny − 1)

Table 6.4.2: Spatial operators size under Dirichlet Boundary Conditions.

6.4.2 Spatial operators

As described in Section 6.1, in order to solve for the flow field we have to
manipulate fields with different spatial operators. Here we also define spatial
operators in matrix form so that the application of a spatial operator on a
data field is simply computed by a row-column multiplication.

Due to their non-linearity, the convective operators Nx and Ny cannot be
described as matrices, i.e. they will not be evaluated implicitly but will be
taken into account on the right hand side.

The size of each matrix depends upon the specific boundary conditions
since they have to operate on the data matrices. Moreover, because of the
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staggered grid arrangement, it is not true in general that the original operator
matrix and the resulting field matrix have the same dimension (see Table
6.4.2).valida

6.5 Validation

In this Section we will go through the benchmark problems that have
been selected to test the validity of the code.

6.5.1 Simulation of a vortex flow field

The first validation test of the code concerns the spatial convergence
rate in a simulation with periodic boundary conditions, where a second-
order accuracy in both time and space is expected. The chosen problem was
the simulation of the Taylor-Green array of vortices, whose time-dependent
behaviour is described in a closed form as

uref (x, y, t) = − cos(kxx) sin(kyy)e−t(k
2
x+k2y)/Re

vref (x, y, t) = − sin(kxx) cos(kyy)e−t(k
2
x+k2y)/Re

pref (x, y, t) = −1

4
[cos(2kxx) + sin(2kyy)]e−t(k

2
x+k2y)/Re

that has be taken as a reference solution to compute the error ε defined as

ε = ‖u− uref‖∞ + ‖v − vref‖∞ (6.5.1)

The simulation has been run with the following parameters

Re = 10, Lx = 3, Ly = 3, nx = 24, ny = 24,

∆t = 0.01, Tend = 1.2

Results of the time convergence analysis are listed in Table 6.5.1. Figure 6.5.1
shows the same results as Table 6.5.1 compared with an analytical solution
with first and second order accuracy: it is possible to see how the obtained
results overlap almost exactly the second-order convergence.
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∆t ε convergence rate
1 · 10−4 3.5 · 10−11 \
2 · 10−4 1.4 · 10−10 2.000
4 · 10−4 5.8 · 10−10 2.051
8 · 10−4 2.3 · 10−9 1.988
1 · 10−3 3.6 · 10−9 2.008
2 · 10−3 1.5 · 10−8 2.059
4 · 10−3 5.9 · 10−8 1.976
8 · 10−3 2.3 · 10−7 1.963
1 · 10−2 3.7 · 10−7 2.131
2 · 10−2 1.5 · 10−6 2.019
4 · 10−2 5.9 · 10−6 1.976
8 · 10−2 2.4 · 10−5 2.024

Table 6.5.1: Temporal convergence of the implemented code: as expected
the convergence rate approximates the theoretical value of 2.
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Figure 6.5.1: Temporal convergence rate of the numerical code (dots) com-
pared with the theoretical first- and second-order error curves.
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∆x = ∆y nx = ny ε convergence rate
7.8 · 10−3 128 2.0 · 10−5 \
1.5 · 10−2 64 8.0 · 10−5 2.044
3.1 · 10−2 32 3.1 · 10−4 1.949
6.3 · 10−2 16 1.2 · 10−3 1.849
1.3 · 10−1 8 3.7 · 10−3 1.628

Table 6.5.2: Spatial convergence of the implemented code: the numerical
convergence rate is next to the theoretical value of 2 (see Figure 6.5.2).

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-03 1.0e-02 1.0e-01 1.0e+00

ε

∆x

first order
second order

numerical

Figure 6.5.2: Spatial convergence rate of the numerical code (dots) compared
with the theoretical first- and second-order error curves.

A spatial convergence analysis was also performed. As with the temporal
analysis, results are listed in Table 6.5.2 and shown in Figure 6.5.2.

6.5.2 Simulation of an elastic membrane

As a second test on code reliability we compared the results of our code
with the ones reported by Griffith in [48], where the dynamics of a thin,
elastic and mass-less membrane immersed in a viscous incompressible fluid
was performed.

The fluid is taken initially at rest and the membrane is an ellipse with
semi-major axis 0.3 and semi-minor axis 0.2. After the membrane is released
at time t=0, the interface undergoes damped oscillations, with period and
damping depending on the stiffness κ and the Reynolds number Re. Due to
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the incompressibility of the fluid enclosed by the membrane and the presence
of fluid viscosity, the membrane relaxes towards a circular configuration with
radius

√
6/10.

Figure 6.5.3: Membrane (continuous line) deforms from its original configu-
ration (dashed line) towards the final configuration (dotted line).

In the simulations we considered three boundary stiffnesses (κ = 1, 10, 100)
and two Reynolds numbers (Re = 100, 1000). We performed each computa-
tion until t = 1.2 dimensionless time units, which for κ = 1 corresponds to
three damped oscillations. We used Cartesian grids with 16, 32 and 64 points
in each coordinate direction, while the elliptic boundary was described with
64 Lagrangian points. All the simulations were conducted with CFL= 0.1.
Table 6.5.3 compares the results from our numerical code with those reported
in [48]. Although the accuracy is not satisfactory, over all simulations both
codes, implemented with different versions of the IB, give the same order of
magnitude of area losses. For this kind of test, we assumed as the measure of
the accuracy of the method the percentage loss of area inside the membrane:

ε =
|Area− Area0|

Area0

· 100
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κ Re εcode εGriffith |relerr|
1 1 · 102 6.41 · 10−2 3.69 · 10−2 0.269

1 · 103 2.26 · 10−1 3.56 · 10−1 0.223
10 1 · 102 3.33 · 10−1 3.95 · 10−1 0.085

1 · 103 8.90 · 10−1 1.90 · 100 0.362
100 1 · 102 2.33 · 100 1.23 · 100 0.310

1 · 103 3.90 · 100 5.76 · 100 0.193

Table 6.5.3: Maximum area losses in our numerical code (εcode) compared
with those listed in [48]. In all the simulations the Cartesian grid was [64×64]
and CFL= 0.1

6.5.3 Lid-driven cavity

In order to test the Dirichlet boundary condition, simulation of the so-
called “regularized lid-driven cavity” has been performed. In this standard
benchmark problem the fluid domain is a box of coordinates (0 ≤ x ≤ 1, 0 ≤
y ≤ 1) bounded by still walls except for the top wall, sliding with a tangential
velocity u defined as:

u(x) =


sin2

[
πx

1− p

]
if x ≤ 1− p

2

1 if
1− p

2
≤ x ≤ 1 + p

2

sin2

[
π(x− 1)

1− p

]
otherwise.

(6.5.2)

where p is the wall percentage at which u = 1 (Figure 6.5.4). The grid
and grid size distribution used for simulations as well as velocity profiles are
shown in Figure 6.5.5.
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Figure 6.5.4: Regularized tangential velocity profiles along sliding wall for
p = 0.4.
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Figure 6.5.5: Stretched grid used for the simulation (a) and grid steps dis-
tribution along x (b). u (c) and v (d) velocity profiles at, respectively,
x = 0.5 and y = 0.5 for different percentage of sliding wall velocity pro-
file (Eq. (6.5.2)). Dots in (c) and (b) represent the profiles simulated in
[88].
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6.5.4 Parachute

In order to test the IB formulation by Peskin (see Section 5.2), a test
case regarding a parachute has also been carried out for the simulation of
the flux around a massless 2D opening parachute, bonded by two ropes to
a pinned point. Boundary conditions in all directions are periodic, and the
velocity u0 = (u, v) is forced to be u0 = (0, 1) at the bottom boundary. This
is accomplished by applying a volume force f0 inside a strip Ω near the inlet:

f0(x, t) =

{
α0(u0(t)− u(x, t)) if x ∈ Ω

0 otherwise.
(6.5.3)

where α0 is a large positive constant.
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Figure 6.5.6: Streamlines (in red) around the opening parachute (in blue).
The initial position of the parachute is shown in green.

Here the permeability has been simulated using the original approach
proposed by Kim and Peskin [67] and described here in 5.4.2, i.e. by allowing
a relative slip between the flow velocity U and the structure velocity ∂X/∂t
in the direction normal to the structure(

U− ∂X

∂t

)
· n =

βγ

|∂X/∂s|2
F · n
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In the performed simulations the term γ/ |∂X/∂s|2 has been set as a constant
and equal to 1. Figure 6.5.4 depicts the streamlines around the parachute in
the transient between the initial (green) and the actual (blue) configuration.
Figures 6.5.7 and 6.5.8 represent respectively the flow through the canopy and
the drag force on the pinned point for different values of the pore density β
(the aerodynamic conductance is constant and equal to γ = 1). As expected,
the flow through the canopy increases with β while the drag force decreases.
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Figure 6.5.7: Time history of flux through canopy.
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Figure 6.5.8: Time history of drag force on the pinned point.

6.5.5 Beam dynamics

In order to also assess the reliability of the structural part of the code
some numerical simulations of both the clamped and the hinged beam (with-
out surrounding fluid) have been performed. For each case the initially de-
formed configuration was free to evolve without any external driving force,
so that in the limit of small initial displacement numerical simulations give
us both eigenvalues and eigenfunctions. The numerical simulations are in
good agreement with the theoretical results shown in Section 3.4.

Clamped beam

In the following we show the result of the simulations of the unforced
clamped beam for the first two modes. Since we want to show just one of the
eigenfunctions at a time, the initial condition has been set to be proportional
to one of the eigenfunctions depicted in Figure 3.4.1.
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Figure 6.5.9: Time trace of displacement at the clamped beam’s free end.

Looking at the displacement of a single point over time Figure (6.5.9), a
sinusoidal behavior appears as expected (apart from a little damping) with
frequency given in Table 6.5.4, showing a good agreement with the theoretical
values shown in Table 3.4.1.

mode T f ωNL
2/
√
γ

1 25.1381 0.0398 3.5348
2 4.0221 0.2486 22.0924

Table 6.5.4: Oscillation frequencies of simulated modes of the clamped beam.

Figures 6.5.10 and 6.5.11 show different snapshots during one oscillation
period of the beam displacement (eigenfunction) respectively for the first and
the second mode.
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Figure 6.5.10: Beam snapshots during one oscillation. Initial condition (in
green) is such that only the first oscillation mode of the clamped beam is
excited.
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Figure 6.5.11: Beam snapshots during one oscillation. Initial condition (in
green) is such that only the second oscillation mode is excited.

Hinged beam

Numerical simulations of the unforced simulation have also been per-
formed for the hinged beam. As for the cantilever, the first two oscillation
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modes have been investigated.
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Figure 6.5.12: Time trace of displacement at the hinged beam’s free end.

Looking at the displacement of a single point over time (Figure 6.5.12), a
sinusoidal behavior appears as expected (apart from a little damping) with
frequency reported in Table 6.5.5 showing good agreement with the theoret-
ical values shown in Table 3.4.2.

mode T f ωNL
2/
√
γ

2 5.7264 0.1746 15.5173
3 1.7686 0.5654 50.2415

Table 6.5.5: Oscillation frequencies of simulated modes of the hinged beam.

Figures 6.5.13 and 6.5.14 show different snapshots during one oscillation
period of the beam displacement (eigenfunction), respectively, for the first
and the second non-trivial oscillation mode.

