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Definitions

Complex flows

here problems with large number of degrees of freedom

Control

The nonlinear governing equations
∂x̄

∂t
= N(x̄, ū) on 0 < t < T , with x̄ = x̄0 at t = 0.

x̄ is the state vector of dimension n

ū is the control of dimension m
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Definitions

Complex flows

here problems with large number of degrees of freedom

Optimal control

The linearized system with x = x(x̄) and ū = 0
∂x

∂t
= Ax + Bu on 0 < t < T , with x = x0 at t = 0.

x has dimension n and u dimension m

here n >> m

find u that minimizes a quadratic cost function J

consider: full state information, no estimation
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The linear optimal control problem

The classical full-state-information control problem is formulated
as: find the control u that minimizes the cost function

J =
1

2

∫ T

0
[xHQx + l2uHRu] dt,

where l is the penalty of the control, and the state x and the
control u are related via the state equation

∂x

∂t
= Ax + Bu on 0 < t < T , with x = x0 at t = 0.
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The linear optimal control problem

The classical full-state-information control problem is formulated
as: find the control u that minimizes the cost function

J =
1

2

∫ T

0
[xHQx + l2uHRu] dt,

where l is the penalty of the control, and the state x and the
control u are related via the state equation

∂x

∂t
= Ax + Bu on 0 < t < T , with x = x0 at t = 0.

The solution depends on: x0, T , Q, R and l .
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Solution approaches

With a feedback rule u = Kx, and a system which is LTI, then
the feedback matrix K is computed once off-line
(convenient since K is independent of x0).

Optimal control u corresponding to the state at each time
step is computed in real time, normally with a finite horizon
(value of T ) to make it tractable.
(Example: Adjoint-based control optimization.)
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Solution approaches

With a feedback rule u = Kx, and a system which is LTI, then
the feedback matrix K is computed once off-line
(convenient since K is independent of x0).

Optimal control u corresponding to the state at each time
step is computed in real time, normally with a finite horizon
(value of T ) to make it tractable.
(Example: Adjoint-based control optimization.)

Both approaches can be solved using the adjoint of the state
equation.
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Why introduce Adjoint equations ?

Example gradient computation:

J = wHx, where Ax = b, Ex. find
∂J

∂b
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Why introduce Adjoint equations ?

Example gradient computation:

J = wHx, where Ax = b, Ex. find
∂J

∂b
Finite difference approach(

∂J

∂b

)

j

≈
J(b + ǫej) − J(b)

ǫ
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Why introduce Adjoint equations ?

Example gradient computation:

J = wHx, where Ax = b, Ex. find
∂J

∂b
Finite difference approach(

∂J

∂b

)

j

≈
J(b + ǫej) − J(b)

ǫ
Requires n solutions of Ax = b, where n is the dimension of b

Alternatively, solve
AHp = w dual problem, adjoint

then
J = wHx = (AHp)Hx = pHAx = pHb,
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Why introduce Adjoint equations ?

Example gradient computation:

J = wHx, where Ax = b, Ex. find
∂J

∂b
Finite difference approach(

∂J

∂b

)

j

≈
J(b + ǫej) − J(b)

ǫ
Requires n solutions of Ax = b, where n is the dimension of b

Alternatively, solve
AHp = w dual problem, adjoint

then
J = wHx = (AHp)Hx = pHAx = pHb,

and
∂J

∂b
= pH One Solution.
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Derivation of adjoint

The adjoint variable p is introduced as a Lagrange multiplier. The
augmented cost function is written

J =

∫ T

0

1

2
[xHQx + l2uHRu] − pH[

∂x

∂t
− Ax − Bu] dt,
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Derivation of adjoint

The adjoint variable p is introduced as a Lagrange multiplier. The
augmented cost function is written

J =

∫ T

0

1

2
[xHQx + l2uHRu] − pH[

∂x

∂t
− Ax − Bu] dt,

integration by parts and δJ = 0 gives

0 =

∫ T

0
δuH[Bp + l2Ru] + δxH[

∂p

∂t
+ AHp + Qx] dt + [δxHp]T0 ,
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Derivation of adjoint

The adjoint variable p is introduced as a Lagrange multiplier. The
augmented cost function is written

