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Introduction

Definitions

Complex flows
here problems with large number of degrees of freedom

Optimal control
The linearized system

∂x

∂t
= Ax+ Bu on 0 < t < T , with x = x0 at t = 0.

x has dimension n and u dimension m

here n >> m

find u that minimizes a quadratic cost function J

consider: full state information, no estimation (has been done, references available)
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Introduction

The linear optimal control problem

The classical full-state-information control problem is formulated as: find the control u that
minimizes the cost function

J =
1

2

∫ T

0
[xHQx+ l2uHRu] dt,

where l is the penalty of the control, and the state x and the control u are related via the state
equation

∂x

∂t
= Ax+ Bu on 0 < t < T , with x = x0 at t = 0.

The solution depends on: x0, T , Q, R and l .
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Introduction

Solution approaches

With a feedback rule u = Kx, and a system which is LTI, then the feedback matrix K is
computed once off-line
(convenient since K is independent of x0).

Optimal control u corresponding to the state at each time step is computed in real time,
normally with a finite horizon (value of T ) to make it tractable.
(Example: Adjoint-based control optimization.)

Both approaches can be solved using the adjoint of the state equation.

Jan Pralits (University of Genoa) Optimal control October 22, 2013 6 / 61



Introduction

Why introduce Adjoint equations ?

Example gradient computation:

J = wHx, where Ax = b, Ex. find
∂J

∂b
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J = wHx, where Ax = b, Ex. find
∂J
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Finite difference approach

(
∂J

∂b

)

j

≈
J(b + ǫej) − J(b)

ǫ
Requires n + 1 solutions of Ax = b, where n is the dimension of b

Alternatively, solve
AHp = w dual problem, adjoint

then
J = wHx = (AHp)Hx = pHAx = pHb,
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Introduction

Why introduce Adjoint equations ?

Example gradient computation:

J = wHx, where Ax = b, Ex. find
∂J

∂b
Finite difference approach

(
∂J

∂b

)

j

≈
J(b + ǫej) − J(b)

ǫ
Requires n + 1 solutions of Ax = b, where n is the dimension of b

Alternatively, solve
AHp = w dual problem, adjoint

then
J = wHx = (AHp)Hx = pHAx = pHb,

and
∂J

∂b
= p One Solution, independently of n

Jan Pralits (University of Genoa) Optimal control October 22, 2013 7 / 61



Introduction

Derivation of adjoint I

The adjoint variable p is introduced as a Lagrange multiplier. The augmented cost function is
written

J =

∫ T

0

1

2
[xHQx+ l2uHRu]− pH[

∂x

∂t
− Ax− Bu] dt,

linearize + integration by parts and δJ = 0 gives

0 =

∫ T

0
δuH[Bp+ l2Ru] + δxH[

∂p

∂t
+ AHp+Qx] dt + [δxHp]T0 ,
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Introduction

Derivation of adjoint II

The adjoint variable p is introduced as a Lagrange multiplier. The augmented cost function is
written

J =

∫ T

0

1

2
[xHQx+ l2uHRu]− pH[

∂x

∂t
− Ax− Bu] dt,

linearize + integration by parts and δJ = 0

0 =

∫ T

0
δuH[Bp+ l2Ru] + δxH[

∂p

∂t
+ AHp+Qx

︸ ︷︷ ︸

=0

] dt + [δxHp]T0 ,

gives adjoint equations (obs! δx(0) = 0)

∂p

∂t
= −AHp−Qx, with p(t = T ) = 0,

Jan Pralits (University of Genoa) Optimal control October 22, 2013 9 / 61



Introduction

Derivation of adjoint III

The adjoint variable p is introduced as a Lagrange multiplier. The augmented cost function is
written

J =

∫ T

0

1

2
[xHQx+ l2uHRu]− pH[

∂x

∂t
− Ax− Bu] dt,

linearize + integration by parts and δJ = 0

0 =

∫ T

0
δuH[Bp+ l2Ru

︸ ︷︷ ︸

=0

] + δxH[
∂p

∂t
+ AHp+Qx

︸ ︷︷ ︸

=0

] dt + [δxHp]T0 ,

gives adjoint equations (obs! δx(0) = 0)

∂p

∂t
= −AHp−Qx, with p(t = T ) = 0,

and optimality condition

u = −
1

l2
R−1BHp.
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Introduction

Optimal control using feedback

If we consider a feedback rule u = Kx then

u = Kx = −
1

l2
R−1BHp.