74



-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0 0.2 0.4 0.6 0.8 1

y

x

Figure 6.5.13: Beam snapshots during one oscillation. Initial condition (in
green) is such that only the second oscillation of the hinged beam mode is
excited.
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Figure 6.5.14: Beam snapshots during one oscillation. Initial condition (in
green) is such that only the third oscillation mode of the hinged beam is
excited.
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6.5.6 Darcy’s law

The physical accuracy of the results has been tested with the well-established
Darcy’s law by simulating a porous membrane hinged at both ends perpen-
dicular to an incoming uniform flow (see Figure 6.5.15).
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Figure 6.5.15: An inextensible membrane (left, solid line) simply supported
at both ends is subject to a uniform flow from left (streamlines in dot lines)
and (right) pressure profile along x. Notice the sudden pressure drop around
membrane location (x ' 0) within the space of two mesh grids.

In the next subsection we will derive the theoretical relationship between
Darcy’s permeability coefficient k and the parameter λ used in our model,
while in subsection 6.5.7 the numerical procedure and results will be shown.

Theoretical derivation of the k − λ mapping

Darcy’s law is a phenomenological relationship describing the flow in
porous media in the limit of laminar flow (low Reynolds numbers). It states
a linear dependence between the pressure gradient ∇p and the fluid veloc-
ity U−Uib through the so-called permeability coefficient k, that takes into
account the geometry of the porous medium:

U−Uib = −k∇p (6.5.4)

where U−Uib is the fluid relative slip velocity across the permeable medium.
In our numerical simulation the force exerted by the fluid on the filament is
given by Goldstein’s feedback law (7.1.2), that by neglecting the time-integral
term can be written as F = β(U−Uib). Since the drag on a flat plate normal
to the flow is only due to the pressure difference we can approximate

F

δ
∼ ∂p

∂x
(6.5.5)
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where δ is the width of the membrane, given by the “effective radius” of
the Dirac delta function used by the IB method. In our case, δ has been
estimated to be twice the minimum grid spacing, i.e. δ = 2∆xmin = 2∆ymin.
Finally, exchanging the normal direction n with the x-direction one obtains

k = − δ

β(1− λ)
(6.5.6)

6.5.7 Numerical results

Several simulations were performed with different values of λ and four dif-
ferent Reynolds number (2.5, 5, 7.5, 10). By sampling pressure immediately
upstream and down-stream of the membrane along the x axis (Figure 6.5.15,
left) we got the pressure gradient across the membrane, while flow measure-
ments were obtained by interpolating the fluid velocity on the membrane.

The linear relationship between pressure gradient and the fluid flux across
the membrane (Figure 6.5.16, left) is in good agreement with Darcy’s law at
low Reynolds numbers. Darcy’s k parameter for each value of λ was thus
obtained through a linear regression of the simulation results, leading to
a numerical mapping curve (λ − k) (Figure 6.5.16, right) that shows good
agreement with the analytical prediction curve from equation (6.5.6).
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Figure 6.5.16: Linear regression of every set of simulations (dots) at different
λ (left). Darcy’s k is the slope of each line and comparison between analytical
prediction and numerical results of the k − λ mapping (right).
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Chapter 7

Applications and results

7.1 Permeable filament

Motion of deformable, slender structures immersed in an incompressible
viscous fluid is commonly seen in natural phenomena, and can be found in
many applications such as paper processing [90], energy harvesting [59, 61, 62]
and turbulence reduction [89].

In the present paper we study numerically how permeability, a key factor
in a number of both biological and technological tissues, plays a role in the
dynamics of a flapping hinged filament, commonly referred to as the flag-in-
the-wind problem.

7.1.1 Problem formulation and characteristic length
scales

We consider a one-dimensional inextensible elastic filament of length L∗,
with mass per unit length ρ∗S and bending rigidity K∗b , surrounded by a
viscous incompressible fluid of density ρ∗F , dynamic viscosity ν∗ and veloc-
ity at inflow U∗∞. As in [52], we also make use of the density difference
ρ∗1 = ρ∗S − ρ∗FA

∗, where A∗ is the filament cross section area (dimensional
variables with star, dimensionless without).

The dimensional governing equations (5.3.3) and (5.3.4) can be made di-
mensionless by using the same characteristic scales as described in Section
5.3, giving equations (7.1.6) and (7.1.1).

While section 6.5.6 contains the numerical benchmark with Darcy’s law,
section 7.1.2 describes the numerical method, and the numerical results are
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discussed in section 7.1.6. The analytical model is presented in 7.1.9, while
in section 7.1.8 we try to provide a physical insight into the phenomenon.
Finally conclusions are drawn in section 7.1.10.

7.1.2 Numerical model

Let x = (x, y) ∈ Ω be the Cartesian physical coordinates, with Ω de-
noting the physical domain, x and y being the stream-wise and cross-stream
direction, respectively; let s ∈ Γ be the Lagrangian curvilinear coordinate,
with Γ denoting the body surface; let X(s, t) = (X1(s, t), X2(s, t)) ∈ Γ de-
note the physical position of each material point of curvilinear coordinate
s at time t (Figure 7.1.1). Velocity boundary conditions are: u = (U∞, 0)
at Ωinlet, ∂u/∂t + U∞∂u/∂n = 0 at Ωoutlet (convective boundary condition)
and {u · n = 0, ∂(u · τ )/∂n = 0} at Ωtop and Ωbottom (symmetrical boundary
condition), where n and τ are, respectively, the normal and tangential direc-
tions to the boundary. Given these conditions, the governing equations can
be written as:

x

y

θ

U∞

X(s, t)

ρ, ν

Γ

Ω

Figure 7.1.1: Filament Γ (in red) described by a set of Lagrangian points
X(s, t) (in green). Initial configuration (in cyan) of the filament is a straight
line with a certain angle of attack θ.
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∂u

∂t
(x, t) + u(x, t) · ∇u(x, t) = −∇p(x, t) +

1

Re
∇2u(x, t) + f(x, t)

∇ · u(x, t) = 0
(7.1.1)

Fimp = α

∫ t

0

(Uib −
∂X

∂t
)dt′ + β(Uib −

∂X

∂t
) (7.1.2)

F = (1− λ)(Fimp · n)n + (Fimp · τ )τ (7.1.3)

f(x, t) = ρ

∫
Γ

F(s, t)δ(x−X(s, t))ds (7.1.4)

Uib(s, t) =

∫
Ω

u(x, t)δ(x−X(s, t))dΩ (7.1.5)

∂2X

∂t2
=

∂

∂s

(
T
∂X

∂s

)
− ∂2

∂s2

(
γ
∂2X

∂s2

)
+ Fr

g

g
− F (7.1.6)

∂X

∂s

∂2

∂s2

(
T
∂X

∂s

)
=

1

2

∂2

∂t2

(
∂X

∂s

∂X

∂s

)
− ∂2X

∂t∂s

∂2X

∂t∂s
− ∂X

∂s

∂

∂s
(Fb − F)

(7.1.7)

The incompressible Navier-Stokes equations (7.1.1) are considered together
with an artificial forcing f to enforce the no-slip condition. Hydrodynamical
forces acting on a permeable filament are calculated by means of eqs. (5.4.5)
and (7.1.2), where the first is the force reduction equation presented in Sec-
tion 2 for taking into account permeability and the second is Goldstein’s
feedback law [58]. According to [58], α and β are negative constants chosen
to enforce the no-slip condition up to an arbitrary small value. Throughout
this work, we have used α = 0. Equations (7.1.4) and (7.1.5) link together
Eulerian and Lagrangian quantities through a convolution with a discretized
version of Dirac Delta function δ (interested readers are referred to [66]).
Among a wide choice of synthetic Delta functions, we made use of the one
proposed by Roma in [68]. As explained in [52], the difference of density
scales in the dimensional version of equations (7.1.1) and (7.1.6) (ρ∗F and
ρ∗1, respectively), is taken into account in equation (7.1.4) through the ratio
ρ = ρ∗1/(ρ

∗
FL
∗). Filament dynamics is considered in equation (7.1.6), known

as d’Alembert elastic string equation. As shown in [52], equation (7.1.7)
solves for the tension as a Lagrangian multiplier in order to enforce incom-
pressibility and can be recovered by deriving equation (7.1.6) with respect to
s and multiplying by ∂X/∂s. As in [55], we chose a staggered arrangement
of the Lagrangian variables X and T (see Figure 5.3.1).

In order to solve equation (7.1.6) four boundary conditions are enforced
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both at the leading and at the trailing edge:

X|s=0 = Xhinged,
∂2X

∂2s

∣∣∣∣
s=0

= 0,
∂2X

∂2s

∣∣∣∣
s=L

= 0,
∂3X

∂3s

∣∣∣∣
s=L

= 0.

The first and second conditions enforce the filament to be hinged to the pole
Xhinged, while the third and the fourth conditions state that the filament
trailing edge is unloaded (zero torque and shear). Moreover, equation (7.1.7)
is solved together with these conditions:

∂

∂s

(
T
∂X

∂s

)
s=0

= −Frg

g
+ F, T |s=L = 0,

where the first one derives from equation (7.1.6) in the absence of acceleration
and bending moment (hinged condition), while the second again comes from
the unloaded free edge condition.

7.1.3 Numerical Discretization

The computational domain is an 8×8 square ranging [−2, 6] in the cross-
stream direction and [−4, 4] in the span-wise direction as in [52]. The compu-
tational grid is uniform in an inner region close to the pinned end (0, 0) of
the filament ([−0.5, 3] in the cross-stream direction and [−1, 1] in the span-
wise direction) with grid spacing 1/75, and stretched outside with a constant
stretching ratio equal to 1.1. A convergence study on grid spacing has been
performed up to 1/150, showing a relative error on flapping amplitude less
than 2.5%. The filament length L is set equal to 1 and the Lagrangian grid is
made up of 150 points, so that approximately 2 Lagrangian points appear in
one Eulerian cell (as suggested in [54]). Boundary conditions on the velocity
are U∞ = (1, 0) at the inflow, convective at the outflow and symmetric at
the lateral sides. Since our computational grid for the flow is staggered, no
boundary conditions for the pressure are needed. The initial configuration
of the filament is a straight line inclined at a certain angle θ (Figure 7.1.1).
In all the simulations the fluid kinematic viscosity ν has been calculated to
give Re = 200.

7.1.4 Numerical scheme

To solve the incompressible Navier-Stokes equations we make use of the
Fractional Step Method, a projection method originally introduced indepen-
dently by Chorin [46] and Temam [51] and later refined by Perot [49]. This
formulation results in a code with second-order accuracy in space and first
order accuracy in time.
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7.1.5 Solution Procedure

At each time step the numerical algorithm can be summarized as follow:
(i) evaluation of hydrodynamical forces F on the filament (7.1.2), (ii) spread-
ing of the force F from Lagrangian points on the Eulerian grid (7.1.4), (iii)
solution of fluid flow (7.1.1), (iv) solution of filament motion (7.1.6), (7.1.7).

