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Abstract

In case of retinal detachment in the human eye, blindness can be prevented by vitrectomy,
a surgical procedure in which the vitreous body gets replaced by a tamponade fluid. In
most cases emulsification occurs after some time which can lead to serious sight problems.
A simple model of the flow in a vitrectomized eye is a flow of two superposed fluids over
an oscillating flat plate. In order to understand emulsification processes better also short-
term influences should be examined. The results of a nonmodal stability analysis on a
two-fluid Stokes flow has not been published jet. This investigation is new to the field of
fluid mechanics.

As the mathematical model ended up in a constraint optimization problem, for the imple-
mentation the question arose how the discretization should be done. The approach first
optimized, then discretized was applied as the contrary approach led to numerical prob-
lems at the interface. For that the continuous adjoint equations, interface and boundary
conditions were necessary. The verification of the code used for the numerical experiments
was done by comparison with a nonmodal analysis of a classical single-fluid Stokes flow.

A parameter study with values relevant to the problem was done. The perturbations
which led to maximal transient growth were waves with a zero spanwise wavenumber. The
influence of the initial and final instant of time on the optimal parameters was crucial and
could be led back to the shape of the base flow at that time. The damping influence of the
viscosity-ratio m of the fluids appeared with m > 1 and grew with it. The question if and
to what extent nonmodal transient growth influences the stability of the interface between
aqueous humor and a tamponade fluid, followed from the application. The results of this
work show that in a situation which is realistic for the eye, the flow is fully damped and no
critical energy rising appears. Thus, unstable behavior which might lead to emulsification
in the eye due to short-term transient growth rise can be excluded.
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Die vorliegende Arbeit habe ich selbständig verfasst und keine anderen als die
angegebenen Hilfsmittel - insbesondere keine im Quellenverzeichnis nicht benannten
Internet-Quellen - benutzt. Die Arbeit habe ich vorher nicht in einem anderen
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Chapter 1

Introduction

Even though Stevie Wonder supposedly once said that “just because one lacks the use of
its eyes doesn’t mean one lacks vision”, becoming blind is a frightening situation. This
thesis might contribute to a better understanding of the reasons behind sight problems, in
the worst case a complete loss of sight, due to emulsification after vitrectomy. Admittedly,
this start seems to be dramatic but as science became so specialized every little step is a
step forward and as Wonder taught us, the vision is important. But what is vitrectomy
and how is emulsification involved?
Vitrectomy is a surgical treatment for retinal detachment (RD), which is a potential
blinding condition of the eye (see Figure 1.1 on the left). Hereby, as it can be seen in
the mentioned figure on the right, the retina detaches from the ciliary body due to which
retina holes may occur. Those might even get worse due to eye motion and the detachment
of the vitreous body.

Fig. 1.1: Anatomy of the human eye (left) ú ;Retinal detachment and related eye injuries
(right) †

During the surgical procedure the vitreous body, which has a gelatinous texture, is cut
in small pieces, removed from the vitreous chamber and replaced by a substitute. For
this, various tamponade fluids can be used such as silicon oils, perfluorocarbon liquids

ú
08/07/2017: http://humananatomychart.us/simple-human-body-diagram

†
08/07/2017: https://entokey.com/vitreous-and-retina

1
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Chapter 1 Introduction

or gas, where the ideal one mimics the positive characteristics like elasticity and bu↵er
capacity and avoids negative like biodegradability with age (Kleinberg et al., 2011, p.
300). The most often used silicon oils are immiscible with water which leads to a situa-
tion where two fluids are evident in the eye. As it is not possible to remove the aqueous
humor completely from the vitreous chamber, some of it stays inside covering the retina.
The filled-in tamponade fluid is forming a single drop in the place, once occupied by the
vitreous body. It is most likely, due to the hydrophobic properties, that this drop does
not come in contact with the retina. However, the aqueous humor might not be equally
spread over the whole retina surface since the density di↵erence will force most of it to
the top or bottom (Isakova et al., 2014, p. 2). There will be areas where a very thin
layer, others where a rather thick layer, of aqueous humor separates the retina from the
vitreous substitute.
It has been observed that after some time these liquids tend to emulsify, which can lead
to post-operative complications like cataract or glaucoma (Heimann et al., 2008, p. 3-5).
Because of that risk the vitreous substitute has to be removed resulting in another surgical
procedure for the patient. In order to find liquids which do not exhibits these emulsion
e↵ects, a better understanding of the aqueous-tamponade fluid interface is essential.

Emulsification of two immiscible fluids describes the appearing of drops separated from
one fluid and entering the other fluid. In this particular case the interface between aque-
ous humor and tamponade fluid breaks down. It is presumed, that if this breakdown is
happening near the wall, where the layer of aqueous humor is very thin, one can find a
relation to the shear stresses at the interface induced by eye rotation (Isakova et al., 2014,
p. 2). A simple model of this setting can be described by an oscillating flat plate with a
thin domain of one fluid superposed by a second one on top. This thesis focuses on that
model, as in areas further away from the wall other hydrodynamical e↵ects like sloshing
might dominate. In the mentioned paper of Isakova et al. (2014) a linear modal stability
analysis has been done using a quasi steady approach where the basic flow is frozen for
each instant in time and the eigenmodes of the perturbations are evaluated. The results
obtained suggest that indeed shear stresses can promote the surface instability at least in
terms of a long time behavior. But what happens after a short time? As Schmid (2007)
stated in the introduction of his report, the spectrum of most wall-bounded shear flows
gives an unsatisfying estimate for the perturbation behavior as it only describes the evo-
lution for time t æ Œ. In order to get a more complete picture of interface-stability and
thus a better understanding of emulsification, the objective of this work is a nonmodal
stability analysis of the simple model mentioned above.

The governing equations of two superposed fluids over a moving plate have been subject
to many publications, see e.g. Joseph and Renardy (1993). A nonmodal stability analysis
has been done by Biau (2016) for an oscillatory Stokes flow and by Orazzo et al. (2014)
for a core-annular flow. Few works exist regarding nonmodal stability analysis of interface
flows. However, for single fluid shear flows the literature is quite broad.

An introduction on nonmodal stability analysis will be given in chapter 2. In chapter 3 a
very detailed description on the mathematical formulation of the problem follows, ending

2



Chapter 1 Introduction

with the flow governing equations. chapter 4 concludes the theoretical part of this thesis
by applying concepts from optimization to the formulated problem. The numerical veri-
fication of the code in comparison with the work of Biau (2016) is presented in chapter 5.
The results of the numerical experiments for the two-fluid case are content of chapter 6.
A conclusion and some recommendations for further work in chapter 7 mark the end of
this thesis.

3



Chapter 2

Nonmodal Stability-analysis

This chapter is mostly based on the lecture given by J. Pralits at the University of Gen-
ova (Italy) in Feburary 2017 which he mainly based on Schmid (2007). It focuses on the
understanding of this method and its relevance for the problem considered here rather
than being exhaustive. For this reason, after a short introduction, a small model problem
will be presented and followed by a more realistic case concerning the flow this work in-
vestigates.

Stability analysis in fluid dynamics, seen as the behavior of a flow due to small perturba-
tions, has long been dominated by the analysis solely of the eigenvalues of the governing
linear operator where the least stable mode determines whether the flow is stable or un-
stable depending on its position in the complex plane. But the focus on the long-term
behavior does not capture possible instabilities that might occur within a finite-time hori-
zon, which might be of great interest in practical application. As an example, experiments
in a plane Poiseuille flow showed that instabilities and transition already appear after a
substantially shorter time than predicted from the least stable eigenmode (Schmid, 2007,
p. 131) and at a subcritical Reynolds number i.e. at a value of the Reynolds number
for which the flow is linearly stable. A measure for stability can be the kinetic energy
and a flow is said to be stable if the energy goes to zero for t æ Œ. Stability can also
be thought of as the response of a system to initial conditions or external forcing. It
will be focused on the first approach giving rise to the question which initial conditions
result in the largest amplification of the system. In fact this ends up in an optimization
problem where a measure of the system is maximized under the constrained of fulfilling
the governing flow equations. The choice of a measure becomes more complex if there
is for example an interface involved. The following section makes some of these briefly
outlined thoughts more evident.

2.1 A Model Problem

In order to arrive at the equations describing the behavior of perturbations q̂(x, t) we
linearize the flow around a steady base flow q

b

(x)

q

b

(x) + ‘ q̂(x, t) + O(‘2
) (2.1)

with ‘ π 1. ˆ will denote perturbed quantities throughout this work and bold letters
indicate vectorial quantities. Inserting (2.1) in the Navier-Stokes equations, selecting

4



Chapter 2 Nonmodal Stability-analysis

only the terms of order ‘ and neglecting all higher order terms, it follows

ˆ ˆ

q

ˆt
= ≠(

ˆ

q, Ò)q

b

≠ (q

b

, Ò)

ˆ

q ≠ Òp̂ +

1

Re
�

ˆ

q, (2.2)

having in mind that the Navier-Stokes equations are also valid for the base flow. For
further explanations about the symbols and equations in particular see the Nomenclature
and subsection 3.2.1. It can be shown that the right hand side of (2.2) can be written in
terms of the linear operator L acting on q,

ˆq̂

ˆt
≠ Lq̂ = 0, q̂(0) = q0 (2.3)

with the initial condition q0.
For now L is assumed to be discrete and thus L œ Cn◊n and q œ Cn. By means of
this simplification it is possible to show in what extent modal stability analysis fails in
predicting short-term behavior of a system.

2.2 Exponential Growth

An analytical solution to (2.3) is given by

q̂(t) = q0eLt. (2.4)

Assuming L to be diagonalisable we can write

L = S�S

≠1 with � :=

S

WWWWU

⁄1 0 . . . 0

0 ⁄2 . . . 0

. . . . . . . . . . . .
0 . . . 0 ⁄n

T

XXXXV
and S :=

S

WU
| | |

v1 v2 . . . vn

| | |

T

XV (2.5)

with ⁄i eigenvalues and vi eigenvectors of L. For t æ Œ the exponential term of (2.4)
governs its behavior, which depends on the operator L. In case L is not only diagonalis-
able but S has also orthonormal column vectors, such that L is normal, considering the
eigenvalues would be enough to predict the long and short term behavior of the solution.
That can be seen evaluating upper and lower bound of eL t:

e⁄
max

t Æ ÎeL tÎ = Î
Œÿ

n=0

1

n!

(tL)

nÎ = ÎI + tL +

t2

2

L

2
+ . . . Î

= ÎI + tS�S

≠1
+

t2

2

(S�S

≠1
)(S�S

≠1
) + . . . Î

= ÎS(I + t� +

t2

2

�2
+ . . . )S

≠1Î
= ÎSe� t

S

≠1Î Æ ÎSÎÎS

≠1Î
¸ ˚˙ ˝

=:K(S)

e⁄
max

t. (2.6)
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Chapter 2 Nonmodal Stability-analysis

K(S) is known as the condition number. If S is a normal matrix it doesn’t change the
length of a vector: ÎSxÎ = ÎxÎ. The matrix norm of S and S

≠1 is then respectively

ÎSÎ = max

xœCn

with ÎxÎ=1
ÎSxÎ = 1, (2.7)

ÎS

≠1Î = max

yœCn

with ÎyÎ=1
ÎS

≠1
yÎ = max

yœCn

with ÎyÎ=1
ÎS

≠1
SxÎ = 1, (2.8)

hence the condition number is 1 and the upper and lower bound coincide. Hence, the
behavior of all times is governed by the exponential term depending on ⁄max. But in gen-
eral, and often in fluid mechanics due to the convective terms, K(S) > 1 which means
that only the asymptotic growth (t æ Œ) is given by the least stable mode.

In Figure 2.1 the non-orthogonal expansion of an initial condition q0 is shown in a graph-
ical way for two dimensions. Here it becomes vividly underlined that even though v1 and
v2 tend towards 0 for t æ Œ, non-orthogonal eigenvectors can give rise to short-term
growth as the length of q0 on the left of the figure is actually at the third instant of time
longer than at the beginning.

v2

v1
q0

t
=

0

v2

v1
q0

t =

0

Fig. 2.1: Non-normal expansion of an initial condition q0 (left) in comparison to a normal
one (right)

What actually interests is due to which initial condition q0, with Îq0Î = 1, the maximum
possible perturbation q̂ for a certain instant in time arises. This can be described by a
gain function G(t) that is defined as

max

’q0

Îq̂Î
Îq0Î = max

’q0

Îq0eLtÎ
Îq0Î = ÎeLtÎ =: G(t). (2.9)

Here every instant in time has a corresponding unique optimal initial condition. In the
simple case of a two by two matrix it can be analytically calculated using for instance the
spectral norm (see example at the end of this subsection). But generally speaking this
ends up in an optimization problem finding the optimal solution out of all possible initial
conditions q0. Here arises the question about a meaningful measure, because the norm is
what still has to be chosen in a reasonable way fitting the actual setting.