This is commonly solved using a linear relation p = Xx in order to write the system given by the
direct and adjoint equations, as one differential equation for X ,
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Introduction

Optimal control using feedback

If we consider a feedback rule u = Kx then

u = Kx = −
1

l2
R−1BHp.

This is commonly solved using a linear relation p = Xx in order to write the system given by the
direct and adjoint equations, as one differential equation for X ,

(usually denoted differential Riccati equation).

How does it work ?

Note that state is often denoted direct
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Introduction

Two-point boundary value problem

Write the direct and adjoint equations on a combined matrix form

dz

dt
= Zz where Z = Z2n×2n =

[
A −l−2BR−1BH

−Q −AH

]

(1)

z =

[
x
p

]

, and

{
x = x0 at t = 0,
p = 0 at t = T .
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[
x
p
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, and
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(Z has a Hamiltonian symmetry, such that eigenvalues appear in pairs of equal imaginary and
opposite real part.)
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Introduction

Two-point boundary value problem

Write the direct and adjoint equations on a combined matrix form

dz

dt
= Zz where Z = Z2n×2n =

[
A −l−2BR−1BH

−Q −AH

]

(1)

z =

[
x
p

]

, and

{
x = x0 at t = 0,
p = 0 at t = T .

(Z has a Hamiltonian symmetry, such that eigenvalues appear in pairs of equal imaginary and
opposite real part.)

This linear ODE is a two-point boundary value problem and may be solved using a linear
relationship between the state vector x(t) and adjoint vector p(t) vi a matrix X (T ) such that
p = Xx, and inserting this solution ansatz into (1) to eliminate p.
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Introduction

The Riccati equation

It follows that matrix X obeys the differential Riccati equation

−
dX

dt
= AHX + XA− Xl−2BR−1BHX + Q with X (T ) = 0. (2)
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Introduction

The Riccati equation

It follows that matrix X obeys the differential Riccati equation

−
dX

dt
= AHX + XA− Xl−2BR−1BHX + Q with X (T ) = 0. (2)

Once X is known, the optimal value of u may then be written in the form of a feedback control
rule such that u = Kx where K = −l−2R−1BHX .
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Introduction

The Riccati equation

It follows that matrix X obeys the differential Riccati equation

−
dX

dt
= AHX + XA− Xl−2BR−1BHX + Q with X (T ) = 0. (2)

Once X is known, the optimal value of u may then be written in the form of a feedback control
rule such that u = Kx where K = −l−2R−1BHX .

Finally, if the system is time invariant (LTI) and we take the limit that T → ∞, the matrix X in
(2) may be marched to steady state. This steady state solution for X satisfies the
continuous-time algebraic Riccati equation

0 = AHX + XA− Xl−2BR−1BHX +Q,

where additionally X is constrained such that A+ BK is stable.
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Introduction

The classical way of solution

A linear time-invariant system (LTI) can be solved using its eigenvectors.
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A linear time-invariant system (LTI) can be solved using its eigenvectors. Assume that an
eigenvector decomposition of the 2n × 2n matrix Z is available such that

Z = VΛcV
−1 where V =

[
V11 V12

V21 V22

]

and z =

[
x
p

]

and the eigenvalues of Z appearing in the diagonal matrix Λc are enumerated in order of
increasing real part.
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Introduction

The classical way of solution

A linear time-invariant system (LTI) can be solved using its eigenvectors. Assume that an
eigenvector decomposition of the 2n × 2n matrix Z is available such that

