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Stationary base flow
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@ Global Stability
Jackson (1987), Zebib (1987)

@ “Wavemaker”
Giannetti & Luchini (2007)

@ Effects of base-flow variations

Marquet et al. (2008), Luchini et al. (2008), Pralits et al.
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Stationary base flow

@ In the context of a two-dimensional modal analysis the
core of the instability (wavemaker) can be found by
investigating where in space a modification in the structure
of the problem produces the largest drift of the eigenvalue.

@ We consider structural perturbations consisting of a
localized external force proportional to and aligned with the
local velocity (i.e., a small solid object?).

47

Fx,y) ~ 6(x 0,y —Yo)SAIU(X,Y) A= e R

@ With this choice it is possible to evaluate, separately, the
effects induced on the frequency and growth rate of the
instability.

LPozrikidis (1996), Dyke (1975)



Effects of a localized perturbation aligned with and
proportional to the local velocity field
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Stationary base flow

@ Perturb the eigen problem with a localised feedback

o'u’ + L{Up,Relu’ + Vp' = (X — Xo,¥Y — ¥0)6Co - U’
V-u=0
@ Expandu’ =u+déu,p’ =p+6p’and o’ = o + do, insert

into the equations and apply the Lagrange identity. The
eigenvalue drift 6o is then written

u(Xx, f+ X,

50 = Sp(Xa, o) : 6Co  Sp(x,y) = LI T(X.Y)
/f+'Ud2X
D

where Sp(x,y) is the sensitivity, and f* is the adjoint
velocity eigenvector.




Stationary base flow

@ Perturb the base flow equations with a feedback from
velocity to force (6Cy, - Up), linearise and use the Lagrange
identity to get the eigenvalue drift o and the sensitivity Sy

U X,y fJr X,y
b0 = Sp(Xo0,Y0) : 0Cp  Sp(X,y) = b(X,¥) f5 (X,¥)
/f+-ud2x
D

@ Here Uy is the steady base flow velocity field, f+ and u are
the direct and adjoint velocity eigenvectors while f;;
satisfies the forced adjoint base flow equations

LT{Up,Re}f" + Vm™ = §CT(f*, u)
V.-ft=0

where SCT(ft,u) =u Vit —vu.ft,



Stationary base flow

Results: stationary base flow Re =50

Note comparison with Marquet et al. (2008) for B
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Stationary base flow

Results: stationary base flow

frequency growth rate
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Stationary base flow

Results: stationary base flow
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Stationary base flow

Results: stationary base flow

frequency growth rate
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Stationary base flow

Results: stationary base flow

frequency growth rate
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Stationary base flow

Application: Control

Flow around the rotating cylinder, control of 2" shedding mode.
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Limit cycle

Analysis of finite-amplitude vortex shedding

@ Linear analysis is only valid in proximity of the neutral
curve (Re; ~ 47). When the vortex shedding sets in, one
may wonder where the wavemaker of the nonlinear
periodic oscillation resides.

@ We?investigate the finite-amplitude vortex shedding in
order to assess how unsteadiness and saturation modify
the linear sensitivity results.

@ The quantity that enable us to do so is the spatial
distribution of the sensitivity of the limit-cycle frequency
and amplitude to a structural perturbation of the problem.

2|_uchini, Giannetti & Pralits, AIAA-2008-4227 (2008)



Limit cycle
Problem formulation

ou 1
— -V Vp=—A
+U-Vu+Vp=_-Au

ot
V-u=0
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Limit cycle

Structural perturbation

Now give a structural perturbation h to the problem

ou 1
—+u-Vu+Vp—R—eAu_h

ot
V-u=0
in the form of a bulk force depending on the local velocity

h(uy= oC u

N —N—
force tensor  velocity
coefficient

If the perturbation is small, the new solution will remain periodic
but with a different period ( and a real frequency, in contrast
with the corresponding linear problem whose frequency will in
general become complex).



Limit cycle

Summary of how to obtain the Sensitivity

© Make the period appear in the equations by rescaling the
timeasO0<7=t/T <1

@ Linearise the equations around the periodic undisturbed
nonlinear solution ug with period Tp. Perform a Floguet
analysis of the resulting linear forced equations

© Use the adjoint Floquet mode and the Lagrange identity to
derive the compatibility condition which guarantees the
existence of the solution of the original inhomogeneous
linear problem

3for details see Luchini, Giannetti & Pralits, AIAA conference paper, ID AIAA:=2008-4227 (2008)



Adjoint equations

i _
—R—eAf _T—O(u—u)

The solution of these forced equations is given by
i f;r + efd

particular homogeneous

6A = /(f; +efd) (iTZ 68”0 +4Cu > d*x dt

Note that A does not depend on the value of e since the forced
direct equation has only a periodic solution if

0T ou
/fo+ <T2 o —|—6Cu> d*x dt = 0.



Limit cycle

Sensitivity with respect to limit-cycle frequency

Since dw/wo = =T /Ty

dw wy [To
Se(y) = 56 = 0 [ ety (e y) d

SA  [To
Sa0¥) = 55 = [ voleyitoey) o

where f+ = fJ + €f],

To 1 du 1 du
_ +, = OUo 3 — = [ .0 @Byt
N A f5 T, ot d°x dt, € N/ o X



Limit cycle

Results: Limit Cycle Re = 50 (Total)
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Limit cycle

Results: Limit Cycle Frequency (Total)
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Limit cycle

Results: Limit Cycle Frequency (“perturbation”)

80 s

100 S




Limit cycle

Results: Limit Cycle Amplitude (Total)




Limit cycle

Results: Limit Cycle Amplitude (“perturbation”)
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Conclusions

Conclusions

@ The idea of Localised structural sensitivity has been
extended to supercritical flows.