7.1.6 Simulations of impermeable filament

Before focusing on permeable filaments, we ran a few simulations in order
to validate our numerical method against results available in literature. In
particular the analytical model shown in [70] has been taken as a reference
for all numerical simulations. This model considers the beam dynamical
equation with external loads given by the “slender body theory” (see Munk
[71]), obtaining

(ρ+ ρa)
∂2h

∂t2
+ 2µa

∂

∂s

∂h

∂t
+ (ρa − τ)

∂2h

∂s2
+ γ

∂4h

∂s4
= 0, (7.1.8)

having introduced the following non-dimensional quantities:

ρ =
ρs
ρfL

, ρa =
ma

ρfL
, τ =

T

ρfU2L
, γ =

Kb

ρfU2L3

where ρs is the structure linear density, ρf is the fluid density, ma = ρfA (and
therefore ρa = A/L, giving a dimensionless ratio in 2D) is the “virtual mass”
considered to surround the filament cross section. We would like to point out
that this equation differs slightly from (7.1.6) in that here we consider the
absolute beam density ρs in the inertial term and not the density difference
ρ1 required by the Immersed Boundary approach.

This is a fourth order linear equation for h(s, t) involving only second and
fourth order derivatives, which leads to simple solutions that exhibit some
interesting features. In order to perform a stability analysis, we insert in the
previous equation the generic expression of a wave evolving both in time and
space

h(s, t) = aei(ks−ωt)

where a is the amplitude, k the wave number and ω the angular frequency.
In order to estimate tension, we use the solution deriving from a zero-

pressure gradient boundary layer developing over a flat plate (Blasius, see
[10])

τ(y) =
T (y)

ρU2L
= 1.3

√
Re(1− y

L
)
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Since the filament is assumed to be infinite, we will use the maximum value
to be representative, τ(y = 0) = 1.3Re−1/2.

Substitution of the generic solution into equation (7.1.8) yields a quadratic
expression

ω =
ρak ∓ k

√
(ρ+ ρa)(1.3Re−1/2 + γk2)− ρρa

ρ+ ρa

In this case the stability of the solution is found when Im(ω) = 0. This can
be asserted by the evaluation of the term under the square root. In particular
the stability condition can be written

(ρ+
2

k
)(1.3Re−1/2 + γk2)− 2ρ

k
≥ 0,

from which it is possible to derive critical values for linear density, flexural
stiffness and incoming velocity related to other parameters. In the previous
equation we substituted ρa = 2/k given from potential flow solution [73]
(k = 2π).

Numerical simulations show a good agreement with the theoretical curve
up to γ = 2.5 · 10−3 (Figure 7.1.2), which coincides with the range of values
investigated by Connel and Yue [70]. Above this critical value of the bending
stiffness the agreement between the analytical model and DNS simulations
deteriorates. This discrepancy can be partly explained by a modification of
the filament shape as the value of γ exceeds 2.5 · 10−3. In relation to Figure
7.1.2, Figure 7.1.3 depicts snapshots of the filament during a flapping cycle
for two different values of γ (cases A and B, respectively), whereas in Figure
7.1.10 vorticity iso-contours for the same parameter sets are shown. Here, it
can be noted that the wave number k = 2π for γ < 2.5 · 10−3, while k is ap-
proximately π when γ > 2.5·10−3. Following the derivation of the model, this
shape alteration leads to a variation of the added mass coefficient obtained
from potential theory. The new curve drawn for k = π matches qualitatively
the DNS simulations (Figure 7.1.2). Further discrepancy between analytics
and numerics may be due to the failure of the model (still based on Blasius
boundary layer theory) to predict, for example, tension along filament.

In 7.1.9 we show a generalization of the well-established model to also ac-
count for permeability. Interestingly, the simple generalization qualitatively
captures the stability effect induced by permeability. However, a quantitative
comparison between our DNS results and model prediction is not satisfac-
tory. A possible reason is that we exclude any dependency of tension τ and
added mass ρa on the permeability and wave number. The latter is expected
to depend greatly on permeability in an analogy to what is observed in a
suction/blowing boundary layer.
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Figure 7.1.2: Comparison between analytical models and DNS simulations.
The close-up refers to the rectangle near axis origin.
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Figure 7.1.3: Snapshots of impermeable filament during one flapping cycle
for case D (left) and E (right) depicted on Figure 7.1.2. While a unique
concavity characterizes the behavior of the right filament, an inflection point
is clearly identifiable in the left oscillations.
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Figure 7.1.4: Y-coordinate of impermeable filament trailing edge for case D
(red) and E (green) depicted on Figure 7.1.2.
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7.1.7 Simulations of permeable filament
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Figure 7.1.5: Neutral curve on the plane (γ, ρ) for Re = 200 and λ = 0. The
analytical curve for λ = 0 is taken from [70], whereas dotted lines represent
neutral curves for different permeabilities.
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Figure 7.1.6: Critical value of ρ with λ for different values of bending stiffness
γ.

In order to assess the stabilizing property of permeability, several DNS
simulations with different sets of parameters (γ, ρ) have been performed at
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Re = 200 and for different values of permeability λ. For the impermeable
case (λ = 0) we compare the DNS results with the analytical curve obtaining
a close agreement, which can be seen in Figure 7.1.5. When permeability is
considered (λ 6= 0), the critical density difference ρ increases as λ increases,
for a given value of bending stiffness γ. This means that the onset of insta-
bility requires a heavier filament as the permeability increases. If we consider
the (ρ, γ) plane, for instance, the neutral curve shifts up when going from
an impermeable to an increasingly more permeable filament (Figure 7.1.5),
effectively extending the stability zone.

Even considering parameter values far from the stability threshold (bullets
C, D and E in Figure 7.1.5), permeability still shows a non-negligible effect on
the dynamics of the filament: as permeability is increased both the sustained
flapping amplitude and frequency (Figure 7.1.7) decrease.

Besides kinematics, the effects of permeability on the peak values of the
forces acting on the flapping filament have also been assessed for case A (Fig-
ure 7.1.5). Both lift and drag forces decrease monotonically as permeability
increases (Figure 7.1.8, left). As we can see, there is an optimal value of
λ ' 0.6 for which the aerodynamic efficiency is maximized.
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In previous sections we showed quantitative results on the permeability
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stabilizing role on the flapping behavior of an elastic filament. In this section
we will provide a simple physical mechanism at the origin of the stabilization
and show that the phenomenon can be traced back to a resonance condition
between porous and hydrodynamical time scales.

7.1.8 The permeability time-scale

The idea is that two different mechanisms at work start to interact when
their characteristic time-scales become of the same order of magnitude. Argu-
ments of this type have been successful, e.g. to explain a symmetry breaking
mechanism in fluid-structure interaction [69] as well as emergence of elastic
instabilities [74, 62] and the emergence of macroscopic spatial scales at which
microscopic polymers cause visco-elastic behavior [79]. In this spirit we de-
fine the permeable time as the characteristic time needed by mass to cross the
membrane of thickness δ. Following Darcy’s empirical law U−Uib = −k∇p,
we estimate this quantity to be:

τpor =
δ

‖U−Uib‖
=

δ

k∇p
=

δ2

k∆p
(7.1.9)

In order to give a quantitative value for the pressure difference across the
membrane, we resort to the slender body theory [72] already used in [70, 73]

∆p = ρa

(
∂

∂t
+ U

∂

∂s

)2

h ' ρa

(
U

L

)2

h (7.1.10)

where ρa is the added mass coefficient as defined in Section 7.1.6, (∂/∂t +
U∂/∂t) is the convective derivative for a fluid particle near the filament and
h is the vertical displacement. Inserting (6.5.6) and (7.1.10) into (7.1.9) one
obtains

τpor = −δL
2β(1− λ)

ρaU2h

Physically, this is the time it takes for the flow to flatten the pressure differ-
ence ∆p across the filament.

Our aim here is to compare this characteristic time-scale with the hydro-
dynamical time-scale, roughly estimated as τhdr = L/U , in order to assess λ
critical value to have resonance between permeability and hydrodynamics:

τpor
τhdr

= −δL
2β(1− λ)

ρaU2h

U

L
= −δLβ(1− λ)

ρaUh
' 1.

From this expression we can derive a critical value of λ as

λcrt ' 1 +
ρaUh

δLβ
. (7.1.11)
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If we use the parameters given here the critical value of λ is ' 0.98, in
qualitative agreement with DNS. Such a value corresponds to a permeability
k ' 0.06 (see Eq. (6.5.6)). Interestingly, this result shows that the perme-
ability stabilizing effect occurs when we are very close to λ = 1 (see Figure
7.1.7).

7.1.9 Straightforward generalization of the analytical
model

Let us perform a stability analysis study on a simplified model inspired
from [70]. Permeability has the overall effect of reducing the drag force of
fluid by allowing a mass transfer through the body. That is to say, it reduces
the force exerted by the fluid on the filament normal direction by reducing
the pressure difference across the boundary.

In order to take into account permeability effects we propose to reduce
the hydrodynamical forces by a factor (1− λ)

L(s, t) = −ρa(1− λ)(
∂

∂t
+ U

∂

∂s
)2h

from which, by using the same non-dimensionalization as in Section 7.1.6,
we obtain

[µ+ (1− α)µa]
∂2h

∂t2
+ 2µa(1− α)

∂

∂s

∂h

∂t
+ [µa(1− α)− τ ]

∂2h

∂s2
+ γ

∂4h

∂s4
= 0

where λ represents permeability (λ = 0 reduces to the impermeable case,
λ = 1 is the limit for an infinitely permeable boundary). If we now perform
a stability analysis as before, we end up with a slightly different stability
condition [

2(1− λ)

k
+ ρ

] [
γk2 +

1.3

ρ
√
Re

]
− 2(1− λ)

k
≥ 0 (7.1.12)

from which it is possible to derive critical values for linear density, flexu-
ral stiffness and incoming velocity related to permeability λ and Reynolds
number Re (see Figure 7.1.11).
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7.1.10 Conclusions

The present work represents the initial investigation of how to take into
account permeability in conjunction with mass and bending rigidity in an
immersed boundary formulation through an innovative formulation. For sim-
ulations taking into account permeability, the code has been confirmed by
Darcy’s empirical theory in Section 6.5.6.

In order to test numerical results, the code has been benchmarked with re-
sults from classical stability analysis [70] without taking into account perme-
ability. Results (Figure 7.1.2) show a good agreement between the theoretical
prediction of the stability curve and the DNS simulations up to γ = 2.5·10−3.
After this value the wave number associated with the oscillation of the fila-
ment decreases, leading to a failure of the theoretical curve.

Simulations of permeable filament (Figure 7.1.5) show that permeability
increases significantly the stability zone for values of λ > 0.85. As Figure
7.1.6 shows, the critical value of the filament linear density ρcr does not vary
for λ < 0.85, while above this threshold it varies as 1/(λ− 1) (Figure 7.1.6).
This behavior is confirmed also by Figure 7.1.7 from which it appears that
both flapping amplitude and frequency remain constant up to λ ' 0.8 and
decrease sharply afterward. As it comes to forces (Figure 7.1.8), both lift
and drag shows a smoother dependence on permeability. It appears to be a
maximum in the lift over drag ratio for λ ' 0.6. This particular dependence
of both kinematic and dynamic quantities on permeability is also confirmed
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through the physical interpretation based on characteristic time scales we
give in Section 7.1.8.

Moreover, in Section 7.1.9 the stability analysis developed for an imper-
meable flag has been extended in order to also take permeability into account.
This attempt (Figure 7.1.11), matching numerical results in a qualitative way,
is not able to give a good prediction of the neutral curve.

