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Abstract

Optimizing the shape of a given geometry can be a very expensive task,

especially in the experimental field. This can be overcome by the in-

troduction of numerical simulations; many commerical software can be

used effectively. However this kind of problem often requires the inter-

action of various codes, then the acquisition of licenses could become

unaffordable. So, focusing on fluid dynamics, an open-source shape op-

timization framework is developed here, involving the combined use of

OpenFOAM, Dakota and MiMMO library. The procedure is tested on a

practical naval case, i.e. the optimization of the bulb’s shape. In partic-

ular the effect of protrusion and immersion of this ship’s component is

investigated through Surrogate Based Optimization. In addition bench-

marks of the OpenFOAM numerical model and the effect of sailing speed

on the response surface are presented.
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Sommario

Ottimizzare la forma di una data geometria può rivelarsi un compito dis-

pendioso, specialmente se l’indagine è condotta sperimentalmente. Tale

difficoltà può essere sormontata con l’utilizzo di metodi numerici; in tal

senso numerosi software commerciali possono essere impiegati. Tuttavia,

l’utilizzo combinato di diversi codici, tipico di queste analisi, potrebbe

portare ad elevati costi di licenze . L’obiettivo del lavoro di ricerca

qui presentato è stato lo sviluppo di un framework basato su codici

open-source. Concepito prinicipalmente per lo studio degli aspetti flu-

idodinamici, tale struttura prevede l’utilizzo combinato di OpenFOAM,

Dakota e della libreria MiMMO. La sua efficacia è stata testata in un caso

applicativo del settore navale, ovvero l’ottimizzazione del bulbo. In par-

ticolare sono stati studiati gli effetti dell’allungamento e dell’immersione

di tale componente sulla resistenza idrodinamica dello scafo. Ciò è stato

fatto usando un approccio basato sulla costruzione di modelli surrogati.

Inoltre sono state effettuate due validazioni del modello numerico svilup-

pato in OpenFOAM e uno studio dell’effetto della velocità sulle superfici

di risposta.
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Introduction

Optimizing the shape of a given geometry can be a very demanding task, es-

pecially in the experimental field, where economical constraints usually limit the

number of geometries to be tested. Moreover, it is required an in-depth knowledge

of the problem being studied in order to choose which are the more appropriate

configurations to analyze.

In this view, the continuous development in numerical methods and computing

performance has suggested the introduction of software able to model and simulate

the case, avoiding the construction of prototypes. These toolkits provide an high

amount of features, allowing very detailed analysis, but their use often requires the

acquisition of expensive licenses.

Parallel to the world of commercial software there are Free Open Source software.

This category refers to the GNU licenses, which, besides the free use, allows the

freedom to read, write and redistribute the source code of the applications.

In this context raises the purpose of the work presented in this thesis, i.e. the

creation of an Open Source framework to effectively deal with shape optimization,

in particular focusing on fluid dynamics problems. In doing so, essentially three

tasks have to be addressed:

• how to simulate the physical behavior

• how to create the geometries

• how to search the optimal configurations

The efficacy of the framework has been tested on a practical naval application.

Thanks to the data supplied by Fincantieri S.p.A., it has been possible to perform

the optimization study of a ship’s bulb. Furthermore, the availability of results from

experimental tests has allowed a benchmark of the numerical model.

The effect of the bulb is to reduce the wave-making resistance, which is one of

the components of the total hydrodynamic resistance of the hull. In the literature
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[20] this component is usually described by using six nondimensional parameters. In

this application the effects of only two of these have been studied: one representing

the protrusion of the bulb and the other representing its immersion.

To simulate the physical behavior of the hull Computational Fluid Dynamics

(CFD) has been used. The open source tool employed to compute the hydrodynamic

resistance is OpenFOAM. The numerical set up of this simulation is a trade off

between accuracy (with respect to experimental trends) and computational resources

(memory, clock wall time, storage).

Regarding the generation of geometries the shape morphing approach is used;

this allows the creation of new geometries by deforming the original one, avoiding

to deal with the entire geometry generation process. This task is accomplished by

a shape morpher built using the blocks provided with the MiMMO library.

The poor knowledge of the case study and the inevitable costs of CFD simulations

have led to the choice of surrogate modeling as optimization strategy. This consists

in the construction of an inexpensive low-fidelity model able to reproduce the outputs

of the expensive CFD model. To do this a certain number of configurations has to

be simulated with the high fidelity model and these are defined by Dakota toolkit.

Then this software is also used to construct the surrogate model.

Putting together all the ”ingredients”, the optimization procedure can be sum-

marized as follows: Dakota defines a certain number of geometries that are ob-

tained with the shape morpher, built with the MiMMO library, and then simulated

by an OpenFOAM numerical model; finally the simulated resistance values are

used by Dakota to construct a surrogate model able to inexpensively predict the

effect of the two parameters on ship’s resistance. To find the optimum is just a

matter of searching across a surface.

This thesis is structured in various parts, each one dealing with an aspect of the

optimization framework. Part I gives an overview of the open source philosophy,

with a description of the tools used. In Part II the case study is presented, with a

brief introduction to the main naval concepts involved. Part III is dedicated to the

numerical model set up (assumptions, domain definition, boundary conditions, mesh,

turbulence etc.). Part IV deals with the shape morphing approach, introducing the

theory and showing the working principle of the shape morpher. In Part V the main

aspects of optimization are presented, with a description of the common methods

and a look at two surrogate modeling techniques (polynomial regression and Kriging

interpolation). Finally, in Part VI the results obtained are presented.
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Chapter 1

Free Open Source Software

Philosophy

One of the main keys of this research work is the combined use of three Free

Open Source software. These are:

• OpenFOAM: to simulate the physics of the problem by using a finite volume

approach;

• MiMMO/MIMIC: to morph the geometry being studied;

• Dakota: to manage the optimization loop, i.e. parametrization, shape mor-

phing, running simulations, creating surrogates, search minimum etc.

All these software are distributed under the GNU General Public License (GPL)

or under the GNU Lesser General Public License (LGPL) 1.

Before describing the capalibities of these powerful tools, it is useful to give a

brief overview of the ideas behind the GNU Project. This is not meant to be an

historical overview of the free software movement, but just an introduction to free

software’s world and to the concepts of GNU licenses.

The initial announcement of the GNU project was made in September 1983 by

Richard Stallman and confirmed later with the GNU manifesto (1985). This move-

ment born against the non-free software’s dominancy with the purpose of developing

an efficient and complete free operating system.

As declared on GNU’s website [1], a software can be called free if it allows four

essential freedoms:

1The difference between these two license concerns the interaction with proprietary software.
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Free Open Source Software Philosophy

• The freedom to run the program as you wish, for any purpose.

• The freedom to study how the program works, and change it so it does your

computing as you wish (open-source).

• The freedom to redistribute copies so you can help your neighbor.

• The freedom to distribute copies of your modified versions to others, giving

the whole community a chance to benefit from your changes.

Practically a free software must be released under a free software license; usually

the GNU General Public License (GPL) is used, but there are also other GNU

licenses, for example the GNU Lesser General Public License (LGPL). Regarding

the tools used in this research work, OpenFOAM is licensed under the former, while

Dakota and MiMMO/MIMIC are licensed under the latter.

Without entering the debate between free and proprietary software, the preamble

of the GNU General Public License is presented to explain the possibility that this

category of software gives.

”The GNU General Public License is a free, copyleft license for software

and other kinds of works.

The licenses for most software and other practical works are designed to

take away your freedom to share and change the works. By contrast, the

GNU General Public License is intended to guarantee your freedom to

share and change all versions of a program - to make sure it remains

free software for all its users. We, the Free Software Foundation, use

the GNU General Public License for most of our software; it applies also

to any other work released this way by its authors. You can apply it to

your programs, too.

When we speak of free software, we are referring to freedom, not price.

Our General Public Licenses are designed to make sure that you have

the freedom to distribute copies of free software (and charge for them if

you wish), that you receive source code or can get it if you want it, that

you can change the software or use pieces of it in new free programs, and

that you know you can do these things.

To protect your rights, we need to prevent others from denying you these

rights or asking you to surrender the rights. Therefore, you have certain
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Free Open Source Software Philosophy

responsibilities if you distribute copies of the software, or if you modify

it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis

or for a fee, you must pass on to the recipients the same freedoms that

you received. You must make sure that they, too, receive or can get the

source code. And you must show them these terms so they know their

rights.

Developers that use the GNU GPL protect your rights with two steps: (1)

assert copyright on the software, and (2) offer you this License giving you

legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that

there is no warranty for this free software. For both users’ and authors’

sake, the GPL requires that modified versions be marked as changed,

so that their problems will not be attributed erroneously to authors of

previous versions.

Some devices are designed to deny users access to install or run modified

versions of the software inside them, although the manufacturer can do

so. This is fundamentally incompatible with the aim of protecting users’

freedom to change the software. The systematic pattern of such abuse

occurs in the area of products for individuals to use, which is precisely

where it is most unacceptable. Therefore, we have designed this version of

the GPL to prohibit the practice for those products. If such problems arise

substantially in other domains, we stand ready to extend this provision

to those domains in future versions of the GPL, as needed to protect

the freedom of users. Finally, every program is threatened constantly by

software patents. States should not allow patents to restrict development

and use of software on general-purpose computers, but in those that do,

we wish to avoid the special danger that patents applied to a free program

could make it effectively proprietary. To prevent this, the GPL assures

that patents cannot be used to render the program non-free.” [16]
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Chapter 2

OpenFOAM

2.1 What is OpenFOAM?

OpenFOAM R© (Open source Field Operation And Manipulation) is essentially

a C++ library to solve Ordinary and Partial Differential Equations.

Its primary usage is the creation of executables (applications) to solve specific

problems (solvers) or to manipulate data (utilities). In particular it has an im-

portant usage in solving continuum mechanics problems, including Computational

Fluid Dynamics (CFD) based on the Finite Volume Method (FVM). OpenFOAM R©

is supplied with pre- and post-processing environments, its overall structure is shown

in Figure 2.1.

OpenFOAM R© has an extensive range of features to simulate anything from tur-

bulent flows in automotive aerodynamics, to fires and fire suppression in buildings,

involving combustion, chemical reactions, heat transfer, liquid sprays and films. It

includes tools for meshing in and around complex geometries (e.g. a vehicle), and

for data processing and visualisation, and more. Almost all computations can be

executed in parallel as standard to take full advantage of today’s multi-core proces-

Figure 2.1: Schematization of OpenFOAM R© structure. (from CFD Direct website)
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OpenFOAM

sors and multi-processor computers. On the OpenFOAM R© official website some of

the available features are listed [2]:

• Fluid Dynamics & Physical Modeling

– Turbulence modeling (Reynolds-Averaged (RAS), Large-Eddy Simula-

tion (LES), Detached-Eddy Simulation (DES,DDES,etc)

– Thermophysical modeling

– Transport/rheology

– Multiphase flows

– Rotating flows with multiple reference frames (MRF)

– Rotating flows with arbitrary mesh interface (AMI)

– Dynamic meshes

– Compressible/thermal flows

– Conjugate heat transfer

– Porous media

– Lagrangian particle tracking

– Reaction kinetics/chemistry

• Geometry & Meshing

– Mesh generation for complex geometries with snappyHexMesh

– Mesh generation for simple geometries with blockMesh

– Mesh conversion tools

– Mesh manipulation tools

• Numerical Solution

– Numerical method

– Linear system solvers

– Ordinary Differential Equation system solvers

• Computing & Programming

– Equation syntax

– Libraries of functionality

6



OpenFOAM

– Parallel computing

• Data Analysis

– ParaView post-processing

– Post-processing command line interface (CLI)

– Graphs and data monitoring

Furthermore OpenFOAM R© is a free and open source software under the GNU

General Public License (see Chpater 1), allowing the creation of new solvers and

utilities by its users and the presence of a wide-spread community that contributes

actively to its continuous development.

2.2 OpenFOAM case structure

The basic directory structure for a OpenFOAM R© case, with the minimum set

of files required to run an application, is presented in Figure 2.2.

Figure 2.2: Structure of an OpenFOAM R© case. (from CFD Direct website)

The roles of the main directories, contained in the case folder, are listed below:

• system, it contains the dictionaries to set up the entire solution procedure

(from meshing to solving); at least it must contain three files:

– fvSchemes to specify (run-time) the numerical schemes to discretize the

equations;

7



OpenFOAM

– fvSolution to set equation solvers, tolerances and other algorithm con-

trols;

– controlDict to control (run-time) the simulation run (start/end time,

time-step, function objects etc.)

• constant, it contains a folder (polyMesh) with the full description of the case

mesh and files that specify the physical properties involved (transport and

turbulence properties, gravity, dynamic properties etc.)

• time directories, it contains files that represent the specific fields at initial

condition (e.g. 0 folder) or computed by OpenFOAM R© (e.g. 0.01, 0.02,

... folders1) at consecutive times; it must be underlined that OpenFOAM R©

always require fields to be initialized, even in steady-state problems

A lot of pages should be written to exhaustively explain OpenFOAM R©, but

that is beyond the scope of this thesis. However, since this software is at the base of

the optimization procedure developed here, the structure and the main files involved

in the simulation have been briefly presented.

For further details the CFD direct website [2] is suggested.

1The name of the folder corresponds to the simulated time at which data are written.

8



Chapter 3

MiMMO/MIMIC

3.1 What is MiMMO/MIMIC?

MIMIC is a commercial software developed and distributed by OPTIMAD En-

gineering srl. It is designed for dealing with surface and volume mesh morphing

and shape optimization in industrial applications. The code is based on MiMMO

(Manipulation and Morphing for Meshes Open Source, that is an open source C++

library for manipulation and morphing of surface and volume meshes. This too is

developed by OPTIMAD Engineering srl and licensed under the GNU Lesser Gen-

eral Public License (LGPL). MiMMO, in turn, is based on another open source

C++ library called bitpit, which supplies the basic tools to manage surface and

volume meshes.

The package is organized as a library of blocks that can be linked and organized

in an execution chain, like in a block diagram workflow. It offers a large set of

blocks aimed to perform basic or advanced morphing of surface or volume meshes.

Essentially two big families of manipulators are implemented:

• extended-Free Form Deformation (eFFD);

• Radial Basis Functions (RBF) morphing techniques.

It provides also additional features to manage the deformed object, such as

user-defined sub-selections of the target geometry, penetration checks of deformed

mesh against external object and wrappers to parametric manipulators for more

intuitive basic deformations [3]. Furthermore, it can interface with the most common

geometrical formats (.stl, .vtu, .nas and others).

MIMIC, compared to MiMMO, provides advanced tools and interfaces, such

as volume mesh morphing, OpenFOAM input/output interfaces and management

9



MiMMO/MIMIC

of continuity constraints by means of Level-Set techniques.

All the MiMMO objects to use for a specific case can be pre-defined and then

inserted in a container, the execution chain. This allows the automatic ordering of

these objects and the managing of their relationship, leading to a more straightfor-

ward set up and execution of the workflow.

This has been just an overview of MiMMO/MIMIC capabilities; further info

on MiMMO/MIMIC are available on the OPTIMAD official website (http://

www.optimad.it/).

A look at the theory behind the approach used here and at the execution chain

built for this research work will be given in Part IV.

10
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Chapter 4

Dakota

4.1 What is Dakota?

Dakota (Design and Analysis toolKit for Optimization and Terascale Applica-

tions) is a general-purpose software-toolkit for performing optimization, uncertainty

quantification, parameter estimation, design of experiments and sensitivity analysis

on supercomputers.

This C++-based toolkit provides an extensible and flexible interface between

analysis codes and iterative system analysis methods [4]. Dakota delivers a wide

variety of iterative methods and meta-algorithms that in user’s manual are classified

as follows [12]:

• Parameter Studies: employ deterministic designs to explore the effect of

parametric changes within the simulation code, yielding one form of sensitivity

analysis. Exploration is done by a deterministic selection of points (structured

or specified by user) in each of the four available type of parametric studies:

– vector, perform a parametric study along a line between two points de-

fined in a n-dimensional parameter space, where the user define the num-

ber of steps to use;

– list, the user supplies a list of points of a n-dimensional parameter space

where the response is evaluated by the specified simulation code;

– centered, given a point in a n-dimensional parameter space, nearby points

along the space axes are evaluated;

– multidimensional, creates a regular lattice or hypergrid in a n-dimensional

parameter space.
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Dakota

• Design of Experiments: employ design and analysis of computer exper-

iments (DACE) techniques to explore the parameter space of an engineering

design problem; similar to Parametric Studies, but the primary goal is to gen-

erate a good coverage of the input parameter space, extracting as much trend

data as possible using a limited number of sample points.