6



Chapter 2 Nonmodal Stability-analysis

Example

Consider the following initial value problem

d

dt

C
qx

qy

D

=

C
⁄1 p
0 ⁄2

D

¸ ˚˙ ˝
=:L

C
qx

qy

D

,

C
qx(t = 0)

qy(t = 0)

D

=

C
q0

x

q0
y

D

. (2.10)

For this system the gain G(t), using the spectral norm,

G(t) = ÎeL tÎspec = ÎSe� t
S

≠1Îspec =

Ò
⁄max((Se� t

S

≠1
)

H
(Se� t

S

≠1
)) (2.11)

has been calculated in case of stable and unstable eigenvalues and with di↵erent values
for the variable p, respectively.
The gain-curves for di↵erent values of p over a time interval t œ [0, 50] can be seen in
Figure 2.2 and Figure 2.3. For p = 0 the matrix is normal showing that there is no
influence of non-orthogonal eigenvectors. The behavior, recognizable by the straight line,
is exponential for all times in both cases. With p ”= 0 this changes for both cases in a
short-term sense which becomes crucial and obvious in the stable case, see Figure 2.2.
The modal analysis predicts a stable and decaying solution for all times but as can be
seen from the graph, for a finite time G(t) is growing.

0.001

0.01

0.1

1

10

100

0 10 20 30 40 50

G
(t
)

t

p=0
p=1
p=2
p=3
p=4
p=5

Fig. 2.2: Gain G(t) for di↵erent stable L(p) with eigenvalues ⁄1 = ≠0.1 and ⁄2 = ≠0.15

7



Chapter 2 Nonmodal Stability-analysis

1

10

100

1000

10000

0 10 20 30 40 50

G
(t
)

t

p=0
p=1
p=2
p=3
p=4
p=5

Fig. 2.3: Gain G(t) for di↵erent unstable L(p) with eigenvalues ⁄1 = 0.1 and ⁄2 = ≠0.15

2.3 A More Realistic Setting

For parallel shear flows it is reasonable to consider wave-like propagating perturbations

q̂(x, t) = q(y, t)ei(–x+—z) (2.12)

with – streamwise and — spanwise wavenumbers, respectively. The equations that govern
the flow over an oscillating plate are the so called Orr-Sommerfeld equations. In chapter 3
a detailed deduction for the two-fluid case and the reformulation in terms of velocity v
and normal vorticity ÷ is given. As a disturbance measure it comes naturally to choose
the kinetic energy of the flow ((Schmid, 2007, p. 134))

E(t) =

1

2k2

⁄

�
|Dv|2 + k2|v|2 + |÷|2dy (2.13)

with k =

Ô
–2

+ —2 and D =

ˆ
ˆy
, which can be rewritten as a norm

ÎqÎ2
E =

1

2k2

⁄

�

C
v
÷

DH C
D2 ≠ k2

0

0 1

D

¸ ˚˙ ˝
=:M

C
v
÷

D

¸˚˙˝
=:q

dy =

1

2k2

⁄

�
q

H
Mqdy. (2.14)

As M is symmetric positive definite a Cholesky decomposition exists and gives M =

T

H
T . With the upper triangular matrix T , the energy-norm can be led back to the

standard Eulerian L2-norm:

ÎqÎ2
E =

1

2k2

⁄

�
q

H
Mqdy =

1

2k2

⁄

�
(T q)

H
T qdy =

1

2k2 ÎT qÎ2
L2

. (2.15)

8



Chapter 2 Nonmodal Stability-analysis

With (2.15) and the definition (2.9), the gain in this case evolves to

G(t) = max

’q0

ÎT qÎ2
L2

ÎT q0Î2
L2

= max

’q0

ÎT eLt
q0Î2

L2

ÎT q0Î2
L2

= max

’q0

ÎT eLt
T

≠1
T q0Î2

L2

ÎT q0Î2
L2

= ÎT eLt
T

≠1Î2
L2 .

(2.16)

G(t) can be evaluated for a certain instant in time t = T , marching the argument in time.
In case for the example in section 2.1, G(t) would result similar as shown in Figure 2.2
and Figure 2.3.
In practice this is not the method of choice, as there is an inverted matrix involved and
one needs to compute the eigenvalues and eigenvectors of L. Instead, G(t) is optimized for
a certain instant in time t = T over all possible initial conditions q0. From the definition
in (2.9) this is a maximizing problem which can be recast in a minimizing one:

min

’q0

Îq0Î
ÎqÎ s. t.

ˆq

ˆt
≠ Lq = 0, 0 < t Æ T, (2.17)

q = q0, t = 0.,

For every t there will be a corresponding optimal initial condition. If one wants to compute
G(t) using the method given by (2.17), the envelope of ÎqÎ

Îq0Î over di↵erent values for T
must be evaluated. For the necessary optimization techniques see chapter 4.

9



Chapter 3

Formulation of the Mathematical
Problem

In this chapter the mathematical description of the physical problem is deduced and
simplified. It is shown how to get from the eye to a flat plate and how the boundary
conditions are imposed for the two fluids forming an interface in between. The equations
for the base flow and the perturbed flow as well as the modeling of the interface are
described which result in systems of partial di↵erential equations. Throughout this chapter
ú will indicate dimensional quantities.

3.1 The Eye Becomes a Flat Plate

Consider the eye as a ball filled with two immiscible and incompressible fluids as motivated
in chapter 1. One fluid with density flú

1 covers the inner wall of the eye, another with
density flú

2 fills up the remaining space inside the body. Keeping this in mind, some
further simplifications are made in order to find solvable equations. The thickness ”ú of
the fluid which separates the tamponade fluid from the retina is very small compared to
the eye radius. Figure 3.1 on the right hand side shows a close up of the idealized model.

Tamponade fluid

Free interface

Retina

Aqueous humor

xú

yú

”ú

uú
Ê = uú

0 cos(Êútú
)

flú
1, ‹ú

1

flú
2, ‹ú

2

gú

Fig. 3.1: Simplified eye with the two fluids divided by the interface (left); Close up: A
wall-near area shows the actual model (right)

Here movements of the retina are assumed to behave like periodic oscillations with a no
slip condition of the lower boundary. The velocity at the wall is then uú

Ê = uú
0 cos(Êútú

).
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Chapter 3 Formulation of the Mathematical Problem

In case of a single fluid in a laminar flow at low Reynolds numbers, this is a very well
studied case known as Stokes boundary layer, see for example Batchelor (2000). This case
has been used for verification of the code used in this thesis, see chapter 5.

3.2 Governing Equations and Solution

The formulations are in spatial coordinates xú
= (xú, yú, zú

)

T , where xú denotes the
streamwise, yú the wall-normal and zú the spanwise direction of the flow. Vector no-
tation is used for convenient reading. As we assume our fluids to be incompressible, flú

1
and flú

2 will remain constant.

3.2.1 The Incompressible Navier-Stokes-Equations

The governing equations describing the behaviour of the flow are the Navier-Stokes equa-
tions for an incompressible fluid, see (3.1) and (3.2) below. They are formed by balancing
the forces in a fluid due to the action of momentum

flú
j

ˆuú
j

ˆtú = ≠flú
j(u

ú
j , Òú

)uú
j ≠ Òúpú

j + µú
j�úuú

j + gúflú
jey (3.1)

and applying continuity of mass

div(uú
j) = 0, j = 1, 2. (3.2)

uú
= (uú, vú, wú

)

T denotes the velocity vector and pú the pressure. Òú
= (

ˆ
ˆxú , ˆ

ˆyú , ˆ
ˆzú )

T

and �ú
u = div(Òú

u

ú
) = (Òú, Òú

)u

ú are di↵erential operators where ( , ) denotes the
inner product with respect to the euclidean norm. ey denotes the unit vector in y-direction.
(3.1) and (3.2) hold for both fluids, indicated by the subscripts j.

Nondimensionalization

In the specific physical problem of this thesis, the characteristic scales are the flow velocity
uú

0, the thickness of fluid 1 ”ú and its density flú
1. Scaling the Navier-Stokes equations with

these values and thereby removing units of the flow helps to recover significant properties
and makes the results to be comparable with other flows alike. By means of dimensional
analysis it can be shown that these three quantities are su�cient to form all necessary
dimensions. For detailed explanations see for example Yarin (2012). The dimensional
variables can then be written in terms of dimensionless variables:

xú
= ”úx, uú

= uú
0u,

pú
= flú

1u
ú
0

2p, tú
=

”ú

uú
0
t, Êú

=

uú
0

”ú Ê. (3.3)

11



Chapter 3 Formulation of the Mathematical Problem

Inserting these values inside (3.1) and (3.2) the new equations for the fluid on the wall,
in domain �1,

ˆu1
ˆt

= ≠(u1, Ò)u1 ≠ Òp1 +

1

Re
�u1 +

1

Fr2 ey (3.4a)

div(u1) = 0 (3.4b)

and the fluid above, in domain �2,

ˆu2
ˆt

= ≠(u2, Ò)u2 ≠ 1

“
Òp2 +

1

Re

m

“
�u2 +

1

Fr2 ey (3.5a)

div(u2) = 0 (3.5b)

are now dimensionless with the Reynolds number Re =

uú
0”úflú

1
µú1

and the Froude number

Fr =

Ú
uú

0Êú

gú , the fractions “ =

flú
2

flú
1
and m =

µú
2

µú
1
.

3.2.2 Base Flow

As the interest lies on the evolution of small perturbations ˆuj around a base flow Uj with
j = 1, 2, the flow is written in terms of the following quantities

uj = Uj +

ˆuj and pj = Pj + p̂j, j = 1, 2. (3.6)

and results in di↵erent equations respectively. Unless stated otherwise, the following is
written for fluid 1, but the equations are valid in both domains, apart from the scaling
with m

“
of the viscous term.

By substituting (3.6) in (3.4a) - (3.5b) and collecting the base flow terms and the pertur-
bation terms it follows a system of equations for each fluid respectively. The base flow
can be solved analytically.
Writing (3.4a) in terms of the base flow of the lower fluid will make the simplifications
more understandable:

ˆ

ˆt

S

WU
U1
V1
W1

T

XV = ≠(

S

WU
U1
V1
W1

T

XV ,

S

WU

ˆ
ˆx
ˆ

ˆy
ˆ
ˆz

T

XV)

S

WU
U1
V1
W1

T

XV ≠
S

WU

ˆp1
ˆx
ˆp1
ˆy
ˆp1
ˆz

T

XV +

1

Re
�

S

WU
U1
V1
W1

T

XV +

S

WU
0

≠ 1
F r2

0

T

XV . (3.7)

In case of a laminar and fully developed flow in the stream wise direction and in the limit of
a parallel flow V1 = W1 = 0, the solution has the shapeUj(x, t) = (Uj(y, t), 0, 0)

T , j = 1, 2.
Assuming the volume forces acting in the negative y-direction and the pressure being a
function of y only, this gives

ˆ

ˆt

S

WU
U1
0

0

T

XV = ≠U1
ˆ

ˆx

S

WU
U1
0

0

T

XV ≠
S

WU
0

ˆP1
ˆy

0

T

XV +

1

Re
�

S

WU
U1
0

0

T

XV +

S

WU
0

≠ 1
F r2

0

T

XV . (3.8)
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Chapter 3 Formulation of the Mathematical Problem

Finally (3.4a) simplifies to

ˆU1
ˆt

=

1

Re

ˆ2U1
ˆy2 (3.9a)

ˆP1
ˆy

= ≠ 1

Fr2 , (3.9b)

and respectively (3.5a) to

ˆU2
ˆt

=

m

“

1

Re

ˆ2U2
ˆy2 (3.10a)

ˆP2
ˆy

= ≠“
1

Fr2 . (3.10b)

The boundary and matching conditions for the base flow can be found in the schematic
diagram of the two superposed fluids in Figure 3.2. The solution of (3.9a) and (3.9b)
and (3.10a) and (3.10b) can be found by solving the system for each fluid separately and
choosing the arising constants such that the conditions are satisfied.

x

y

1

uÊ = cos(Êt)

�1

�2

U2(y æ Œ) = 0

I. U1 = U2 (conti. b.c.) II. µ1
ˆU1
ˆy = µ2

ˆU2
ˆy

U1(y = 0, t) = uÊ

Fig. 3.2: Boundary conditions for the base flow: no-slip condition at the wall; continuity
of velocity at and shear stress across the interface; vanishing velocity at infinity

Inserting the approach by (Batchelor, 2000, p. 192)

U1 = R{f(y)e≠iÊt} (3.11)

into (3.9a), where R denotes the real part, results in an ordinary di↵erential equation
≠iÊf(y) =

1
Re

f(y)

ÕÕ, where ÕÕ denotes the second derivative with respect to y. With its

solution and a :=

Ô
iReÊ the U1 results in

U1(y, t) = R{(c1e
ay

+ c2e
≠iay

)e≠iÊt}
= R{(c1e

ay
+ c2e

≠iay
)(cos(Êt) ≠ i sin(Êt))}

=

1

2

(c1e
ay

+ c2e
≠ay

)eiÊt
+

1

2

(c̄1e
≠ay

+ c̄2e
ay

)e≠iÊt. (3.12)
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Chapter 3 Formulation of the Mathematical Problem

Solving (3.10a) in the same manner leads to

U2(y, t) = R{(c3e
by

+ c4e
≠by

)e≠iÊt}

with b :=

Ò
iReÊ m

“
. As U2 æ Œ for y æ Œ, c3 = 0 is chosen.