Z = VΛcV
−1 where V =

[
V11 V12

V21 V22

]

and z =

[
x
p

]

and the eigenvalues of Z appearing in the diagonal matrix Λc are enumerated in order of
increasing real part. Since

z = VeΛc tV−1z0

the solutions z that obey the boundary conditions at t → ∞ are spanned by the first n columns
of V . The direct (x) and adjoint (p) parts of the these columns are related as p = Xx, where

[p1, p2, · · · , pn] = X [x1, x2, · · · , xn] → X = V21V
−1
11
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Introduction

Motivation

Optimal control via application of modern control algorithms (Riccati equation) is
intractable because of the very large number of degrees of freedom deriving from the
discretization of the Navier-Stokes equations.
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MCE: Minimal Control Energy

Minimal Control Energy
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MCE: Minimal Control Energy

Minimal-energy control feedback I

In the limit that l2 → ∞ we consider

J =

∫ T

0

1

2
[l−2xHQx+ uHRu]

With this defintion the same derivation as before leads to

dz

dt
= Zz where Z = Z2n×2n =

[
A −BR−1BH

−l−2Q −AH

]

Taking the limit l2 → ∞ we get
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MCE: Minimal Control Energy

Minimal-energy control feedback II

In the limit that l2 → ∞ we consider

J =

∫ T

0

1

2
[l−2xHQx+ uHRu]

With this defintion the same derivation as before leads to

dz

dt
= Zz where Z = Z2n×2n =

[
A −BR−1BH

0 −AH

]

Z becomes block triangular. The direct and adjoint equations are

∂x

∂t
= Ax+ Bu, u = −R−1BHp,

∂p

∂t
= −AHp+ 0
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MCE: Minimal Control Energy

Minimal-energy control feedback III

The eigenvalues of this system is given by the union of the eigenvalues of A and −AH .

ℜ(λκ)

ℑ(λκ)

−0.1

−0.1

−0.2

−0.2

−0.3

−0.3

−0.4

−0.4

−0.5

−0.5

−0.6

−0.7

−0.8

−0.9
0.30.20.10

The eigenvalues of (+) the discretized open-loop system, and (o) the closed-loop system A+ BK
after minimal-energy control is applied.
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MCE: Minimal Control Energy

Minimal-energy control feedback IV

Here we know the eigenvalues and only need to compute

X = V21V
−1
11

It can be shown that X is only function of V21. K is finally given as a function of the unstable
eigenvalues and corresponding
left eigenvectors.

K = −BHTuF
−1TH

u

where F has elements
fij = cij/(λi + λ∗

j )

and
C = TH

u BB
HTu

Tu is the matrix containing unstable left eigenvectors
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ADA: Adjoint of the Direct-Adjoint

Riccati-less optimal control I

The aim is to compute the solution for K , which is independent of x0 and time invariant. This
can be solved using an iterative procedure to “try” different x0 (computationally expensive).

ALTERNATIVELY

For a converged solution at t = 0 we can write

u = Kx0 = −
1

l2
R−1BHp0.

This is a linear relation between the input x0 and output u.

u = − 1
l2
R−1BHp0x0 Direct-Adjoint

The input has a large dimension and the output a small dimension.
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ADA: Adjoint of the Direct-Adjoint

Riccati-less optimal control II

Such a problem is efficiently solved using the adjoint equations.

The adjoint input has a small dimension and the output a large dimension.

u+0K
Adjoint of

Direct-Adjoint

K is obtained from the solution of the adjoint of
the direct-adjoint system.
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ADA: Adjoint of the Direct-Adjoint

Adjoint of the Direct-Adjoint system I

Introduce the adjoint variables x+ and p+ and multiply with the direct-adjoint equations, then
integrate in time from t = 0 to t = T . Obs! here we consider that u has dimension m = 1.