• Uncertainty Quantification: determination of effect of input uncertain-

ties and assumptions on model outputs or results. This is done by character-

izing input uncertainties, forward propagating them through a computational

model and performing statistical or interval assessments on the resulting re-

sponses. It is related to Sensitivity Analysis but has a more quantitative ap-

proach by using some uncertainty structures (e.g. probability distributions).

Dakota provides methods for both epistemic and aleatory uncertainties.

• Optimization: minimization (or maximization) of an objective function, typ-

ically calculated by the user simulation code, subjects to constraints on design

variables and responses. Available methods can be classified as follows:

– Gradient-Based Local Methods

– Derivative-Free Local Methods

– Derivative-Free Global Methods

– Multiobjective Optimization

– Automatic Scaling

• Calibration: seek to maximize agreement between simulation outputs and

experimental data (or desired outputs).

• Surrogate Modeling: creation of inexpensive approximate models that

capture the salient features of an expensive high-fidelity model. Dakota pro-

vides several data fit methods to construct surrogates, but has also multifidelity

and reduced-order models.

Furthermore, Dakota permits the creation of Nested Models by layering on

method over another.

Before looking at the Dakota case structure, let’s have a look at its important

advantages, motivating why it is convenient to use this toolkit.

First of all, it is licensed under the GNU Lesser General Public License (LGPL)

(see Chapter 1), hence it is free and open source. From the computational point of

view, the main reasons for using it are [17]:
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Figure 4.1: Example of Dakota input file (Courtesy of Wolf Dynamics srl)

• ability to interface with a generic black-box solver;

• scalable parallel computation from desktops to clusters;

• its capabilities are extensively validated;

• fully scriptable;

• ability to capture simulation failures;

• restart capabilities;

• parallel asynchronous or concurrent evaluations;

4.2 Dakota input file

Dakota take as input only one file that contains all the problem information

grouped in six blocks: variables, interface, responses, model, method and

environment. An example of Dakota input file is shown in Figure 4.1.

There is an inherent relation that ties this boxes together, for almost Dakota

analysis it can be summarized as follows: in each iteration of its algorithm, a method

block requests a variables-to-responses mapping from its mode, which the model

13
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Figure 4.2: Schematization of the common Dakota input file blocks relationship (from

Dakota v6.5 User’s Manual [12])

fulfills through an interface. An example of this basic relationship is schematized

in Figure 4.2. However, more advanced cases are possible [12].

An in-depth description of Dakota toolkit is beyond the scope of this introduc-

tory chapter. The aim has been to give a general introduction to its features and

capabilities. Among all of these only some are used in this research work and the

theory behind them is presented in Part V.

For further details on Dakota toolkit the official website [4] is recommended.
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Chapter 5

Naval concepts

The main subject of this thesis is the development of an optimization strategy.

The procedure wants to be general, but to give it a sense of application a case

study has been chosen. The choice has fallen on a naval problem, in particular

the shape optimization of the ship’s bulb. As will be presented in this chapter,

this component leads to a reduction of the hydrodynamic resistance and, as it is

explained in literature, its efficacy depends on its shape. Hence this is an interesting

example of shape optimization.

Hence before dealing with the numerical methods, an overview of some naval

concepts is necessary. In this chapter the terminology used to identify the hull, the

concepts of resistance and scaling law and a description of the bulb are presented.

5.1 Naval terminology

In the following chapters some naval terms are used to describe the hull, so the

naval terminology adopted is reported [25].

• The hull shape can be described by intersecting it with three mutual orthogonal

planes:

– horizontal planes, called waterplanes, that are parallel to the calm water

free surface and cut the hull in waterlines ;

– longitudinal planes that cut the hull in buttock lines (Figure 5.1.a);

– transverse planes that cut the hull in transverse sections ;

Usually the hull is symmetric about the longitudinal plane and the buttock

corresponding to the symmetry plane is called profile.
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• Design waterline is the waterline at which the ship floats in the design condi-

tion (commonly at the maximum available load).

• Fore perpendicular (FP ) is a line perpendicular to the load line and pass-

ing through the intersection of the forward side of the stem with the design

waterline.

• Aft perpendicular (AP ) is a line perpendicular to the design line and passing

through the centreline of the rudder pintle or the after side of the rudder post.

• Length between perpendiculars (LPP ), is the distance measured along the load

waterline between the after and fore perpendiculars.

• Midship section is the transverse section locate amidships, i.e. at the mid-point

between the perpendiculars.

• Beam (B) is usually considered as the width of the hull at amidships.

• Draught (T ) is the vertical distance of the lower points of the hull from the

water level.

• Trim is the difference between the draughts at forward and aft; it depends

mainly to the load condition in junction to the hull shape. The dynamic one

is related to the attitude of the ship due to its speed or motion.

• Sinkage is a ship’s motion that lead to a variation of the ship’s draught.

• Displacement is the weight of water displaced by the ship, i.e. the weight of its

underwater volume (Archimede’s principle). It can be expressed in Newton,

in m3 (displacement volume) or in kg (displacement mass).

Without entering into the details of ship’s design, it must be highlighted that

the displacement volume and the length between perpendiculars are some of the

parameters that characterize the main hull. This is taken into account during shape

morphing, ensuring that the bulb’s deformations don’t vary them significantly. Even

if a strictly bulb’s design procedure is beyond the purpose of this work, it has been

considered worthwhile to evaluate the bulb effects without significantly changing the

ship parameters.
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(a) Buttocks and waterlines.

(b) Hull parameters.

Figure 5.1: Representation of some of the terminology used in naval architecture. (from

”Introduction to Naval Architecture” by E. Tupper [25])

5.2 Resistance Decomposition

The resistance is the force to move the ship at the desired speed. Often it is

referred to smooth water and, when appendages are excluded, it is called bare-hull

resistance.

Calculation of the ship’s resistance are important in order to design the adequate

propulsive system. Unfortunately this is not an easy task, since the total resistance

depends on a lot of factors interacting one with each other in an extremely compli-

cated way [18]. To overcome these difficulties it is common practice to decompose

the ship resistance in different components.

Looking at a ship moving through the water, two main physical phenomena

comes to the eye: waves and turbulence. These correspond to a distribution of

pressure and shear forces over the hull. Hence, by considering the forces acting, a
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first physical breakdown of resistance could be made [10]:

• frictional resistance, it is the sum of all tangential shear stresses τ acting on

the hull and hence it is caused only by the viscosity of the fluid;

• pressure resistance, it is the sum of all pressure forces p acting on the hull and

hence it depends both on viscosity and waves.

Conversely, looking at the energy dissipation, another decomposition can be made:

• viscous resistance, it is the sum of all forces caused by the presence of viscosity,

i.e. friction and wake;

• wave-making resistance, it represents the energy drained from the body to

sustain the hull wave system.

These two decomposition are visualized in Figure 5.2.

Figure 5.2: Basic hull resistance decomposition (from ”Ship Resistance and Propulsion”

by F.Molland et al. [10])

This is just a basic decomposition, there are other physical phenomena that

should be considered like spray and wave-breaking, especially at high sailing speeds.

However this resistance decomposition is very useful in experimental predictions.
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5.3 Dimensional Analysis

Much of the knowledge about ship resistance has been learned from towing tank

tests and it is impossible to speak of its components without referring to model scale

[18]. For this reason the main concepts behind this approach are presented here.

In order to extract some qualitative information about the physics a dimensional

analysis can be carried out. This approach constitutes the base of model experi-

ments.

First, let’s define the main quantities that affect ship’s resistance [18]:

• speed V

• size L

• density ρ

• dynamic viscosity µ

• gravity g

• pressure p

Applying the dimensional analysis, a non-dimensional relationship can be obtained:

CT =
R

0.5ρSV 2
= f(

V L

ν
,
gL

V 2
,
p

ρV 2
) (5.1)

where ν = µ
ρ

is the kinematic viscosity, S ∝ L2 is the wetted surface.

The power of equation (5.1) is that it states that geometrically similar body of

different size with the same values for all the right-hand size terms will have the

same resistance coefficient ( R
0.5ρSV 2 ).

Since the third term p
ρV 2 can be neglected (if there is no cavitation), the above re-

lationship could be rearranged by recovering two nondimensional parameter: Froude

number Fn = V√
gL

and Reynolds Number Re = V L
ν

.

CT = f(Re, Fn) (5.2)

To allow the study of the full ship at sizes that can be tested in towing tank, both

Froude and Reynolds similitude have to be respected. Unfortunately this requires

that:

Remodel = Reship =⇒ VmodelLmodel
νmodel

=
VshipLship
νship

=⇒ Vmodel = Vshipλ (5.3)
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Fnmodel = Fnship =⇒ Vmodel√
gLmodel

=
Vship√
gLship

=⇒ Vmodel =
Vship√
λ

(5.4)

where λ =
Lship

Lmodel
is the scale factor between full scale and model.

Obviously, it is nearly impossible to simultaneously satisfy both requirements

(except by using a fluid with different viscosity for the model). Since the wave

resistance is a more complex phenomena, the choice fall to the Froude approach.

In this context the resistance decomposition becomes important, by saying that

if gravity forces are studied properly, as in Froude similarity, then wave resistance

is correctly modeled.

However, in model tests what is measured is the total resistance. So it is common

practice to calculate the frictional resistance with empirical formulations and then

find the wave resistance by subtraction to the total. For example the ITTC-57

approach uses the following correlation for the frictional coefficient:

CF =
0.075

(log10Re− 2)2
(5.5)

An important precaution is to choose a model size that ensures a turbulent flow

around the hull, in order not to compare two different flow regimes.
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Chapter 6

What is a bulb?

6.1 History

The bulb is a component visible in almost all type of cargo ships.

Figure 6.1: Example of bulbous bow. (courtesy of Maersk Maritime Technology [5])

Despite its technical developments are relatively recent, bulbous bow has an

ancient origin; in fact, it was born as a weapon, the Greek galley’s ram. It took

many centuries before its fundamental hydrodynamic benefits were discovered.

In 1867 the British civil engineer William Froude revolutionized the study of

Naval hydrodynamics by introducing the use of the ”towing tank test” to examine

at a reduced scale the hydrodynamic of the ship [15].

Going on hundreds test and comparing different models, he caught the distinction

of the hull resistance in two components: friction and wave resistance (see Chapter

5). Moreover, he noted that the presence of a ram bow seemed to reduce the second
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one, but attributed this effect to the lengthening of the hull.

Fifty years later, the U.S. naval captain David Taylor and his team equipped the

battleship Delaware with what it will be called a ”Taylor Bulb”. After is retirement

in 1923 he wrote [15]:

In the literature of ship resistance I had seen a reference by Mr. William

Froude to a so-called swan model having full but narrow water lines close

to the bow [...] the theory seemed to be to have first a false bow as it were,

corresponding to a small ship. This would create a small bow wave and

in its hollow was located the second or true bow, making a second bow

wave that would neutralize the first.

This is the first time that the bulb’s wave-cancellation effect has been described.

From that moment the scientific development of bulbous bow starts.

In the 30’s, the russian naval architects Vladimir I. Yourkevitch proposed the

adoption of a ”violin hull” in the transatlantic vessel Normandie, winning the Blue

Riband1 on her maiden voyage with an average speed of 29.98 knots [21]. After this

success, newspapers reported [15]:

The secret of streamlining, and therefore of speed, is that ships beneath

the water will be blunt-bowed.

In 1940, after having tried over fifty variations of Taylor bulb, Japanese re-

searchers decided to build their new ship Yamato with a large protruding bulb, who

reduced its resistance by 8 percent [15].

The growth of important mathematical theories for wave description (Mitchell,

Havelock, Wigley et al.) leads to change the focus from the hull streamlining to

the study of ship’s wave pattern. The Japanese researcher Takao Inui developed the

”waveless form theory”, by focusing on the energy subtracted by the waves.

By the 80s the bulbous bow was being designed and built around the world,

and evolved till today into numerous configurations and shapes, but many naval

architects still refer to it as ”Inui bulb” [15].

Nowaday the bulbous bow is caught in the trade off between fuel efficiency and

danger in possible collisions. The regulatory or insurance measures that may be

implemented to mitigate the risks are not yet clear [15].

1Blue Riband is an unofficial accolade to the fastest transatlantic passenger liner.
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Figure 6.2: Schematization of the Kelvin wave pattern. (from ”Principles of Naval Archi-

tecture” [18])

6.2 Basic principles

To understand the usefulness of the bulb in reducing ship resistance, it is neces-

sary to have some knowledge about wave-making resistance. As it has been already

said in the previous chapter, the wave-making resistance is caused by the energy

necessary to maintain the hull wave system.

A conceptual representation of the wave system has been given by Lord Kelvin,

which considering a pressure point moving on a free surface, noted the presence of

two different types of wave: divergent, that radiate from the point, and transverse,

that follow the point. The composition of these two wave system leads to a wave

pattern contained within two straight line starting from the pressure point and

making an angle of about 19 degrees (Kelvin angle) [18].

The ship’s wave system presents similar features that can be summarized as

follows:

• at the bow there is a large divergent wave, followed in diagonal by other di-

vergent waves;

• transverse waves starts from the hull with their crest lines perpendicular to

the direction of motion till coalescing with the divergent ones;

• similar wave systems form at the shoulders and the stern.

At low speeds the waves generated are small and hence also wave resistance is

neglectable compared to the viscous component. It’s importance will increase with

sailing speed, but since also the wave pattern depends on speed, some bump and
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Figure 6.3: Example of wave pattern generated by a ship. (courtesy of Professor W.H.

Munk, Scripps Institute of Oceanography)

hollows will be present. These are due to the interference of the wave systems,

that could be positive, augmenting the resistance, or negative, leading to wave

cancellation.

The presence of the bulb creates another wave system that, interfering with

the ship’s one, leads to a cancellation effects and then reduces the wave-making

resistance. It is obvious that its effect can’t be seen at low velocities.

The effect of the bulb can be summarized by the words of A. M. Kracht who

contributed a lot in the study of bulbous bow [20]:

The protruding bulb form affects hydrodynamically a variation of the

velocity field in the vicinity of the bow, that is, in the region of the rising

ship waves. Primarily the bulb attenuates the bow wave system, which

usually is accompanied by a reduction of wave resistance. By smoothing

the flow around the forebody, there is good reason to believe that the bulb

tends to reduce the viscous resistance too. Therefore, the beneficial action

of a protruding bulb depends on the size, the position, and the form of

the bulb body.

In the same paper Kracht introduced six non-dimensional parameter to describe

each bulb form:

• Linear

– Length parameter CLPR: protrunding length divided by length between

perpendiculars of the ship.
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Figure 6.4: Sketch of a bulbous bow with its main geometrical parameteres. (from ”Design

of Bulbous Bow” by A.M. Kracht [20])

– Depth parameter CZB: heigth of the foremost point of the bulb over the

base divided by the draught at FP.

– Breadth parameter CBB: maximum breadth at FP adimensionalized by

the beam of the ship.

• Non-Linear

– Cross-section parameter CABT : cross-sectional at FP divided by the

midship-section area

– Lateral parameter CABL: ram bow (after FP) area divided by midship-

section area

– Volumetric paramter CV PR: nominal bulb volume adimensionalized by

the displacement volume (underwater)

Upon these parameters Kracht constructed a bulb’s design procedure that is still

used today.

During the optimization procedure developed here, only the first two linear pa-

rameters are considered: length and depth parameters.
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Chapter 7

Assumptions and Equations

The aim of the OpenFOAM numerical model is to simulate the behavior of a

ship. In particular, the resistance to its movement has to be predicted. Dealing

with fluids means to take on the Navier-Stokes Equations system.