U2(y, t) =

1

2

c4e
≠bye≠iÊt

+

1

2

c̄4e
bye≠iÊt. (3.13)

To determine the coe�cients c1, c2 and c4, the boundary conditions are applied. With
the interface condition y = 1 follows

0 = U1(y = 1, t) ≠ U2(y = 1, t) (3.14)

= (c1e
a

+ c2e
≠a

)eiÊt
+ (c̄1e

≠ia
+ c̄2e

ia
)e≠iÊt ≠ c4e

≠beiÊt ≠ c̄4e
be≠iÊt

0 =

ˆU1(y = 1, t)

ˆy
≠ m

ˆU2(y = 1, t)

ˆy
(3.15)

= a(c1e
a ≠ c2e

≠a
)eiÊt

+ a(≠c̄1e
≠a

+ c̄2e
a
)e≠iÊt ≠ mbc4e

≠beiÊt ≠ mbc̄4e
be≠iÊt.

Applying the no-slip condition leads to

0 = U1(y = 0, t) ≠ 1

2

(eiÊt
+ e≠iÊt

) (3.16)

=

1

2

(c1 + c2)e
iÊt

+ (c̄1 + c̄2)e
≠iÊt

) ≠ 1

2

(eiÊt
+ e≠iÊt

)

∆ c1 = 1 ≠ c2, c̄1 = 1 ≠ c̄2. (3.17)

The coe�cients can then be obtained as:

c1 =

(mb + a)e≠a

(a + mb)e≠a
+ (a ≠ mb)ea

(3.18a)

c2 =

(mb ≠ a)ea

(a + mb)e≠a
+ (a ≠ mb)ea

(3.18b)

c4 =

2e≠b

(a + mb)e≠a
+ (a ≠ mb)ea

. (3.18c)

With (3.12) and (3.13) expressions describing the base flow for both fluids are given.

3.2.3 Perturbed Flow

In order to reduce the number of governing equations they are written in terms of velocity
v̂1 and normal vorticity ÷̂1 as presented in (Schmid and Henningson, 2000, p. 56). For
the equations of the perturbed flow the perturbed and linearised Navier-Stokes equations
in �1

ˆˆu1
ˆt

= ≠(

ˆu1, Ò)U1 ≠ (U1, Ò)

ˆu1 ≠ Òp̂1 +

1

Re
�

ˆu1 (3.19a)

div(

ˆu1) = 0. (3.19b)
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Chapter 3 Formulation of the Mathematical Problem

have to be modified. To eliminate the pressure term, (3.19a) can be written in terms of
the curl Ê,

ˆ

Ê1 := Ò ◊ ˆu1 =

S

WU

ˆŵ1
ˆy

≠ ˆv̂1
ˆz

ˆû1
ˆz

≠ ˆŵ1
ˆx

ˆv̂1
ˆx

≠ ˆû1
ˆy

T

XV =:

S

WU

ˆ›1
÷̂1
‹̂1

T

XV (3.20)

Ò ◊ U1 =

S

WU
0

0

≠ˆU1
ˆy

T

XV (3.21)

The second component ÷̂1 is the so called normal vorticity. The following identities, which
result from some auxiliary calculations, are used for the conversion:

1

2

Ò(u1, u1) = (u, Ò)u + u ◊ (Ò ◊ u) (3.22a)

Ò ◊ Òu = 0 (3.22b)

(Ò, Ê) = (Ò, Ò ◊ u) = div(Ò ◊ u) = 0 (3.22c)

Ò ◊ (u ◊ Ê) = (Ê, Ò)u ≠ (u, Ò) + u (Ò, Ê)

¸ ˚˙ ˝
=0 because of (3.22c)

≠Ê (Ò, u)

¸ ˚˙ ˝
=divu=0

(3.22d)

Applying first (3.22a), taking the curl on both sides and with (3.22b), (3.19a) becomes

ˆ(Ò ◊ ˆu1)

ˆt
= Ò ◊ U1 ◊ (Ò ◊ ˆu1)¸ ˚˙ ˝

=Ê̂1

+Ò ◊ ˆ

u1 ◊ (Ò ◊ U1)¸ ˚˙ ˝
=�̂1

+

1

Re
� (Ò ◊ ˆu1)¸ ˚˙ ˝

=Ê̂1

. (3.23)

With (3.22c) the second component of (3.23) gives the equation for ÷1. For the eliminated
pressure an additional relation is needed. Like proposed in (Schmid and Henningson, 2000,
p. 55) the perturbation pressure can be written as

Ò2p̂1 = ≠2

ˆU1
ˆy

ˆv̂1
ˆx

. (3.24)

This follows after taking the divergence of (3.19a) and substituting (3.19b).
For convenience Ò and Ò2 are introduced as a short form of Ò =

ˆ
ˆx

+

ˆ
ˆy

+

ˆ
ˆz

and

Ò2
=

ˆ2

ˆx2 +

ˆ2

ˆy2 +

ˆ2

ˆz2 from the definition of � = (Ò2, Ò2, Ò2
)

T .
With (3.24) in the second component of the linearized perturbed momentum equation
and applying Ò2, the equations for v̂1 and ÷1 follow

(

ˆ

ˆt
+ U1

ˆ

ˆx
)Ò2v̂1 =

ˆ2U1
ˆy2

ˆv̂1
ˆx

+

1

Re
Ò4v̂1 (3.25a)

ˆ÷̂1
ˆt

= ≠U1
ˆ÷̂1
ˆx

≠ ˆU1
ˆy

ˆv̂1
ˆz

+

1

Re
�÷̂1. (3.25b)

The governing equations in �2 can be achieved in the same way:

(

ˆ

ˆt
+ U2

ˆ

ˆx
)Ò2v̂2 =

1

“

ˆ2U2
ˆy2

ˆv̂2
ˆx

+

1

Re

m

“
Ò4v̂2 (3.26a)

ˆ÷̂2
ˆt

= ≠U2
ˆ÷̂2
ˆx

≠ ˆU2
ˆy

ˆv̂2
ˆz

+

1

Re

m

“
�÷̂2. (3.26b)
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Fourier Expansion

As in Schmid and Henningson (2000) assumed, the perturbation variables behave like
waves in the x-z plane with – streamwise and — spanwise wave number, respectively. The
expansion in Fourier modes are the following

û1/2 = u(y, t)ei(–x+—z)
+ cc (3.27a)

v̂1/2 = v(y, t)ei(–x+—z)
+ cc (3.27b)

ŵ1/2 = w(y, t)ei(–x+—z)
+ cc (3.27c)

p̂1/2 = p(y, t)ei(–x+—z)
+ cc (3.27d)

÷̂1/2 = ÷(y, t)ei(–x+—z)
+ cc, (3.27e)

cc denoting the complex conjugate. With (3.27a)-(3.27e) and

Ò2÷̂ =

ˆ2÷̂

ˆ2y
+ (i–)

2÷̂ + (i—)

2÷̂ =

ˆ2÷̂

ˆy2
¸˚˙˝

=:D2÷̂

≠ (–2
+ —2

)

¸ ˚˙ ˝
=:k2

÷̂

the equations simplify for both fluids to the so called Orr-Sommerfeld equations

ˆ

ˆt
(D2 ≠ k2

)v1 =

C

i–
ˆ2U1
ˆy2 ≠ i–U1(D

2 ≠ k2
) +

1

Re
(D2 ≠ k2

)

2
D

v1 (3.28a)

ˆ÷1
ˆt

=

5
≠i–U1 +

1

Re
(D2 ≠ k2

)

6
÷1 ≠ i—

ˆU1
ˆy

v1, (3.28b)

ˆ

ˆt
(D2 ≠ k2

)v2 =

C

i–
ˆ2U2
ˆy2 ≠ i–U2(D

2 ≠ k2
) +

1

Re

m

“
(D2 ≠ k2

)

2
D

v2 (3.29a)

ˆ÷2
ˆt

=

C

≠i–U2 +

1

Re

m

“
(D2 ≠ k2

)

D

÷2 ≠ i—
ˆU2
ˆy

v2. (3.29b)

3.2.4 Two-Fluid Interface

The theory and conditions for the interface presented here can be found in (Joseph and
Renardy, 1993, p. 25 et seqq.). On the interface continuity of velocities, the kinematic
condition and continuity of shear stress have to be fulfilled and the jump in normal stress
has to be balanced by the surface tension. An overview on the boundary conditions can
be seen in Figure 3.4.

It is necessary to introduce a new variable ›, the deviation of the interface from its resting
position at y = 1, see Figure 3.3. From now on one has to carefully distinguish between
values at y = 1 and y = 1 + ›, which are exactly at the surface and denoted with ›.

A first order linearisation of the velocity on the interface is given by

u(y = 1 + ›) = u

›
= u(y = 1) + ›

ˆU

ˆy
= u + ›U

Õ. (3.30)

Õ denotes further on the derivative with respect to y.
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Chapter 3 Formulation of the Mathematical Problem

x

y

y = 1

z

›

Fig. 3.3: Resting interface at y = 1 with curves on the deviated interface in y ≠ z and
y ≠ x plane for illustrating › = ›(t, x, z)

x

y

1

�1

�2

y æ Œ: v2 æ 0, dv2
dy æ 0, ÷2 æ 0 (vanishing vel. b. c.)

y = 1: u›
1 = u›

2, v›
1 = v›

2, w›
1 = w›

2,
D›
Dt = v›

1
n

T (T ›
1 ≠ T

›
2 )t

x

= 0, n

T (T ›
1 ≠ T

›
2 )t

z

= 0
n

T (T1 ≠ T2)n = ≠k2›‡

y = 0: v1 = 0, dv2
dy = 0, ÷2 = 0 (no slip b. c.)