∫
T

0

x+H

(
∂x

∂t
− Ax +

1

l2
BR−1BHp

)

dt +

∫
T

0

p+H

(
∂p

∂t
+ AHp + Qx

)

dt = 0.
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ADA: Adjoint of the Direct-Adjoint

Adjoint of the Direct-Adjoint system II

Using integration by parts, and considering that both R and Q are symmetric, we obtain

−

∫ T

0

pH
(

∂p+

∂t
− Ap+ −

1

l2
BR−1BHx+

)

dt −

∫ T

0

xH
(

∂x+

∂t
+ AHx+ − Qp+

)

dt

+
[

pH p+
]T

0
+
[

xH x+
]T

0
= 0.

If we now define the new adjoint equations as
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ADA: Adjoint of the Direct-Adjoint

Adjoint of the Direct-Adjoint system III

Using integration by parts, and considering that both R and Q are symmetric, we obtain

−

∫ T

0

p
H








∂p+

∂t
− Ap

+
−

1

l2
BR

−1
B

H
x
+

︸ ︷︷ ︸

=0








dt −

∫ T

0

x
H








∂x+

∂t
+ A

H
x
+
− Qp

+

︸ ︷︷ ︸

=0








dt

+
[

pH p+
]T

0
+
[

xH x+
]T

0
= 0.

If we now define the new adjoint equations as

∂p+

∂t
= Ap+ +

1

l2
BR−1BHx+,

∂x+

∂t
= −AHx+ + Qp+,

Jan Pralits (University of Genoa) Optimal control October 22, 2013 26 / 61



ADA: Adjoint of the Direct-Adjoint

Adjoint of the Direct-Adjoint system IV

with x+(t = T ) = 0 and p(t = T ) = 0, the remaining terms are

x+H(0)x(0) + p+H(0)p(0) = 0.

Recall that the original linear relation was

Kx0 = −
1

l2
R−1BHp0

Choosing p+H(t = 0) as one row of − 1
l2
R−1BH (m = 1)

we can identify one row of K as x+H(0). (m = 1)
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ADA: Adjoint of the Direct-Adjoint

Riccati-less optimal control: solution procedure

If we let x+ → −p and p+ → x we easily obtain the original (Direct-Adjoint) system.
(self-adjoint)

Finally: solve the original linear system with new b.c.

∂x

∂t
= Ax −

1

l2
BR−1BHp on 0 < t < T , xH(0) is one row of

1

l2
R−1BH

,

∂p

∂t
= −AHp − Qx on 0 < t < T , with p(T ) = 0.

One row of K is then given by −pH(0) (since x+ = −p).
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If we let x+ → −p and p+ → x we easily obtain the original (Direct-Adjoint) system.
(self-adjoint)
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= Ax −

1

l2
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1
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= −AHp − Qx on 0 < t < T , with p(T ) = 0.

One row of K is then given by −pH(0) (since x+ = −p).

IMPORTANT
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Applications
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Applications

Applications

MCE: Minimal Control Energy
In this method the feedback matrix K is evaluated from the unstable open-loop solutions of the
system.
Case: control of the cylinder wake (globally unstable flow)
Refs: Carini, Pralits, Luchini, JFS, 2013

ADA: Adjoint of the Direct-Adjoint
This method is more general and does not depend on whether the system is unstable or not.
Cases: control of the cylinder wake, boundary layer transition
Refs: Pralits, Luchini, IUTAM Proceeding, 2010,
Semeraro, Pralits, Rowley, Henningson, JFM, 2013
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Applications

Control of the cylinder wake

Control strategy
MCE & ADA

Numerical procedure

All equations are discretized using second-order finite-differences over a staggered, stretched,
Cartesian mesh.

An immersed-boundary technique is used to enforce the boundary conditions on the cylinder.

The nonlinear mean-flow equations, along with their boundary conditions, are solved by a
Newton-Raphson procedure.

The linear and nonlinear evolution equations are solved using
Adams-Bashforth/Crank-Nicholson.

The eigenvalue problems are solved using an Inverse Iteration algorithm

Discrete adjoint equations (accurate to machine precision).