J =

∫ T

0

1

2
[xHQx + l2uHRu] − pH[

∂x

∂t
− Ax − Bu] dt,

integration by parts and δJ = 0

0 =

∫ T

0
δuH[Bp + l2Ru] + δxH[

∂p

∂t
+ AHp + Qx

︸ ︷︷ ︸

=0

] dt + [δxHp]T0 ,

gives adjoint equations (obs! δx(0) = 0)

∂p

∂t
= −AHp − Qx, with p(t = T ) = 0,
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Derivation of adjoint

The adjoint variable p is introduced as a Lagrange multiplier. The
augmented cost function is written

J =

∫ T

0

1

2
[xHQx + l2uHRu] − pH[

∂x

∂t
− Ax − Bu] dt,

integration by parts and δJ = 0

0 =

∫ T

0
δuH[Bp + l2Ru

︸ ︷︷ ︸

=0

] + δxH[
∂p

∂t
+ AHp + Qx

︸ ︷︷ ︸

=0

] dt + [δxHp]T0 ,

gives adjoint equations (obs! δx(0) = 0)

∂p

∂t
= −AHp − Qx, with p(t = T ) = 0,

and optimality condition

u = −
1

l2
R−1BHp.
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Derivation of adjoint

The adjoint variable p is introduced as a Lagrange multiplier. The
augmented cost function is written

J =

∫ T

0

1

2
[xHQx + l2uHRu] − pH[

∂x

∂t
− Ax − Bu] dt,

integration by parts and δJ = 0

0 =

∫ T

0
δuH[Bp + l2Ru

︸ ︷︷ ︸

=0

] + δxH[
∂p

∂t
+ AHp + Qx

︸ ︷︷ ︸

=0

] dt + [δxHp]T0 ,

gives adjoint equations (obs! δx(0) = 0)

∂p

∂t
= −AHp − Qx, with p(t = T ) = 0,

and optimality condition

u = −
1

l2
R−1BHp. means

∂J

∂u
= 0
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Optimal control using feedback

If we consider a feedback rule u = Kx then

u = Kx = −
1

l2
R−1BHp.

This is commonly solved using a linear relation p = Xx in order to
write the system given by the direct and adjoint equations, as one
differential equation for X ,
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If we consider a feedback rule u = Kx then

u = Kx = −
1
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This is commonly solved using a linear relation p = Xx in order to
write the system given by the direct and adjoint equations, as one
differential equation for X ,

(usually denoted differential Riccati equation).
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Optimal control using feedback

If we consider a feedback rule u = Kx then

u = Kx = −
1

l2
R−1BHp.

This is commonly solved using a linear relation p = Xx in order to
write the system given by the direct and adjoint equations, as one
differential equation for X ,

(usually denoted differential Riccati equation).

How does it work ?

Note that state is often denoted direct
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Two-point boundary value problem

Write the direct and adjoint equations on a combined matrix form

dz

dt
= Zz where Z = Z2n×2n =

[
A −l−2BR−1BH

−Q −AH

]

(1)

z =

[
x
p

]

, and

{
x = x0 at t = 0,
p = 0 at t = T .
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Two-point boundary value problem

Write the direct and adjoint equations on a combined matrix form

dz

dt
= Zz where Z = Z2n×2n =

[
A −l−2BR−1BH

−Q −AH

]

(1)

z =

[
x
p

]

, and

{
x = x0 at t = 0,
p = 0 at t = T .

(Z has a Hamiltonian symmetry, such that eigenvalues appear in
pairs of equal imaginary and opposite real part.)
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Two-point boundary value problem

Write the direct and adjoint equations on a combined matrix form

dz

dt
= Zz where Z = Z2n×2n =

[
A −l−2BR−1BH

−Q −AH

]

(1)

z =

[
x
p

]

, and

{
x = x0 at t = 0,
p = 0 at t = T .

(Z has a Hamiltonian symmetry, such that eigenvalues appear in
pairs of equal imaginary and opposite real part.)