Fig. 3.4: Boundary conditions for the perturbed flow

Continuity of Velocity and Kinematic Condition

For continuity of velocity on the interface it follows, with the base flow V1 = W1 = 0 that

u›
1 = u›

2 (3.31a)

v›
1 = v›

2 ∆ v1 = v2 (3.31b)

w›
1 = w›

2 ∆ w1 = w2. (3.31c)

Using (3.31a) - (3.31c) in the definition of normal vorticity ÷ at y = 1 and formulating
this by using linearized velocities, the following holds

÷1 +

ˆw1
ˆx

≠ ˆu1
ˆz

= ÷2 +

ˆw2
ˆx

≠ ˆu2
ˆz

÷1 + i–w1 ≠ i—(u›
1 ≠ ›U1) = ÷2 + i–w2 ≠ i—(u›

2 ≠ ›U2)

∆ ÷1 + i—›U1 = ÷2 + i—›U2. (3.32)

Similarly, the last equation for continuity of velocity in terms of v and ÷ can be deduced

17



Chapter 3 Formulation of the Mathematical Problem

from the continuity equation at y = 1

ˆu1
ˆx

+

ˆv1
ˆy

+

ˆw1
ˆz

=

ˆu2
ˆx

+

ˆv2
ˆy

+

ˆw2
ˆz

i–(u1 + ›U Õ
2) + vÕ

1 + i—w1 = i–(u2 ≠ ›U Õ
2) + vÕ

2 + i—w2

∆ vÕ
1 ≠ i–›U Õ

1 = vÕ
2 ≠ i–›U Õ

2. (3.33)

Furthermore it is required, that the material derivative of the interface deviation is equal
to the velocity in y-direction at the interface:

D›

Dt
=

ˆ›

ˆt
+

ˆx

ˆt

ˆ›

ˆx
=

ˆ›

ˆt
+ i–›U1 = v›

1 = v1. (3.34)

Continuity of Stress

The stress balance equation, which can be found in (Joseph and Renardy, 1993, p. 23),
reads in the present case

(T

›
1 ≠ T

›
2 )n = ÒÎ‡ + 2H‡n (3.35)

with n the outer normal vector such that n = n1 = n2. H represents the mean curvature,
‡ the surface tension, ÒÎ = Ò ≠ n(n, Ò) the surface gradient and T

›
j , j = 1, 2 the stress

tensors at the interface. Then

T

›
j = ≠p›

jI + µú
j(Òu

›
j + (Òu

›
j)

T
) (3.36)

=

S

WWU

p›
j 0 0

0 p›
j 0

0 0 p›
j

T

XXV ≠ µú
j

S

WWWWU

2

ˆu›

j

ˆx

ˆu›

j

ˆy
+

ˆv›

j

ˆx

ˆu›

j

ˆz
+

ˆw›

j

ˆx

sym. 2

ˆv›

j

ˆy

ˆv›

j

ˆz
+

ˆw›

j

ˆy

sym. sym. 2

ˆw›

j

ˆz

T

XXXXV

¸ ˚˙ ˝
=:·

j

=

S

WU
pj 0 0

0 pj 0

0 0 pj

T

XV ≠ µú
j

S

WU
2i–(uj + ›U Õ

j) uÕ
j + ›U ÕÕ

j + i–vj i—(uj + ›U Õ
j) + i–wj

sym. 2vÕ
j i—vj + wÕ

j

sym. sym. 2i—wj

T

XV .

The normalized tangential and normal directions are

t1 =

1

Ò
1 + (

ˆ›
ˆx

)

2

S

WU
1

0

ˆ›
ˆx

T

XV , t2 =

1

Ò
1 + (

ˆ›
ˆz

)

2

S

WU

ˆ›
ˆz

0

1

T

XV , n =

1

Ò
1 + (

ˆ›
ˆx

)

2
+ (

ˆ›
ˆz

)

2

S

WU

ˆ›
ˆx

1

ˆ›
ˆz

T

XV .

(3.37)

For simplification, only the linear terms are taken into account, which coincides with
assuming t1 = ex, t2 = ez and n = ey for the left hand side. The nonlinearities can be
found in (Joseph and Renardy, 1993, p. 185). The right hand side then simplifies to

ÒÎ‡ + 2H‡n =

S

WU

ˆ‡
ˆx

0

ˆ‡
ˆz

T

XV +

S

WWU

0

2

( ˆ

2
›

ˆx

2 + ˆ

2
›

ˆz

2 )
2 ‡
0

T

XXV . (3.38)
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Chapter 3 Formulation of the Mathematical Problem

In this work, the surface tension is a constant which leads to the tangential traction being
continuous:

tl(T
›
1 ≠ T

›
2 )n = 0, l = 1, 2. (3.39)

The jump in the normal stress is balanced by surface tension:

n(T

›
1 ≠ T

›
2 )n = ≠k2›‡ú

n. (3.40)

The equations for the tangential stresses then follow

µú
1(u

Õ
1 + ›U ÕÕ

1 + i–v1) = µú
2(u

Õ
2 + ›U ÕÕ

2 + i–v2) (3.41a)

µú
1(i—v1 + wÕ

1) = µú
2(i—v2 + wÕ

2). (3.41b)

In order to write (3.41a) and (3.41b) in terms of v and ÷, the derivative with respect to
y of mass-continuity ((3.4b) and (3.5b)) and some algebra is necessary:

ˆ

ˆy
(i–u1 + vÕ

1 + i—w1 = m(i–u2 + vÕ
2 + i—w2))

≠ i—((i—v1 + wÕ
1) = m(i—v2 + wÕ

2))

i–uÕ
1 + vÕÕ

1 + —2v1 = m(i–uÕ
2 + vÕÕ

2 + —2v2)

≠ i–(uÕ
1 + ›U ÕÕ

1 + i–v1 = m(uÕ
2 + ›U ÕÕ

2 + i–v2))

≠i–›U ÕÕ
1 + k2v1 + vÕÕ

1 = m(≠i–›U ÕÕ
2 + k2v2 + vÕÕ

2) (3.42)

i—(1(u
Õ
1 + ›U ÕÕ

1 + i–v1) = m(uÕ
2 + ›U ÕÕ

2 + i–v2))

≠ i–(i—v1 + wÕ
1 = m(i—v2 + wÕ

2))

i—uÕ
1 ≠ i–wÕ

1 + i—›U ÕÕ
1 = m(i—uÕ

2 ≠ i–wÕ
2 + i—›U ÕÕ

2 )

∆ ÷Õ
1 + i—›U ÕÕ

1 = m(÷Õ
2 + i—›U ÕÕ

2 ) (3.43)

In the condition for the normal stress, the pressure on the surface has to be defined,
because the deviation of the surface › contributes to the hydrostatic pressure. The non-
dimensional equation (3.44) then follow as

pú ›
1 ≠ pú ›

2 + 2µ1
úvÕ

1
ú ≠ 2µ2

úvÕ
2

ú
= ≠k2›‡ú

flú
1

flú
1
p1 +

flú
1”

úgú›

flú
1u

ú
0

2 ≠ flú
2

flú
1
p2 ≠ flú

2g
ú”ú›

flú
1u

ú
0

2 + 2

µú
1

µú
1
vÕ

1 ≠ 2

µú
2

µú
1
vÕ

2 = ≠ ‡ú

flú
1”

úuú
0

2 k2›

p1 ≠ “p2 + 2vÕ
1 ≠ 2mvÕ

2 = ≠‡k2› ≠ ›(1 ≠ “)

Fr2 . (3.44)
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Chapter 3 Formulation of the Mathematical Problem

The pressure can be substituted from the linearized Navier-Stokes-equation for the per-
turbed velocities after applying Ò on it. By multiplying (3.44) with k2 and using (3.24)
for the perturbed pressure, it follows

≠k2p1 + pÕÕ
1 = ≠k2p1 ≠ i–(U Õ

1v1 + U1v
Õ
1) +

1

Re
(≠k2vÕ

1 + vÕÕÕ
1 ) ≠ ˆvÕ

1
ˆt

(3.45)

= ≠2i–U Õ
1v1

∆ k2p1 = i–(U Õ
1v1 ≠ U1v

Õ
1) +

1

Re
(≠k2vÕ

1 + vÕÕÕ
1 ) ≠ ˆvÕ

1
ˆt

(3.46)

1

“
(≠k2p2 + pÕÕ

2) =

1

“
(≠k2p2 + i–(U Õ

2v2 + U2v
Õ
2) ≠ 1

Re

m

“
(≠k2vÕ

2 + vÕÕÕ
2 ) ≠ ˆvÕ

2
ˆt

)

=

1

“
(≠2i–U Õ

1v1)

∆ k2p2 = i–(U Õ
2v2 ≠ U2v

Õ
2) +

1

Re

m

“
(≠k2vÕ

2 + vÕÕÕ
2 ) ≠ ˆvÕ

2
ˆt

(3.47)

which gives, after inserting in (3.44), the following condition:

i–(U Õ
1v1 ≠ U1v

Õ
1) +

1

Re
(≠k2vÕ

1 + vÕÕÕ
1 ) ≠ ˆvÕ

1
ˆt

≠
C

i–“(U Õ
2v2 ≠ U2v

Õ
2) +

1

Re
m(≠k2vÕ

2 + vÕÕÕ
2 ) ≠ “

ˆvÕ
2

ˆt

D

(3.48)

= ≠‡k4› ≠ k2
(1 ≠ “)

Fr2 ›.

Finally with (3.31b), (3.32), (3.33), (3.34), (3.42), (3.43) and (3.48) all conditions which
have to hold on the interface are specified.

3.2.5 Resulting System

The governing equations for both domains, �1 and �2, (3.28a), (3.28b), (3.29a) and
(3.29b) can be presented as one system respectively:

5≠D2 + k2 0
0 1

6

¸ ˚˙ ˝
=:B1

ˆ

ˆt

5
v1
÷1

6

¸˚˙˝
=:q1

+

5
A1

11 0
i—U Õ

1 A1
22

6

¸ ˚˙ ˝
=:A1

5
v1
÷1

6
=

5
0
0

6
, in �1 (3.49)

5≠D2 + k2 0
0 1

6

¸ ˚˙ ˝
=:B2

ˆ

ˆt

5
v2
÷2

6

¸˚˙˝
=:q2

+

5
A2

11 0
i—U Õ

2 A2
22

6

¸ ˚˙ ˝
=:A2

5
v2
÷2

6
=

5
0
0

6
, in �2 (3.50)
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with the following coe�cients

A1
11 := i–U ÕÕ

1 ≠ i–U1(D
2 ≠ k2

) +

1

Re
(D2 ≠ k2

)

2 (3.51a)

A1
22 := ≠i–U1 +

1

Re
(D2 ≠ k2

) (3.51b)

A2
11 := i–U ÕÕ

2 ≠ i–U2(D
2 ≠ k2

) +

1

Re

m

“
(D2 ≠ k2

)

2 (3.51c)

A2
22 := ≠i–U2 +

1

Re

m

“
(D2 ≠ k2

). (3.51d)

3.3 A Disturbance Growth Measure

In order to find the worst case scenario a disturbance measure is needed for which one
part is the kinetic energy of both flows, but in this case also the energy of the interface
comes into account. The work in (Orazzo et al., 2014, p. 49 et seq.) proposed for a similar
case an energy norm, divided in flow Eq and interface energy E›, that reads in terms of v
and ÷

E(t) := Eq(t) + E›(t) =

1

2k2

⁄ 1

0
|Dv1|2 + k2|v1|2 + |÷1|2dy

+

1

2k2

⁄ y
max

1
|Dv2|2 + k2|v2|2 + |÷2|2dy (3.52)

+

1

2

S k2

Re2 |›|2.

The first two integrals form Eq and can be written as an inner product with M being
symmetric positive definite,

Eq = ÎqÎ2
E =

1

2k2

⁄ y
max

0

S

WWWU

v1
÷1
v2
÷2

T

XXXV

H S

WWWU

D2 ≠ k2
0 0 0

0 1 0 0

0 0 D2 ≠ k2
0

0 0 0 1

T

XXXV

¸ ˚˙ ˝
=:M

S

WWWU

v1
÷1
v2
÷2

T

XXXV

¸ ˚˙ ˝
=:q

dy

=

1

2k2

⁄ y
max

0
q

H
Mqdy =:

1

2k2 (q, q)

M

(3.53)

The formulation in terms of an M -scalar product ( , )

M

will be helpful in chapter 4 for
the deduction of the continuous optimality conditions.
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Chapter 4

Optimization

In order to formulate a solution procedure for the continuous optimality problem result-
ing from the equations established in chapter 3 and with the theory from chapter 2, the
governing equations need to be discretized. There are two methods, either first discretize,
then optimize or first optimize, then discretize. Both approaches have been implemented
and will be described below. For the deduction of the optimality conditions and the ad-
joint system the Lagrange formalism has been applied.
An extensive discussion of existence and uniqueness of the solution shall not be made
here. For further understanding Hinze et al. (2008) provides a good lecture on optimiza-
tion with PDE constraints. All necessary preconditions for a unique solution are supposed
to be fulfilled.

The continuous optimization problem is specified in the following way

min

q0 ”=0
J(T ) s.t. B1

ˆq1
ˆt

+ A1q1 = 0, q1 œ �1, 0 < t Æ T, (4.1)

B2
ˆq2
ˆt

+ A2q2 = 0, q2 œ �2, 0 < t Æ T,

q(x, 0) = q0, q œ �, t = 0,

q1(y, t) = qW , y = 0, 0 < t Æ T,

q2(y, t) = qI , y æ Œ, 0 < t Æ T,

q(y, t) = qS, y = 1 + ›, 0 < t Æ T.