@ The theory has been devioped for periodic flows using
floquet analysis.

@ Expressions for the sensitivity have been derived both for
the frequency and amplitude.

@ A comparisons with the case of stationary base flow show
similarities close to the first bifurcation.

@ To be done: derive coefficients for the Stuart-Landau
amplitude equation accounting for structural forcing.
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Appendix

Step 1: making the period appear in the equations

Define an amplitude

A:_:IE/OT(U—U)-(U—G)dt.

. t . .
and a scaled time, 7 = T then the equations can be rewritten
as

10u 1
——+u.Vu+Vp_%Au+h

T o1
V-u=0

where T is an additional unknown and the period in the variable
7 is constant and equal to 1.



Appendix
Step 2: linearization

u(r) =up(7) +du(r), p=po(r)+dp(r)
T=To+dT, A=Ag+dA
Upon linearization with respect to éu, dp and 0T :

1 déu 1 0T dug
—_—— - Vo ou -V Vip — —AfU = — ——
Ty 07 + Ug u—+ou-Vug+ Vip Re ou Tg o +

V-ou=0

1
6A:/ 2(u—u)-déudr.
0



Appendix
Step 2: linearization

u(r) =up(7) +du(r), p=po(r)+dp(r)
T=To+dT, A=Ag+dA
Upon linearization with respect to éu, dp and 0T :

1 déu 1 0T 8uo
v v Vip — —A
To 07 + Uug - Véu +du - Vug + Vip Re ou T2 o

V-ou=0

1
6A:/ 2(u —u) - oudr.
0

@ The resulting perturbation will in general not be periodic,
but modified by the Floquet exponent.

@ The condition that a constant period equals to 1 be
maintained in 7 implicitly determines the variation T



Appendix

Step 3: adjoint equations

@ If we just wanted to determine the variation of period for a
specific form of structural perturbation we could solve the
problem as stated above; but we can obtain a much more
powerful result, i.e. the sensitivity of the period to an
arbitrary structural perturbation with the aid of adjoint
equations.

@ Key to this approach is the observation that the limit cycle
is non-unique, insofar as if ug(7) is a periodic solution,
Uo(7 + o7) is as well.

@ By Fredholm'’s alternative, the original inhomogeneous
linear problem only has a solution if a compatibility
condition is satisfied. This compatibility condition can be
derived through a generalized Lagrange identity.



Appendix

Generalized Lagrange identity

(5T(9U0
ft.| === +h|d®dt =
/ <T02 or * ) X

1 9éu 1
= o = . . _ =
_/ [f (To 5 + Ug - Vou + du - Vug + Vip ReA5u>+

+m*tV-ou] d®xdt =

—/ Su - —iﬁ—v (Uof™) + Vu 7 vmt — L Af* +
- To O 0 0 Re

—opV - 1] dxdt =

= /6u -2(u — 0)dBx dt = A



Appendix

Generalized Lagrange identity

1 odu 1
+. [ = . . _
f <To 5 + Ug - Véu + du - Vug + Vép ReA6u> aF

]

+ mtV .- éu] d®xdt =

—/ Su - —iﬁ—v (Uof™) + Vu 7 vmt — L Af* +
- To o1 0 0 Re

—opV - 1] dxdt =

= /6u -2(u — 0)dBx dt = A



Appendix

Generalized Lagrange identity

1 9éu 1
= o = . . _ =
_/ [f (To 5 + Ug - Vou + du - Vug + Vip ReA5u>+

+m*tV-ou] d®xdt =

—/‘ Su - —iﬁfv (Uof™) + Vu 7 Umt — L Aft +
. To OT ° 0 Re

—6pV - fT] d®xdt =

= /6u -2(u — 0)dBx dt = A



Appendix

Generalized Lagrange identity

1 9éu 1
= o = . . _ =
_/ [f (To 5 + Ug - Vou + du - Vug + Vip ReA5u>+

+m*tV-ou] d®xdt =

—/ Su - —iﬁ—v (Uof™) + Vu 7 vmt — L Af* +
- To O 0 0 Re

—opV - 1] dxdt =

= /5u -2(u — 0)d®x dt = 5A



Compatibility Conditions

1 off 1 2 _
— - i S — T —AfT=—(u—
To o7 V - (uof™) + Vup vm - ~ (u—10)
V-ft=0
The solution of these forced equations is given by
ft = f;‘ 4 efa'

particular homogeneous
solution solution

.
5A:/(f;+ef§)- <5 8;70 +h) Bx dt

Note that A does not depend on the value of e since the forced
direct equation has only a periodic solution if

0T ou
/fé- (TZ a°+h> d*xdt = 0.



Sensitivity

From the last compatibility condition we easily obtain

T
/ f§ -hdPxdt =0
0

-
/fg Mo oy o
J0O

—|\i|'

or

=
6A:/ f+ . hd®x dt
0

where f+ = fJ + €f{ and

or
_
/ g Mo oy o
0

§
/ g+ o 3y
0

or
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