Ship resistance prediction involves a series of difficulties like the big dimensions

of the geometry, the presence of two phases, the interaction with waves, the presence

of turbulence and separation. For this reason, some simplifications need to be intro-

duced in order to lighten the efforts. In doing this, a lot of care must be taken not

to corrupt the model. All the assumptions made here follow the common practical

guideline and the advice from experts in the naval fields (Fincantieri Technical Of-

fice, Distretto Ligure per le Tecnologie Marine, Dipartimento di Ingegneria Navale

dell’Università di Genova).

As stated by the International Towing Tank Committee (ITTC), the goal of

resistance calculations is the determination of the required power to ensure the ship

a certain speed. Since resistance tests in towing tanks are conventionally carried out

for a scaled ship model in calm water without propulsor, numerical computations

are done to replicate these experiments. Both numerical and experimental results

can be extrapolated to full-scale using the ITTC procedure [8].

For the ship subject of this research towing tank results are available, thus, to

make a comparison possible, the model is built to represent that condition. How-

ever, in the numerical model an important simplification is adopted: the fixed trim

condition. This means that the ship has no degree of freedom, i.e. its position is

fixed. This is not the case in towing tank experiments, but, inspecting the exper-

imental results, it has been observed that position changes are neglectable for low

velocities, making this simplification admissible.

Advantages that come from this choice are extremely important, because it allows
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steady calculations, particularly the use of the Local Time Stepping technique that,

as it will be explained in Chapter 10, speeds up a lot the computations.

Moreover, not only the propulsor has been excluded from the computations, but

also all other appendages, reducing the geometry only to the hull and ensuring the

symmetry about the ship vertical longitudinal plane.

Summarizing, the case study can be imagined like a fixed scaled model of the

ship hit by a flow of two separated phases (water and air) at a certain uniform

velocity. All the hypothesis are listed below:

• model-scale

• calm water

• no propulsor and no appendages

• fixed trim condition

• symmetry about the vertical longitudinal plane

• constant temperature

• constant fluid (air and water) properties

Phase Density ρ [ kg
m3 ] Kinematic Viscosity ν [m

2

s
]

Water 998.3 1.02 · 10−6

Air 1 1.48 · 10−5

Table 7.1: Transport properties used in the simulation

Ship flows are governed by the conservation laws of mass, momentum and energy,

grouped in the Navier-Stokes Equations (NSE) system.

Reminding that flow around a hull is incompressible and assuming constant

temperature, the energy equation becomes useless. Furthermore, air and water

follow the Newtonian Fluids relationship between shear stress and strain rate. Thus

the Navier-Stokes Equations can be written as follows:
∇ · (ρv) = 0

∂ρv

∂t
+∇ · {ρvv} = −∇p+∇ · {µ

[
∇v + (∇v)T

]
}+ ρg + fσ

(7.1)
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where:

• v is the velocity vector ;

• p is the relative pressure;

• µ and ρ are the density and the dynamic viscosity of the fluid considered;

• g is the gravitational acceleration;

• fσ is the surface tension;

Dealing with multiphase flow, this set of equations isn’t enough, fluids interface has

to be modeled in some manner. Among the wide variety of multiphase numerical ap-

proaches, one of the most used is the Volume of Fluid (VoF) method. In particular,

the version employed in this work is the one used by the interFoam solver.

The principle is to define a quantity called liquid volume fraction α that indicates

which fluid properties have to be considered:

α(xcell, t) =
1

Vcell

∫∫∫
cell

I(x, t)dV, I(x, t)

1 (water)

0 (air)
(7.2)

where xcell is the center of a computational cell where flow variables are computed

and Vcell its volume. Then fluid properties can be generalized throughout the domain

as follow:

µ(xcell, t) = µwaterα(xcell, t) + µair(1− α(xcell, t)) (7.3)

ρ(xcell, t) = ρwaterα(xcell, t) + ρair(1− α(xcell, t)) (7.4)

where ρwater, ρair, µwater and µair are the predefined constant properties of the two

phases (Table 7.1).

What interFoam solver does is computing the liquid volume fraction field by

solving a modified version of phase transport equation:

∂α

∂t
+∇ · (αv) +∇ · (α(α− 1)vr) = 0 (7.5)

vr = min(cα|v|,max(|v|) · n (7.6)

where vr is the interface compression velocity, a trick used to avoid numerical diffu-

sion; coefficient calpha (cAlpha in OpenFOAM ) is a parameter to control compression

and usually set equal to 1 [24].
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Figure 7.1: Example of liquid phase fraction field at interface (courtesy of Wolf Dynamics

srl)

Returning to equation (7.1), in this case the surface tension is neglected since

inertial forces are predominant.

Now that the problem has been mathematically modeled by equations (7.1) and

(7.5), computational fluid dynamic is used to calculate the flow variables (v, p, α)

throughout the domain. This is done with OpenFOAM by following the workflow

represented in Figure 7.2. Each of these steps will be presented in the next chapters

of this part.
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Case Study

Domain & Boundaries

Mesh Generation

Temporal Discretization

Physical Modeling

Simulation

Figure 7.2: Workflow of the simulation set up
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Chapter 8

Domain & Boundary Conditions

8.1 Symmetry: half a problem

Before starting with the model set-up, an important simplification has to be

made.

Since ship geometry is symmetrical about the vertical longitudinal plane and

motion is straight in the longitudinal direction, only half of the hull can be modeled

without losing information. This assumption takes great advantages in terms of

computational costs.

Figure 8.1: Frontal view of the hull geometry and the symmetry plane (red).

8.2 Reference system

As in many other practical cases, the reference system is defined as follows:
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x-axis start from the aft perpendicular and grows positive toward the fore perpendic-

ular

y-axis start from the symmetry plane and points outward the domain

z-axis start from the quiet sea level and grows positive above free surface (right-hand

rule)

Figure 8.2: Position and directions of the reference system.

8.3 Dimensions

The computational domain is a rectangular box to which the hull geometry is

subtracted. It is aligned with the reference system and has six faces where flow

conditions must be imposed.

The foremost one has been called inlet and it is where the flow enters the

domain, while the rear patch has been called outlet.

Top and bottom patches have been called atmosphere and bottom.

One side face corresponds to the ship symmetry plane and has been called

midPlane, while the other one has been simply called side.

The main idea behind the choice of domain dimension is to place boundaries

”sufficiently far” from the hull. This avoids boundary conditions to corrupt the

solution.
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Figure 8.3: Position and dimension of the computational domain.

The practical guidelines given by the 26th ITTC Specialist Committee on CFD

in Marine Hydrodynamics suggest to place these boundaries 1 − 2LPP away from

the hull [7]. It also recommends, in an unsteady case, to put the outlet boundary

3− 5LPP downstream, in order to prevent wave reflection.

These practical values have been exaggerated to be sure that the same domain

accurately works also at high velocities.

So inlet and outlet patches are located 2.5LPP and 5LPP away from bow and

transom.

The top and bottom are placed at 0.75LPP and 3LPP away from quiet sea level.

The side patch is placed at 4LPP away from symmetry plane to avoid a lateral

reflection of the Kelvin waves.

8.4 Boundary conditions

Boundary conditions are necessary to generate a solution because they tell the

solver what’s going on at the domain boundaries.

When defining a boundary condition its type, its location and the physical prop-

erties it represents are required.

There are several types of boundary conditions available in OpenFOAM, the

right choice influence accuracy and stability of the simulation.

Looking at the equations presented in the previous chapter, it can be seen that
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Figure 8.4: Domain boundaries definition.

there are five unknown variables: three components of the velocity vector, pressure

and phase fraction.

INLET To simulate ship steady motion in calm water, an uniform flux is supposed

to enter the domain across the inlet.

Velocity : fixedValue, assign an uniform value U = U∞ over all the patch.

Pressure : fixedFluxPressure, adjust the pressure gradient to keep the bound-

ary flux specified by the velocity condition.

Phase Fraction : fixedValue, assign the value from internal field.

OUTLET Flow at the outlet can’t be imposed, but it is computed to not influ-

ences the physics inside the domain.

Velocity : outletPhaseMeanVelocity, assign an uniform value U = U∞ over all

the patch.

Pressure : zeroGradient, it extrapolates values from the domain, thus it doesn’t

require any information.

Phase Fraction : variableHeightFlowRate, it takes the variable from the in-

ternal field and if it is inside the defined bounds it behaves like zeroGradient.

ATMOSPHERE This patch represents the behavior in the air outlet above the

ship. It shouldn’t see strong variations, but it must be well defined not to add

instability to the solution.
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Velocity : pressureInletOutletVelocity, it is a velocity condition for bound-

aries where pressure is specified; it gives a zeroGradient for outflow and the patch-

normal of cell value for inflow (to find inflow velocity its own value) U = 0.

Pressure : totalPressure, it provides a condition on total pressure, by taking

as input total pressure p0, then inflow velocity will be subtracted to find pressure;

in this case p0 = 0.

Phase Fraction : inletOutlet, if there is outflow it uses a fixed value, if there

is inflow it applies a zeroGradient condition.

HULL It is the surface of the ship hence it cannot be penetrated by water and

air and, since viscosity is considered, the velocity above it must be zero.

Velocity : movingWallVelocity, it applies a velocity condition in the presence

of moving wall (necessary with interDyMFoam); in this case velocity is 0.

Pressure : fixedFluxPressure, adjust the pressure gradient to keep the bound-

ary flux specified by the velocity condition. it is useful when body forces like gravity

and surface tension are present.

Phase Fraction : zeroGradient, it extrapolates values from the domain, thus it

doesn’t require any information.

SYMMETRY symmetry, side and bottom boundaries have been defined as sym-

metry type then they have:

• zero normal velocity at the symmetry plane

• zero normal gradients of all variables at the symmetry plane

Now that the boundary conditions are defined it’s time to discretize the domain

to start resolving equations.
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Meshing

Meshing has been one of the most tricky and demanding tasks encountered during

this research work. There are essentially three sources of difficulty.

GEOMETRY & PHYSICS Dealing with shape optimization, it becomes fun-

damental to preserve geometry curvatures and shapes. For this reason there are

certain zones, especially underwater, that need to be ”well-meshed”. Thus fine

discretization are required and, on 4-meters geometry, this means big grading.

Furthermore the presence of two phases requires interface between them (free

surface) to be reasonably captured (effect of the bulb, as previously said, acts on

hull wave system).

LOW NUMBER OF CELLS Optimization requires many data, this means

many simulations. Hence the number of cells must be minimized to speed up cal-

culations and optimization. A good trade-off between accuracy and computational

speed have to be found.

OPENSOURCE MESHER Decision of using open-source tools can save money,

but can provide some complications. For example, in this work the OpenFOAM

internal mesher snappyHexMesh has been used. This has more then 70 parameters

to control and have no user interface. Find the best setting can become very time-

consuming.

Nevertheless, with an appropriate set-up, snappyHexMesh can give good quality

hexahedral mesh.

In the next sections, after a brief explanation about the meshing tools used, two
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unstructured meshes are presented: a coarse mesh that has been called coarseMesh

and a finer one that has been called fineMesh.

9.1 Meshing tools

blockMesh Taking as input the coordinates of the vertices blockMesh create the

computational domain and then decompose it into a set of 3D hexahedral blocks. It

is possible to define how many cells will be used to divide the domain, specify zones

where more cells need to be used and the grading between these zones.

Furthermore blockMesh generates the patches where boundary condition will be

imposed (see Chapter 8).

topoSet & refineMesh Even if blockMesh provides a first refinement, it is not

enough to reach the required quality. Then two utilities are used: topoSet and

refineMesh.

In few words, refineMesh take as inputs a set defined by topoSet and a direction

along which it will split in two the cells.

surfaceFeatureExtract surfaceFeatureExtract extracts features from a sur-

face or a file.

These will be used in snappyHexMesh to remove cells from the domain and to

snap the remaining to the surface.

snappyHexMesh Given a triangulated surface (.stl or .obj), snappyHexMesh

generates a three-dimensional mesh containing hexahedral and split-hexahedral cells.

Substantially, it takes an hexahedral background mesh (generated with blockMesh)

and remove from it the cells inside (or outside) the triangulation; then it relaxes and

adjusts the mesh to reach the required quality.

Since it represents the main stage of mesh generation, its steps are briefly ex-

plained.

• Cell splitting at feature edges and surfaces Cells intersected by the surface

are split following the dictionaries specifications. Here a refinement can be

specified by saying how many times cells will be split and how many cells will

be used for transition to the rest of the mesh. Also surface refinement could be

done to better maintain the geometry curvatures (there is a maximum angle

over which surface can be more refined)
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• Cell removal In snappyHexMesh dictionary there is a paramater called locationInMesh

that specifies a point belonging to the mesh. If this point is inside the triangu-

lated surface, all cells outside will be removed, conversely if it is placed outside

(as in this case), cells inside the surface will be removed.

As a rule, a cell is retained if 50% or more of its volume lies in the mesh.

• Snapping to surfaces This is the first iteration in snappyHexMesh procedure.

Vertices near the surface are attracted to her, then mesh is relaxed. A control

on mesh quality is made, if requirements are violated, the procedure is repeated

until they’re satisfied.

• Adding layers This is the most important step because it represents the spatial

discretization in the boundary layer, so its quality directly influences y+ and,

consequently, the solution. The mesh is displaced normally away from the

surface by a specified thickness. Again, the mesh is relaxed and a first quality

control is made, if the result is bad the thickness is reduced and the procedure

is repeated until satisfaction (if a satisfactory mesh isn’t reached, layers won’t

be inserted). When quality is reached, layers are added and another check is

made, if it fails, layers are removed and relaxation is solved again.

It is important to highlight that layers addition is made on the existing mesh,

and not to the surface; as a consequence, all the discretization steps before will

influence the quality and the rate of convergence of snappyHexMesh procedure.

All mesh quality requirements are specified in a dictionary called meshQuali-

tyControls.

9.2 Coarse & Fine Meshes

Spatial discretization is inspired to that of DTCHull OpenFOAM validation case

[6].

In this work two meshes have been realized to allow benchmarking and validation

of results.

As said in Chapter 8, to be sure that boundary conditions won’t affect the results,

a large domain is required, but, on the other hand, a fine discretization is necessary

to catch two important phenomena: free surface and boundary layer. So refinements

are necessary to give accuracy to the simulation, while maintaining its computational

costs relatively low.
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Figure 9.1: Background mesh generated by blockMesh

9.2.1 Background mesh

Both mesh generations start from the same background mesh generated with

blockMesh. The approach is to divide the domain in cells with a base (1 × 1)[m]

and variable height. In Figure 9.1, where a blockMesh output is shown, it is possible

to see these cells.

9.2.2 Free Surface refinement

Even if free surface definition isn’t a primary goal of this project, ensuring a

good representation, especially near the hull, is necessary to make accurate resis-

tance predictions. This is accomplished by defining different regions and grading

in blockMesh dictionary. Is is important to note that for free surface resolution a

refinement in the z-direction only is sufficient.

In the fineMesh a further refinement is made not to have too stretched cells near

the hull and causes problem to snappyHexMesh. This will be done with the already

mentioned tools topoSet and refineMesh.

In this case cells in the set defined by topoSet dictionary are split in two along

the vertical direction z (as specified in one refineMesh dictionary).
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Figure 9.2: Free surface refinement as specified in blockMesh dictionary

Figure 9.3: Free surface refinement made with topoSet and refineMesh, zone in red

corresponds to refined cells
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9.2.3 Near-Hull refinement

As said in the introduction to this section, a fine discretization is required near

the hull, especially in the boundary layer.

The approach to this request consists in defining a series of refinement boxes

nested inside each other, that contain hull geometry. Since refinement along the

z-direction has been already made, in this context it is necessary to refine along x

and y directions. So all the cells inside each box will be split in four littler cells (two

along x and two along y). Given that these boxes are disposed like a ”matrioska”,

in the inner box splitting will be performed a number of times equal to the number

of boxes.

As shown in Figure 9.4, fineMesh has 7 boxes, while coarseMesh has 6. This

means that cells in the inner box will have dimensions:

coarseMesh 1
26
' 0.016[m]

fineMesh 1
27
' 0.008[m]

To contain the hull geometry boxes are slightly bigger in the fineMesh.