The cost functional J(T ) :=

E
q

(0)+E
›

(0)
E

q

(T )+E
›

(T ) is minimized subject to (s.t.) the initial boundary

value problem with (3.49) and (3.50) in the domain � := �1 fi �2, where the energy at
time T depends on the solution q at final time t = T : E(T ) = E(q(T )). Instead of
maximizing the energy over all possible initial conditions q0, normalized by the initial en-
ergy at t = 0, the inverse is minimized. The boundary conditions qW and qI are specified
at the wall and for y æ Œ. The conditions on the interface y = 1+› are summarized in qS.

4.1 Discretization

The chosen discretization is applied to both approaches. For the spatial discretization
of � = �1 ü �2 an equally spaced grid from y = 0 to ymax is chosen with the step size
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”y =

y
S

n
y1
, where yS = 1 and ny1 is the number of steps between wall and interface, see

Figure 4.1.

ymax

•
n = 0 v = 0, ÷ = 0

•
n = 1 ˆv

ˆy = 0
•
•
•

i ≠ 2
•

i ≠ 1
•

i

•
i + 1

•
i + 2

•
•
•
•
•n = ny1 ≠ 1

5 points stencil

•n = ny v = 0, ÷ = 0
•n = ny ≠ 1 ˆv

ˆy = 0
•
•
•
•
•
•
•
•
•
•n = ny1 + 1
•n = ny1

v-equ. ÷-equ.

interface-cond.

v-equ. ÷-equ.

Fig. 4.1: Spatial discretization for two fluids with boundary conditions and interface

The ÷-equations are implemented for n œ {1, ..., ny1 ≠ 1, ny1 + 1, ..., ny ≠ 1} as there is
only a second derivative involved, but in the v-equations there is a fourth derivative to
specify and therefore it is written for n œ {2, ..., ny1 ≠ 2, ny1 + 2, ..., ny ≠ 2}. In the latter
case there is a five-point stencil necessary in order to achieve overall accuracy of second
order. At the interface there is at maximum a discretization of a third derivative needed.
Since the interface conditions implemented in one domain cannot include quantities from
the other domain respectively, backward and forward schemes are necessary. The discrete
derivatives chosen can be seen in Table 4.1. The coe�cients for the backward di↵erences

Tab. 4.1: Discrete central derivatives with second order of accuracy for all grades
necessary

central forward
vÕ(yi) 1

h (≠0.5vi≠1 + 0.5vi+1) 1
h (≠1.5vi + 2vi+1 ≠ 0.5vi+2)

vÕÕ(yi) 1
h2 (vi≠1 ≠ 2vi + vi+1) 1

h2 (2vi ≠ 5vi+1 + 4vi+2 ≠ vi+3)
vÕÕÕ(yi) - 1

h3 (≠2.5vi + 9vi+1 ≠ 12vi+2 + 7vi+3 ≠ 1.5vi+4)
vÕÕÕÕ(yi) 1

h4 (vi≠2 ≠ 4vi≠1 + 6vi ≠ 4vi+1 + vi+2) -

are symmetric to the once of the forward scheme with negative sign for uneven derivatives.

For the time discretization the three-step Adams-Bashfordth and the two-step Crank-
Nicolson method were tested.
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4.2 First Discretized, Then Optimized

After spatial discretization, indicated by the d, of (4.1) with the specified discretization
schemes from section 4.1, the discrete problem reads

min

q0d ”=0
Jd

(T ) s.t. B

d ˆq

d

ˆt
+ A

d
q

d
= 0, q

d œ �

d, 0 < t Æ T (4.2)

q

d
= q0

d, q

d œ �

d, t = 0.

Here the two systems for each domain are written in one system also including the bound-
ary conditions and the interface variable ›.

4.2.1 Discrete Cost Functional

The discrete cost-functional evolves to

Jd
(T ) =

Ed
(qd

(t = 0))

Ed
(qd

(t = T ))

=

q0
dHMd

q0
d

qd
(T )

HMd
q

d
(T )

(4.3)

because the energy can be written as a discrete sum

E(t) ¥ 1

2k2 qd
(t)HMd

q

d
(t)”y =: Ed

(t). (4.4)

Here M

d denotes the discrete version of the matrix from section 3.3. For convenience ›d

is also included in q

d and M

d is manipulated with adding one line and column at the
interface (n = ny1) and the coe�cient mn

y1,n
y1 =

Sk4

Re2 .

4.2.2 Optimality Conditions

With the Lagrange function it is possible to write the constrained optimization problem
in terms of one function

Ld
(q

d
(t), q0

d, a

d, b

d
) =

q0
dH

M

d
q0

d

q

d
(T )

H
M

d
q

d
(T )

≠
⁄ T

0
a

dH
(B

d ˆq

d

ˆt
+ A

d
q

d
)dt ≠ b

dH
(q

d
(0) ≠ q0

d
). (4.5)

The constraints are paired with Lagrange multipliers a

d and b

d which appear as new
variables. Equating the derivatives with respect to each of the variables to zero specifies
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the optimality conditions:

ˆLd

ˆa

d
= 0 ∆ B

d ˆq

d

ˆt
+ A

d
q

d
= 0, (4.6a)

ˆLd

ˆb

d
= 0 ∆ q

d
(0) = q0

d, (4.6b)

ˆLd

ˆq0d
= 0 ∆ 2

Ed
(T )

q0
dH

M

d
= a

d
(0)

H
B

d, (4.6c)

ˆLd

ˆq

d
= 0 ∆ 2 Ed

(0)

Ed
(T )

2 q

d
(T )M

d
= ≠a

d
(T )

H
B

d, (4.6d)

∆ (

ˆa

d

ˆt
)

H
B

d
+ a

dH
A

d
= 0. (4.6e)

(4.6a) is the state equations from (4.1) with initial condition (4.6b). The optimality
condition (4.6c) is updating the initial condition for the state equation. (4.6d) represents
the adjoint initial condition for the adjoint system (4.6e).

4.3 First Optimized, Then Discretized

In this approach the Lagrange function is set up in the continuous form which reads

L(q1(t), q2(t), q0, q

a
1(t), q

a
2(t), ›, ›a

) = J(q(T ), q0)≠

≠
C⁄ T

0

⁄

�1
(q

a
1 , B1

ˆq1
ˆt

+ A1q1)dydt +

⁄ T

0

⁄

�2
(q

a
2 , B2

ˆq2
ˆt

+ A2q2)dydt

D

≠
⁄ T

0
(›a,

ˆ›

ˆt
+ i–U1› ≠ v1)dt = 0 (4.7)

with the Lagrange multipliers q

a
1(t), q

a
2(t) and ›a

(t). This gives after directional di↵er-
entiation the optimality system. It is not necessary to introduce Langrange multipliers
for each initial and boundary condition. The multipliers appearing here also follow the
definition of the adjoint operator and therefore they are equivalently called such. The ad-
joint counterparts of the di↵erential equations and each condition are achieved implicitly
in the next section. The continuous cost functional J(T ) can be written by means of the
M -scalar product from section 3.3:

J(T ) =

E(0)

E(T )

=

(q0, q0)M

+ |›(0)|2 Sk4

Re2

(q(T ), q(T ))

M

+ |›(T )|2 Sk4

Re2
. (4.8)

4.3.1 Adjoint Equations

In order to find the equations for the adjoint variables, denoted by a, summarized in A

a
1,

B

a
1 , A

a
2, B

a
2 and the adjoint interface and boundary conditions the following equation
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should hold:
⁄ T

0

⁄

�1
(q

a
1 , B1

ˆq1
ˆt

+ A1q1)dydt +

⁄ T

0

⁄

�2
(q

a
2 , B2

ˆq2
ˆt

+ A2q2)dydt

+

⁄ T

0
(›a,

ˆ›

ˆt
+ i–U1› ≠ v1)dt =

⁄ T

0

⁄

�1
(q1, B

a
1

ˆq

a
1

ˆt
+ A

a
1q

a
1)dydt +

⁄ T

0

⁄

�2
(q2, B

a
2

ˆq

a
2

ˆt
+ A

a
2q

a
2)dydt

+

3ÿ

i=0
T1i +

10ÿ

i=0
S1i +

4ÿ

i=0
T2i +

10ÿ

i=0
S2i. (4.9)

Integration by parts of the left hand side in (4.9) up to the point that all derivatives of
the direct variables vanish and appear on the adjoint ones instead, makes it possible to
factorize the terms with respect to the direct variables such that the left hand side of (4.9)
can be written in terms of the right hand side. The boundary terms are collected in the
sums (for detailed formulas see Table 4.2). The adjoint equations then follow for �1

≠ ˆ

ˆt
(D2 ≠ k2

)va
1 +

5
2i–U Õ

1D + i–U1(D
2 ≠ k2

) ≠ 1

Re
(D2 ≠ k2

)

2
6

va
1 + i—U Õ

1÷
a
1 = 0,

(4.10a)

≠ ˆ

ˆt
÷a

1 +

5
i–U1 ≠ 1

Re
(D2 ≠ k2

)

6
÷a

1 = 0, (4.10b)

and for �2

≠ ˆ

ˆt
(D2 ≠ k2

)va
2 +

C

2i–U Õ
2D + i–U2(D

2 ≠ k2
) ≠ 1

Re

m

“
(D2 ≠ k2

)

2
D

va
2 + i—U Õ

2÷
a
2 = 0

(4.11a)

≠ ˆ

ˆt
÷a

2 +

C

i–U2 ≠ 1

Re

m

“
(D2 ≠ k2

)

D

÷a
2 = 0 (4.11b)

respectively. The boundary terms in (4.9) have to vanish and give the adjoint boundary
and interface conditions. In order to find them, the direct interface conditions (3.31b),
(3.32), (3.33), (3.34), (3.42), (3.43), (3.48) and the boundary conditions (see Figure 3.4)
are inserted. This makes it possible to sort the terms again with respect to the direct
variable such that the adjoint boundary conditions read

va
1(0) = 0, (4.12a)

va
2(t æ Œ) = 0, (4.12b)

va
1

Õ
(0) = 0, (4.12c)

va
2

Õ
(t æ Œ) = 0, (4.12d)

÷a
1(0) = 0, (4.12e)

÷a
2(t æ Œ) = 0, (4.12f)
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and the interface conditions read

va
1 =

1

“
va

2 , (4.13a)

va
1

Õ
=

1

“
va

2
Õ, (4.13b)

÷a
1 =

1

“
÷a

2 , (4.13c)

÷a
1

Õ
=

m

“
÷a

2
Õ, (4.13d)

2k2va
1 ≠ (3 ≠ m)

“
k2va

2 ≠ va
1

ÕÕ
+

m

“
va

2
ÕÕ

= 0, (4.13e)

Re
ˆ

ˆt
(va

1
Õ ≠ va

2
Õ
) ≠ (i–U1Re + 2k2

)va
1

Õ
+ va

1
ÕÕÕ ≠ m

“
va

2
ÕÕÕ

+ (

(3m ≠ 1)

“
k2

+ i–U1Re)va
2

Õ
+ Re›a

= 0, (4.13f)

ˆ›a

ˆt
+ i–U1›

a ≠ i–(U Õ
1 ≠ U Õ

2)(i–U2(
1

“
≠ 1) +

m

Re“
k2

)va
2

+ i–(U ÕÕ
1 ≠ mU ÕÕ

2 )

1

Re“
va

2
Õ ≠ i–(U Õ

1 ≠ U Õ
2)

m

Re“
va

2
ÕÕ

+ i—(U ÕÕ
1 ≠ mU ÕÕ

2 )

m

Re“
÷a

2
ÕÕ ≠ i—(U Õ

1 ≠ U Õ
2)

m

Re“
÷a

2
Õ

≠ (Sk4
+

k2

Fr2 (1 ≠ “))

1

“
va

2 = 0. (4.13g)
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4.3.2 Optimality Conditions

The directional derivatives of L with respect to all variables give the optimality system

ˆL
ˆq

a
1

= 0 ∆ B1
ˆq1
ˆt

+ A1q1 = 0 (4.14a)

ˆL
ˆq

a
2

= 0 ∆ B2
ˆq2
ˆt

+ A2q2 = 0 (4.14b)

ˆL
ˆq0

= 0 ∆ 2

E(T )

q0
H

M = q

a
(0)

H
B (4.14c)

ˆL
ˆq1

= 0 ∆ 2 E(0)

E(T )

2 q1(T )M1 = ≠q

a
1(T )

H
B1 (4.14d)

∆ B

a
1

ˆq

a
1

ˆt
+ A

a
1q

a
1 = 0 (4.14e)

ˆL
ˆq2

= 0 ∆ 2 E(0)

E(T )

2 q2(T )M2 = ≠q

a
2(T )

H
B2 (4.14f)

∆ B

a
2

ˆq

a
2

ˆt
+ A

a
2q

a
2 = 0 (4.14g)

ˆL
ˆ›

= 0 ∆ (4.2) (4.14h)

ˆL
ˆ›a

= 0 ∆ ˆ›

ˆt
+ i–U1› ≠ v1 = 0 (4.14i)

Discretization of (4.14a) - (4.14i) and writing the conditions for both fluids in terms of
matrix-vector equations depending on q

d, A

d, B

d, M and q

ad, A

ad, B

ad, M

ad respec-
tively similarly to (4.6e), give the optimality system for this approach. It can be written
in the same way as for the first discretized, then optimized approach, but the coe�cients
in the discrete matrix are di↵erent. Instead of adjoining the matrices from the direct
system, the continuous equations and conditions form the adjoint system.