7.2 Retinal detachment

Retinal detachment is one of the common pathologies of the human eye
which involves the separation of the sensory retina, a thin layer of neural
tissue that lines the back of the eye, from the underlying retinal pigment
epithelium [91] (Figure 7.2.1). It occurs when fluid enters the sub-retinal
space through a retinal tear between the neurosensory retina and the retinal
pigment epithelium, the outer layer to which the retina adheres.

There are numerous variations in the pathogenesis of a retinal detach-
ment. They include developmental factors, such as myopia, that affect the
overall size and shape of the globe, vitreoretinal disorders, metabolic disease,
trauma, inflammation and degenerative conditions. A retinal detachment
can have devastating visual consequences depending on its displacement and
extent. If the detachment reaches the macula, the most sensitive part of the
eye, patient could experience a significant reduction of vision field or, in the
worst cases, lose eyesight. However, the majority of retinal breaks do not
result in retinal detachment. In the general population, retinal detachment
occurs in about 12 out of 100,000 people (0.01% annual risk) with a lifetime
risk (up to 60 years of age) of 0.6%, and is one of the most frequent causes of
blindness in Western countries [92]. Retinal detachment can be divided into
rhegmatogenous and nonrhegmatogenous detachment, with the first being
the most common. In the first case a vitreous traction generates a break
(retinal tear) while in the second case detachment occurs without any retinal
breaks (Figure 7.2.2).
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Figure 7.2.1: Vertical sagittal section of human eye.

Figure 7.2.2: Irregular posterior extensions of the vitreous due to horseshoe-
shaped retinal tears (A) and retinal hole with a free operculum (B).

In this application we analyze two types of rhegmatogenous detachments,
called retinal tear and retinal hole. The first type occurs when a localized
traction generates a break in the retinal layer, leading to the formation of a
retinal flap which is free to move (Figure 7.2.2). The second type is char-
acterized by the presence of a hole in the retinal layer, which is typically
produced by localized vitroretinal traction able to remove a certain area of
the retina. As the typical size of the flap is much smaller than the eye radius,
in the numerical simulations we model the eye surface as a flat plate. We
further simplify the model by restricting our attention to two dimensional
simulations so that the “tear” case will be represented by a single filament,
analogous to the one used in Section 7.1. In the simulations regarding the
hole, we chose to model the three-dimensional geometrical effect with a tip-
connecting spring between the two-filaments. Our final aim is to assess the
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forces and torques generated at the attachment points of both the “tear” and
the “hole” in order to determine which type of detachment could deteriorate
more easily.

7.2.1 Imposed plate motion

In order to simulate the dynamics of retinal detachment we first need to
consider the characteristics of eye movements, which are the main forcing
mechanisms producing flow in the vitreous chamber.

In this work we focus on the so-called saccadic motion that, due to its
characteristics, is the main responsible of vitreous motion. A saccade is a fast
movement of the eye, by which the eye scans the surroundings and acquires
information. Physiologic characteristics of eye movements are reported in de-
tail in Becker [87], where the basic features of these movements are discussed.
In particular, saccadic rotations are characterized by:

• high initial angular acceleration (up to 30000◦s2);

• a less intense deceleration which is, however, capable of inducing a very
efficient stop of the movement;

• a peak angular velocity proportional to the saccadic amplitude for small
rotations up to a saturation value ranging between 400 and 600 deg s−2

for larger movements;

• an amplitude ranging from 0.05◦ (microsaccades) to 80− 90◦, which is
the physical upper limit for eye rotations.

As referred to in [84], a saccade movement can be described through the
following quantities: the saccade amplitude A, the saccade duration D, the
peak angular velocity Ωp and the acceleration time tp, i.e. the time required
to reach the peak velocity starting from rest. Becker [87] reports that the
relationship between saccade duration and saccade amplitude is very well
described by the following linear law:

D = D0 + dA

in the range 5◦ < A < 50◦, where d approximately assumes the value of
0.0025s deg−1 and the intercept D0 typically ranges between 0.02 and 0.03s.
D is measured in seconds and A in degrees. The average angular velocity dur-
ing a saccadic movement is defined as Ω̄ = A/D and measurements suggest
that the ratio Ωp/Ω̄ between the peak and the mean velocities attains a fairly
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constant value. Becker [87] suggests the constant value of 1.64. Finally, the
experimental data show that small amplitude saccades (smaller than 10◦)
follow an almost symmetrical time law, the acceleration time tp being ap-
proximately 0.45 D. The dimensionless quantity tp/D varies linearly with
increasing saccade amplitudes to the value of tp/D ' 0.25 for saccades of 50◦.

Repetto et al. [84] proposed to describe the time law θ(t) describing the
angular eye displacement θ in time by making use of a simple fifth order
degree polynomial function of the form

θ(t) = c0 + c1t+ c2t
2 + c3t

3 + c4t
4 + c5t

5

where the coefficients ci are computed by imposing the following constraints:
θ(0) = 0, θ(D) = A, θ̇(0) = 0, θ̇(D) = 0, θ̇(tp) = Ωp and θ̈(tp) = 0 where
D, Ωp and tp are evaluated by using the previous relationships. The result-
ing functions θ(t) and dθ/dt are shown in Figure 7.2.3 in terms of position
r θ and velocity r dθ/dt (where r is the eye radius) and they satisfactorily
reproduce the main features of real saccadic movements.
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Figure 7.2.3: Plate position Xp = rθ (red) and velocity dXp/dt = r dθ/dt
(green) as function of time (Figure 7.2.4).

Besides the “tear” and the “hole” configuration we also performed addi-
tional simulations addressed as “periodic tear” similar to the “tear” case but
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in which the motion of the wall is assumed periodic in time:

Xp(t) = rθ(t) = ā sin(2πf̄)

7.2.2 Numerical discretization

In the following we describe both the set-up and results from simulations
regarding the “tear” and “hole” configurations. For problem formulation
and characteristic length scales the reader may refer to Section 7.1.1. In
all simulations the Reynolds number has been set constant and equal to
114.6 and the effect of gravity has been neglected. In the case of the “tear”
and the “hole” we consider the filaments to have different non-dimensional
lengths (L∗ = 0.75, 1, 1.25) and the same non-dimensional bending stiffness
(1 · 10−1), while in the case of “periodic tear” the same length but different
non-dimensional bending stiffness (K∗b = 1 ·10−1, 2.5 ·10−1, 5 ·10−1) and non-
dimensional frequency has been considered. In all the simulations the fluid
kinematic viscosity ν has been calculated to give Re = 114.6.

We let x = (x, y) ∈ Ω be the Cartesian physical coordinates, with Ω
denoting the physical domain; let s ∈ Γ be the Lagrangian curvilinear coor-
dinate, with Γ denoting the body surface; let X(s, t) = (X1(s, t), X2(s, t)) ∈ Γ
denote the physical position of each material point of curvilinear coordinate
s at time t. Given these assumptions, the governing equations are the same
as described in Section 7.1.2.
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an underlying plate Π with a certain angle θ and is described by a set of
Lagrangian points X(s, t) (in green). Plate Π is animated with a prescribed
motion Xp(t). In the “hole” case filament Γ2 is also considered, bounded by
spring Σ to Γ1 with initial distance d (always kept constant).

The incompressible Naviers-Stokes equations of motion (7.1.1) are con-
sidered together with an artificial forcing f to enforce the no-slip condition on
the filaments. Hydrodynamical forces acting on the filaments are calculated
by means of eq. (7.1.2), known as the Goldstein feedback law. Filament
dynamics is considered in equations (7.1.6) and (5.3.5).

Since the filament is clamped to a moving plate with a given angle θ (see
Figure 7.2.4), equation (7.1.6) needs to be solved along with proper boundary
conditions both at the clamped and at the free edge:

X|s=0 = Xp(t),
∂X

∂s

∣∣∣∣
s=0

= (cos θ, sin θ) ,
∂2X

∂2s

∣∣∣∣
s=L

= 0,
∂3X

∂3s

∣∣∣∣
s=L

= 0.

The first and second conditions enforce the filament to follow the underly-
ing moving plate and to be clamped with a given angle θ, while the third
condition state that the bending moment and shear at the free edge is zero.
The latter condition is true in both the “tear” and “hole” case. The two
cases are different in that for the “tear” case no further forces other than the
hydrodynamical ones are applied at the free edge, while in the hole case the
free edges are subject to an additional force ±kΣ(X1|s=L−X2|s=L) (depend-
ing on the filament) modeling the tip-connecting spring. On the other hand,
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equation (7.1.7) is solved together with the conditions:

∂

∂s

(
T
∂X

∂s

)
s=0

= F + Fb + AP , T |s=L = 0,

where Ap is the plate acceleration. The first one derives from equation (7.1.6)
while the second comes again from the unloaded free edge condition. This
condition is maintained also in the “hole” case in the absence of a better
estimate of the spring tension. The main observables of this work are the
forces and moments at the clamped edge of the filaments, defined as:

Fc = (Tτ + Sn)s=0 , Mc = (κγ)s=0 (7.2.1)

where τ and n are the local normal and tangential unit vectors while κ is
the curvature of the filament at the clamped edge (see Section 3.3). In this
way, the computed force Fc and torque Mc are those exerted by the filament
on the plate.

The computational domain is an 5 ·2.5 rectangle ranging [−1, 4] in the di-
rection parallel to the plate and [0, 2.5] in the normal direction in the “tear”
case. For the “hole” the domain is slightly bigger ranging from −2 to 4.
Velocity boundary conditions (Figure 7.2.4) are: periodic between Ωright and
Ωleft and {u · n = 0, ∂(u · τ )/∂n = 0} at Ωtop and Ωbottom (symmetrical
boundary condition), where n and τ are respectively the normal and tan-
gential directions to the boundary. As the plate is modeled as an immersed
boundary, all of its points have to be inside the domain in the y direction
([0.2 − 3/80, 0.2]), while it spans all the domain in the x direction because
of the periodic boundary conditions from left to right. Along the plate the
computational grid is uniform with grid spacing 1/60, while in the normal di-
rection it is uniform in the region [0, 1.5] with grid spacing 1/40 and stretched
outside with a constant stretching ratio equal to 1.1.

Furthermore, the dimensionless quantity ρ = ρ∗1/(ρ
∗
FL
∗) defined in Section

7.1 has been set = 1 · 10−2, from which

ρ∗S − ρ∗FA∗

ρ∗FA
∗ = ρ

L∗

A∗
= 0.3

as the filament cross-section A∗ has been estimated (as in Section 6.5.6) to
be equal to the support of the Dirac Delta function support, i.e. 2∆x, thus
giving L∗/A∗ = 30. This means that the simulated filament is 30% heavier
than the surrounding fluid.

The filament length L is set equal to 1 and the Lagrangian grid is made up
of 120 points, so that approximately 2 Lagrangian points appear in one Eu-
lerian cell. Velocity boundary conditions are the no-slip boundary condition
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at the plate (whose motion has been taken from [84]), periodic conditions at
the sides and slip boundary conditions at the top (see Figure 7.2.4). Since
the computational grid for the flow is staggered, no boundary conditions for
the pressure are needed. The initial configuration of the filament is a straight
line clamped at a certain angle θ with respect to the plate. In the case of the
hole a second filament symmetrical to the first one is considered, tethered to
this one by a spring Σ with stiffness kΣ (Figure 7.2.4). The numerical scheme
and solution procedure are the same as those described in Sections 7.1.4 and
7.1.5.