This linear ODE is a two-point boundary value problem and may
be solved using a linear relationship between the state vector x(t)
and adjoint vector p(t) vi a matrix X (T ) such that p = Xx, and
inserting this solution ansatz into (1) to eliminate p.
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The Riccati equation

It follows that matrix X obeys the differential Riccati equation

−
dX

dt
= AHX +XA−Xl−2BR−1BHX +Q with X (T ) = 0. (2)
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The Riccati equation

It follows that matrix X obeys the differential Riccati equation

−
dX

dt
= AHX +XA−Xl−2BR−1BHX +Q with X (T ) = 0. (2)

Once X is known, the optimal value of u may then be written in
the form of a feedback control rule such that

u = Kx where K = −l−2R−1BHX .
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The Riccati equation

It follows that matrix X obeys the differential Riccati equation

−
dX

dt
= AHX +XA−Xl−2BR−1BHX +Q with X (T ) = 0. (2)

Once X is known, the optimal value of u may then be written in
the form of a feedback control rule such that

u = Kx where K = −l−2R−1BHX .

Finally, if the system is time invariant (LTI) and we take the limit
that T → ∞, the matrix X in (2) may be marched to steady state.
This steady state solution for X satisfies the continuous-time
algebraic Riccati equation

0 = AHX + XA − Xl−2BR−1BHX + Q,

where additionally X is constrained such that A + BK is stable.
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The classical way of solution

A linear time-invariant system (LTI) can be solved using its
eigenvectors.
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The classical way of solution

A linear time-invariant system (LTI) can be solved using its
eigenvectors. Assume that an eigenvector decomposition of the
2n × 2n matrix Z is available such that

Z = VΛcV
−1 where V =

[
V11 V12

V21 V22

]

and z =

[
x
p

]

and the eigenvalues of Z appearing in the diagonal matrix Λc are
enumerated in order of increasing real part.
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The classical way of solution

A linear time-invariant system (LTI) can be solved using its
eigenvectors. Assume that an eigenvector decomposition of the
2n × 2n matrix Z is available such that

Z = VΛcV
−1 where V =

[
V11 V12

V21 V22

]

and z =

[
x
p

]

and the eigenvalues of Z appearing in the diagonal matrix Λc are
enumerated in order of increasing real part. Since

z = VeΛc tV−1z0

the solutions z that obey the boundary conditions at t → ∞ are
spanned by the first n columns of V .
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The classical way of solution

A linear time-invariant system (LTI) can be solved using its
eigenvectors. Assume that an eigenvector decomposition of the
2n × 2n matrix Z is available such that

Z = VΛcV
−1 where V =

[
V11 V12

V21 V22

]

and z =

[
x
p

]

and the eigenvalues of Z appearing in the diagonal matrix Λc are
enumerated in order of increasing real part. Since

z = VeΛc tV−1z0

the solutions z that obey the boundary conditions at t → ∞ are
spanned by the first n columns of V . The direct (x) and adjoint
(p) parts of the these columns are related as p = Xx, where

[p1, p2, · · · ,pn] = X [x1, x2, · · · , xn] → X = V21V
−1
11
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Motivation

Optimal control via application of modern control algorithms
(Riccati equation) is intractable because of the very large
number of degrees of freedom deriving from the discretization
of the Navier-Stokes equations.
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reduced-order models (ROM).
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Motivation

Optimal control via application of modern control algorithms
(Riccati equation) is intractable because of the very large
number of degrees of freedom deriving from the discretization
of the Navier-Stokes equations. X = Xn×n

The research approach until today has been to use eg
reduced-order models (ROM).

Here, two exact methods which do not rely on such modeling,

where J =
1

2

∫ T

0
[xHQx + l2uHRu] dt

1 In the limit that l2 → ∞, Minimal energy control feedback
2 For any value of l2, more general, Riccati-less optimal control
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Minimal-energy control feedback

In the limit that l2 → ∞ we consider

J =

∫ T

0

1

2
[l−2xHQx + uHRu]

With this defintion the same derivation as before leads to

dz

dt
= Zz where Z = Z2n×2n =

[
A −BR−1BH

−l−2Q −AH

]

Taking the limit l2 → ∞ we get
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Minimal-energy control feedback

In the limit that l2 → ∞ we consider

J =

∫ T

0

1

2
[l−2xHQx + uHRu]