Cases:
Reynolds numbers close to the first bifurcation, two-dimensional flow
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Applications

MCE

The linear feedback matrix K which suppresses vortex shedding from a circular cylinder has been
computed using:
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Applications

MCE

The linear feedback matrix K which suppresses vortex shedding from a circular cylinder has been
computed using:
Full state information, Actuator: angular oscillation, Re = UD/ν
Dimension of control u is m = 1
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Applications

The feedback matrix K (u = Kx)

Re = 55

Re = 75

Re = 100

Re = 150

Ku Kv
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Applications

Results: linearized N-S equations

The temporal evolution of the frequency and growth rate is compared with the eigenvalue λ

The Strouhal number: St = fD/U compared to St = λr/2π

The growth rate: σ = d
dt
log(u(t)) compared to λi

Test case: Re = 55, control is turned on at t = 18
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Applications

Control of vortex shedding: Re = 55

WithControl
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Applications

Stationary vs. mean flow

St for limit cycle coincide with mean-flow
eigenfrequency
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Applications

Ku stationary vs. mean

Re = 55

Re = 75

Re = 100

Re = 150

Ku stationary Ku mean
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Applications

Kv stationary vs. mean

Re = 55

Re = 75

Re = 100

Re = 150

Kv stationary Kv mean
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Applications

Control of vortex shedding: stationary vs. mean

Re = 55
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Applications

ADA

The linear feedback matrix K which suppresses vortex shedding from a circular cylinder has been
computed using:
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Applications

ADA

The linear feedback matrix K which suppresses vortex shedding from a circular cylinder has been
computed using:
Full state information, Actuator: angular oscillation, Re = UD/ν
Dimension of control u is m = 1
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Applications

Results: K for Re = 55

Ku , l2 = 1

Ku , l2 → ∞

Kv , l2 = 1

Ku, l2 → ∞
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Applications

Control of vortex shedding

In the temporal evolution of the lift (CL) and control u:

CL and u tend to zero as the control is applied

Control u strengthens as l2 decrease

Test case: Re = 55, control is turned on at t = 0
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Applications

Control of vortex shedding

In the temporal evolution of drag (CD) coefficient:

As the control is applied CD tends to the constant value corresponding to the steady state
solution

The control acts more quickly as l2 is decreased

Test case: Re = 55, control is turned on at t = 0
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Applications

Control of the flat plate boundary layer I

!
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Applications

Control of the flat plate boundary layer II

!
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Applications

Control of the flat plate boundary layer III

!

Semeraro, Pralits, Rowley, Henningson, JFM, 2013
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Numerics

Some numerical issues

Jan Pralits (University of Genoa) Optimal control October 22, 2013 48 / 61



Numerics

Continuous vs. Discrete Adjoint Equations

The adjoint equations can be derived using two different approaches.
Both with advantages and disadvantages.
By definition we have

〈p, Lx〉 = 〈L∗p, x〉+B.T.

Continuous approach →: The adjoint equations are
derived by definition using the continuous direct
equations.
+ Straightforward derivation, reuse old code when

programming
– Accuracy depends on discretization, difficulties with

boundary conditions

Discrete approach →: The adjoint equations are
derived from the discretized direct equations.
+ Accuracy can be achieved close to machine precision,

and can be independent of discretization !!
– Tricky derivation, usually requires making a new code,

or larger changes of an existing code.

Continuous
Direct Equation

Discrete
Direct Equation

Continuous
Adjoint Equation

Discrete
Adjoint Equation

Discrete
Adjoint Eq.

def

def

Here ”def” means definition of the
adjoint operator.
In the top row it is on continuous form
while in the bottom row it is on
discrete form.
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Numerics

Derivation of the adjoint equation I

Consider the following optimal control problem (ODE) where φ is the state and g the control.

dφ(t)

dt
= −Aφ(t) + Bg(t), for 0 ≤ t ≤ T ,

with initial condition
φ(0) = φ0

We can now define an optimization problem in which the goal is to find an optimal g(t) by
minimizing the following objective function

J =
γ1

2
[φ(T )−Ψ]2 +

γ2

2

∫ T

0
g(t)2dt,
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Numerics

Derivation of the adjoint equation II

Continuous approach
We can solve this problem using an adjoint identity approach or by introducing Lagrange
multipliers.