7.2.3 Tear case

In these simulations we investigate the behavior of a single clamped fil-
ament (“tear”, see Figure 7.2.2, A), and evaluate the forces and moment
transmitted to the plate. In all graphs time is scaled with D, the saccade
duration, so that the temporal interval of motion is given for (0 ≤ t/D ≤ 1).
Snapshots of the dynamics of the single filament are shown in Figure 7.2.5.
Between time 0 and t/D ' 0.5 the plate accelerates from the initial config-
uration causing the stationary fluid to impact on the filament. This gives
raise to a buckling effect on the filament, which bends. When the plate stops
at t/D = 1 both the stored bending energy and the inertia of the fluid make
the filament continue its motion until, after some oscillations, it goes back
to its resting straight position.
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Figure 7.2.5: Dynamics of the single clamped filament during the plate mo-
tion at different times.
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First we study the sensitivity of the dynamical response at the attachment
point on the filament length. In order to investigate the trend, we simulate
three different lengths L (0.75, 1 and 1.25). Figures 7.2.6-7.2.8 describe the
evolution of the clamping forces Fc and moment Mc in time, while Figure
7.2.12 (left column) shows that both Fc and Mc increase in absolute value
with the filament length. It can be noted (Figures 7.2.6 to 7.2.11) that both
forces and moments increase from zero, reach the peak value nearly at the
same time, i.e. at the velocity peak time and return to zero after the plate
stops.
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In order to study the influence of the clamping angle on the dynamical
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response of the plate we simulate three different angles (27◦, 30◦ and 33.56◦)
given a fixed filament length, L = 1. In Figures 7.2.9-7.2.11 we show the
evolution of the clamping forces Fc and moment Mc with time, while Figure
7.2.12 (right column) summarizes the influence of the clamping angle θ on
the absolute peak values of both Fc and Mc: the x component of the force
does not show any appreciable variation, while the y component of the force
and the moment increase with the angle. As in the case of varying the
filament length both forces and moments have their peak value at the time
of maximum plate velocity.
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Figure 7.2.9: Time history of the x-force component acting at the attachment
point of the filament for different filament angles. The velocity of the plate
is in black.
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Figure 7.2.10: Time history of the y-force component acting at the attach-
ment point of the filament for different filament angles. The velocity of the
plate is in black.
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Figure 7.2.11: Time history of the moment acting at the attachment point
of the filament for different filament angles. The velocity of the plate is in
black.
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Figure 7.2.12: Peak values of force |Fc| and moment |Mc| (in red) and cor-
responding time (in green) for the “tear” case. The left column shows the
values for different filament length L, while in the right column the clamping
angle θ varies.

7.2.4 Hole case

In this section we show results for the case of two filaments the tips of
which are linked by a spring of given stiffness kΣ (“hole”, see Figure 7.2.2,
B). As for the “tear” case, time is scaled with the saccade duration D, so
that the plate is in motion for (0 ≤ t/D ≤ 1). Snapshots of the dynamics of
the single filament are shown in Figure 7.2.13.
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Figure 7.2.13: Dynamics of the linked clamped filaments during the plate
motion at different times.

In the following we show the time history of the forces and moments
transmitted by both filaments (continuous line for the right filament, dots
for the left filament) to the plate. Similarly to the “tear” case, in all simu-
lations both forces and moments follows the evolution of the plate velocity,
reaching their peak approximately at the same time and then decaying to
zero when the plate comes to rest. During the plate acceleration (Figure
7.2.13, t/D = 0.5) the pressure inside the hole rises, causing both filaments
to stretch. Depending on the clamping angle, the tension T causes the x-
component of the force Fc (Equation (7.2.1)) on the plate to be negative for
the right filament and positive for the left filament, while the y-component
and the moment is positive for both filaments (Figures 7.2.14-7.2.16). In all
simulations the attachment point at the base of the right filament turns out
to transmit the highest clamping force Fc to the plate, while the left one
produces the highest clamping torque Mc.

Similar to the “tear” case, we study the sensitivity of the dynamical
response at the attachment point on the filaments length. In order to in-
vestigate the trend, we simulate three different lengths L (0.75, 1 and 1.25,
Figures 7.2.14 - 7.2.16). As the filament length increases (Figures 7.2.20 and
7.2.21, left column) the peak value of the force components shows a maximum
for length L = 1, while the moment increases monotonically. Furthermore,
differently from the “tear” case, here the peak time of forces and moment
grows with the filament length.

105



-150

-100

-50

0

50

100

150

200

250

300

0 0.5 1 1.5 2 2.5 3

F
c,
x

t/D

L=0.75
L=1

L=1.25
vP

Figure 7.2.14: Time history of the x-force component acting at the attach-
ment point of the right (line) and left (dots) filament for different filament
lengths. The velocity of the plate is in black.
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Figure 7.2.15: Time history of the y-force component acting at the attach-
ment point of the right (line) and left (dots) filament for different filament
lengths. The velocity of the plate is in black.
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Figure 7.2.16: Time history of the moment acting at the attachment point
of the right (line) and left (dots) filament for different filament lengths. The
velocity of the plate is in black.

Analogously in Figures 7.2.17-7.2.19 we show the evolution of the clamp-
ing forces and moments as we change the inter-tip distance. From the results
(Figures 7.2.20 and 7.2.21, right column) we notice that this parameter has
little or no effect on the dynamical response at the attachment point (neither
as peak value nor as peak time).
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Figure 7.2.17: Time history of the x-force component acting at the attach-
ment point of the right (line) and left (dots) filament for different inter-tip
distances. The velocity of the plate is in black.
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Figure 7.2.18: Time history of the y-force component acting at the attach-
ment point of the right (line) and left (dots) filament for different inter-tip
distances. The velocity of the plate is in black.
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Figure 7.2.19: Time history of the moment acting at the attachment point of
the right (line) and left (dots) filament for different inter-tip distances. The
velocity of the plate is in black.
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Figure 7.2.20: Peak values of force |Fc| and moment |Mc| (in red) and cor-
responding time (in green) for the right filament in the “hole” case. The left
column shows the values for different filament length L, while in the right
column the inter-tip distance d varies.
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Figure 7.2.21: Peak values (in red) of force component |Fc,x| (first row), |Fc,y|
(second row), and moment |Mc| and corresponding time (in green) for the
left filament in the “hole” case. The left column shows the values for different
filament length L, while in the right column the inter-tip distance d varies.

7.2.5 Periodic tear case

In the following images we show the results from the simulations involving
the same clamped filament as in the “tear” case but assuming periodic motion
of the plate

Xp(t) = rθ(t) = ā sin(2πf̄).

In this analysis, we investigate how the filament bending stiffness (γ = 1 ·
10−2, 2.5·10−2, 5·10−2) and the plate oscillation frequency (f = f̄ , 0.5f̄ , 0.25f̄)
effect the force and moment at the attachment point and the filament tip
displacement. Both the amplitude ā and the dimensionless frequency f̄ '
2.507 (scaled with L/U) has been chosen so that the maximum acceleration
is the same as in the “tear” and “hole” cases. Snapshots of the filament
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dynamics clamped to a plate with oscillation frequency equal to f̄ are shown
in Figure 7.2.22.
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Figure 7.2.22: Dynamics of the single clamped filament during the oscillating
plate motion at different times. The trajectory of the filament tip is shown
in Figure 7.2.23.

In Figure 7.2.23 we show the filament tip trajectory for different values of
the bending stiffness γ. The double-lobed shape of the curves comes from the
plate motion. Points labeled with “0” correspond to the instant where the
plate is at the leftmost location (considered here to be the beginning of the
periodic cycle), at “0.25” it reaches the maximum positive velocity, at “0.5”
is at the rightmost location and at the “0.75” has the maximum negative
velocity. During each time-loop, the filament shows a non-symmetric behav-
ior due to the clamping angle being different from π. In particular at the
beginning of the loop (Figure 7.2.22, (a)) the filament is nearly completely
extended and the plate is still. As the plate accelerates rightward a buckling
instability appears in the structure, leading to the formation of a traveling
wave at the root of the filament (Figure 7.2.22, (b)). As the plate motion con-
tinues rightward the traveling wave causes the filament tip to move leftward
(Figure 7.2.22, (c)). Once the traveling wave reaches the filament free end
it generates the so-called “bullwhip effect” [110] (Figure 7.2.22, (c)), caus-
ing the tip velocity direction to change abruptly. As the bending stiffness
increases the left lobe in Figure 7.2.23 shrinks, showing that the “bullwhip
effect” becomes sharper as the bending stiffness increases.
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Figure 7.2.23: Trajectory of the filament tip for different bending stiffness
and of the plate (black). The colored dots indicate the simulation time (as
indicated in Figure 7.2.22 and 7.2.24-7.2.26).

In the following the time history of the force and torque at the attachment
point will be shown for different plate oscillation frequency f and bending
stiffness γ. In all graphs time is scaled with the period associated to the
corresponding frequency T = 2π/f .

Figures 7.2.24-7.2.26 describe the time-history of the force and moment at
the attachment point for frequency f̄ and different filament bending stiffness.
Here the “bullwhip effect” is visible in the wiggles generated during the
negative velocity peak, while the buckling is responsible for the local peak
just after the midpoint of the cycle.
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Figure 7.2.24: Time history of the x-force component acting at the attach-
ment point of the filament for different bending stiffness and plate oscillation
frequency f̄ . The velocity of the plate is in black.
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Figure 7.2.25: Time history of the y-force component acting at the attach-
ment point of the filament for different bending stiffness and plate oscillation
frequency f̄ . The velocity of the plate is in black.
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Figure 7.2.26: Time history of the moment acting at the attachment point
of the filament for different bending stiffness and plate oscillation frequency
f̄ . The velocity of the plate is in black.

Figures 7.2.27-7.2.29 describe the time-history of the force and moment
at the attachment point for frequency 0.5f̄ and different filament bending
stiffness.
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Figure 7.2.27: Time history of the x-force component acting at the attach-
ment point of the filament for different bending stiffness and plate oscillation
frequency 0.5f̄ . The velocity of the plate is in black.
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Figure 7.2.28: Time history of the y-force component acting at the attach-
ment point of the filament for different bending stiffness and plate oscillation
frequency 0.5f̄ . The velocity of the plate is in black.

116



-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2

M
c

t/T

γ = 1 10−2

γ = 2.5 10−2

γ = 5 10−2

vP

Figure 7.2.29: Time history of the moment acting at the attachment point
of the filament for different bending stiffness and plate oscillation frequency
0.5f̄ . The velocity of the plate is in black.

Figures 7.2.30-7.2.32 describe the time-history of the force and moment
at the attachment point for frequency 0.25f̄ and different filament bending
stiffness.
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Figure 7.2.30: Time history of the x-force component acting at the attach-
ment point of the filament for different bending stiffness and plate oscillation
frequency 0.25f̄ . The velocity of the plate is in black.
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Figure 7.2.31: Time history of the y-force component acting at the attach-
ment point of the filament for different bending stiffness and plate oscillation
frequency 0.25f̄ . The velocity of the plate is in black.
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Figure 7.2.32: Time history of the moment acting at the attachment point
of the filament for different bending stiffness and plate oscillation frequency
0.25f̄ . The velocity of the plate is in black.