Practically all these boxes are defined in different topoSet dictionaries and for

each one refineMesh is applied. Note that in this case refineMesh, since has to

split cells in x and y directions, will use a different dictionary from that used for

free surface refinement (along z ).

The presence of more than one boxes is necessary to ensure a slow grading

in cell dimensions, ensuring numerical stability and accuracy. Having small and

compact cells around the hull will help snappyHexMesh in reaching convergence and

generating a good mesh.

9.2.4 Generating the Mesh

Once the refined background mesh are created snappyHexMesh is used to generate

the two final meshes.

With regard to snappyHexMesh dictionaries, in both discretizations no surface

or local refinement has been used, while in the adding layer procedure there is a

difference in dictionaries set up.

In coarseMesh the number of layers to add has been set to 3, and the size of the

furthest layer has been set to be 70% of the cells size near the hull and the minimum

to be at least 25%.
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(a) coarseMesh

(b) coarseMesh

Figure 9.4: topoSet boxes to refine near the hull geometry in the case of coarseMesh (a)

and fineMesh (b)
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(a) coarseMesh (b) fineMesh

Figure 9.5: Distribution of y+ on the hull surface at Fn = 0.331 relative to the first

iterations in the coarseMesh (a) and fineMesh (b) cases

In fineMesh relative sizes value are the same, but to add three layers a different

approach has been used. In fact, adding three layers simultaneously causes a bad

covering of the hull. Then a good solution has been found by setting the number of

layers to 1 and applying snappyHexMesh three times.

9.2.5 Checking quality

When talking about mesh quality, considerations are based more on users’ expe-

rience than on a written theory.

The respect of the physics of the problem and the reasonableness of the results

have been the main criteria to check the quality of the mesh. Since experimental

results are available for the case study, these data have been used to check the

numerical set up (see Chapter 16).

Even if experimental results could present errors, sometimes more than compu-

tations, having a similarity of results has given a measure about the quality of the

work, helping in the set-up choice.

Since wall functions are used to solve for the turbulent flow, attention must be

paid on the first layer thickness. Usually it is recommended to have a y+ mean value

between 30 and 500(see Chapter 11), however, since the k − ω SST model is used,

it has been choose to extend this range from 1 to 600.

In this view, the mesh has been checked running some iterations and controlling

the distribution of y+ on the hull. These are shown in Figure 9.5.
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Number of cells ∼ 760, 000

Average y+ ∼ 80

(a) coarseMesh

Number of cells ∼ 2, 800, 000

Average y+ ∼ 7

(b) fineMesh

Table 9.1: Features of the two spatial discretizations.

9.3 Remarks

In shape morphing it is important that meshing dictionaries work well for all the

cases; many geometries imply many meshes, so controlling the quality and adjusting

the dictionaries every time can become tricky and time consuming.

Finally, considerations about speed and accuracy must be made to choose the

one to employ in optimization. In Chapter 16 a comparison with towing tank ex-

perimental results is presented. Also a comparison between the two meshes using

an unsteady solver is presented.

46



Chapter 10

Temporal Discretization

As said in Chapter 7, investigations are made considering a fixed trim condition

for the ship. So a steady state solution must be computed.

This 0-degree-of-freedom assumption is a common practice in ship resistance

computation, since it allows to speed up a lot the calculations. Furthermore, in

towing tank tests position of the hull seems not to vary significantly, making this

simplification not too strong.

The big difference in calculation time is given by carrying out a pseudo-transient

simulation with the use of the Local Time Stepping (LTS) technique.

For the purpose of this thesis, the choice of this method has been necessary,

since it has represented a very good compromise between accuracy (comparing with

experimental results) and computational costs. In the key of optimization this is an

important requirement of the numerical model.

However, since LTS is not well documented in literature and its parameters

are not so easy to manage, also a classical Euler implicit method with adjustable

time-step has been tested for benchmarking (see Chapter 16).

10.1 Temporal discretization

When the aim of a simulation is to represent a transient behavior, for example

the free surface evolution or the ship’s trim and sinkage, an additional coordinate

must be added. This is the time coordinate t.

This new coordinate, unlike the spatial ones, has no backward influence, i.e.

something that happens at time t can affect the flow only in the future and not in

the past. This parabolic nature allows to consider only few points of the temporal

domain instead of fields as in the spatial case.
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Before describing the time discretization methods it is important to introduce

the concept of Courant-Friedrich-Levy (CFL) condition.

This criterion describes the stability of the solution, based on the fact that all

initial information must be used to compute the forward time in order to have a

PDE ’s solution to converge. In other words, a small enough time-step must be used

to allow that all information can propagate through the mesh. This can be written

has:

CFL = ∆t
N∑
i=1

ui
∆xi

6 CFLMAX (10.1)

where N are the dimensions of the problem, ∆t and ∆xi the temporal and spatial

length and ui is the information. The CFLMAX depends on the numerical schemes

employed in the equation discretization.

Methods to discretize along time coordinate can be distinguished in explicit and

implicit. As suggested by their names, the first give an explicit calculations of the

value at a forward time t+ ∆t since it depends only on quantity referred to time t,

while the second gives an implicit solution, some quantity depends on t+ ∆t, then

a system of equations must be solved.

Even if implicit methods have higher computational costs (need to solve a system

of equation at each time step), they have the advantage to be unconditionally stable.

This mean that larger time-steps can be used, leading to a faster convergence of the

solution.

However, too large time-steps cannot be chosen; in fact it is necessary to ensure

that the significant temporal scales are resolved in order not to hide some time-

dependent features.

Thus, even if explicit methods require less calculation than implicit, the strong

limitations of the CFL condition can lead to very small time step, augmenting a

lot the computational costs. Furthermore the Courant Number is related to spatial

discretization (equation (10.1)) and so, the finer the spatial discretization the finer

must be the temporal one.

These limitations of explicit methods lead to the wide-spread use of implicit

methods in the naval field.

10.2 Local Time Stepping

Usually when the temporal discretization is made with an implicit method a

maximum CFL number is imposed for each cell. So time-step is adjusted each
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iteration to ensure that Courant value for the more critical cells. This allows to

maintain a good accuracy of the solution.

In this case, as it has been seen in Chapter 9, there is a big difference in size

between the cells near the hull and those far away (∼ 27). This implies that, if a

maximum value of Courant Number is imposed, the smaller time-step in the critical

cells will also be applied to the bigger ones, slowing a lot the simulation.

In this view it can be thought to apply a bigger time-step in the zone where the

fields change ”slowly” and the temporal scales are bigger. The Local Time Stepping

approach is just this: applying a different and adequate time-step for each cell.

The time step is ”maximized” in each cell according to a fixed maximum Courant

Number (maxCo). This lead to a discontinuous time-step field that is smoothed in

order to avoid errors from sudden changes.

It must be underlined that this procedure clearly violates the physics during

all the ”transient”, for this reason time-steps assume the role of iterations. This

non-physical aspect makes this procedure difficult to manage. Furthermore, the free

surface evolution will be ”killed” in the zone away from the hull.

Local Time Stepping has shown to be very powerful, leading to results very close

to the experimental ones with a computationally cheap procedure. As for spatial

discretization a comparison with a different scheme (classical Euler implicit) has

been made (see Chapter 16).
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Turbulence modeling

In CFD the simulation of turbulence is one of the most important aspect to

achieve reasonable and accurate results. Unfortunately it is also one of the most

tricky.

The set up of turbulence modeling has been made following well known validation

cases [6] and common guidelines [8],[7].

As stated by the 27th International Towing Tank Conference, the Reynolds Aver-

age Navier-Stokes Equations (RANSE) are the main workhorse for resistance com-

putations, offering good accuracy, reliability and fast solution turnaround time [8].

For this reason Reynolds-Averaging approach is briefly explained in this chapter,

with a brief description of the method adopted in this work, i.e. the k − ω Shear

Stress Transport model.

11.1 Reynolds Averaged Navier-Stokes Equations

Turbulent flows are characterized by the presence of eddy structures of very

different length scale. Accurately computing each of these scales would require

about 109 − 1012 cells, making the calculation unaffordable. Thus, a variety of

procedures have been developed to simulate the effect of turbulence, avoiding to

calculate all the details of the turbulent flow.

In general the choice is between filtering and averaging. Since the first is too

expensive for the purpose of this study, the averaging procedure has been chosen.

The main principle behind the so-called Reynolds-averaging is to decompose the

flow variables in a time-independent φ and a fluctuating φ′ component, to substitute

them in the equations and then to average them over time.

The time-averaging properties lead to the following expression for the incom-
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pressible RANS equations:
∇ · (ρv) = 0

∂ρv

∂t
+∇ · {ρvv} = −∇p+∇ ·

(
τ − ρv′v′

)
+ ρg

(11.1)

Comparing theses equation with those written in Chapter 7, one can note the ap-

pearance of anew term on the right-hand-side. This term is called Reynolds Stresses

Tensor. So what Reynolds-averaging does it to collect all the instantaneous fluctu-

ations in the 6 new unknowns.

Here comes into play the Bousinnesq Hypothesis which makes an analogy with

Newtonian fluids by assuming that the Reynolds stresses are a linear function of the

mean velocity gradients.

− ρv′v′ = µT
[
∇v + (∇v)T

]
− 2

3
ρkI (11.2)

This assumption reduces the number of unknown from 6 to 2: the turbulent eddy

viscosity µT and the turbulent kinetic energy k.

For incompressible flows, the equations can be rearranged by defining a turbulent

pressure p [14]:

p← p+
2

3
ρk (11.3)

In this manner, the only unknown that remains to compute is the turbulent eddy

viscosity µT . It is on the way this quantity is expressed or computed that lies a

great variety of turbulence model.

In the following section are presented the principle and the capabilities of the

Shear Stress Transport (SST) k-ω model that is the one employed in this work.

However for a better understanding also the k − ε and the k − ω models are briefly

explained.

11.2 Shear Stress Transport k − ω Model

The k-ω family of linear eddy viscosity models seems to be by far the most widely

used ones [8].

Before describing the SST k−ω model it is necessary to brielfy introduce standard

k − ε and k − ω models, since SST is a combination of these two approach.

Both methods belong to the two-equations family of turbulence models. This

class involves the resolution of two additional partial differential equations in order

to locally compute the turbulent eddy viscosity µT .
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Let’s have a look at one of the earliest of these methods: the standard k − ε

model developed by Jones and Launder.

k− ε

Like other models based on Bousinnesq Hypothesis, the k − ε is based on the

following expression for turbulent eddy viscosity µT :

µt = ρCµ
k2

ε
(11.4)

where Cµ is a calibration constant, k is the turbulent kinetic energy and ε is the

rate of dissipation of turbulent kinetic energy per unit mass due to viscous stresses.

Solving the following transport equations for k and ε a local value of µT can be

computed:
∂

∂t
(ρk) +∇ · (ρvk) = ∇ · ((µ+

µT
σk

)∇k) + Sk (11.5)

∂

∂t
(ρε) +∇ · (ρvε) = ∇ · ((µ+

µT
σε

)∇ε) + Sε (11.6)

It must be kept in mind that the construction of this model is based on two

important assumptions:

• fully turbulent flow

• negligible molecular viscosity effects

that establish the limits of this approach:

• validity only for high Reynolds

• inability to reach the wall

To account for this lack the so-called low Reynolds k− ε model have been devel-

oped. These use damping functions to damp the turbulent viscosity while getting

close to the wall.

k− ω

In this model the equation for ε is substituted by an equation for ω, where ω is

called specific turbulent dissipation and represents the rate at which the turbulent

kinetic energy is converted into thermal energy per unit time and unit volume.

ω =
ε

Cµk
(11.7)
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Then turbulent eddy viscosity is given by:

µT = ρ
k

ω
(11.8)

The two additional equations are:

∂

∂t
(ρk) +∇ · (ρvk) = ∇ · ((µ+

µT
σk

)∇k) + Sk (11.9)

∂

∂t
(ρω) +∇ · (ρvω) = ∇ · ((µ+

µT
σω

)∇ω) + Sω (11.10)

This new equation has three advantages [14]:

• it is easier to integrate;

• it is integrable also in the sub-layer without using damping functions ;

• it is capable to deal with weak adverse pressure gradient.

As pointed out by its inventor, k − ω model is accurate for both free shear

flows and wall-bounded (attached boundary layer and mildly separation) [26]. But,

unfortunately, this model has a strong dependence on the free stream values.

Looking at capabilities and flaws of the two models, they seems to be ”comple-

mentary”. The k − ε, thanks to its insensitivity to free stream, predicts with more

accuracy away from the wall, while the k − ω behaves better in the boundary layer

and with weak adverse pressure gradient.

These considerations have led to the development of the Baseline (BSL) k − ω
model, that uses a blending function to switch from the k− ω and a rearrangement

of k − ε in terms of ω.

The Shear Stress Transport k − ω model represents a further improvement to

the Baseline, by limiting the shear stress in adverse pressure gradient. Menter, the

developer of these two methods, writes [23]:

“It (BSL) has a performance similar to the Wilcox model, but avoids that model’s

strong freestream sensitivity. The second model (SST) results from a modification to

the definition of the eddy-viscosity in the BSL model, which accounts for the effect of

the transport of the principal turbulent shear stress. The new model is called shear-

stress transport-model and leads to major improvements in the prediction of adverse

pressure gradient flows.”
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11.3 Wall functions

On every solid surface, due to the fluid viscosity, a boundary layer develops. This

layer of fluid can be divided in three regions:

• viscous sub-layer (0 < y+ < 5), where the effect of viscosity dominates;

• buffer sub-layer (5 < y+ < 30), where viscous and inertial effects are equal;

• inertial (log-law) sub-layer (30 < y+ < 500), where the effect of inertia domi-

nates.

These three sub-layers can be identified by the value of y+ that is the adimension-

alized normal distance from the wall:

y+ =
d⊥uτ
ν

(11.11)

where uτ =
√
τw/ρ is the velocity scale.

This subdivision of the boundary layer is schematized in Figure 11.1.

Figure 11.1: Boundary layer subdivision and correspondent y+ ranges. (courtesy of Wolf

Dynamics srl)

Turbulence models avoid the buffer sub-layer, because the high turbulent pro-

duction, by placing the first cell center in the viscous sub-layer or in the inertial

sub-layer.

The first option leads to accurate prediction of the boundary layer, but requires

a very fine discretization near the wall, usually leading to unaffordable costs.

The second, combined by the definition an appropriate velocity profile between

this point and the wall, significantly reduces computational costs while giving a good
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accuracy. This velocity profile is called wall functionadn its action is schematized

in Figure 11.2.

Figure 11.2: Representation of the wall function approach. (courtesy of Wolf Dynamics

srl)

OpenFOAM offers several wall functions, among these the ones employed in

this work are:

• turbulent kinetic energy k : kqRWallFunctions

• specific dissipation rate ω: omegaWallFunction

• turbulent viscosity νT : nutkRoughWallFunction

11.4 Remarks

The model chosen to simulate turbulence is the Shear Stress Transport (SST)

k−ω. This approach combines the good qualities of both standard k− ε and k−ω
models. Furthermore it accounts for the effect of Reynolds stress transport, allowing

a better prediction in the presence of adverse pressure gradient.

The introduction of two new variables (k, ω) requires the definition of other

boundary conditions. This is done with the use of wall functions that allow a

coarser discretization near the wall by sumperimposing a theoretical velocity profile.

Also a condition for the turbulent kinematic viscosity νT , that accounts for surface

roughness effects, is imposed.
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Usually for a correct use of wall functions the y+ value must be in the range

from 30 to 500, however the blending function of the SST allow to extend this range

from 1 to 600.

This has been an important constraint in the mesh generation (see Chapter 9).
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Chapter 12

Shape Morphing Theory

In this thesis, in order to parameterize the shape of the bulb, the Radial Basis

Function approach has been adopted.

This requires the definition of some control points that are the centers of some

chosen function, the Radial Basis Functions (RBF). These functions are used to gen-

erate a displacement field, by defining the value of the RBF in the control points and

defining a support radius that defines their domain. In this manner the displacement

field is defined as follows:

d(x) =
nc∑
i=1

diψ(‖x− ci‖) (12.1)

where ψ is the RBF, x are the spatial coordinates, ci are the control points coordi-

nates and nc the number of control points defined.