With this defintion the same derivation as before leads to

dz

dt
= Zz where Z = Z2n×2n =





A −BR−1BH

−l−2Q
︸ ︷︷ ︸

→0

−AH




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Minimal-energy control feedback

In the limit that l2 → ∞ we consider

J =

∫ T

0

1

2
[l−2xHQx + uHRu]

With this defintion the same derivation as before leads to

dz

dt
= Zz where Z = Z2n×2n =





A −BR−1BH

−l−2Q
︸ ︷︷ ︸

→0

−AH





Z becomes block triangular. The direct and adjoint equations are

∂x

∂t
= Ax + Bu, u = −R−1BHp,

∂p

∂t
= −AHp + 0
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Minimal-energy control feedback

The eigenvalues of this system is given by the union of the
eigenvalues of A and the eigenvalues of −AH .

ℜ(λκ)

ℑ(λκ)

−0.1

−0.1

−0.2

−0.2

−0.3

−0.3

−0.4

−0.4

−0.5

−0.5

−0.6

−0.7

−0.8

−0.9
0.30.20.10

The eigenvalues of (+) the discretized open-loop system, and (o)
the closed-loop system A + BK after minimal-energy control is
applied.
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Minimal-energy control feedback

Here we know the eigenvalues and only need to compute

X = V21V
−1
11

It can be shown that X is only function of V21. K is finally given
as a function of the unstable eigenvalues and corresponding
left eigenvectors.

K = −BHTuF
−1T H

u

where F has elements

fij = cij/(λi + λ∗

j )

and
C = T H

u BBHTu

Tu is the matrix containing unstable left eigenvectors
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Numerical procedure

All equations are discretized using second-order
finite-differences over a staggered, stretched, Cartesian mesh.

An immersed-boundary technique is used to enforce the
boundary conditions on the cylinder.

The nonlinear mean-flow equations, along with their boundary
conditions, are solved by a Newton-Raphson procedure.

The linear and nonlinear evolution equations are solved using
Adams-Bashforth/Crank-Nicholson.

The eigenvalue problems are solved using an Inverse Iteration
algorithm

Discrete adjoint equations (accurate to machine precision).
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Application

The linear feedback matrix K which suppresses vortex shedding
from a circular cylinder has been computed using:
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The linear feedback matrix K which suppresses vortex shedding
from a circular cylinder has been computed using:
Full state information, Actuator: angular oscillation, Re = UD/ν
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Application

The linear feedback matrix K which suppresses vortex shedding
from a circular cylinder has been computed using:
Full state information, Actuator: angular oscillation, Re = UD/ν
Dimension of control u is m = 1
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The feedback matrix K (u = Kx)

Re = 55

Re = 75

Re = 100

Re = 150

Ku Kv
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Results: linearized N-S equations

The temporal evolution of the frequency and growth rate is
compared with the eigenvalue λ

The Strouhal number: St = fD/U compared to St = λr/2π

The growth rate: σ = d
dt

log(u(t)) compared to λi

Test case: Re = 55, control is turned on at t = 18
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Control of vortex shedding: Re = 55

WithControl


vort_Re55_ctl_fx_point.mp4
Media File (video/mp4)
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Control of vortex shedding: Re = 55

WithControl


vort_Re55_ctl_fy_point.mp4
Media File (video/mp4)
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Stationary vs. mean flow

St for limit cycle coincide with
mean-flow eigenfrequency
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Ku stationary vs. mean

Re = 55

Re = 75

Re = 100

Re = 150

Ku stationary Ku mean
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Kv stationary vs. mean

Re = 55

Re = 75

Re = 100

Re = 150

Kv stationary Kv mean
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Control of vortex shedding: stationary vs. mean

Re = 55
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Riccati-less optimal control

The aim is to compute the solution for K , which is independent of
x0 and time invariant. This can be solved using an iterative
procedure to “try” different x0 (computationally expensive).
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Riccati-less optimal control

The aim is to compute the solution for K , which is independent of
x0 and time invariant. This can be solved using an iterative
procedure to “try” different x0 (computationally expensive).

ALTERNATIVELY

For a converged solution at t = 0 we can write

u = Kx0 = −
1

l2
R−1BHp0.