∫ T

0
a[
dφ

dt
+ Aφ− Bg ] dt =

∫ T

0
[−

da

dt
+ A∗a]φ dt −

∫ T

0
aBg dt + a(T )φ(T ) − a(0)φ(0).

If we now define the adjoint equation as −da/dt = −A∗a with an arbitrary initial condition a(T )
then the identity reduces to

LHS = −

∫ T

0
aBg dt + a(T )φ(T ) − a(0)φ(0)

By definition the Left Hand Side is identically zero but this is exactly what must be checked
numerically, i.e. error= |LHS|.
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Numerics

Derivation of the adjoint equation III

The gradient of J w.r.t. g can be derived considering the J is nonlinear in φ and g . We linearise
by φ → φ+ δφ, g → g + δg and then write the linearised objective function as

γ1[φ(T )−Ψ]δφ(T ) = δJ − γ2

∫ T

0
gδg dt,

If we choose a(T ) = γ1[φ(T )−Ψ] then the equation for δJ can be substituted into the
expression for the adjoint identity. If you further define the adjoint equations, remember that
δφ(0) = 0, then the final identity is written

δJ =

∫ T

0
[γ2g + B∗a]δg dt

The adjoint equations and gradient of J w.r.t. g are written

−
da

dt
+ A∗a, a(T ) = γ1[φ(T )−Ψ], and ∇Jg = γ2g + B∗a.

The so called optimality condition is given by ∇Jg = 0.
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Numerics

Derivation of the adjoint equation IV

The accuracy of the adjoint solution is important since it quantfies a ”gradient” in the
optimization problem.

The ”error” must be evaluated to quantify the accuracy the adjoint solution.

Note that the adjoint solution depends on the resolution (∆t), and likewise the accuracy.

Can we do better ?
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Numerics

Derivation of the adjoint equation V

Discrete approach
A discrete version of the direct equation is
written

φi+1 − φi

∆t
= −Aφi +Bg i , for i = 1, ...,N−1,

where N denotes the number of discrete points
on the interval [0,T ], ∆t is the constant time
step, and

φ1 = φ0,

is the initial condition. This can be written as a
discrete evolution equation

φi+1 = [I−∆tA]φi+∆tBg i , for i = 1, ...,N−1.

A discrete version of the objective function can
be written

J =
γ1

2
(φN −Φ)2 +

γ2

2

N−1∑

i=1

∆t(g i )2.

An adjoint variable ai is introduced defined on
i = 1, ...,N and by definition

ai+1 · Lφi = (L⋆ai+1) ·φi , for i = 1, ...,N − 1.

We then introduce the definition of the state
equation on the left hand side of and impose
that

ai = L⋆ai+1 for i = N − 1, ..., 1.

This is the discrete adjoint equation. Using the
discrete direct and adjoint yields

ai+1·(φi+1−∆tBg i ) = ai ·φi , for i = 1, ...,N−1.

which must be valid for any φ and a. An error
can therefore be written as

error = |aN · φN − a1 · φ1 −

N−1∑

i=1

∆t ai+1 · Bg i |.

Jan Pralits (University of Genoa) Optimal control October 22, 2013 54 / 61



Numerics

Derivation of the adjoint equation VI

The discrete optimality condition is then derived. Since J is nonlinear with respect to φ and g we
must first linearize. This can be written

δJ = γ1(φ
N − Φ) · δφN + γ2

N−1∑

i=1

∆tg i · δg i .

We now choose the terminal condition of the adjoint as aN = γ1(φN − Φ) and substitute this
expression into the discrete adjoint identity. This is written

γ1(φ
N − Φ) · δφN = a1 · δφ1 +

N−1∑

i=1

∆t ai+1 · Bδg i

By inspection one can see that the left hand side is identical to the first term in the expression for
δJ, and δφ1 = 0. Rearranging the terms, we get

δJ =

N−1∑

i=1

∆t (γ2g
i + B⋆ai+1) · δg i ,

from which we get the discrete optimality condition

g i = −
1

γ2
B⋆ai+1 for i = 1, ..,N − 1.