Calling S the points that define the undeformed geometry, the new, deformed

geometry can be computed as:

S∗ = S + d(x) (12.2)

When deforming only a part of the geometry, it becomes necessary to have an

accurate control over deformable and undeformable portions of the surface and the

possibility to prescribe the continuity condition between these regions [9].

In order to apply deformations only to a specific part Ω of the entire geometry,

a filter scalar function w is defined so that:w = 0 outside Ω

0 ≤ w ≤ 1 inside Ω
(12.3)
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This filter function, in turn, depends on another scalar function φ(S|Γ), called

geodesic level set function or simply distance function, that represents the topological

information about each point of S with respect to the boundary Γ.

Now it is possible to modulate theRBF displacement field with the filter function

in order to obtain a constrained deformation of the geometry.

S∗∗ = S + w(φ(S|Γ)d(x) (12.4)

The distance function chosen is the geodesic distance function. To evaluate this

function, while guaranteeing a certain smoothness, a method based on the resolution

of a time-dependent heat equation is used [9]. This method consists of the following

steps:

• the heat equation ∂u
∂t

= ∆u (∆ is a Laplace-Beltrami operator) is solved in Ω

over the time tend and with u = 1 at Γ as boundary condition

• the vector field of the the normalized gradient is computed as n =
∇u
|∇u|

• the closest scalar potential φ is computed by solving a Poisson equation ∆φ =

−∇ · n with a Dirichlet boundary condition along Γ

Figure 12.1: Heat is allowed to diffuse for a certain period of time tend reaching a u

distribution, its gradient ∇u is computed and normalized n and then the function φ, whose

gradient is n, recovers the final distance (Crane et al. [19]).

The evaluated function φ approximates the geodesic distance, approaching to

the true distance as the time tend goes to 0 [19]. In this case the desired level of

smoothness is ensured by tuning tend.

This has been just a short overview of the theory behind MiMMO/MIMIC

shape morpher, for a deeper knowledge [9] and [19] are suggested. In the next

chapter the set up of the shape morphing process will be described, showing how

this theory is used in practice.
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Shape Morphing Set up

In this chapter the set up of the shape morpher is presented. This is done by

creating an execution chain on a source file and then compiling it.

First of all, it is necessary to specify the control points, i.e. the RBF centers,

and the displacements to apply in order to morph the geometry.

For example let’s take the nose of the bulb as RBF control point and require

that it must move 0.4 metres forward (x-coord) and 0.2 metres upward (z-coord). In

Figure 13.1: Example of shape morpher inputs: control point (bulb’s nose) and displace-

ment (x = 0.4[m] and z = 0.2[m]).

the source code these input variables have been called points and displ.

MIMIC works by assembling an execution chain made with code blocks prede-

fined by the user. First the blocks that will be used in this case are defined, then

the execution chain is composed.
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13.1 Definition of Code Blocks

This is the setup used in the optimization, thus the definition of blocks is made

taking some precautions related to ship design.

stlIn this MiMMOGeometry object is created to read the input .stl geometry

to morph (it also stores it in another .stl).

Figure 13.2: Image of the input geometry

pcloud this ProjectCloud object is created to project the control points on the

target geometry. In this example (but also in the optimization process) the only one

control point used is already on the surface, however this block is implemented to

make the morpher more flexible.

selbox this SelectionByBox object is created to define a box that identifies the

deformable portion of the whole geometry.

Figure 13.3: Image of selection box that identifies the deformable part of the hull
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Looking at Figure 13.3 it is possible to notice that this is defined in order not

to change the main ship parameter, i.e. it arrives to amidships and to the forward

point.

sconstr this SurfaceConstraints object is created to compute a filter function

over the selected part of the geometry. This filter is function of the distance from

the boundary between deformable and undeformable zones. The commercial code

MIMIC allows to manage the continuity between the deformable and undeformable

part (G0, G1, G2) and the transition between them. However, for the shape morphing

procedure developed in this thesis, these features haven’t been fully exploited.

Figure 13.4: Example of filter function computed on the geometry.

rcon this ReconstructScalar object is created to reconstruct a scalar field over the

whole input geometry.

mrbf this MRBF object is created to compute the deformation displacements of

the nodes of the input geometry. This is done by defining the support radius of the

radial basis function centered in the control points.

applierS this Apply object is created to modify the nodes of the input geometry

using the displacement field that receives as input.

stlOut this MiMMOGeometry object is created to write the deformed geometry

to an .stl file as output
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Figure 13.5: Example of displacement field computed on the geometry.

Figure 13.6: Image of the deformed geometry as output

13.2 Execution Chain

Once blocks has been defined it remains to define the connection between them

and the data exchanged. In Figure 13.7 there is a diagram of the execution chain.

Obviously the chain starts with the input of the geometry to be morphed; this

is accomplished by the stlIn block. From this geometry is delivered to other five

blocks: selbox, pcloud, rcon, mrbf and applierS. The selbox block takes the

geometry and select, by intersection with the defined box, the deformable part of the

geometry (geometry and boundaries). These data are sent to the sconstr block that,

using the HEAT algorithm and the defined connection and continuity properties,

compute the filter function. This scalar field is sent to recon that reconstruct the

scalar field for the whole geometry.

The reconstructed filter function enter as input in the mrbf block that, taking

the geometry from stlIn, the control points projected to the surface by pcloud and

their displacements, compute the distance function field.
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Figure 13.7: Workflow diagram of the execution chain used to morph the bulb.

Finally, this deformation field is sent to the applierS that applies it to the

undeformed geometry (from stlIn) and passes the result to the stlOut block that

write the deformed .stl geometry file.

13.3 Input Parametrization

Once the source file is built it must be compiled to create the morpher. However

for the purpose of optimization the input have to be parametrized.

During the optimization procedure, many geometries need to be created and

the source has to be changed and the morpher to be compiled. To avoid this

slowdown of the workflow, the morpher is slightly modified to take as input a file

(parameters.txt) that contains the value of the two morphing parameters chosen:

x and z displacements of the bulb’s nose.

This step allows the interaction between MiMMO/MIMIC and Dakota, that

update parameters.txt file.

In this chapter the theory behind the MiMMO/MIMIC shape morphing tool and

the set up used to create the shape morpher have been presented. Together with

the OpenFOAM set up explained in the previous part, they represent the two

cornerstores of the optimization model: one morph the geometry, the other compute
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the resistance of the morphed geometry. In the next part, the linking element of the

process, i.e. Dakota, will be presented.
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Chapter 14

Introduction to Optimization

Literally, optimization means ”an act, process, or methodology of making some-

thing (as a design, system, or decision) as fully perfect, functional, or effective as

possible”. This can be applied to many fields: finance, transports, design, health,

energy systems, aerodynamic etc.

Each of these problems can be thought like a black-box that receives some inputs,

let’s call them design variables, and gives out some outputs, let’s call them quantity

of interest or objective functions.

So, given the problem, optimization means finding the set of design variables

that minimizes, maximizes, equalizes or zeroes the quantities of interest.

In this chapter an overview of the various optimization methods is presented by

referring to Dakota toolkit (Chapter 4.

14.1 Mathematical description

Mathematically speaking, optimization can be defined as:

finding x =


x1

x2

.

xn

 ∈ Ω that

minimizes

or

maximizes

or

equalizes

fj(x), j = 1, ..., q (14.1)

This is the more general statement, from which we can differentiate various kind

of optimization problem.

The first aspect to highlight is the dimension n of the design variable vector.

Obviously the higher it is the more expensive and complex will be the optimization
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study, and hence it becomes very important to know exactly which are the strictly

necessary variables to characterize the problem.

The design vector x belongs to Ω that is a subset of Rn and is called constraint

set or feasible set. Often this set is defined as Ω = {x : h(x) = 0, g(x) ≤ 0},
where h(x) and g(x) are given functions called functional constraints, but there are

cases where Ω = Rn [13]. This is a first differentiation in optimization problems:

the former is called constrained optimization, the latter unconstrained optimization.

Let’s say, for example, that the scope is to maximize a certain objective function.

Since its behaviour is unknown a priori, questions that come into mind are ”How

many maximum are there in the function?” ” The scope is to find the global or all the

local?” These questions highlight another fundamental difference: local optimization

and global optimization. This point become extremely important when objective

functions are multimodal, especially when using Gradient Based Optimization.

Another parameter to highlight is the number q of objective functions. In single-

objective optimization q = 1 and then one or more optimal values are founded. In

multi-objective optimization different outcomes need to be optimized simultaneously,

so the result will be a set of optimal solutions, called Pareto frontier. This leads to

make a trade-off analysis to find the better solutions.

There are other important feature of the problem, such as non-linearity and

noise, that influence the choice of the optimization method to employ.

The great variety of optimization methods can be divided in two groups: gradient

based and derivative-free, depending on the need of calculating the gradient or the

hessian.

14.2 Classification of optimization methods

In Dakota User’s Manual three criteria are used to differentiate all the existing

optimization methods [12]:

• Problem Type is characterized by the constraints’ type and by the linearity

or nonlinearity of the objective and constraint functions. So:

– unconstrained problem has no constraints;

– bound-constrained problem has lower and upper bounds on the design

variables;

– linearly-constrained problem has linear and bound constraints;
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– nonlinearly-constrained problem has nonlinear, linear and bound con-

straints;

Furthermore, based on the nature of all these constraints there could be:

– equality-constrained problem if all are equality constraints;

– inequality-constrained problem if all are inequality constraints.

Particularly, if all the objective and constraint functions are linear there are

called Linear Programming (LP) problems. If not, like it is common in engi-

neering practice, they are called NonLinear Programming (NLP) problems.

• Search Goal of the optimization procedure can be to find the best feasible

solution over the parameter space, i.e. global optimization, or can be to search

the solution in a certain zone of the space, i.e. local optimization.

• Search Method represent the approach that is used to satisfy the search

goal, i.e. the way a new design point with a more satisfactory objective func-

tion is located. This criteria differentiates in:

– gradient-based methods that calculate the gradient of the response func-

tion to fin the direction of improvement;

– derivative-free methods that avoid the computation of gradients (that

often are expensive) by using many different approach (pattern search,

genetic algorithms).

Often in engineering problems, especially in Computational Fluid Dynamics, the

calculation of the quantity of interest requires lot of time and money. This can

lead to the exclusion of many optimization methods, since they require to do a

lot of iterations to find the optimum solution. An important way to deal with

this problem is surrogate modeling, i.e. constructing a low-fidelity, but inexpensive,

model that faithfully represents the behavior of a high-fidelity model by extracting

information from a limited number of responses.

In this manner every type of optimization technique can be inexspensively ap-

plied at the surrogate level, that is inexpensive. This strategy is called Surrogate-

based Optimization (SBO) and since it is the one used in this research work will

be better explained in Chapter 15. Before doing so, an overview of the common

available techniques is made and the choice is motivated.
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14.3 How to choose an optimization method?

When facing an optimization problem there is a big assets of methods that can

be used. However, depending on the case being studied, some will be faster and

more accurate. So the best method have to be chosen.

This choice can be made by looking at the features of the problem to be opti-

mized. In this view the main questions to ask are:

• Does the black-box give smooth or noisy outocomes?

• Is the behavior unimodal or multimodal?

• How much does it cost obtaining the outcomes?

• Are interests focused on a single objective or more?

Generally the gradient-based methods represent the most efficient solution, guar-

anteeing a good convergence rate [17]. These methods essentially looks for the

optimal solution moving thorough the parameter space guided by the gradient in-

formation. This leads to three major problems:

• knowledge of the gradient could become very heavy when the data acquisition

is expensive;

• the optimum search must start from a design point (or more than one) and this

must be chosen carefully because it will affect the convergence to the optimal

solution and the time required;

• the presence of noise could ”confuse” the search process, by locally corrupting

the gradients.

A gradient-based optimization method does its best when the gradient computation

is inexpensive and the problem behavior is smooth and single-modal or when the

behavior is well known.

Derivative-free methods can be a good alternative when derivative computations

are too expensive. They require only outcomes values and not their variation through

the parameter space. This makes them very handy when globally optimizing a

problem with a noisy and multimodal behavior. However, they have the fee of

requiring a lot of outcomes to reach an accurate solution. So when the objective

function evaluation is expensive these methods should be abandoned.

70



Introduction to Optimization

When the outcomes are expensive and the behavior is unknown a priori a good

solution is surrogate-based optimization. With a limited number of function evalua-

tions the behavior can be modeled and then analyzed. This allows to get information

about the case study and, if a good surrogate has been constructed, each optimiza-

tion method can be applied, since at the surrogate level they become inexpensive.

All these considerations are summarized in Figure 14.1.

Figure 14.1: General guidelines for the choice of the best optimization approach considering

the features of the case being optimized. (Courtesy of Wolf Dynamics srl)
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Surrogate Modeling

The shape optimization of the bulb presented here follows the surrogate-based

approach. Essentially this means that a low-fidelity model is constructed to substi-

tute the high-fidelity model (in this case the CFD simulation).

Before dealing with the various methods to build a surrogate, it is necessary to

explain what a surrogate is and which advantages it takes.

In this instance, interest is focused on finding the optimal bulb geometry, i.e.

the one that minimizes hydrodynamic resistance. For example, if only one design

variable is considered, the behavior of the ship could be represented by a curve.

Thus the optimization will mean to find the ”lower” point of this curve.

The problem is that to reproduce this curve point by point would require a lot

of simulations and each of these would involve hours of computation. Furthermore

it is important to remember that the resistance behavior is unknown a priori and,

except some physical intuitions, practically unpredictable. For this reasons it is

clear that using gradient-based methods or genetic algorithms could become heavily

expensive, especially if the starting point is badly defined. Here advantages of

surrogate modeling comes into play.

In fact, when the behavior is unknown, a first thing to do is exploring the vari-

able design space, making some observations. This step gives some insights of the

problem. For example, the presence of minimums and maximums can be guessed

and with this basic information gradient-based and genetic algorithms can be used

more easily.

Otherwise the entire behavior can be reconstructed, passing from some discrete

points to a continuous function called surrogate model (also known as meta-model

or response surface). This means that the minimum research or any other analyses,

won’t be made using an expensive high-fidelity model, but on a surrogate of it.
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In other words, the high-fidelity model (i.e. CFD simulation) will be used only

to calculate a certain number of outcomes. Then these values will be used to build

a meta-model (or surrogate) that predicts responses in other design points.

So, once a surrogate model is built, evaluating the quantities of interest becomes

inexpensive, and any kind of optimization, calibration and investigation can be

made.

In this view, surrogate based optimization has been an almost forced choice for

the case being studied here.

The following section deal with the key stages of surrogate modeling procedure.

Subsequently, the two approach that are employed in this work are described and

the set-up of the optimization procedure is defined.

15.1 Key stages

15.1.1 Screening

First of all, the minimum number n of design variables that can highlight the

black box behavior have to be defined.

x = {x1, x2, ..., xn} (15.1)

Then k of this n-vectors have to be recruited to create the design space in which

optimization will be performed.

X = {x1,x2, ...,xk} (15.2)

In this process many techniques can be used to choose the adequate combinations

of design variables. Example of these are full factorial sampling or Latin Hypercube

sampling.

15.1.2 Observing

Once the design space is defined, observations can be performed for each of

the k chosen configurations. These could be done by experimental measures, data

collections or, as in this case, code simulations.

This step can be see like the act of passing the design vectors as input to a

black-box that gives back as output some objective functions to be monitored and

optimized.
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If, for example, only one objective function is considered, the results of this phase

will be a set of k data pairs:

{(x1, y1), (x2, y2), ..., (xk, yk)} (15.3)

These represent points in the parameter space, called training points, and their

collection is called training data-set.

15.1.3 Learning

This step is the essence of surrogate modeling. The goal is to learn from the

obtained data pairs, that is searching through all the possible functions the one that

better fits the training data-set. The bad news is that the number of candidates

function is infinite, the good one is that the overwhelming majority of these are

unreasonable. On the manner such bad candidates are filtered out lies the variety

of surrogate modeling approaches.