This is a linear relation between the input x0 and output u.

u = −
1
l2

R−1BHp0x0 Direct-Adjoint

The input has a large dimension and the output a small dimension.
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Riccati-less optimal control

Such a problem is efficiently solved using the adjoint equations.

The adjoint input has a small dimension and the output a large
dimension.

u+
0K

Adjoint of

Direct-Adjoint

K is obtained from the solution of the adjoint of
the direct-adjoint system.
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Adjoint of the Direct-Adjoint system

Introduce the adjoint variables x+ and p+ and multiply with the
direct-adjoint equations, then integrate in time from t = 0 to
t = T . Obs! here we consider that u has dimension m = 1.

∫ T

0

x+H

(
∂x

∂t
− Ax +

1

l2
BR−1BHp

)

dt+

∫ T

0

p+H

(
∂p

∂t
+ AHp + Qx

)

dt = 0.
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Adjoint of the Direct-Adjoint system

Using integration by parts, and considering that both R and Q are
symmetric, we obtain

−

∫ T

0

pH

(
∂p+

∂t
− Ap+

−
1

l2
BR−1BHx+

)

dt−

∫ T

0

xH

(
∂x+

∂t
+ AHx+

− Qp+

)

dt

+
[
pH p+

]T

0
+

[
xH x+

]T

0
= 0.
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Using integration by parts, and considering that both R and Q are
symmetric, we obtain

−

∫ T

0

pH







∂p+

∂t
− Ap+

−
1

l2
BR−1BHx+

︸ ︷︷ ︸

=0







dt−

∫ T

0

xH







∂x+

∂t
+ AHx+

− Qp+

︸ ︷︷ ︸
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

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dt
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Adjoint of the Direct-Adjoint system

Using integration by parts, and considering that both R and Q are
symmetric, we obtain

−

∫ T

0

pH







∂p+

∂t
− Ap+

−
1

l2
BR−1BHx+

︸ ︷︷ ︸

=0







dt−

∫ T

0

xH







∂x+

∂t
+ AHx+

− Qp+

︸ ︷︷ ︸

=0







dt

+
[
pH p+

]T

0
+

[
xH x+

]T

0
= 0.

If we now define the new adjoint equations as

∂p+

∂t
= Ap+ +

1

l2
BR−1BHx+,

∂x+

∂t
= −AHx+ + Qp+,
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Adjoint of the Direct-Adjoint system

with x+(t = T ) = 0 and p(t = T ) = 0, the remaining terms are

x+H(0)x(0) + p+H(0)p(0) = 0.

Recall that the original linear relation was

Kx0 = −
1

l2
R−1BHp0
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Adjoint of the Direct-Adjoint system

with x+(t = T ) = 0 and p(t = T ) = 0, the remaining terms are

x+H(0)x(0) + p+H(0)p(0) = 0.

Recall that the original linear relation was

Kx0 = −
1

l2
R−1BHp0

Choosing p+H(t = 0) as one row of − 1
l2

R−1BH (m = 1)

we can identify one row of K as x+H(0). (m = 1)
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Riccati-less optimal control: solution procedure

If we let x+ → −p and p+ → x we easily obtain the original
(Direct-Adjoint) system. (self-adjoint)

Finally: solve the original linear system with new b.c.

∂x

∂t
= Ax −

1

l2
BR−1BHp on 0 < t < T , xH(0) is one row of

1

l2
R−1BH,

∂p

∂t
= −AHp − Qx on 0 < t < T , with p(T ) = 0.

One row of K is then given by −pH(0) (since x+ = −p).
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Riccati-less optimal control: solution procedure

If we let x+ → −p and p+ → x we easily obtain the original
(Direct-Adjoint) system. (self-adjoint)

Finally: solve the original linear system with new b.c.

∂x

∂t
= Ax −

1

l2
BR−1BHp on 0 < t < T , xH(0) is one row of

1

l2
R−1BH,

∂p

∂t
= −AHp − Qx on 0 < t < T , with p(T ) = 0.

One row of K is then given by −pH(0) (since x+ = −p).