The implementation of the optimality system first optimized, then discretized can be
understood from the coding excepts in Listing A.2.
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Chapter 5

Verification: Nonmodal Growth in
Oscillatory Stokes Flows

Biau (2016) examined in his work transient growth of perturbations in an oscillating
single-fluid flow using a similar method that has been developed for the present work.
For the purpose of verification, the two-fluid code has been simplified by excluding the
surface and assuming the upper fluid to vanish. Those results have been compared with
the one published in the article mentioned above. In the following governing equations,
the optimality system and discretization will be presented shortly as this setting depicts
a simplification of our two-fluid case, explicitly described in chapter 3 and chapter 4.

5.1 Governing Equations and Boundary Conditions

For a single fluid over an oscillating plate the governing equations are the Navier-Stokes-
equations as introduced and simplified in section 3.2. Proceeding accordingly for one fluid
only (fl1 = fl2), we arrive at the following system which governs the base flow

ˆU

ˆt
=

1

Re

ˆ2U

ˆy2 , (5.1a)

ˆp

ˆy
= ≠ 1

Fr2 (5.1b)

with the oscillating and zero boundary conditions

U(y = 0, t) = cos(Êt), (5.2a)

U(y æ Œ, t) = 0. (5.2b)

An analytical solution for this boundary value problem

U(y, t) = e≠c
s

y
cos(Êt ≠ csy) with cs =

Û
1

2

ReÊ, (5.3)

which can be found by using complex numbers and separation of variables as presented
in subsection 3.2.2. Figure 5.1 shows the velocity profiles of an oscillating base flow at
di↵erent instants in time.
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0

1

2

3

4

5

-1 -0.5 0 0.5 1

y

U(y)

t = 0

t = 0.17

t = 0.25

t = 0.33
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Fig. 5.1: Velocity profiles of an oscillating base flow at di↵erent instants in time

Again proceeding as shown in the case for two fluids, the partial di↵erential equations for
the perturbations written in terms of v and ÷ are

1
D2 ≠ k2

2 ˆv

ˆt
+

5
i–

1
D2 ≠ k2

2
U ≠ i–U ÕÕ ≠ 1

Re

1
D2 ≠ k2

226

¸ ˚˙ ˝
=: A11

v = 0, (5.4a)

ˆ÷

ˆt
+

5
i–U ≠ 1

Re

1
D2 ≠ k2

26

¸ ˚˙ ˝
=: A22

÷ ≠ i—U Õv = 0. (5.4b)

We can write this as a matrix vector equation
C
D2 ≠ k2

0

0 1

D

¸ ˚˙ ˝
=: B

ˆ

ˆt

C
v
÷

D

+

C
A11 0

i—U Õ A22

D

¸ ˚˙ ˝
=: A

C
v
÷

D

= 0 (5.5)

ending up with the following initial value problem

Bˆq
ˆt

+ Aq = 0, (5.6)

q(t = 0) = q0.

This initial value problem is subject to minimizing the cost functional introduced in the
beginning of chapter 4. By means of the Lagrange functional the optimality system in
the continuous form can be specified.

5.2 Ê-independent Scaling

It is possible to write the analytical solution of the base flow independent from Ê, which
also reduces the number of parameters. This is done by scaling the Navier-Stokes equations
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as proposed by Biau (2016) . The Reynolds number is then ReB = uú
0

Ò
T ú

‹ú which concludes
from the fact that the time is made dimensionless with the periode P : tú

= P út. The
conversion between the dimensionless variables from each scaling is the following, where

B denotes the quantities scaled from Biau (2016):

t = tB
2fi

Ê
(5.7)

Re = Re2
B

Ê

2fi
(5.8)

– = –B
2fi

Ê
. (5.9)

This scaling is used in the numerical experiments in order to compare the here presented
results with the ones from Biau (2016). The times tin and tfin are given as ratio of a full
period P .

5.3 Discretization

For the spatial discretization shown in Figure 5.2 we chose an equally spaced grid with the
step size ”y =

y
max

n
y

where ymax denotes the fluid height over the plate for which we solve

(5.6) and ny the number of points within. To approximate in the v equation the fourth
derivative at a certain point we need two points above and below, a five point stencil. At
the borders we imply the boundary conditions also shown in Figure 5.2.

ymax

•
n = 0 v = 0, ÷ = 0

•
n = 1 ˆv

ˆy = 0
•

n = 2
•
•
•

i ≠ 2
•

i ≠ 1
•

i

•
i + 1

•
i + 2

5 points stencil

•n = ny

v = 0, ÷ = 0
•n = ny ≠ 1 ˆv

ˆy = 0
•n = ny ≠ 2
•
•
•
•
•
•
•

v-equ. ÷-equ.

Fig. 5.2: Spatial discretisation in the case of a single fluid

The coe�cients for the discrete derivatives are shown in Table 4.1 of section 4.1.
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For the discretization in time we chose the three-step Adams-Bashforth method backward
in time such that

Bd dud

dt
=

1

�t
(

3

2

Bd
n u

d
n ≠ 2 Bd

n≠1 u

d
n≠1 +

1

2

Bd
n≠2 u

d
n≠2).

Applied to (5.6) the discrete equation reads

1

�t
(

3

2

Bd
n u

d
n ≠ 2 Bd

n≠1 u

d
n≠1 +

1

2

Bd
n≠2 u

d
n≠2) + Ad

n qd
n = 0

∆ (

3

2�t
Bd

n + Ad
n) qd

n =

2

�t
Bd

n≠1 qd
n≠1 ≠ 1

2�t
Bd

n≠2 qd
n≠2.

But because Bd doesn’t depend on time, Bd
n≠1 = Bd

n≠2 =: Dd and with Cd
n := (

3
2�t

Bd
n +

Ad
n) we have to solve the following system as constraint condition

Cd
n qd

n = Dd
(

2

�t
qd

n≠1 ≠ 1

2�t
qd

n≠2).

5.4 Optimization Problem and Optimality
Conditions

In order to solve our discrete optimization problem

min

q0 ”=0
Jd

(q

d
0) s. t. Bd ˆqd

ˆt
+ Ad

q

d
= 0 in �

d, 0 < t Æ T (5.10)

qd
(0) = qd

0 in �, t = 0,

we have to specify our cost functional J(q0):

J(qd
0) =

Ed
(qd

(t = 0))

Ed
(qd

(t = T ))

with Ed
(qd

(t)) :=

1

2k2

⁄ y
max

0
|Dvd|2 + k2|vd|2 + |÷d|2dy.

(5.11)

As shown in section 3.3 we can write Ed
(qd

(t)) with the matrix Md. Approximating the
continuous integral as a discrete sum Ed

(qd
(t)) ¥ 1

2k2 qd
(t)HMd

q

d
(t)”y, the variations of

the discrete Lagrange function

Ld
(qd

(t), qd
0, ad, bd

) :=

qd
0

HMd
q

d
0

qd
(T )

HMd
q

d
(T )

(5.12)

≠
⁄ T

0
adH

(Bd ˆqd

ˆt
+ Ad

q

d
)dt ≠ bdH

(qd
(0) ≠ qd

0),

where ad and bd denote Lagrange multipliers, can be used deducing the optimality condi-
tions (shown in subsection 4.2.2). The discrete optimality systems then reads the following
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Bd ˆqd

ˆt
+ Ad

q

d
= 0 (5.13a)

qd
(0) = qd

0 (5.13b)

BdHad
(0) =

2

qd
(T )

HMd
q

d
(T )

MdHqd
(0) =

2

Ed
(T )

MdHqd
(0) (5.13c)

BdH ˆad

ˆt
≠ AdHad

= 0 (5.13d)

ad
(T )

HBd
= ≠ 2qd

(0)

HMd
q

d
(0)

(qd
(T )

HMd
q

d
(T ))

2 qd
(T )

HMd
= ≠ 2Ed

(0)

Ed
(T )

2 qd
(T )

HMd. (5.13e)

Comparing Md with Bd shows that we can find a matrix Kd such that

Md
= KdBd, with Kd

=

S

WWWWWWWWWWWWWWWWU

1 0 0 0 0 . . . . . . . . . 0

0 1 0 0 0 . . . . . . . . . 0

0 0 ≠1 0 0 . . . . . . . . . 0

0 0 0 1 0 . . . . . . . . . 0

. . . . . . . . . . . .
. . . . . . . . . . . . . . .

0 . . . . . . . . . 0 ≠1 0 0 0

0 . . . . . . . . . 0 0 1 0 0

0 . . . . . . . . . 0 0 0 1 0

0 . . . . . . . . . 0 0 0 0 1

T

XXXXXXXXXXXXXXXXV

. (5.14)

The optimality conditions (5.13c) and (5.13e) then simplify to

BdHad
(0) =

2

Ed
(T )

BdHKdHqd
(0)

∆ qd
(0) =

Ed
(T )

2

(KdH
)

≠1ad
(0) (5.15)

ad
(t)HBd

= ≠ 2Ed
(0)

Ed
(T )

2 qd
(t)HKd

B

d

∆ ad
(t)H

= ≠ 2Ed
(0)

Ed
(T )

2 qd
(t)HKd. (5.16)

The schematic optimization algorithm developed in order to solve the discrete version of
(5.10) can be understood from algorithm 1.
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Data: q0, tin, dt, dy, T, tol

Result: q

initialization;
while err > tol do

for n = 0 to nt do
C

n
q

n
= D(

2
�t q

n≠1 ≠ 1
2�t q

n≠2
);

with initial condition: q(0) =

E(T)
2 (K

H
)

≠1a(0)

end
for n = nt to 0 do

C

nH
a

n
= D

H
(

2
�t a

n≠1 ≠ 1
2�t a

n≠2
);

with initial condition: a(T) = ≠2E(0)
E(T)2 K

H
q(T)

end
derive err;

end
Algorithm 1: Optimization loop for a single fluid; integrating the direct forward and
the adjoint system backward in time

5.5 Numerical Results

For the case presented in this chapter a full parameter study has not been done in order
to find the optimal values because the aim of this thesis was to find the optimal values in
a two-fluid flow. The purpose of this chapter is to make sure that the methods applied
make sense in a case where a work exists and the results can be compared with. Numerical
experiments showed that the optimal values published in (Biau, 2016, p. 7) are also
optimal according to the here presented setting, see Figure 5.3 and Figure 5.4, which
show a variation of –B, — and tin as summarized in Table 5.1.