The one adopted here is to choose a structure for the surrogate model f̂ , defined

by structural and tuning parameters. The structural ones are computed to fit the

training data-set and then the best tuning parameters are searched to find the most

”likely” surrogate with that structure.

15.1.4 Facing the noise

Usually the term ”noise” is referred to random errors that corrupts physical

measurements. Then it is related to something that it’s not repeatable.

Computational experiments are deterministic, hence what is called ”noise” is

caused by model inaccuracy, that is systematic. Keeping in mind this is especially

important when using Gaussian process, in which deterministic results are viewed

as realizations of a stochastic process [11].

So, during the tuning of the surrogate, considering the noise is very important

in order not to fit the data at too fine a scale. This problem is called overfitting and

has to be avoided.

15.2 Polynomial & Kriging

As it will presented in Chapter 17, in this work the first approach to bulb opti-

mization has been made considering only one design variable. To better understand
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the building process, for the one-design-variable case the surrogate has been con-

structed using an in-house Python script.

The theory used to develop this code is presented in the following to give the

reader a brief introduction to the mathematics behind surrogate modeling.

15.2.1 Least-squares Polynomial Regression

Equation (15.4) shows the structure of a polynomial response curve, where the

polynomial coefficients w are the structural parameters and the polynomial degree

m is the tuning parameter.

f̂(x,m,w) = w0 + w1x+ w2x
2 + ...+ wmx

m =
m∑
i=0

wix
i (15.4)

Now, supposing that the polynomial degree is known, let’s find the polynomial

coefficients w.

Applying a polynomial equation to each training point a linear system can be

constructed as follows: 
1 x1 x21 ... xm1

1 x2 x22 ... xm1

... ... ... ... ...

1 xn x2n ... xmn



w1

w2

...

wm

 =


r1

r2

...

rn

 (15.5)

Writing in a more concise form:

Φ ·w = r (15.6)

where Φ is the so-called Vandermonde matrix and r is the response vector.

Generally, to solve this system a least-squares analysis is employed. This means

finding the vector w∗ that minimizes the residuals ||Φ w − r||. Using least-squares

approach, the more ”likely” estimation of w can be calculated as:

w = (ΦTΦ)−1ΦTr = Φ+r (15.7)

Where Φ+ is called Moore-Penrose pseudo-inverse of Φ.

At this point, once the coefficients are determined, the polynomial surrogate of

the chosen order can be plotted. Unfortunately, in building surrogates, order of the

polynomial is usually unknown a priori.

In this view, one could point out that the higher polynomials fits well the data

and this is true. But in surrogate modeling danger of overfitting the noise must be

kept in mind.
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Then another method must be used to tune the polynomial degree m to better

fit the data. Here Leave-One-Out-Cross-Validation is used.

First of all, it is necessary to have a measure of the model accuracy. This can

be done by defining a loss function representing the difference between model and

observations. Obviously to do this other design points, out of the training data set,

need to be used; these are called test data-set.

As previously said, observations could be very expensive and time-consuming

and to have a set of data used only for testing may not be convenient.

A way to overcome this limit is to split the available data set into q subsets

and build the model without considering one of these; this will be used later as test

data-set.

Rotating the left-out subset, q loss functions can be computed and that can help

finding the best parameters.

This procedure is called ”q-Fold Cross Validation”, when q = n it is called

”Leave-One-Out Cross Validation”.

15.2.2 Kriging Interpolation

The structure of the surrogate built with Kriging is given as the sum of a trend

function t(x) and a gaussian process error model ε(x).

f̂(x) = t(x) + ε(x) (15.8)

As described by ”Dakota v6.5 Theory Manual” [12], Kriging interpolation in-

volves mainly three steps:

• choice of a trend function

• choice of a correlation (kernel) function

• estimation of correlation parameters

The trend function could be a known costant (simple kriging), a general polynomial

obtained with least-squares regression (universal kriging) or an unknown constant

value (ordinary kriging).

As in many other Gaussian processes, a Bayesian approach is used, in the sense

that the observed responses are viewed as if they come from a stochastic process

[11]. Under this assumption, each response will have its own expected value and
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covariance function:

E [r(xi)] = fT (xi) · β (15.9)

Cov [r(xi), r(x∗)] = λ · kernel(xi, x∗|θ) (15.10)

where fT (x) are trend function basis and β their weights, x∗ is a design point

outside the training data-set, λ is the process variance and θ is the correlation

function parameter.

Collecting all responses, an observed ”random” vector is defined:

r = {r(x1), ... , r(xn)} (15.11)

Then, by definition, the joint distribution of r satisfies [22]:

r ∼ Nn (t(x), λK) (15.12)

where K is the n×n matrix of correlations between training points (kernel function

applied between all training points).

Assuming to know the trend and kernel functions parameters it is possible to

compute conditional expected value and conditional variance of the process at an

untested location x∗:

E [r(x∗)|r(x)] = fT (x∗)β + kT∗K
−1(r − F β) (15.13)

V ar [r(x∗)|r] = λ
(
1− kT∗K−1k∗

)
(15.14)

where k∗ is the vector of correlations between the untested point and the training

points, and F is the n× q matrix of all q trend basis functions at training points.

In the Python script the squared exponential is chosen as correlation function:

kernel(x, x∗|θ) = e−θ(x−x
∗)2 (15.15)

As can be seen by its structure, this function correlates the outputs depending on

the distance between inputs: very close inputs are strong correlated (∼ 1), while

distant inputs are weak correlated (∼ 0).

This correlation can be tuned by varying the parameter θ: augmenting its value

will enhance correlation, zeroing it will make outputs independent between each

other. Here θ is a scalar because only one design variable is considered; if for

example also morphing in z direction is considered, two different θ can be defined.
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Another parameter that could be used for tuning is the exponent; it could be

varied from 0 to 2 [22], but not to complicate the implementation this step has been

avoided.

At this stage a criterion to tune the surrogate have to be defined; the one chosen

in this context is Maximum Likelihood Estimation.

Essentially, tuning the kriging means to find the most ”likely” multivariate nor-

mal distribution that fits the training data. Having parametrized mean and covari-

ance functions (equations (15.9),(15.10)), optimization is reduced to their tuning

parameters β and θ [22].

Fixed a polynomial degree, a polynomial trend function can be found using a

least-squares analysis as in the previous section. Also in this case Leave-One-Out-

Cross-Validation could have been used to find the order.

Now only θ remains to be computed.

To discriminate which is the optimal value, a measure of how ”likely” is the sur-

rogate need to be introduced. This can be accomplished by the likelihood function.

Considering the logarithm form:

log f(R | x, λ, θ) = −n
2

log 2π − 1

2
log(λn|K| − 1

2λ
(R− F β)TK−1(R− F β)

(15.16)

taking the negative and neglecting terms that don’t influence optimization:

NLL ∝ m log λ+ log |K|+ 1

λ
(R− F β)TK−1(R− F β) (15.17)

Thank to the properties of Negative Log Likelihood (NLL) gradients, it is possible

to calculate an optimum λ for each iteration over θ . Hence the problem reduces to

find θ that minimizes NLL [22].

The two methods described here are just a scrap of the surrogate modeling world.

However they present very interesting features.

The big difference between them is that the first (polynomial) is a regression, so

it uses the information given by the training data-set to predict a general behavior,

while the second(kriging) is an interpolation, hence it includes the training points

in the surrogate and predicts others from these.

This concept is extremely important in the interpretation of results. In fact, the

”freedom” of polynomial regression with respect to the training points, will lead to a

smooth surrogate. The Kriging instead will pass through all the training points, with

the risk of overfitting the noise, but with the possibility of catching some particular
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physical trend. A good compromise between this could be the use of a ”nugget”.

This option add a term to the diagonal of the correlation matrix, accounting both

for measurement errors and alleviating ill-conditioning of the matrix [12].
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Chapter 16

Numerical Model Benchmarking

During the optimization process, the outcomes from a black-box are compared

while varying input design variables. In this way it is possible to find the best con-

figuration for the case study. Obviously the optimal configuration mainly depends

on the quality of this black-box. Inaccurate objective calculation will lead to the

wrong optimum.

In this instance the black-box corresponds to the OpenFOAM case described in

the Part III.

The accurate set-up of this numerical model has been made taking experimental

results as reference. These data come from towing tank resistance measurements

realized by Schiffbau-Versuchsanstalt Potsdam GmbH for the Fincantieri ’s hull sub-

ject of this study.

It is important to highlight that also experimental results could present some

errors (sometimes bigger than numerical), hence they could represent a good refer-

ence, but not a true index of accuracy. In this view, the case set up hasn’t been

influenced by these experimental results, but only compared.

Furthermore, since the focus is on the optimization procedure rather than on

achieving a very accurate solution, interest is directed more toward trends rather

than values.

In this chapter two benchmarks are presented to show the reasonableness of the

numerical model. The first one is a comparison between numerical and experimental

velocity-resistance trends. The second one is a comparison between the results given

by four different numerical models:

• Local Time Stepping and coarseMesh;

• Local Time Stepping and fineMesh;
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• Global Time Stepping and coarseMesh;

• Global Time Stepping and fineMesh;

16.1 Catching the Resistance-Velocity Trend

The experimental results available refer to a typical range of ship’s sailing speeds:

from 16 to 21 knots.

Using the Froude similarity described in chapter 5, the model-scale velocities

have been calculated and implemented in OpenFOAM dictionaries:

Vmodel =
Vship√
Lship

Lmodel

(16.1)

where the scaling factor λ =
Lship

Lmodel
is equal to 20 and the gravitational acceler-

Full-scale [knots] 16 17 18 19 20 21

Model-scale [m/s] 1.840 1.955 2.071 2.186 2.301 2.416

Froude Number Fn 0.294 0.312 0.331 0.349 0.367 0.386

Table 16.1: Model-scale velocities according to Froude similarity

ation is 9.81[m
s2

]. For each one of these velocities a solution is computed with the

OpenFOAM model.

To monitor the convergence of LTSinterFoam to the steady-state solution, resis-

tance is plotted against ”time-step” (since a Local Time Stepping technique is used

the term iteration is more appropriate). Outputs of the six simulations are shown

in Figure 16.1.

In this context the total resistance values are taken by averaging the solution over

the last 4000 iterations. This is done to filter the influence of numerical noise, espe-

cially at high velocities. These values are collected in Table 16.2 with the percentage

error from the experimental values.

These data are reported in Figure 16.2, where experimental and numerical trends

are compared.

As expected resistance increase with velocity, furthermore the OpenFOAM val-

ues are close to the measured ones. It can be noticed that, for low velocities, these
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Figure 16.1: Convergence to steady-state solution for the six Fn considered. (Numerical

values are not shown because data is confidential)

differences are small, confirming the reasonableness of the model. For high veloci-

ties some neglected effects, like ship’s trim, breaking wave, turbulent structures and

separation, become important and could lead to the diverging of the two trends.

However these results have been considered physically acceptable for the purpose

of this study.

16.2 Numerical dependencies

The resistance-velocity trend is reasonably caught by the OpenFOAM numer-

ical model. This is enough for the purpose of the optimization study investigated

here. Especially because the simulation has demonstrated to be very light from the

computational point of view, reaching the solution in a fast manner. This lightness

has been one of the main keys in setting up the case.

The features that speeds up a lot the calculation are two: a mesh with a low

number of cells (coarseMesh) and the use of the Local Time Stepping technique
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Figure 16.2: Comparison between experimental and numerical resistance trends with in-

creasing velocity. (Numerical values are not shown because data is confidential)

to reach the steady solution. So it is worthwhile to perform a further validation

by comparison to an ”heavier” numerical model, i.e. a finer mesh (fineMesh) and

interFoam used as unsteady solver. For details about the two meshes a look at

Chapter 9 is suggested. Regarding the ”finer” temporal discretization, an Euler

implicit scheme with adjustable time-step has been used. Let’s called this set up

Global Time Stepping (GTS).

In Figure 16.3 a comparison between the convergence of the total resistance

computation in the four numerical set up is presented.

Despite the different types of iteration compared, this result leads to some im-

portant considerations. Firstly, all the models converge to a value consistent with

the experimental. Secondly, the refinement of the spatial discretization ”moves” the

unsteady result toward the towing tank test value.

The computational time required to reach a stable solution is very different,

underlining the effect of a pseudo-transient analysis in speeding up the simulation.

In simple terms, the green curve involves ”hours”, the blue one ”days”.

Again it must be underlined that the purpose of this thesis is not a validation of
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Full/model-scale

Velocity [kn] / [m/s]

Froude Number

Fn

OpenFOAM

Resistance* [N]

Towing Tank Test

Resistance* [N]

Error

%

16 / 1.840 0.294 - - 2.9

17 / 1.955 0.312 - - 2.2

18 / 2.071 0.331 - - 1.8

19 / 2.186 0.349 - - 1.4

20 / 2.186 0.367 - - 4.0

21 / 2.416 0.386 - - 5.6

Table 16.2: Numerical and experimental results for different Froude Number ( *Resistance

data are under confidentiality agreement with Fincantieri)

local time stepping technique, nor the investigations of the better numerical model

for the ship’s resistance study. These subjects go beyond the analysis done here.

Rather, the aim of the comparison presented in this chapter has been to validate

the reasonableness of the results given by the numerical model. A better under-

standing of the hydrodynamics of the ship and improvements on the dictionaries are

open for further developments.
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Numerical Model Benchmarking

Figure 16.3: Comparison between the convergence of total resistance simulation for four

different numerical models: pseudo-steady (LTS) solution with a 700k cells mesh (blue),

pseudo-steady (LTS) solution with a 2.8M cells mesh (light blue), unsteady solution with

a 700k cells mesh (green) and a 2.8M cells mesh (light green). Errors with respect to the

towing tank test value is reported at the bottom right of the plot. (Numerical values are

not shown because data is confidential)
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Chapter 17

One Design Variable

Optimization: protruding the bulb

A first approach to optimization has been to consider only one design variable.

For this purpose the bulb’s length parameter CLPR has been chosen, since, as sug-

gested in literature, it is one of the most important [10].

Thus the bulb has been morphed by displacing its nose along the longitudinal

direction. Five displacements, from −0.1 to 0.3 meters with step 0.1, has been im-

posed. Giving them as input to MiMMO/MIMIC shape morpher built in Chapter

13, five geometries are obtained. In Table 17.1 the linear parameters for the five

Nose Displacements [m] -0.1 0.0 0.1 0.2 0.3

Length Parameter CLPR 0.031 0.056 0.081 0.106 0.131

Breadth Parameter CBB 0.160 0.170 0.175 0.178 0.181

Depth Parameter CZB 0.660 0.660 0.660 0.660 0.660

Table 17.1: Nose displacements applied to the original geometry and correspondent values

of the Kracht linear parameters.

bulb configuration have been calculated as defined by Kracht [20]. Obviously the

depth parameter CZB is the same for all geometries, since the morphing is made

only by moving the nose in the x-direction. Also the breadth parameter seems not

to vary significantly; slight variations are due to the fact that pulling the nose the

wider part of the geometry comes forth, as could be seen in Figure 17.1.
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One Design Variable Optimization: protruding the bulb

(a) Profile of the five bulb configu-

rations.

(b) Effect of moving the nose

on bulb’s breadth at the For-

ward Point

Figure 17.1: Longitudinal (a) and traversal (b) sections of the morphed geometries.

The behavior of these geometries is simulated using the OpenFOAM model set

up in Part III. The purpose is to plot the trend of resistance with the protruding

of the bulb. This have been done for three different full-scale speeds: 16, 18 and 20

knots (Fn = 0.294, 0.331, 0.367). Once the points are known a python script has

been written to generate the surrogates.

In this chapter only polynomial regression is presented. The choice of the best

order is analyzed and motivated. Furthermore, since some simulations have given

noisy outcomes, an analysis is made and a way to deal with this problem is presented.

17.1 Catching the trend

This first optimization is a good example to show the process of surrogate mod-

eling. From the OpenFOAM calculations three set of resistance values have been

collected: these are the training data-sets for the three operative condition (Figure

17.2).

At this point, surrogate modeling comes into play. In Chapter 15 the theories

behind two surrogate modeling techniques have been introduced: polynomial lest-

squares regression and ordinary Kriging interpolation. Based upon those mathemat-

ical formulation, a python script has been written to catch the trends described

by the training data-sets.