IMPORTANT

Avoid solving Xn×n solve original system xn×1 m times
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Results: K for Re = 55

Ku, l2 = 1

Ku, l2 → ∞

Kv , l2 = 1

Ku, l2 → ∞
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Control of vortex shedding

In the temporal evolution of the lift (CL) and control u:

CL and u tend to zero as the control is applied

Control u strengthens as l2 decrease

Test case: Re = 55, control is turned on at t = 0
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Control of vortex shedding

In the temporal evolution of drag (CD) coefficient:

As the control is applied CD tends to the constant value
corresponding to the steady state solution

The control acts more quickly as l2 is decreased

Test case: Re = 55, control is turned on at t = 0
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equivalent of solving the original system with particular initial
condition.
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Summary and Conclusions

Two exact methods to enable solving optimal control for
complex flows, Xn×n for ex. cylinder flow ≈ 109 − 1011 d.o.f.

Min-energy control feedback: In the limit l2 → ∞, it has been
shown that K depends only on unstable eigenvalues and
corresponding left eigevectors

Riccati-less optimal control: The feedback matrix K for the
general problem (any value of l2), can be obtained from the
solution of Adjoint of the Direct-Adjoint system. This is
equivalent of solving the original system with particular initial
condition.

The methods have been applied to control vortex shedding
behind a cylinder.
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EXTRA SLIDES
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Background: control using rotational oscillation

Aim: reduce CD

Exp. Tokumaru & Dimotakis (1991), -20%, Re = 15000
Feedback control:

Exp. Fujisawa & Nakabayashi (2002) -16% (-70% CL), Re = 20000
Exp. Fujisawa et al.(2001) “reduction”, Re = 6700

Optimal control (using adjoints):
Num. He et al.(2000) -30 to -60% for Re = 200 − 1000
Num. Protas & Styczek (2002) -7% at Re = 75, -15% at Re = 150
Bergmann et al.(2005) -25% at Re = 200 (POD)

Aim: reduce vortex shedding
Feedback control:

Num. Protas (2004) reduction, “point vortex model”, Re = 75
Optimal control (using adjoints):

Num. Homescu et al.(2002) reduction, Re = 60 − 1000
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Minimal-energy control feedback

Denoting:

xi and λi the i-th right eigenvector and eigenvalue of A,

yi and −λi∗ the i-th right eigenvector and eigenvalue of −AH ,

yi∗ is left eigenvector of A,

we see that the stable eigenvectors of

∂x

∂t
= Ax + Bu, u = −R−1BHp,

∂p

∂t
= −AHp

are of two possible types:

p = 0, x = xi if ℜ(λi ) < 0 (stable)
p = yi , x = (λi∗ + A)−1BR−1BHyi if ℜ(λi ) > 0 (unstable)
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We now project an arbitrary initial condition x0 onto these modes,

x0 =
∑

stable

djx
j +

∑

unstable

fj(λ
j∗ + A)−1BR−1BHyj (4)

and note that in order to reconstruct p we only need the fj ’s,
because the stable modes have p = 0. The coefficients dj can be
eliminated from (4) by projecting the left eigenvectors:

yi∗x0 = yi∗
∑

unstable

fj(λ
j∗ + A)−1BR−1BHyj =

∑

unstable

cij fj

where, since yi∗ is also a left eigenvector of (λj∗ + A)−1,

cij =
yi∗BR−1BHyj

λi + λj∗

Only the unstable eigenvalues and left eigenvectors are needed.



Introduction Motivation Min-energy control feedback Riccati-less optimal control Conclusions

The main theorem

Summarizing, the solution of the minimal-energy stabilizing control
feedback problem can be written in terms of the unstable left
eigenvectors only.

Theorem 1. Consider a stabilizable system ẋ = Ax + Bu with no
pure imaginary open-loop eigenvalues. Determine the unstable
eigenvalues and corresponding left eigenvectors of A such that
TH

u A = ΛuT
H
u (equivalently, determine the unstable eigenvalues

and corresponding right eigenvectors of AH such that
AHTu = TuΛ

H
u ). Define B̄u = TH

u B and C = B̄uB̄
H
u , and compute

a matrix F with elements fij = cij/(λi + λ∗

j ). The minimal-energy
stabilizing feedback controller is then given by u = Kx, where
K = −B̄H

u F−1TH
u .
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