In Figure 7.2.33 we show the variation of the force and torque peak values
and their corresponding times as the bending stiffness (right column) and
plate oscillation frequency (left column) varies. Apart from the y-component
of the force Fc whose dependency of γ is not univocal, the x-component of
Fc and moment Mc increases with the oscillation frequency and the bending
stiffness (left column). The peak time of both Fc and Mc does not vary
substantially (right column), in that generally all peaks are generated during
the rightward maximum acceleration of the plate (approximately at the first
quarter of the cycle). The only substantial variation is in the peak time of
the x-component of Fc (Figure 7.2.33, right column, top) as the peak value
for the parameters γ = 1 ·10−2 and f/f̄ = 1 (unlike all the others) appears to
be during the leftward acceleration of the plate (approximately at the third
quarter of the cycle, Figure 7.2.24, red curve).
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Figure 7.2.33: Surface plots of the peak values (right column) of force com-
ponents |Fc,x| (first row), |Fc,x| (second row) and moment |Mc| (third row)
and their corresponding time tP/T (left column) for the “periodic” case as a
function of the bending stiffness γ and of the plate oscillation frequency f/f̄ .

7.2.6 Tendency to detachment

In order to study the detachment propension of the clamping force FC and
torque MC exerted by the filament on the underneath substrate, we borrow
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from Geotechnics the simple model of a foundation on elastic soil proposed
by Winkler [93]. It assumes the soil medium as a system of identical but
mutually independent, closely spaced, discrete and linearly elastic springs
(Figure 7.2.34).

kT

q(s)

r(s)

s

v(s)

Figure 7.2.34: Foundation beam (in green) subject to an external load q(s)
(in blue), s being the curvilinear abscissa, and supported by elastic spring of
stiffness kT (in red). The soil reaction r(s) (in orange) is proportional to the
foundation displacement v(s).

In this way the soil reaction r(s) (in orange) is proportional to the foun-
dation displacement v(s) through the spring stiffness constant K:

r(s) = kT v(s)

In our specific case the foundation beam, representing the retina, will be
considered as semi-infinite, and the external load will be applied at the finite
end (Figure 7.2.35).

K

F

M s

Figure 7.2.35: Semi-infinite foundation beam (in green) subject to a punctual
force F and torque M at the finite end.
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For this particular case there is an analytical solution for the dimension-
less displacement v(s), and consequently for the soil reaction r(s).

v(s) =
e−αs

2α3γ
[(αM + F ) cos (αs)− αMsin (αs)]

=
e−αs

2α3γ
{αM [cos (αs)− sin (αs)] + Fcos (αs)}

where F and M are the punctual force and torque applied at the beam finite
end, γ is the beam bending stiffness and α is the characteristic wavelength
defined as

α4 =
kT `

4γ
. (7.2.2)

where ` is the width of the beam. Figure 7.2.36 shows the substrate displa-
cement in the “tear” configuration for typical values of the parameters (F =
70,M = 2.5, γ = 0.1, α = 50).
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Figure 7.2.36: Winkler beam displacement for typical values of external loads
(F = 70,M = 2.5) and system parameters (γ = 0.1, α = 50) recorded in the
tear case.

As it is defined, v(s) is positive for negative displacements. We define as
tendency to detachment d the negative displacement at the free end (s = 0),
thus

d = −min(v|s=0, 0) = −min(
αM + F

2α3γ
, 0). (7.2.3)

The parameter α is the ratio between the stiffness of the substrate and the
bending stiffness of the beam. Since the substrate can be though to be
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more rigid than the filament, we can assume α to be “large”. Figure 7.2.37
shows the maximum tendency to detachment in time for the tear and hole
configuration and ratio between them for L = 1 and θ = 33.56◦. Since α
multiplies the torque M , as α→ +∞ the ratio between the tear case and the
hole left filament converges to 1.22, the ratio between the maximum torque
for the respective cases.
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Figure 7.2.37: Tendency to detachment in the tear and hole configuration
and ratio between them for L = 1 and θ = 33.56◦. As α → +∞ the ratio
between the tear case and the hole left filament converges to 1.22, the ratio
between the maximum torque for the respective cases.

Reagerding a suitable estimate for (7.2.2), we could think of kT to be
related to the Young modulus E of the retina. Since

r(s) = ET ε = ET
v(s)

hc

where hc is the height of the compressible layer, it follows that ET = kThc,
thus

α4 =
ET `

4hcγ

and since γ = EI, where I is the area moments of inertia of the filament
cross section (assumed to be a square),

α4 =
ET `

4hcET I
=

`

4hc
h3`

12

=
3

hch3

123



and, with the further assumption hc = h, we get α4 = 3/h4. As in our simula-
tions h = 1/30 we get α ' 40. In the following we will make use of this value.

7.2.7 External loads and detachment

In Figures 7.2.38 - 7.2.40 we show the tendency to detachment d in time
for the tear and hole configuration for L = 1 and θ = 33.56◦. The force
normal to the substrate F to be inserted in (7.2.3) has been calculated as

F = T sin θ + S cos θ (7.2.4)

where T and S are respectively the tension and the shear internal reaction
of the filament at the clamping point. Tendency to detachment curves dα=...

have been scaled with the maximum tendency to detachment in time for the
tear configuration. Positive force F and torque M have a detaching effect.
Results clearly shows that the tendency to detachment in the hole case is
' 3.15 times bigger (peak in the left filament at approximately 0.51, Figure
7.2.39)
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Figure 7.2.38: Punctual loads (F , M , on the left) and tendency to detach-
ment (d, on the right) in the tear case (normalized to 1 as the reference
case).
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Figure 7.2.39: Punctual loads (F , M , on the left) and tendency to detach-
ment (d, on the right) in the hole case, left filament (scaled with the maximum
tendency to detachment in time for the tear configuration).
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Figure 7.2.40: Punctual loads (F , M , on the left) and tendency to detach-
ment (d, on the right) in the hole case, right filament (scaled with the maxi-
mum tendency to detachment in time for the tear configuration).
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7.2.8 Tear-hole comparison

Figure 7.2.41 summarizes the tendency to detachment for the tear and
hole case for L = 1 and θ = 33.56◦. Results have been scaled with the
maximum tendency to detachment in time for the tear configuration.
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Figure 7.2.41: Tendency to detachment for the tear and hole case (right and
left filaments) scaled with the maximum tendency to detachment in time for
the tear configuration. Simulations for L = 1 and θ = 33.56◦.

Figures 7.2.42 and 7.2.43 respectively reports the maximum tendency to
detachment in time for L = 0.75 and L = 1.25 for angle θ = 33.56◦.
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Figure 7.2.42: Tendency to detachment for the tear and hole case (right and
left filaments) scaled with the maximum tendency to detachment in time for
the tear configuration. Simulations for L = 0.75 and θ = 33.56◦.
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Figure 7.2.43: Tendency to detachment for the tear and hole case (right and
left filaments) scaled with the maximum tendency to detachment in time for
the tear configuration. Simulations for L = 1.25 and θ = 33.56◦.

In this study the plate motion is from left to right, thus the hole upwind
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side is represented by the right filament, while the left is on the downwind
side. As the downwind part of the hole is the most stressed part, we will
consider it as representative of the whole configuration. Figure 7.2.44 reports
the ratio between the maximum tendency to detachment between the hole
and tear configuration for different filament lengths L and θ = 33.56◦.
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Figure 7.2.44: Ratio between the maximum tendency to detachment between
the hole and tear configuration for different filament lengths L and θ =
33.56◦.

7.2.9 Tear comparison

Figure 7.2.45 summarizes the tendency to detachment for different tear
lengths (θ = 33.56◦), while Figure 7.2.46 describes the tendency to detach-
ment for different tear clamping angles θ (and L = 1).
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Figure 7.2.45: Tendency to detachment for the tear case with different lengths
and θ = 33.56◦. Results have been scaled with the maximum tendency to
detachment in time for L = 1.
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Figure 7.2.46: Tendency to detachment for the tear case with different clamp-
ing angles and L = 1. Results have been scaled with the maximum tendency
to detachment in time for θ = 25◦.

Figure 7.2.47 reports the peaks of previous figures.
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Figure 7.2.47: Maximum values of the tendency to detachment d for the tear
case for different filament lengths L and θ = 33.56◦ (left), and for different θ
and L = 1 (right).

7.2.10 Hole comparison

Figure 7.2.48 summarizes the tendency to detachment for different fila-
ment lengths (inter-tip distance ∆ = 1.6̄) while Figures 7.2.49 describes the
tendency to detachment for different inter-tip distance and L = 1
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Figure 7.2.48: Tendency to detachment for the hole case (left filament) with
different lengths and inter-tip distance equal to 1.6̄. Results have been scaled
with the maximum tendency to detachment in time for L = 1.
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Figure 7.2.49: Tendency to detachment for the hole case (left filament) with
different inter-tip distance and L = 1. Results have been scaled with the
maximum tendency to detachment in time for d = 1.6̄.

Figure 7.2.50 reports the peaks of previous figures.
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Figure 7.2.50: Maximum values of the tendency to detach d for the hole case
for different filament lengths L and ∆ = 1.6̄ (left), and for different ∆ and
L = 1 (right).

7.2.11 Conclusions

In this study the dynamics of retinal breaks both the “tear” and the
“hole” configuration, have been analyzed. Moreover, the “tear” case has also
been studied in the case of a plate with periodic motion (“periodic tear”).
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Regarding the “tear” configuration, both the influence of filament length
and clamping angle have been considered. Results (Figure 7.2.12) show that
both the clamping force Fc and moment Mc increase with the filament length.
On the other hand, as the clamping angle increases the y-component of the
force decreases while the other observed quantities increase.

Simulations of the “hole” case show that the right filament exerts on the
plate the highest clamping force Fc to the plate, while the left one produces
the highest clamping torque Mc.

The comparison of the “tear” and “hole” configurations show that the
“hole” configuration generates peak values of both clamping force Fc and
torque Mc higher than in the “tear” case. With the same bending stiffness
γ = 1 · 10−1 and length L = 1, the ratio of the peak values is ∼ 4 for the
x-component of the force, ∼ 2 for the y-component and ' 1.32 for the torque.

In the case of “periodic tear” (Figure 7.2.23) an interesting phenomena,
also know as the “bullwhip effect”, has been observed. In this configuration
the influence of both the filament bending stiffness γ and the plate oscillation
frequency has been investigated. From the results of the clamping force Fc

and torque Mc during an entire plate oscillation (Figure 7.2.33) it appears
that the peak values increase almost univocally with both bending stiffness
and oscillation frequency.

7.3 Energy harvesting

Recent technical developments have opened the way to a wide spectrum
of devices able to capture small amounts of energy from the environment
and transform them into electrical energy. Energy harvesting (also known
as power harvesting or energy scavenging) is the process by which energy is
derived from environmental sources (e.g. solar power, thermal energy, wind
energy, salinity gradients and kinetic energy), captured and stored. Even
if energy harvesters are able to extract free and clean energy its amount,
although often limited, can be suitable for small devices such as wearable
electronics or wireless sensor networks, possibly scattered in inaccessible lo-
cations (Figure 7.3.1, d). Moreover a “free” energy source, maintenance-free
and available throughout the lifetime of the application, can be more reliable
than wall plugs or batteries [95]. Furthermore, energy harvesting can be used
as an alternative energy source to supplement a primary power source and to
enhance the reliability of the overall system and prevent power interruptions.
All energy harvesting systems require as fundamental components:

• an energy source,
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• an energy conversion device,

• an end application.