First of all let’s find the polynomial that most reasonably fits the training points.

The first three order have been tried and results are compared in Figure 17.3.

Looking at Figure 17.3.a-b it can be noticed that second and third order poly-
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One Design Variable Optimization: protruding the bulb

(a) Training data-set at Fn = 0.294

(b) Training data-set at Fn = 0.331

(c) Training data-set at Fn = 0.367

Figure 17.2: Resistance variation from the undeformed case plotted against the bulb length

parameter
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One Design Variable Optimization: protruding the bulb

(a) Polynomial fittings of training points at Fn = 0.294

(b) Polynomial fittings of training points at Fn = 0.331

(c) Polynomial fittings of training points at Fn = 0.367

Figure 17.3: Fitting of training data-sets using first, second and third order polynomials
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One Design Variable Optimization: protruding the bulb

nomials coincide, while in Figure 17.3.c all the three functions overlap.

To help in the choice of the best polynomial degree a cross-validation can be

used, but it hasn’t been considered necessary in this case. Since, at a glance, the

parabolic curve seems to give the more reasonable fit. This seems to hold only at

the lower Froude regimes. In fact, at higher Froude number, the quadratic behavior

is unable to deal with the presence of a central bump. This observation leads to an

important question for the surrogate modeling: is this central bump a physical or a

numerical consequence?

To answer this question an analysis of the simulation convergence ”noise” has

been made.

17.2 Evaluating the noise

One of the main principle adopted during the set up of the OpenFOAM exper-

iment is the speed of calculus. The purpose has been the achievement of an enough

accurate solution (compared with the experimental trend), with the minimum com-

putational efforts. Once this setup was found, its dictionaries have been used for all

the deformed geometries.

In Figure 17.4 the convergence of total resistance is plotted for all the fifteen cases

(5 geometries for 3 Fn). It can be noticed that some simulations reach convergence,

but they are corrupted by a lot of noise (red and violet curves).

For all these results the mean value R is computed by averaging over the last

4000 iterations, where convergence is reached for all simulations. To measure the

noise level of the simulations the percentage standard deviation σ from mean value

is used:

Nσ = 100
σ

R
(17.1)

Noise amplitudes are collected in Table 17.2 and plotted in Figure 17.5. Figure 17.5

shows an interesting feature of the training data-sets: the points that seems more

departed from the 2-order regression curve correspond to a mean value extracted

from noisier data. This doesn’t necessarily mean that these data are wronger than

others, nor that the chosen polynomial fitting is the reality, but it suggests that

bumps or hollows in the training data-sets could derive from a bad averaging due

to the noise.

This represents a problem in surrogate modeling, because leads to an uncertainty

about some training points. If a pure Kriging interpolation was used, the surrogate
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One Design Variable Optimization: protruding the bulb

Figure 17.4: Convergence of total resistance for all the cases (rows correspond to Fn =

0.294, 0.331, 0.367, columns to CLPR = 0.031, 0.056, 0.081, 0.106, 0.131). The blue-to-red

colors of the curves represent the numerical noise of the solutions (blue are smooth, red

are noisy).

model would have passed through all the training points, thus considering the bumps

as a physical behavior. Since wave systems interference is involved this isn’t an

unfeasible idea, but it must verified in some way. In the following an attempt in

doing so is presented.

17.3 Slightly modifying the schemes

This is not a numerical analysis of the Local Time Stepping technique, nor a

comparison of different discretization schemes. The aim here is to show a way

to dampen the noise and which consequences it brings on the results and on the

surrogate modeling.
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One Design Variable Optimization: protruding the bulb

Fn / CPR 0.031 0.056 0.081 0.106 0.131

0.294 0.07% 1.14% 3.43% 0.64% 0.14%

0.331 0.25% 1.63% 1.50% 0.40% 0.04%

0.367 0.17% 1.77% 3.33% 0.76% 0.11%

Table 17.2: Noise amplitude of all the simulations studied in this chapter.

Looking at the residuals it has been noted that the peaks during the convergence

of the solution, correspond to peaks in the turbulence quantities’ residuals. In this

view it has been chosen to switch from a Linear Upwind Differencing (LUD) scheme,

second-order accurate but oscillatory, to an Upwind Differencing (UD) scheme, less

accurate (first-order) but bounded. This change dampens the numerical oscillations,

by adding a streamwise numerical diffusion to the equations [14].

For example let’s consider the case corresponding to the bump in the resistance-

velocity trend, i.e. CLPR = 0.081 and Fn = 0.367. In Figure 17.6a the convergence

of the two different set up is compared.

As expected, switching to a single-order upwind scheme has introduced numerical

diffusion, that bounds the solution by dampening the oscillations. This fact is

highlighted by the distributions plotted in Figure 17.6b, where it is clear how the

presence of oscillations lead to an overestimation of the resistance.

Substituting the new value in the training data-set, the fitting of the curves with

a second-order polynomial becomes smoother and the bump disappear. However

it must be remembered that a wave interference problem is considered, hence it

is possible that certain lenghts lead to particular phenomena. So these oscillations

could be a signal of an unsteady behavior that the model can’t represent well enough

and adding diffusion eliminates these results, hiding these features.

For a better understanding more detailed investigations have to be done, but

this is left to future developments.

Concluding, in Figure 17.8 the surrogates relative to the three Froude Numbers

are compared. The parabolic trend seems the more reasonable to represent the

decaying of resistance with increasing of the bulb’s length. This means that probably

there is a minimum of resistance for longer bulbs. However it must be reminded that

the upper bound of the design space considered correspond to a bulb that is twice

the original one and that its elongation is the 7.5% of the ship’s LPP ; expanding the
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One Design Variable Optimization: protruding the bulb

design space would be useless since probably it will be contradictory to the basic

assumptions of the model.

More interesting is the similarity of the three trends, suggesting that over these

range of Froude number the resistance reduction with length behaves in the same

manner.

17.4 Conclusions

This chapter has presented a one design variable surrogate modeling, with the

aim of studying the behavior of resistance while protruding the bulb. Following

conclusions have been reached:

• the combined use of Dakota, MiMMO/MIMIC and OpenFOAM works

well, giving good geometries and feasible results;

• the total resistance decays with the increasing of bulb’s length following a

parabolic trend;

• this trend seems to be the same for a range of Froude Number from 0.294 to

0.367, with the presence of bumps for higher values;

• the numerical model has a noisy outcomes for some of the simulated configura-

tions, leading to errors in averaging the resistance. This could be responsible

for the bumps in the resistance trend;

• to reduce the noise a strategy have to be found, for example in this work this

has been done by switching from a second-order to a first-order upwind scheme

for the turbulence variables;

• this change in the dictionary has led to an added numerical diffusion that

dampens the oscillation;

• the surrogate built with the modified training data-set is smoother also at

higher velocities, confirming the parabolic trend;

• a more detailed investigation must be done to confirm if the bumps at high

velocities are physical or numerical;

• since there is only a decaying behavior, the optimum value is located at the

upper limit of the design space;
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One Design Variable Optimization: protruding the bulb

• parabolic trend makes thinking that for higher protrusion the benefit effect of

protruding the bulb will vanish;

• in protruding the bulb, also ship design constraints must be considered in

the optimization process, however this is left for future and more specialized

developments.
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One Design Variable Optimization: protruding the bulb

(a) 2-order polynomial fittings of training points at

Fn = 0.294

(b) 2-order polynomial fitting of training points at Fn =

0.331

(c) 2-order polynomial fittings of training points at

Fn = 0.367

Figure 17.5: Second-order polynomial fitting of the training data-sets with bar representa-

tion of the noise amplitude of each point.
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(a) Convergence trends (b) Simulation values distribution of the last

4000 iterations

Figure 17.6: Comparison between the simulated resistance values using a LUD or a UD

scheme to discretize the turbulence quantities.

Figure 17.7: Second-order polynomial fitting with the new training data-set.
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One Design Variable Optimization: protruding the bulb

Figure 17.8: Comparison of the resistance second-order polynomial surrogates constructed

for Fn = 0.294, 0.331, 0.367.
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Chapter 18

Two Design Variable

Optimization: displacing the nose

18.1 Displacements and Kracht Parameters

In shape morphing problems there are a lot of variables that can be varied to

find the optimal configuration. Including more variables in the optimization problem

statement augment the procedure. However these are the cases in which the power

of surrogate modeling comes into play.

In the previous chapter a first approach to surrogate modeling has been pre-

sented. Only one design variable, the length parameter CLPR, has been considered

and a surrogate model, i.e. a curve, has been constructed to represent the physical

trend.

In this chapter another design variable is added to the problem: the bulb depth

parameter CZB. This means that the nose of the bulb is displaced not only in the

x-direction, but also in the z-direction.

Three different position along z has been imposed, that, replicated for all the

five x displacements of the previous chapter, leas to a grid of fifteen points.

Giving these values to the MiMMO/MIMIC shape morpher, fifteen geometries

have been obtained. The Kracht linear parameters relative to these configurations

are collected in Table 18.1 .

The breadth parameter hasn’t been shown since it has the same value presented

in the previous chapter and it isn’t considered in the study. Geometries described

by the combinations of these parameters are sketched in Figure 18.1.

Behavior of this geometry is simulated using the OpenFOAM model set up in

Part III.
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Two Design Variable Optimization: displacing the nose

X [m] -0.1 0.0 0.1 0.2 0.3

CLPR 0.031 0.056 0.081 0.106 0.131

(a) Length Parameter

Z [m] CZB

0.1 1.038

0.0 0.660

-0.1 0.283

(b) Depth Parameter

Table 18.1: Nose displacements along x and z applied to the original geometry and corre-

spondent values of length and depth parameters.

(a) Profile of the five bulb con-

figurations with CZB = 0.283.

(b) Profile of the five bulb con-

figurations with CZB = 0.660.

(c) Profile of the five bulb con-

figurations with CZB = 1.038.

Figure 18.1: Longitudinal sections of the morphed geometries.
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Two Design Variable Optimization: displacing the nose

As for the one-design-variable case, the aim has been to understand the effects

of the bulb’s deformation on the total resistance. From the previous analysis it has

been found that the protruding of the bulb leads to a parabolic decaying of the

hydrodynamic drag. Now, the effect of the vertical position of the bulb’s nose wants

to be investigated.

In this case the surrogate is no more a curve, but a surface. A more accurate and

reliable surrogate constructor is used, so Dakota toolkit substitutes the in-house

python script.

Again, the purpose is to construct this response surface for three different full-

scale speeds: 16, 18 and 20 knots (Fn = 0.294, 0.331, 0.367). The three training

data-sets obtained with OpenFOAM are shown in Figure 18.2

Before going into the surrogate construction, it is worthy to make a comment

about the ship’s volume variation during shape morphing. The volume displacement

represents one of the main ship design parameter, so with a view to optimize the bulb

for the same ship, this value should be kept constant. To do this a more sophisticated

set up of the shape morpher should be made. However, the deformations considered

in these work lead to small variations of the underwater volume of the ship. So, for

the purpose of this thesis the volume variations have been considered negligible. A

more controlled and constrained shape morphing procedure is suggested for future

developments.

18.2 Building the Surrogates

According to the conclusions made in the previous chapter, the first surrogate

model tried is a second-order polynomial. So, by giving the training data-sets as

input to Dakota and by specifying the domain where the surrogate must be con-

structed (CLPR = [0.02, 0.14] and CZB = [0.2, 1.1]), the response surfaces have been

built. These are plotted in Figure 18.3.

Looking at these contours it seems that lifting and lowering the nose doesn’t

lead to a resistance reduction, rather it seems to slightly worsen the performance.

This aspects seems to be enhanced for longer bulbs. However these results must

be analyzed with care. In fact the polynomial fitting works well in the case of

proptruding the bulb, but the influence of the nose’s depth it is unknown.

Polynomial regression doesn’t pass through the training points, but try to min-

imize the distances from them. This can help to exclude the noise, but it can also

hide important features of the flow.
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Two Design Variable Optimization: displacing the nose

(a) Training data-set for Fn = 0.294

(b) Training data-set for Fn = 0.331

(c) Training data-set for Fn = 0.367

Figure 18.2: Training (•) data-sets at three different Froude number. Blue-Red colorscale

represents the percentage resistance variation from the original bulb configuration.
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(a) Contour of the polynomial response surface at

Fn = 0.294

(b) Contour of the polynomial response surface at

Fn = 0.331

(c) Contour of the polynomial response surface at

Fn = 0.367

Figure 18.3: Second-order polynomial surrogate models of percentage resistance variation

from undeformed for each length/depth configuration and for each tested Froude number.
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For this reason another common and very efficient technique has been used: the

Kriging interpolation. This method predict the new points by interpolating the

training data-set, so the response surface will pass trough the high-fidelity points.

Results obtained in this manner are shown in Figure 18.5.

Comparing the contours in Figure 18.3 with those in Figure 18.5 an important

difference becomes visible. The 2-order polynomial regression gives very smooth

surfaces, while the surface generated by Kriging process are less smooth. This

difference is due to the fact that Kriging surrogates are constrained to the training

points and hence if some physical behaviors or the presence of numerical noise create

bumps in the solutions, Kriging will catch them..

To understand which one is the best representation of the ship’ s resistance fifteen

design points couldn’t be enough. So before making a comparison between the two

models, it is necessary to test the surrogates. This has been done only for the low

velocity case (Fn = 0.294).

18.3 Testing the surrogates

Response surfaces have been constructed using two different approaches: 2-order

polynomial and Kriging. These models have been computed from 15 training points.

This is a poor training-set, usually more points are required. Thus they need to be

tested and validated before making an in-depth optimization study.

In the context of this thesis the validation is focused on the case at Fn = 0.294.

This surrogate is tested using 10 new design points, relative to two intermediate

z-position (z = −0.05,+0.05) of the bulb’s nose. Parameters of the ten new config-

urations are collected in Table 18.3.

X [m] -0.1 0.0 0.1 0.2 0.3

CLPR 0.031 0.056 0.081 0.106 0.131

(a) Length Parameter

Z [m] CZB

0.05 0.849

-0.05 0.472

(b) Depth Parameter

Table 18.2: Design variable of the test data-set. In table (a) there are the nose displace-

ments along x and the correspondent length parameters, in table (b) there are the nose

displacements along z and the correspondent depth parameters.

Results of the OpenFOAM simulations for the test data-set are shown in Figure
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(a) Contour of the Kriging response surface at

Fn = 0.294

(b) Contour of the Kriging response surface at

Fn = 0.331

(c) Contour of the Kriging response surface at

Fn = 0.367

Figure 18.4: Kriging surrogate models of percentage resistance variation from undeformed

for each length/depth configuration and for each tested Froude number.
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(a) 2-order polynomial (b) Kriging

Figure 18.5: Response surfaces generated for Fn = 0.294 with two different approach:

2-order polynomial (a) and Kriging (b).

Figure 18.6: Training (•) and test (×) data-sets at Fn = 0.294. Blue-Red colorscale

represents the percentage resistance variation from the original bulb configuration.

18.6.

The testing values are then compared with the surrogates prediction for those

design variables combination. The differences can be seen in Figure 18.7.

The number of training points isn’t enough to catch the resistance trend. Er-

rors in predicting the percentage resistance variation reach unacceptable values.

However, looking at Figure 18.8 it can be noticed that these mispredictions are con-

centrated in the zone of short and deeply immersed bulbs, while the differences are

less significant in the minimum zone previously identified.

In all the three surrogates it seems that the up-and-down displacement of the

nose has a unimodal effect on resistance, corresponding to a central ”valley” along

the x-direction. But, the test data-set suggests the presence of bumps and hollows in
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(a) 2-order polynomial (b) Kriging

Figure 18.7: Comparison between surrogate predictions and OpenFOAM results at Fn =

0.294. The two figures refer to: 2-order polynomial (a) and Kriging (b).

(a) 2-order polynomial prediction errors (b) Kriging prediction errors

Figure 18.8: Error in surrogate prediction in comparison with the OpenFOAM resistance

value at Fn = 0.294. The two figures refer to: 2-order polynomial (a) and Kriging (b).
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the region of short protruding length. This effect is present also at high protrusion,

but it is smoother.