Note that if B is a matrix then B⋆ = BT .
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Numerics

Checkpointing algorithm

When the adjoint equation is forced in time by the direct solution (ex. quadratic objective
function), then this poses storage requirements (hard ware). This becomes a problem for 2D
and 3D problems with high resolution in space and time.

One way to come around this is to apply Checkpointing. This consists of sampling the direct
solution at given rate and then recompute the direct solution for short time intervals when
needed. This means in theory that one more solution of the direct system has been added to
the computational effort.

However, since it is common to use parallel computing, and processors is becoming a smaller
problem on can do something to obtain the minimal required computational time.

This is done by recomputing the direct solution, in parallel, while computing the adjoint.

∆ T ∆ T ∆ T ∆ T ∆ T
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Numerics

EXTRA SLIDES

Jan Pralits (University of Genoa) Optimal control October 22, 2013 57 / 61



Numerics

Background: control using rotational oscillation

Aim: reduce CD
Exp. Tokumaru & Dimotakis (1991), -20%, Re = 15000

Feedback control:
Exp. Fujisawa & Nakabayashi (2002) -16% (-70% CL), Re = 20000
Exp. Fujisawa et al.(2001) “reduction”, Re = 6700

Optimal control (using adjoints):
Num. He et al.(2000) -30 to -60% for Re = 200 − 1000
Num. Protas & Styczek (2002) -7% at Re = 75, -15% at Re = 150
Bergmann et al.(2005) -25% at Re = 200 (POD)

Aim: reduce vortex shedding
Feedback control:

Num. Protas (2004) reduction, “point vortex model”, Re = 75
Optimal control (using adjoints):

Num. Homescu et al.(2002) reduction, Re = 60− 1000
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Numerics

Minimal-energy control feedback

Denoting:

xi and λi the i -th right eigenvector and eigenvalue of A,

yi and −λi∗ the i -th right eigenvector and eigenvalue of −AH ,

yi∗ is left eigenvector of A,

we see that the stable eigenvectors of

∂x

∂t
= Ax+ Bu, u = −R−1BHp,

∂p

∂t
= −AHp

are of two possible types:

p = 0, x = xi if ℜ(λi ) < 0 (stable)
p = yi , x = (λi∗ + A)−1BR−1BHyi if ℜ(λi ) > 0 (unstable)
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Numerics

We now project an arbitrary initial condition x0 onto these modes,

x0 =
∑

stable

djx
j +

∑

unstable

fj(λ
j∗ + A)−1BR−1BHyj (4)

and note that in order to reconstruct p we only need the fj ’s, because the stable modes have
p = 0. The coefficients dj can be eliminated from (4) by projecting the left eigenvectors:

yi∗x0 = yi∗
∑

unstable

fj (λ
j∗ + A)−1BR−1BHyj =

∑

unstable

cij fj

where, since yi∗ is also a left eigenvector of (λj∗ + A)−1,

cij =
yi∗BR−1BHyj

λi + λj∗

Only the unstable eigenvalues and left eigenvectors are needed.
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Numerics

The main theorem

Summarizing, the solution of the minimal-energy stabilizing control feedback problem can be
written in terms of the unstable left eigenvectors only.

Theorem 1. Consider a stabilizable system ẋ = Ax+ Bu with no pure imaginary open-loop
eigenvalues. Determine the unstable eigenvalues and corresponding left eigenvectors of A such
that TH

u A = ΛuTH
u (equivalently, determine the unstable eigenvalues and corresponding right

eigenvectors of AH such that AHTu = TuΛH
u ). Define B̄u = TH

u B and C = B̄uB̄H
u , and compute a

matrix F with elements fij = cij/(λi + λ∗

j ). The minimal-energy stabilizing feedback controller is

then given by u = Kx, where K = −B̄H
u F−1TH

u .
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