Energy is everywhere in the environment surrounding us under different
forms [95] and different strategies for its extraction have been designed so
far, mainly in regard to mechanical, thermal and electromagnetic energy.
Mechanical energy can be extracted from natural forces such as wind or wa-
ter flow, or by recovering energy from vibrations, mechanical stresses and
strains. On the other hand, thermal energy can be obtained from the sun,
or by intercepting wasted energy from plants or heaters, and by exploiting
thermal gradients. Due to radio and television broadcasting, there is a large
amount of electromagnetic energy in the environment. Moreover, electro-
magnetic energy is also emitted from any electric/electronic device and even
from the sun.

Energy conversion devices vary depending on the exploited energy source,
with electromagnetic energy being the easiest to be transformed into elec-
trical energy. Mechanical energy can be converted by means of piezoelectric
crystals [97] or dielectric elastomers [98], a polymer also known as “dielectric
elastomer transducer”, that generates a small electrical potential difference
when deformed. Depending on the application, mechanical energy can also
be converted by using an electromagnetic generator exploiting induction [99].
Solar energy is stored by means of photovoltaic cells [101], while thermal gra-
dients can be exploited by using thermoelectric generators or the pyroelectric
effect [100]. Other forms of energy (i.e. when the source is the wind or a
water body) cannot be directly transformed into electricity but need to be
first converted into some transitional form (usually mechanical energy) [102].

Many real life applications requiring low energy power nowadays rely on
energy harvesting devices. The Seiko Watch Corporation was successful in
building a Thermic watch powered entirely by exploiting the thermal gradi-
ent between the wearer’s body and the external environment (Figure 7.3.1,
a) [96]. The power extracted by this device is of the order of µW due to
limited thermal gradients used, but thermoelectric generators can be applied
to a broad range of applications where thermal gradients occur (e.g. pipes
carrying hot exhaust gases in power plants), generating power up to 1 kW
[103]. In particular, Thermal Electronics Corp. [104] has recently designed
a device able to produce ∼ 50 W with a thermal gradient of ∼ 90◦ (Figure
7.3.1, b).

Several energy harvesting devices able to convert mechanical energy have
been successfully designed. Solepower, a new-born company spin-off of the
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Figure 7.3.1: Energy harvesting applications: schematics of the Seiko Ther-
mic wristwatch using the Peltier-Seebeck effect (a), thermoelectric (or TEG)
generator generating electricity when a temperature difference is applied be-
tween the two faces of the module (b), SolePower EnSole producing energy
for storage in the battery inside the holster (c) and a solar panel powering
the remote sensor located at a several-meter high location (d).

Carnegie Mellon University, has designed a small generator to be embedded
in a shoe sole [105] that create electricity with every step. Energy is stored
in a battery placed in a holster upon the shoelaces that, when charged, can
be used to recharge almost any pocket device (Figure 7.3.1, c).

Mankind has extracted energy from wind and water for a long time
[109, 108]. The earliest evidence of wind and watermills traces back to Greece
in the 3rd century B.C., and since then they have become widespread around
the world. At first, their their main task was to convert wind or water energy
into rotational energy used to grind grain, however following technological
improvements they have also been successfully applied to crush mining ma-
terials, saw wood and forge tools. Nowadays the same technology of ancient
wind and water mills is used in modern wind farms and hydroelectric power
stations to produce renewable energy (Figure 7.3.2, a). In 2009, the world
relied on renewable sources for around 13.1% of its primary energy supply,
according to International Energy Agency (IEA) statistics. In particular,
global wind power capacity was 238 GW at the end of 2011, up from just 18
GW at the end of 2000, with an average growth rate of over 25% over the
past five years [94]. As a general rule, wind generators require a constant
wind speed of 16 km/h or greater, while water turbines are usually installed
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concurrently with a water jump of the order of ∼ 10 m.

Due to the previous requirements the installation of both wind and water
turbines (Figure 7.3.2, b) are restricted to only a few sites. To overcome this
limitation, new technologies to exploit the energy of air and water have been
developed. In 2002 the Ocean Power Technologies, Inc. applied for a patent
for “a piezoelectric power generator, particularly for use in a flowing fluid
stream. Is is comprised of an elongated, flexible central layer of a dielectric
material having, spaced axially along opposite sides thereof, a plurality of
separate piezoelectric elements. Each element is formed from a portion of a
continuous layer of a piezoelectric layer extending along each opposite side
of the central layer, sandwiched between a pair of electrodes unique to each
piezoelectric element” [106]. This device, commonly referred to as a “water
eel”, converts the energy of the incoming water flux into mechanical energy
under the form of stresses and strain, and then into electricity by means of
piezoelectric elements (Figure 7.3.2, c). Analogously, a team of researchers
from the Università di Genova have proposed an innovative flapping wing sys-
tem to harvest energy from the motion of fluid [61, 63]. This device consists
of a wing attached to two fixed points by means of two elastometers, so that
in the presence of a fluid flow the wing begins to oscillate and consequently
the elastometers to stretch, producing electrical energy (Figure 7.3.2, d). In
the last two examples of energy harvesting the energy source was provided by
the fluid motion. As stated previously, this kind of energy cannot be directly
transformed into electricity but needs firstly to be converted into a more
suitable form, i.e. mechanical energy. This transformation can be done in a
more or less efficient way depending on the parameters of the problem. While
a resonant coupling mechanism between fluid and structure has previously
been regarded as a potential carrier of system failure, here the generation
of self-sustained, possibly large-amplitude motion of the structure is highly
desirable.

The application of flapping wings to extract energy from uniform flows
was first proposed by McKinney and DeLaurier [59]. Flapping energy har-
vesters can be devided into the following three categories with respect to the
activating mechanism of the device [60]:
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(a) (b)

(c) (d)

Figure 7.3.2: Traditional windmill in front of a modern wind farm (a), Francis
turbine for hydroelectric power generation (b) and schematics of the water-eel
and of the flapping wing energy harvesters (c-d).

• forced pitching and heaving motions (fully-activated),

• forced pitching and induced heaving motions (semi-activated),

• self-sustained pitching and heaving motions (self-sustained).

While the first two categories consume some energy to control the heaving
and/or pitching motion in order to maximize the harvested energy, the last
class is not endowed with an imposed motion (i.e. no external energy is
needed) againts a minor extracted energy. In particular, the device under
study in this application belongs to the self-sustained category.

In this Section the code described in Chapter 6 has been successfully
applied to the numerical investigation of the behavior of a spring-filament
oscillator, very similar to the flapping wing energy harvester [61] (Figure
7.3.2, d). In particular, here we consider an impermeable 2D filament with
mass and bending stiffness hinged to a pole linked by two elastometers to
external fixed boundaries (not considered in the flow simulations). The fil-
ament is subject to a uniform flow and its leading edge is forced to move
only in the direction normal to the incoming flow (see Figure 7.3.3). For
the mathematical formulation and characteristic length scales see to Section
7.1.1.

136



As in the case of the “water eel” and the flapping wing harvester, the
main idea to increase the efficiency of the device is to trigger a resonant
condition between the elastic structure and the fluid flow. In this condition
the motion of the leading edge is expected to produce the highest amount of
energy.

7.3.1 Numerical model

Let x = (x, y) ∈ Ω be the Cartesian physical coordinates, with Ω denoting
the physical domain; let s ∈ Γ be the Lagrangian curvilinear coordinate, with
Γ denoting the body surface; let X(s, t) = (X1(s, t), X2(s, t)) ∈ Γ denote the
physical position of each material point of curvilinear coordinate s at time t.

x

y
U∞

X(s, t)

O

ρ, ν

Γ

Ω

k/2

k/2 T

Figure 7.3.3: Filament Γ is hinged (initial condition in dashed blue line) to
point O, constrained to move only in vertical direction and linked by two
springs of stiffness k/2 to external fixed boundaries (not considered in the
flow simulations).

The governing equations for this problem are those presented in Section
7.1.2 (not considering permeability) with different boundary conditions. In
particular, the equations describing the dynamics of the beam have to con-
sider the presence of a concentrated spring force on the filament leading edge.
Simple dynamical considerations tell us that the system in Figure 7.3.3 is ex-
actly the same as one filament linked to target point T by a spring of doubled
stiffness k. Filament dynamics is considered in equations (7.1.6) along with
the boundary conditions

X|s=0 = XO,
∂2X

∂2s

∣∣∣∣
s=0

= 0,
∂2X

∂2s

∣∣∣∣
s=L

= 0,

137



∂3X

∂3s

∣∣∣∣
s=L

= 0, XO · x = XT · x.

The first condition enforce the filament to follow the motion of the pole while
the second derives from the hinged condition at the leading edge. The third
and the fourth conditions state that the filament trailing edge is unloaded.
The last condition forces the leading edge to move only in the vertical direc-
tion. On the other hand, tension in the filament is solved through equation
(5.3.5) with the following conditions

∂

∂s

(
T
∂X

∂s

)
s=0

= −Frg

g
+ F + Fb + AO, T |s=L = 0, Fk|s=0 = k(O−T),

where AO is the acceleration of the leading edge. The first one derives from
equation (7.1.6), while the second again comes from the unloaded free edge
condition. Finally the third considers the concentrated spring force at the
leading edge to be proportional through the bending stiffness k to the displa-
cement between the filament current leading edge and the target point.

7.3.2 Numerical Discretization

The computational domain is an 8×8 square ranging [−2, 6] in the stream-
wise direction and [−4, 4] in the span-wise direction as in [52]. The compu-
tational grid is uniform in an inner region close to the pinned end (0, 0) of
the filament ([−0.5, 3] in the stream-wise direction and [−1, 1] in the span-
wise direction) with grid spacing 1/200 and stretched outside with a constant
stretching ratio equal to 1.1. The filament length L is set equal to 1 and the
Lagrangian grid is made up of 150 points, so that approximately 2 Lagrangian
points appear in one Eulerian cell (as suggested in [54]). Boundary conditions
on velocity are U∞ = (1, 0) at inflow, convective at outflow and symmetric
at lateral sides. Since the computational grid for the flow is staggered, no
boundary conditions for the pressure are needed. The initial configuration
of the filament is a circular arc θ with leading edge in the resting point T
(Figure 7.3.3, blue dashed line). Numerical scheme and solution procedure
are the same of those described in 7.1.4 and 7.1.5. In all the simulations the
fluid kinematic viscosity ν has been calculated to give Re = 200.

7.3.3 Numerical results

The first result is the identification of the optimal spring stiffness k in
order to trigger a resonant condition between the flapping of the filament
and the spring itself. Several simulations have been performed varying the
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spring stiffness k while keeping the other parameters of the problem constant
and equal to

U = 1, L = 1, Re = 200, ρ = 1.5, γ = 1 · 10−3.

Figures 7.3.4 shows the evolution in time of the leading (left) and the trailing
(right) edge y coordinate, while Figure 7.3.5 shows the flapping amplitude
(left) and frequency (right) of the leading and trailing edge once a stable
oscillation state is reached. Results for k → +∞ were obtained by simulating
a filament hinged to a fixed point as in Section 7.1.
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Figure 7.3.4: Time history of the y coordinate of the leading (left) and trailing
(right) edge of the filament for different spring stiffness k.