At this point, the test data-set can be included in the training data-set to con-

struct a new surrogate. This procedure is commonly called ”infilling”.

18.4 Infilling and Comparing

By adding the test points to the training data-set, the number of design points

has been increased from 15 to 25. So the new training data-set will be composed by

the combinations of the parameters collected in (Table 18.3).

X [m] -0.1 0.0 0.1 0.2 0.3

CLPR 0.031 0.056 0.081 0.106 0.131

(a) Length Parameter

Z [m] CZB

0.1 1.038

0.05 0.849

0.0 0.660

-0.05 0.472

-0.1 0.283

(b) Depth Parameter

Table 18.3: Nose displacements along x and z applied to the original geometry and corre-

spondent values of length and depth parameters.

Resistance values are computed for this new configurations and the new training

data-set is obtained. These values are shown in Figure 18.9.

On the basis of this more complete set of training points two new surrogates are

built: the first with a second-order polynomial regression, the second with a Kriging

interpolation. These two new surfaces are shown in Figure 18.10.

As can be seen by the contour plots, both approaches lead to a similar trend,

but they highlight some different features.

The common feature is the presence of a minimum zone for long bulbs with nose

at an intermediate depth. While the polynomial trend tells that the only minimum

is beyond the higher bound of the length design variable, Kriging generates a local

minimum inside the design space.

The main difference is in the zone of shorter bulbs: the polynomial presents one

big ”valley” for each length parameter, while the interpolating approach, instead,
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Figure 18.9: Training data-set of percentage resistance variations from undeformed for

each length/depth configuration tested at Fn = 0.294.

(a) Contour of the 2-order polynomial response

surface

(b) Contour of the Kriging response surface

Figure 18.10: Kriging surrogate models of percentage resistance variation from undeformed

for each length/depth configuration and for each tested Froude number. In this case the

training data-sets is composed of 25 design points.
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generates bumps and hollows around the design space.

Kriging approach offers a way to relax its interpolating nature, by allowing the

surrogate not to pass through the training points. This could be very useful in the

cases where the numerical noise could corrupt some resistance values.

This is done by adding a ”nugget” term in the diagonal of the correlation matrix.

This correction leads to the response surface presented in Figure 18.11.

Figure 18.11: Results of Kriging interpolation with the addition of a ”nugget” term.

This third surrogate seems to be a good compromise between the previous ones,

since it can consider the physical feature of the flow while limiting the risk of over-

fitting the noise.

18.5 Validating

At this point a surrogate must be chosen. Three response surfaces have been

constructed using 2-order polynomial regression, Kriging interpolation and Kriging

with ”nugget”. These are built upon a 25 design points data-set. This training

data-set seems to be a good sampling, being able to catch some features of the

bulb’s shape effect on resistance, especially for the depth parameter.

To choose the best surrogate another test data-set is used. This consists of three

new design points located in the minimum zone. Parameters representing these

three configurations are presented in Table 18.4.

The test resistance values are computed with OpenFOAM and the percentage

resistance reduction calculated. In Table ?? these values are compared with the

surrogate predictions.

Results show the augment of accuracy obtained by passing from a 15 to a 25

points training data-set. Overall, the best method seems to be the Kriging inter-
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CLPR CLPR

0.119 0.660

0.131 0.566

0.131 0.755

Table 18.4: Bulb’s length and depth parameters for the new three configurations. These

data-pairs are the new test data-set.

CLPR CLPR poly2 Kriging Nugget OpenFOAM

0.119 0.660 -5.03 -5.77 -6.14 -6.17

0.131 0.566 -5.05 -6.48 -6.12 -6.04

0.131 0.755 -6.11 -6.07 -5.73 -6.65

Table 18.5: Resistance reduction given by test configurations calculated with OpenFOAM

and predicted with 2-order polynomial, Kriging and Kriging with nugget surrogates.

polation without nugget, but there are slight differences from other two methods.

However, it must be stressed that this results refer only to the minimum zone of

the design space. To choose the globally best method further test points should be

defined across the design space.

For the purpose of this thesis the Kriging method is chosen has surrogate ap-

proach. The new test-set is added to training set and, again, a new surrogate is

obtained. This response surface is plotted in Figure 18.12.

Compared to the first surrogates obtained (see the previous sections), this final

response surface has more curvy behavior, presenting more than a valley. Again, it

should be verified in detail if the bumps are numerical or physical, or a combination

of them, but this is left as a further development.

This model can be considered a good representation of the numerical resistance

outcome and, within the limits of the simulation, also of the ship hydrodynamics.

The choice of using a light numerical model has allowed to count on a substantial

number of training points, but inevitably it brings noise and inaccuracy to the

surrogate.

During this chapter, all the main stages of surrogate modeling has been pre-
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(a) Contour plot (b) 3-D surface

Figure 18.12: Contour (a) and three-dimensional surface (b) representations of the sur-

rogate model at Fn = 0.294. The surface is built applying Kriging interpolation to 28

training points (orange and blue). Infilling is made with 3 points (blue) in the minimum

zone.

sented. Firstly, a training data-set consisting of 15 design points is tried. Three

different techniques (2-order polynomial, Kriging, Kriging with nugget) are used to

generate the surrogates. These surrogates have then been tested with 10 new design

points. The representations show the global trend, but are not enough to catch the

effect of depth.

The test points are added to the training data-set and three new surrogates

are built, leading to a better description of the resistance behavior. To understand

which one is better a new test data-set has been defined in the minimum zone. This

second test shows that the three models have about the same accuracy in the zone

of interest, but among them the Kriging seems to give the better predictions.

Again test points are added to training data-set and the surrogate is recon-

structed. The result is a more detailed and curvy surface.

This procedure should be repeated many times to achieve a very detailed surro-

gate. However, it is thought that the one achieved is enough for the purpose of this

optimization. At this stage, instead, efforts should be directed toward an accurate

numerical solution to understand in detail the physics of the phenomena, but this

is left as a further improvement.
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Chapter 19

An approach to robust optimal

solution

The construction of the surrogate has been made considering only two design

variables: the length and the depth parameters. This has been done for three

different operating condition Fn = 0.294, 0.331, 0.367, corresponding to 16, 18, 20

knots of full scale speed. Globally, the velocity doesn’t seem to affect significantly

the percentage resistance variation (from undeformed configuration). However, in

the response surfaces the minimum (inside the design space) seems to slightly change

its position.

This means that a bulb optimized for a certain Fn regime won’t be the optimum

at another sailing speed. In this view it is interesting to present an approach to find a

more robust optimal solution. Without entering the branch of Robust Optimization,

which is a specialized analysis, in this chapter the word robust is used to describe

a bulb configuration that gives the optimal performance over a range of different

operating conditions.

It must be reminded that the assumptions at the base of the numerical model

become inappropriate for high speed values, when the effects of dynamic trim and

hydrodynamic phenomena could become significant. A more detailed analysis of the

effect of velocity should consider a wider range of Froude Numbers. Nevertheless,

the purpose of the work presented here has been the creation of an optimization

procedure. In this view, it becomes interesting to study the effect of velocity as an

example of the possibilities given by the approach developed.

The Kriging surfaces have been chosen to investigate the effect of Fn on the

optimum configuration, since they present the more ”curvy” behavior.

Figure 19.1 highlight three main features:
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(a) Kriging surrogate for Fn = 0.294

(b) Kriging surrogate for Fn = 0.331

(c) Kriging surrogate for Fn = 0.367

Figure 19.1: Kriging surrogate models of percentage resistance variation from undeformed

for each length/depth configuration and for each tested Froude number. The orange points

are the training data-set (15 points) and the blue ones correspond to the minimum in the

limits of the design space.
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• the protrusion is the predominant factor in diminish the resistance;

• the optimal nose’s immersion is around the middle point between the free

surface and the bottom of the hull;

• velocity seems to move the optimal configuration towards long and shallow

bulbs;

The minimums have been taken inside the design space, not to violate the model

assumptions. Furthermore, too long bulbs probably are not acceptable for ship’s

design constraints. In Table 19.1 the three optimal configuration are presented.

Fn CLPR CZB

0.294 0.131 0.527

0.331 0.131 0.591

0.367 0.131 0.827

Table 19.1: Bulb’s parameter for the optimal configuration at three different Froude num-

ber. The values are predicted with Kriging on a 15 design points data-set.

The three optimal configurations have been simulated in OpenFOAM. The

results of these simulation are plotted in Figure 19.2 .

Again, the values of mean resistance are computed by averaging over the last

4000 iterations. The percentage resistance reduction from the original configuration

is calculated and compared with the surrogate prediction (Table 19.2).

Fn
∆R%

Kriging

∆R%

OpenFOAM

0.294 -6.51 -4.75

0.331 -5.80 -2.99

0.367 -6.00 -5.74

Table 19.2: Comparison between the optimal resistance reduction predicted by Kriging

surrogate and computed with OpenFOAM.

Error of predictions are very high for Fn = 0.294 and Fn = 0.331, while are very

small for the higher case. An interpretation of this result can be made considering
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Figure 19.2: OpenFOAM resistance calculations for the optimal configurations at Fn =

0.294, 0.331, 0.367. (Numerical values are not shown because data is confidential)

the test data-set. In fact, as it has been noted in the previous chapter, a training

data-set of 15 design points seems not to be enough to construct a reliable surrogate.

In particular it has been pointed out the presence of sinuous trend with the depth

parameter, especially for shorter bulbs. This effect could be responsible for the

prediction errors, locating a minimum where instead there is a bump.

However, regarding the aim of this section, this minimum are considered accept-

able.

A way to consider the effect of sailing speed on the optimum configuration is to

compute an average of the three surrogates. This can be made by computing an

average or a weighted average on the three Froude numbers. The formula used is:

Ravg =
c16R16 + c18R18 + c20R20

c16 + c18 + c20
(19.1)

where R16,18,20 are the resistance calculated at Fn = 0.294, 0.331, 0.367 and c16,18,20

are the weights of these regimes.

If all the three regimes have the same importance, then c16 = c18 = c20 =

1 (Figure 19.3.(a-b)), otherwise if some regimes are preferred the weights can be

changed. For example, let’s imagine that the ship is designed to travel most of the

time at 20 knots (c20 = 2), at 16 knots during the maneuvering (c16 = 0.5) and at
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18 knots (c18 = 0.25) only to reach the design speed. This situation is plotted in

Figure 19.3.(c-d).

Optimal configurations at Fn = 0.294 and Fn = 0.331 are very similar (19.1)

then, if a classical average is chosen, optimal configuration will resemble those,

presenting a more immersed bulb. Instead, if more relevance is given to the higher

Froude, the optimal configuration will tend toward shallow bulbs.

These considerations must be taken with care because the surrogates used are

built on a poor training data-set. To develop a more consistent analysis, surrogates

must be tested and validated (as it has been done in Chapter 18). However, the

purpose of this chapter was to give an hint on how to consider the sailing speed in

optmizing the bulb’s shape.
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(a) Contour plot (b) 3-D surface

(c) Contour plot (d) 3-D surface

Figure 19.3: Contour and three-dimensional surface representations of the Froude-averaged

surrogate model. Average has been made giving all the regimes the same weight (a-b) or

favoring the higher Froude number (c-d).
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Conclusions and Future

Developments

Shape optimization often requires expensive analysis both in experimental tests

(test set up, construction of prototypes, etc.) and in numerical simulations (expen-

sive software licenses, computational resources). In this context an optimization

framework based on open source tools and on effective numerical simulations has

been developed.

This framework has been validated with the practical application to the bulb of

a ship provided by Fincantieri S.p.A.. In particular interests have been focused on

studying the effect of protrusion and immersion of the bulb’s nose.

In this view a shape morpher has been constructed with the MiMMO library

package developed by OPTIMAD Engineering srl. This tool is able to generates new

accurate geometries by imposing displacements to the bulb’s nose. In this manner

it has been possible to vary independently two parameters of the bulb (CLPR and

CZB).

The resistance of each bulb geometry has been calculated by an OpenFOAM

numerical model. Results of this model has been validated by benchmark with

experimental results and with a finer (but much more expensive) numerical model.

The optimization strategy has been based on surrogate modeling, with the aim

to build a response surface for two design variables: the length and depth bulb

parameters (CLPR and CZB).

A first approach has been explored considering only the effect of protrusion at

three different Froude regimes (Fn = 0.294, 0.331, 0.367), corresponding to 16, 18, 20

knots of full-scale speed. This analysis has shown a parabolic decaying behavior of

the resistance with the increasing of bulb’s length.

For the higher Froude number (Fn = 0.367) a central bump seems to contradict

the quadratic trend observed at lower Froude number. The presence of numerical

noise in the corresponding simulation has suggested an analysis of the discretization
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schemes. As an example the discretization scheme of the turbulent quantities has

been changed from a second to a first order. This adds numerical diffusion that

dampens the oscillations, leading to a smoother output. This change has lowered

the value of resistance, making the bump disappear.

Over the Froude range considered it seems to be no differences in resistance re-

duction with protrusion, hence the bulb, as long as the trim variations are negligible,

probably will behave the same at different velocities.

After that, the effect of the nose immersion has been investigated. This has been

done with a two-design-variable analysis.

A full-factorial sampling of 15 design points (3 immersions and 5 lengths) has

been chosen and the corresponding training data-set has been used to build the

surrogates for the three Froude regimes. Surrogate building methods that have been

used are second-order polynomial regression and Kriging interpolation. Both have

given similar results, detecting the beneficial effect of protrusion and intermediate

nose immersions.

These response surfaces have been validated using a test data-set of 10 points

(2 intermediate CZB for each CLPR). This has shown the unreliability of the 15

points training data-set, especially for short and deeply immersed bulbs. So a more

detailed surrogate has been constructed by including the test points in the training

data-set. This has been done only for the case of low velocity.

Second-order polynomial regression gives more or less the same results, while the

Kriging gives curvier surfaces. This is due to the inherent nature of the two models:

interpolation and regression. For this reason an in intermediate approach has been

tried, allowing the Kriging not to pass through the training points (”nugget” term

addition).

The three response surfaces have been tested to understand which one gives

the best predictions. This has been done defining three test points in the zone of

interest, i.e. the minimum zone (long bulb with intermediate depth). All the models

give good predictions, but among them the Kriging provides slightly better results.

Again the training data-set is infilled with the test points to generate a new sur-

rogate (using the Kriging). This procedure could have been repeated many times

and in other zones, but the response surface obtained has been considered accu-

rate enough in predicting the outcomes of the numerical model, especially in the

minimum zone.

Finally, an approach to consider the effect of velocity (Froude) in choosing the

best bulb configuration has been tried. This has been done by taking the Kriging
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models constructed with the coarser training data-set (15 points) and by averaging

the value of resistance for the three different Froude regime. Weights can be used

in the average in order to privilege certain regimes more than other.

The work that has been presented in this thesis has led to the construction of an

open source optimization framework. However, the practical application to a naval

problem has shown only some of its capabilities.

Regarding the bulb shape optimization more detailed investigations have to be

done in order to be able to find the feasible optimal configuration. This will have

to involve essentially two things: a more complete parameterization of the bulb and

an improvement of the CFD model.

The first can be done by defining more than one control points to morph the

geometry or by using the Free Form Deformation approach. In this way it will be

possible to represent all the possible shapes of the bulb. Important advantages can

be brought by the use of mesh morphing techniques, which, if a lot of geometries

are involved, saves time avoiding several mesh generations.

The second should involve an improvement of the OpenFOAM dictionaries, by

investigating the effects of numerical schemes and refining the mesh. Furthermore,

a more complete analysis should involve the dynamic of the ship, switching to the

unsteady 6-Dof solver interDyMFoam. This will compute also the effect of the bulb

configuration on the position of the ship, but will burden the numerical procedure.

Instead, regarding the optimization part many options can be tried. For example

more than two design variables can be defined in order to include more information

in the optimization problem (e.g. other bulb parameters, speed, load and so on).

In this fashion more sophisticated sampling techniques are suggested, for example

the Latin Hypercubes approach. Furthermore design, economical or other kind of

constraints can be added to the problem. Finally, where resources allow, a multi-

objective optimization can be performed.
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