Tab. 5.1: Variation of the optimal values publishes in (Biau, 2016, p. 7).

var≠ Biau var+
–B 0.667 0.767 0.867
— - 0 0.1
tin 0.0623 0.0723 0.0823

The behavior of the numerical results for di↵erent values of dt and ny can be seen in
Figure 5.5. The variations of dt and ny has a big influence on the results, as can be seen
on the shape of the curve which has not converged with ny = 6000. This can be traced
back to the shape of the velocity profile, which shows a rapid change close to the wall. In
order to have a su�cient resolution, dt and ny have to be chosen carefully. In Figure 5.6 it
is shown that we could also reproduce the energy curve with its characteristic shape Biau
published in his paper up to a high level of accuracy. The small deviation one can detect
after t = 0.5 might has its origin in the value of ny. But as a characteristic reproduction
of the energy curve was possible, there was no need to increase the spatial steps even more
in order to meet the exact values.
Figure 5.7 shows on the top the contours of the spanwise vorticity of the perturbations
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‹ =

ˆv
ˆx

≠ ˆu
ˆy

at tin = 0.0723 and at tfin = 0.4. The lower two pictures show the v
component of the perturbations in order to visualize their evolution. The results are
indeed very similar to the once in (Biau, 2016, p. 7).
All together the here presented results confirm the procedure chosen for the confrontation
of the two-fluid case.
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Fig. 5.7: Contours of the spanwise vorticity ‹ =

ˆv
ˆx

≠ ˆu
ˆy

(top) and v (bottom) of the
perturbations at tin = 0.0723 (left) and tfin = 0.4 (right), normalized with
respect to |v(t = 0)|
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Results

This chapter is divided in two parts where section 6.1 contains a study of the param-
eters and section 6.2 deals with the individual application of the eye after vitrectomy.
The results here presented are produced by applying the first optimized, then discretized
approach (for some relevant excerpts see Appendix A). A code in which the system has
discretized first and then optimized was tested as well but led to numerical problems, most
likely due to the unfavorable condition of the discrete matrices, so that the results were
not exploitable. In order to evaluate the quality of the findings on basis of a reference,
the case from Biau (2016) is again the starting point from which the parameters, namely
viscosity ratio m and surface tension S, vary such that a two-fluid case is obtained with
similar flow characteristics.
The objective of the experiments are to find the optimal spanwise and streamwise wavenum-
ber – and — as well as the optimal initial and final time tin and tfin for di↵erent values
of the viscosity ratio m. For each di↵erent case depending of the flow characteristics and
the densities of the two fluids the optimal values change. The wavenumbers govern the
shape of the perturbation u(y, t)ei(–x+—z) and tin and tfin the shape of the base flow. In

order to find the worst case scenario the normalized energy at some instant of time T E(T )
E(0)

functions as a measure of the amplifications.

6.1 Parameter Study

This study is done for the case ReB = 1000, Fr = 20, “ = 1, Ê = 0.008 and ymax = 15.
The numerical parameters are ny1 = 200 and dt = 0.5. The Reynolds number and – are
denoted with B which refers to the scaling of Biau (2016) for which a conversion can be
done by (5.8) and (5.9) in section 5.2. The times tin and tfin are understood in terms of
the fraction of a full period P =

2fi
Ê
.

6.1.1 Influence of Viscosity Ratio m

In order to understand the influence of m on the optimal values of – and — di↵erent cases
are presented in Figure 6.1 which show the energy at final time t = T normalized with the
initial energy at t = 0 for di↵erent values of m in the –-— plane. In the top left picture
the single fluid case with vanishing surface tension and no viscosity di↵erence is shown
followed by the case of two identical fluids but surface tension (top right). Below there
are one case with m = 5 and one case with m = 10. The contour lines are drawn at the
same levels in each picture.

40



Chapter 6 Results

0

0.1

0.2

0.3

0.4

0.5 0.4
0.6

0.8
1

1.2
1.4

1.6

200000
600000
1e+06

1.4e+06

m = 1, S = 10

≠8

—

–

200000

600000

1e+06

1.4e+06

0

0.1

0.2

0.3

0.4

0.5 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

400
800
1200

m = 1

—

–

400

800

1200

0

0.1

0.2

0.3

0.4

0.5 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

100
300
500

m = 5

—

–

100

300

500

0

0.1

0.2

0.3

0.4

0.5 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

50
150
250

m = 10

—

–

50

150

250

Fig. 6.1: Maximal normalized energy E(T )
E(0) showed as surface parametrized with – and —

for di↵erent values of m and tin = 0.0723, tfin = 0.4, ReB = 1000, dt = 0.5,
ymax = 15, ny1 = 200, Fr = 20, “ = 1, Ê = 0.008. In all subfigures S = 0.1
except for the upper left one where S = 10

≠8 (single fluid approximation)

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10

E
q

(T
)

E
q

(0
)

m

0.00025

0.0003

0.00035

0.0004

0.00045

0.0005

1 2 3 4 5 6 7 8 9 10

E
›

(T
)

E
›

(0
)

m

Fig. 6.2: Maximal normalized flow E
q

(T )
E

q

(0) (left) and interface energy E
›

(T )
E

›

(0) (right) for vary-
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It can be understood that the maximal gain E(T )
E(0) decays with growing m. This fact

becomes even more obvious from the curve of the maximal flow energy E
q

(T )
E

q

(0) in Figure 6.2

on the left. On the right in the aforementioned figure the maximal interface energy E
›

(T )
E

›

(0)
as a function of m is shown. The energy of the interface is growing with m but as its
contribution to the total gain is vanishing, it does not come into account for the here
chosen range. It can be followed that m has a damping influence on the maximal gain.
The optimal — is in all cases 0 and the optimal – is not changing much between 0.7 and
0.65 due to the step size in the –-— resolution and it is most likely that the change is even
smaller with higher resolution.
The evolution of the perturbations can be understood from Figure 6.3 and Figure 6.4.

Fig. 6.3: Contours of the spanwise vorticity ‹ =

ˆv
ˆx

≠ ˆu
ˆy

(top) and v (bottom) of the
perturbations at tin = 0.0723 (left) and tfin = 0.4 (right), normalized with
respect to |v(t = 0)|; m = 5, S = 0.1, –B = 0.7, — = 0, ReB = 1000, dt = 0.5,
ymax = 15, ny1 = 200, Fr = 20, “ = 1, Ê = 0.008
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Fig. 6.4: Contours of the spanwise vorticity ‹ =

ˆv
ˆx

≠ ˆu
ˆy

(top) and v (bottom) of the
perturbations at tin = 0.0723 (left) and tfin = 0.4 (right), normalized with
respect to |v(t = 0)|; m = 10, S = 0.1, –B = 0.65, — = 0, ReB = 1000,
dt = 0.5, ymax = 15, ny1 = 200, Fr = 20, “ = 1, Ê = 0.008

In each contour-figures the upper row shows the span wise vorticity ‹ =

ˆv
ˆx

≠ ˆu
ˆy

and the
lower row the velocity v of the optimal perturbations, on the left at initial time tin and on
the right side at final time tfin. The left pictures look very much alike which means that
the initial condition in the last optimization loop was in both cases similar. The pictures
on the right show a di↵erent range of magnitude. The qualitative behavior is very similar.
The influence of the spanwise wavenumber — is not apparent. In comparison to Figure 5.7
from section 5.5 the interface at y = 1 becomes visible where the velocity v shows kinks.
The spanwise vorticity shows extreme values and its shape is significantly flatten.

6.1.2 Influence of tin and tfin

In this subsection the viscosity ratio is fixed to m = 5. The time ranges governed by tin

and tfin are varied such that nine cases arise. An overview over these can be found in
Figure 6.6. The values were chosen by varying the optimal times from the single fluid
case with tin = 0.0723 and tfin = 0.4 (plot in the middle) slightly. In order to capture
the maximum of the normalized energy in the –-— plane, the ranges change from case
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to case. Here two dimensional plots of the maximal gain in the –-— plane are shown.
The contour lines are drawn at the same levels in every plot such that more level curves
indicate a higher level of energy at the maximum. Three pictures per row show cases with
varying tin and fixed tfin. Read from top to bottom three pictures per column show cases
with varying tfin and fixed tin. The top three pictures of Figure 6.6 illustrate cases with
tfin = 0.2. The one in the middle presents the case with maximal gain out of all nine.
The row below has a fixed initial time of tin = 0.4 and the one on the bottom tin = 0.6.
All together, the runs with lowest energy magnitude are the ones with tin = 0.6 compared
to all others. The first column contains the cases with the lowest energy compared to the
others in the row respectively.

The optimal value for the spanwise wavenumber — is 0. The optimal value for – changes
with initial and final time. It can be observed that with fixed initial time the optimal
– decays with later final time. In case of a fixed final time, optimal – grows with later
initial time for cases tfin = 0.2, decays for cases with tfin = 0.6 and has a maximum at
tin = 0.0723 for tfin = 0.4. This behavior can be seen from plotting the optimal – values
in the tin-tfin-plane, see Figure 6.5 on the right. On the left in the figure aforementioned
the maximal normalized energy at optimal – respectively shows a clear maximum around
tin = 0.072 and tfin = 0.2.
Fixing the wave numbers by the optimal values from the case with the maximum gain
–B = 0.87 and — = 0, (of Figure 6.6) and searching again in the time-plane refines an
optimal time span with tin = 0.079 and tfin = 0.23, as Figure 6.7 exhibits.
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Fig. 6.7: Maximal normalized energy E(T )
E(0) in the tin-tfin plane with –B = 0.87, — = 0,

m = 5, S = 0.1 ReB = 1000, dt = 0.5, ymax = 15, ny1 = 200, Fr = 20, “ = 1,
Ê = 0.008

In comparison to the single-fluid case the final time is much smaller. This leads to the
assumption, that the interface and the viscosity di↵erence accelerate the evolution of the
perturbations. As the base flow governs the perturbation equations of motion, it is of
interest to take a look at it at initial and final time. In Figure 6.8 the profiles for the
di↵erent initial times (left) and final times (right) of the nine cases from Figure 6.6 can
be seen. Figure 6.9 shows the base flow profiles for the initial and final time in the case
of Biau (2016) on the left and on the right the optimal case from Figure 6.5.
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Fr = 20, “ = 1, Ê = 0.008
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Furthermore Figure 6.10 pictures the behavior of the perturbations on the basis of the
profile of the span wise vorticity ‹ and velocity v at initial and final time in the optimal
case in terms of –, —, tin and tfin. Compared to the magnitude of the cases shown in
Figure 6.3 and Figure 6.4 the maximal velocity is about twice as big. The initial condition
on the left is slightly di↵erent to the other cases. Again the interface at y = 1 is present
due to the flatten virtuosity ‹. The shape of v is slightly stretched in the x-direction.
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Fig. 6.10: Contours of the span wise vorticity ‹ =

ˆv
ˆx

≠ ˆu
ˆy

(top) and v (bottom) of the
perturbations at tin = 0.079 (left) and tfin = 0.23 (right), normalized with
respect to |v(t = 0)|; m = 5, S = 0.1, –B = 0.87, — = 0, ReB = 1000, dt = 0.5,
ymax = 15, ny1 = 200, Fr = 20, “ = 1, Ê = 0.008
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6.2 Physical Case: The Vitrecomized Eye

In this section the values for the variables have been changed such that the case investi-
gated here is comparable with the human eye after vitrectomy. The choice of the Reynolds
number is Re = 7 and the frequency of the eye movement Ê = 0.001 is according to Isakova
et al. (2014). The surface tension is in reality much higher, but due to problems in con-
vergence it is set to S = 0.1. Higher surface tension only increases the damping behavior
and does not lead to more transient growth therefore this choice does not underestimate
an optimal case found here. The domain is much larger with ymax = 600 as the base flow
velocity stretches far out in the free stream. The numerical parameters are dt = 1 and
ny1 = 5. The other values are m = 5, “ = 1, Fr = 20.

In order to find optimal values for – and — for the time interval tin = [0.05, 0.22] and
tfin = [0.25, 0.35] nine cases where investigated with varying times. All show the same
picture as in Figure 6.11 on the left. The optimal values for — is zero and for – it is even
smaller than 0.02. Lowering this value even more than done here would end up in having
perturbations which are no longer waves but only constant values. The right hand side of
Figure 6.11 shows results with — = 0 and – = 0.02 in the tin-tfin-plane and a maximum
at tin = 0.145 and tfin = 0.3.
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Fig. 6.11: Maximal normalized energy E(T )
E(0) as surface parametrized with – and — and

tin = 0.15, tfin = 0.3 (left) and in the tin-tfin-plane with – = 0.02, — = 0

(right); m = 5, Re = 7, dt = 1, ymax = 600, ny1 = 5, Fr = 20, “ = 1,
Ê = 0.001, S = 0.1

To understand this behavior, it is useful to have a look at the energy curve over time for
this particular case shown in Figure 6.12. From this it can be seen that the case is fully
damped and there is no transient growth at all.
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Fig. 6.12: Normalized energy E(t)
E(0) over time t with – = 0.02, — = 0, tin = 0.145, tfin =

0.3, m = 5, S = 0.1 Re = 7, dt = 1, ymax = 600, ny1 = 5, Fr = 20, “ = 1,
Ê = 0.001
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Chapter 7

Conclusion and Recommendations

In order to investigate the impact of transient nonmodal growth on the stability of the
interface between two superposed fluids over an oscillating flat plate, the case in which
the maximum energy occurs were searched for. This model problem arose from a simple
approximation of the situation present in a vitrectomized eye where aqueous humor and
a tamponade fluid coexist in the space once occupied by the vitreous body. The mathe-
matical description of the problem ended up in well known equations.