Figure 7.3.5 clearly shows a non-symmetrical peak for k = 1.3 and then
converges to the results obtained for the hinged filament (k → +∞), i.e.
f ' 0.267 and App ' 1.27. The resonant condition for k = 1.3 is associated
with a sudden increase of the flapping amplitudes and drop of the flapping
frequencies in both the trailing and leading edges.
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Figure 7.3.5: Flapping peak-to-peak amplitude (left) and frequency (right)
of the leading and trailing edge once a stable oscillation state is reached. The
solid line represents the peak-to-peak amplitude and flapping frequency of
the hinged filament, i.e. k → +∞

In Figure 7.3.6 the frequency spectra for both the leading (left) and the
trailing (right) edge are shown. According to Figure 7.3.5 (right), the lock-
in frequency at which the spring-filament system oscillates experiences a
sudden drop at the occurence of the resonant condition (consider the peaks
for k = 1.2 and k = 1.3), then it slowly increases.
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Figure 7.3.6: Frequency spectra for the leading (left) and trailing (right)
edge. In the right graphics the spectrum for the case k → +∞ is also shown.

Now we try to investigate what happens by changing the Reynolds num-
ber (i.e. the velocity of the incoming flow) varies. As shown in Figures 7.3.7
and 7.3.8 stiffer springs will need higher Reynolds-number flow to resonate,
and their resonant condition will be linked with smaller amplitude and higher
frequency. Interestingly, once the resonance threshold has been exceeded the
behavior of the particular spring-filament system does not change with the
Reynolds number.
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Figure 7.3.7: Flapping peak-to-peak amplitude (left) and frequency (right)
of the leading edge for different Reynolds numbers.
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Figure 7.3.8: Flapping peak-to-peak amplitude (left) and frequency (right)
of the trailing edge for different Reynolds numbers.

The fact that higher Reynolds-number flows trigger a resonant condition
in stiffer springs can also be demonstrated by following the theoretical rea-
soning in Section 3. The natural pulsatance ωN for a mass-spring system
is

ωN =

√
k

m
, (7.3.1)

and

A =
F0

m(ω2
N − ω2

F )
, (7.3.2)

i.e. k ∝ ω2
N and the oscillation amplitude has an asymptote as ωN = ωF ,

where ωF is the pulsatance driving frequency. In this respect, the reader is
recommended to compare the numerical results shown in Figure 7.3.5 (left,
red curve) and the theoretical curve in Figure 3.1.3. Table 7.3.1 shows the
pulsatance ωF of a hinged filament (as described in Section 7.1) subject
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to different Reynolds-number flows and the corresponding spring stiffness
optimal value.

Re ωF = ωN kpeak
100 1.571 1
125 1.599 1.1
150 1.653 1.3
200 1.680 1.5

Table 7.3.1: Pulsatance of a hinged filament (similar to that described in
Section 7.1) subject to different Reynolds-number flows and corresponding
kpeak values.

The pulsatance of the hydrodynamical forces ωF acting on the filament
increases with the Reynolds number, thus there will be a particular Reynolds
number for which ωF = ωN is denoted by the oscillation amplitude maximum
(Figure 7.3.7). As predicted by equation (7.3.1), Figure 7.3.9 shows the
quadratic relation between the natural oscillation pulsatance ωN and the
optimal spring stiffness kpeak.
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Figure 7.3.9: Relation between the natural oscillation pulsatance ωN and the
optimal spring stiffness kpeak as predicted by equation (7.3.1).

After considering the dynamics of the filament edges, we turn to energetic
considerations. As stated in Section 7.3, this kind of device is a self-sustained
energy harvester, in that no external power source is required to control
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the motion of the filament, and the harvested power will be provided by
the oscillation of the leading edge, that will be linked with elastometers to
external fixed boundaries. Thus, we can write the mean produced power over
a period T as:

P̄ =
1

T

∫
T

F · vdt, (7.3.3)

where F and v are respectively the force exerted by the external links and
the velocity of the leading edge. Moreover we can write F from a simple force
balance as

F = kx + νẋ +mẍ,

where k and ν are respectively the elastometer elastic and viscous constant
while m is possible mass on the filament tip (usually mush greater than the
filament mass itself). If we consider that the filament tip is compelled to
move only in the span-wise direction we can write

P̄ =
1

T

∫
T

(kx+ νẋ+mẍ) ẋdt.

Given that the cyclic integral (line integral on a closed line) of the product
between a quantity and its derivative is null, the above relation becomes

P̄ =
ν

T

∫
T

ẋ2dt. (7.3.4)

Equation (7.3.4) clarifies the important of the elastometers viscous part:
without it, it would be impossible to extract energy from this device since
the force F and the velocity v (see equation 7.3.3) would be in quadrature.
Unfortunately, the mean power extracted P̄ does not scales linearly with the
viscous coefficient ν in that the integral (i.e. the dynamics of the leading
edge) will decay with higher ν.

Following equation (7.3.4) we are able to compare the device performance
with different spring stiffness k. As an example, Figure 7.3.10 shows both
the leading edge position and squared velocity during one oscillation cycle
for Re = 200 and k = 0.25. The instantaneous extracted power (∝ ẋ2) is
null when the leading edge reaches one of the two oscillation extrema.
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In Figure 7.3.11 the mean extracted power P̄ , normalized with its max-
imum value, is shown as a function of the spring stiffness k. As expected it
resembles closely the flapping amplitude graph (see Figure 7.3.5, left), except
that the mean power peak is found for k = 1.5 while the flapping amplitude
peak was for k = 1.3.
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Figure 7.3.11: Mean extracted power P̄ as a function of the spring stiffness
k for Re = 200. The peak value is found for k = 1.5.
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7.3.4 Conclusions

In this study we have applied our developed numerical code to a self-
sustained flapping energy harvester. The working principle of this kind of
device is the onset of a flutter instability between the elastic force of the con-
necting springs and the fluid forces exerted by the incoming flow. In this way,
the leading edge of the filament begins to oscillate in the span-wise direction
making the connecting link to stretch, thus producing energy. Our primary
aim is thus to find an optimal value for the spring stiffness k in order to
trigger a resonant condition by making the spring natural frequency nearer
and nearer to the fluid force frequency.

Through numerical simulations we have been able to follow (Figure 7.3.4)
the time evolution of both the leading and the trailing edges. Once a steady
self-sustained oscillation is reached, both the curve of oscillation amplitude
and frequency versus bending stiffness (Figure 7.3.5) show a non-symmetric
maximum for k = 1.3, confirmed also by the Fourier analysis shown in Figure
7.3.6.

As the incoming flow condition varies between 100 < Re < 200 (Figures
7.3.7 and 7.3.8) the optimal value of k increases with the Reynolds number
while its maximum oscillation amplitude decreases slightly. Interestingly, af-
ter the onset of the lock-in the oscillations of the spring-filament system have
the same features for a given spring disregarding of the Reynolds number. In
this range of Reynolds number the dependence of the optimal spring stiffness
k with the Reynolds number can be predicted with the simple relation (7.3.2)
proved in Section 3 (see Figure 7.3.9). If we further decrease the Reynolds
numbers (Re < 50, Figures 7.3.7 and 7.3.8), however, the optimal k increases
while its maximum oscillation amplitude decreases.

In the end, some energetic considerations are drawn. For a self-sustained
flapping energy harvester the net mean power extracted for the wind can be
computed following equation (7.3.4). Following this equation, Figure 7.3.11
shows the mean power P̄ extracted from the device for different values of the
spring stiffness k. Even if this curve resembles the one for the oscillation am-
plitude (Figure 7.3.5, left), the maximum value is found for a slightly higher
spring stiffness, k = 1.5. Quite interestingly this value coincide with the
location of the maximum for the trailing edge oscillation amplitude (Figure
7.3.5, right, green curve). This tell us that even if the power is extracted
from the motion of the leading edge, it’s the dynamics of the whole filament
that determines its amount.
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Chapter 8

Conclusions and future
developments

This thesis aims to be an original contribution to the understanding of
how different structural parameters of biological surfaces (mass, bending stiff-
ness and permeability) play a role in the overall fluid-dynamical behavior
when exposed to the action of a flow. As we are taking into account slender
and compliant structures, the common thread of the thesis is fluid-structure
interaction, the two-way coupling between fluid and structure in terms of
both forces and displacements.

The numerical investigation has been carried out through a finite vol-
ume code developed in the Matlab c© environment. As for similar works, an
immersed boundary approach has been exploited in order to efficiently han-
dle elastic and compliant structures interacting with a viscous incompressible
flow. In order to limit the required computational power, the developed code
takes into account 1D structures surrounded by a 2D flow. This numerical
tool fits well with the physical phenomenon under study in that feathers, hair
and other biological appendages can be regarded as a 1D slender structure
immersed in a surrounding 2D fluid. As a result, both the structure and the
flow are supposed to be constant in the direction normal to the simulation
plane.

Several methodologies considering mass and bending stiffness have been
proposed in the literature. The original contribution of the present thesis is
an innovative and numerically stable way to include permeability along with
the other parameters. The resulting numerical code is thus able to consider
mass, bending stiffness and permeability at the same time.

In particular this thesis focuses on the effects of permeability on the aero-
dynamical properties in terms of stability and transmitted forces. In this
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sense permeability can be regarded as a new control strategy of the fluid-
structure interaction by allowing a mass flux and thus the modification of
the pressure distribution on the surface.

The numerical tool developed during this thesis has also proven to be ef-
ficient for simulating fluid-structure problems involving both fixed and mov-
ing rigid objects (such as free-falling bodies) with elastic and permeable ap-
pendages as in [69, 111]. Indeed it has been adapted to simulate the dynamics
of retinal detachment, one of the most frequent causes of blindness in West-
ern countries. For this application, two different detachment configurations
(“tear” and “hole”) have been taken into consideration in order to determine
which one is more prone to further deterioration.

Finally the present code has been exploited to design the optimal pa-
rameters for a spring-filament system, a slender structure with the leading
edge constrained to a spring, inspired by devices used to harvest energy. The
operating principle of the optimized system consists of the triggering of a
resonant behavior between the fluid forces acting on the filament and elastic
forces exerted by the spring. In this way, the displacements of the leading
edge and thus the energetic efficiency of the device are maximized.

A possible and straightforward development of the code would be the
insertion of the 3-dimensional direction, although this step would involve
a plan to overcome computational limits. Some possible strategies are (a)
the migration from an interpreted language as Matlab c© to a more efficient
compiled language (C++, Fortran, ...), (b) the use of parallel computing.

An interesting development of the code, which would not necessarily in-
volve previous extensive modifications, would be the implementation of 2-
dimensional structures in a 2-dimensional flow as in [112, 113] by following
an Immersed Boundary approach. This extension would permit not only the
analysis of slender membranes but also compliant blunt elastic structures,
thus multiplying the possible applications of the code.

DNS simulations are confined to low Reynolds numbers (∼ o(102)) by
the spatial resolution of the grid. In order to simulate the behavior at higher
Reynolds numbers, a possible solution would be to migrate from DNS to LES
[114] or RANS [115] with the implementation of suitable turbulence models.
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