Finding the worst case scenario coincided with the solution of the optimization problem
in which a measure of the flow energy was minimized subject to the equations of motion
of the flow.
To verify the code which was used for the numerical results, a comparison with a similar
work on an oscillating Stokes flow was done successfully. The discretization approach
here was ”first discretize, then optimize” and led to satisfactory results. However in the
two-fluid case the choice of the approach became crucial again as it led to numerical prob-
lems most likely due to the discretization on the interface. The alternative approach ”first
optimize, then discretize”made it necessary to set up the continuous adjoint equations of
motion as well as the continuous interface and boundary conditions.

The results presented here recommend the exclusion of short-term e↵ects on emulsifica-
tion in the human eye. In section 6.2 it is shown that a flow with these characteristics
is completely damped and does not give rise to transient growth. Further research on
reasons of emulsification should be conducted in the long term behavior or completely
di↵erent mechanisms such as the rapid process of inserting the silicon oil into the eye or
geometrical characteristics that favor emulsification. The linear modal stability analysis
from Isakova et al. (2014) should be carried further with a non-linear stability analysis.
There are several possible extensions of the model such as the curvature but also specific
geometrical characteristics as roughness of the inner surface of the eye.

On nonmodal stability analysis of two superposed fluids over an oscillating plate nothing
has been published at the present time and such it is new for the field of fluid mechan-
ics. In the case of relevant parameters as presented in section 6.1 it is shown that waves
of the shape u(y, t)ei–x lead to the maximum amplification as the optimal value of — is
zero. With growing viscosity ratio m the optimal values for – does not change much. On
contrary the influence of tin and tfin is evident. In comparison to the single fluid case
in Biau (2016) the optimal tfin is smaller as well as the nonmodal growth. What is left
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to investigate is the behavior of flows with di↵erent Reynolds numbers. It can not be
excluded that this might show qualitatively di↵erent results. Also a density di↵erence of
the two fluids “ ”= 1 has not been investigated in the parameter study.

The contribution of this work is not only to the field of ophthalmology but also to fluid
mechanics in general. One reason for emulsification in the human eye could be excluded
which narrows the remaining possibilities. In addition a starting point for the investigation
of a two-fluid Stokes flow is set.
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Appendix A

Excerpts from the Code

The extracts of the code here presented are the main program in Listing A.1 and the
subroutine of the optimization loop Listing A.2. The language used is called cpl “a high-
level programming language designed and developed by Paolo Luchini between 1993-2006”
(Quote from the cpl-documentation file). All files necessary for reproducing the results
from chapter 6 can be found on the CD at the back of this thesis. As the compiler belongs
to the inventor, it is not provided here.

Listing A.1: main.cpl

! Jan P r a l i t s V1.0 2016≠09≠06
! changes : Au l i k k i Wilhelmi Apr i l /Mai 2017
!
USE rbmat
USE cbmat
USE lapack
!≠≠≠≠≠≠≠≠≠≠≠read from f i l e occh io . in ≠≠≠≠≠≠≠≠
! Re : Reynolds number
! ReB : Reynolds number Biau s c a l i n g
! nin : Fract ion o f per iod t i n=nin⇤ per iod
! d t : time s t ep
! np : Fract ion o f per iod t f i n=np⇤ per iod
! omega : f requency o f wa l l o s c i l l a t i o n
! ny1 : Number o f d i s c r e t e po in t s up to the i n t e r f a c e
! ymax : Maximum va lue f o r wa l l normal d i r e c t i o n
! a l f a : s treamwise wave number
! a l faB : streamwise wave number Biau s c a l i n g
! be ta : spanwise wave number
! err : r e l . e r ror o f gain G in i t e r a t i o n o f opt . p e r t .
! t o l : t o l e r anc e
! mv : r a t i o mu2/mu1
! Fr : Froude number
! gamma : r a t i o rho2/rho1
! S : su r f a c e t ens ion
! c s e : c o e f f i c e n t f o r i n t e r f a c e energy
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REAL Re , ReB, t in , t f i n , dt , nin , np , omega , dny1 , ymax , alfaB ,
a l f a , beta , err , t o l , mv, Fr , gamma, S , c se , k2

INTEGER ny , ny1
FILE INPUT=OPEN( ”occh io . in ”)
DO WHILE READ BY NAME FROM INPUT ReB OR nin OR dt OR np OR omega

OR ny1 OR ymax OR al faB OR beta OR err OR to l OR mv OR Fr OR
gamma OR S

CLOSE(INPUT)

Re=ReBˆ2⇤omega/(2⇤PI )
a l f a=al faB ⇤ ( ( omega⇤Re) /(2⇤PI ) ) ˆ0 .5
k2=a l f a ⇤ a l f a+beta⇤beta
c s e =0.5⇤S⇤k2/Reˆ2
t i n=nin ⇤2⇤PI/omega
t f i n=np⇤2⇤PI/omega
dny1=1/ny1
ny=ROUND(ymax/dny1 )

!≠≠≠≠≠≠ de f i n e d imens ion l e s s wa l l normal coord ina te ≠≠≠≠≠≠≠≠
REAL y ( 0 . . ny )=0
DO y ( i )=ymax⇤ i /ny FOR ALL i

!≠≠≠≠≠≠≠ de f i n e d i s t r i b u t i o n in time ≠≠≠≠≠≠
REAL t
INTEGER nt
nt=ROUND(1+( t f i n≠t i n ) /dt )

! p a r a bo l i c d i s t r i b u t i o n
REAL FUNCTION t t (INTEGER i t )=t i n+( i t ≠1)⇤dt

!≠≠≠≠≠ de f i n e v a r i a b l e s f o r sub rou t ine s ≠≠≠≠≠≠≠≠
! neq : number o f equa t i ons
! n s t a t e : number o f s t a t e v a r i a b l e s
! bwidth : band width o f matrix
! U1at1 . . : f i r s t d e r i v . o f U at the su r f a c e ( y=1)
! U2at1 . . : second de r i v . o f U at the su r f a c e ( y=1)
! U,U1,U2 : streamwise meanflow v e l o c i t i e s , f i r s t d e r i v . ,

second de r i v .
! A,B,T : matr ices T = B⇤ sigma + A, sigma i s the e i g e v a l u e
! M : matrix f o r the energy
!
INTEGER neq = 2
INTEGER ns ta t e = 2
INTEGER bwidth = 18
REAL U1at1 1=0,U1at1 2=0,U2at1 1=0,U2at1 2=0
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ARRAY( 0 . . ny ) OF REAL U=0,U1=0,U2=0
ARRAY( 1 . . neq ⇤(ny+1)+3,≠bwidth . . bwidth ) OF COMPLEX A=0, B=0, C=0,

D=0, M=0
ARRAY( 1 . . neq ⇤(ny+1)+3,≠bwidth . . bwidth ) OF COMPLEX Aadj=0, Badj

=0, Cadj=0, Dadj=0
ARRAY( 1 . . neq ⇤(ny+1)+3) OF COMPLEX Q=0,P=0
!≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠
! Energy norm
REAL FUNCTION Energy (COMPLEX QQ(⇤ ) , MMM(⇤ ,⇤ ) ) = REAL(CONJG(QQ)⇤

MMM⇤QQ)
! c o e f f i c i e n t s f o r second order f i n i t e d i f f e r e n c e s
USE Deriv4th
! s u b rou t ine s to s e t up matr ices o f the d i r e c t equa t ions
USE BuildMats
! s u b rou t ine s to s e t up matr ices o f the ad j o i n t equa t i ons
USE BuildMatsAdjoint
! s u b rou t ine s to c a l c u l a t e the base f l ow
USE BaseFlow
! sub rou t ine to f i nd the opt imal s o l u t i o n
USE OptPert
! compute c o e f f i c i e n t s o f d e r i v a t i v e s
Se tDe r i va t i v e s
!≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠
! MAIN program ≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠
!≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠
! i n i t i a l cond i t i on f o r Q
LOOP FOR i=0 TO ny1
Q( neq⇤ i +1) = y( i )⇤exp(≠y ( i ) )
Q( neq⇤ i +2) =0⇤y ( i )⇤exp(≠y ( i ) )
REPEAT LOOP

Q(2⇤ny1+3) = 0⇤y ( ny1 )⇤exp(≠y ( ny1 ) )

LOOP FOR i=ny1 TO ny
Q( neq⇤ i +4) = y( i )⇤exp(≠y ( i ) )
Q( neq⇤ i +5) =0⇤y ( i )⇤exp(≠y ( i ) )
REPEAT LOOP

Q = Q/MAXABS(Q)
!≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠
OptPert ( )
!≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠
! end MAIN program ≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠
!≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠
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Listing A.2: OptPert.cpl

SUBROUTINE OptPert

REAL E0=0, ET=0, G=1,Gold=10⇤G,dG
ARRAY( 1 . . neq ⇤(ny+1)+3,≠bwidth . . bwidth , 1 . . nt ) OF COMPLEX CS=0,

CSA=0
ARRAY( 1 . . neq ⇤(ny+1)+3,≠bwidth . . bwidth ) OF COMPLEX Ineg=0
ARRAY( 1 . . neq ⇤(ny+1)+3) OF COMPLEX d=0,Qin=0,Q1=0,Q2=0,QN=0,Pin

=0,Pm1=0,P1=0,P2=0,PN=0
INTEGER ip=1, i , j , i t

LOOP FOR k=0 TO ny1
Ineg (2⇤k+1 ,0)=≠1
Ineg (2⇤k+2 ,0)=1
REPEAT LOOP

Ineg (2⇤ny1+3 ,0)=1

LOOP FOR k=ny1 TO ny
Ineg (2⇤k+4 ,0)=≠1
Ineg (2⇤k+5 ,0)=1
REPEAT LOOP

!≠≠≠≠≠≠≠≠≠≠ main loop o f op t imiza t ion≠≠≠≠≠≠≠≠≠
DO

IF ip=1 THEN
Q=Qin

ELSE IF ip>1 THEN
!≠≠≠≠update o f the i n i t i a l cond i t i on o f the d i r e c t loop ≠≠≠

Q=Ineg⇤CONJG(Pin )⇤ET/2
Qin=Q

END IF

Qnorm=MAXABS(Q)
t = t i n
Q1=Q
Q2=Q

IF ip=1 THEN
BuildM(M)
D=0;BuildD (D)

END IF
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!≠≠≠≠≠≠≠≠≠≠≠≠ d i r e c t loop ≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠

LOOP FOR i t = 2 TO nt
t = t t ( i t )

IF ip=1 THEN
BaseFlow ( t , Re , omega )
BuildC (C)
LUdecomp C
CS(⇤ ,⇤ , i t )=C

ELSE IF ip>1 THEN
C=CS(⇤ ,⇤ , i t )

END IF
Q2=Q1
Q1=Q
d = D⇤(2⇤Q1 ≠ 0 .5⇤Q2) /dt ! Adams≠Bashfordt time d i s .
Q=C\d

REPEAT LOOP

QN=Q
Gold=G
G=Energy (QN,M) /Energy (Qin ,M)
ET = Energy (QN,M)
E0 = Energy (Qin ,M)

!≠≠≠≠update o f the i n i t i a l cond i t i on o f the ad j o i n t loop ≠≠≠
PN=≠2⇤E0/(ETˆ2)⇤ Ineg⇤CONJG(QN)

P=PN
P1=P
P2=P

IF ip=1 THEN
Dadj=0;BuildDadj (Dadj )

END IF

!≠≠≠≠≠≠≠≠≠≠≠≠ ad j o i n t loop ≠≠≠≠≠≠≠≠≠≠≠≠≠≠

LOOP FOR i t = nt≠1 DOWN TO 1
t = t t ( i t )
IF ip=1 THEN

BaseFlow ( t , Re , omega )
BuildCadj (Cadj )
LUdecomp Cadj
CSA(⇤ ,⇤ , i t )=Cadj

ELSE IF ip>1 THEN
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Cadj=CSA(⇤ ,⇤ , i t )
END IF
P2=P1
P1=P
d = Dadj⇤(2⇤P1 ≠ 0 .5⇤P2) /dt ! Adams≠Bashfordt time d i s .
P=Cadj\d

REPEAT LOOP

Pin = P
err = ABS( (G≠Gold ) /G)
ip = ip+1

WHILE err>t o l

!≠≠≠≠≠≠≠≠≠≠≠≠op t im i za t i on loop end≠≠≠≠≠≠≠≠≠≠≠

END OptPert
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