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Motivation and outline

@ Classical optimal-control theory requires the solution of a
matrix Riccati equation, intractable for large fluid problems.
@ As an alternative to model reduction, for the last few years we
have been developing Riccati-less solutions:
@ Minimal-control-energy (MCE) stabilization: only requires
knowledge of the direct and adjoint unstable modes.
o Adjoint of the direct-adjoint (ADA): only requires iterations of
the direct and adjoint problem.
@ Both have been successful on the cylinder wake (only one
complex conjugate pair of unstable eigenvalues).

@ As a problem with more than one unstable eigenvalue, we are
now applying these techniques to the wake of a thin airfoil.




Optimal control

The standard, linear, optimal control problem

@ Full state information is assumed;

@ a dual estimation problem can always be solved separately.

The classical full-state-information control problem is formulated
as follows: to find the control u that minimizes the cost function

1 T
J= / [x"Qx + [*u"Ru] dt,
2 Jo
where [ is a penalty on the control energy, and the state x and the

control u are related via the state equation

g)::Ax+Bu on 0<t<T, with x=x9 at t=0.

The solution depends on: xg, T, @, R and /.




Optimal control

Optimization

The adjoint variable p is introduced as a Lagrange multiplier. The
augmented cost function is written

Tl H 2 H Hax
J= ~[x"@x + [“u"Ru] — p"[== — Ax — Bu] dt.
0 2 ot

Integration by parts and §J = 0 give

T B, 8[)
0= /0 su”[Bp + /ﬁl/l] + 6x”[a + A'p + Qx] dt + [6x"pld,
—0 S———

=0
adjoint equations
0 .
8—‘; = —Afp— Qx, with p(t=T)=0,

and optimality condition

1
u=-—5R 1.



Optimal control

Two-point boundary value problem

The direct and adjoint equations can be combined in a block
matrix form

_2pp-1pH
=Zz where Z = Zyxon= [ _AQ / _BEH . (1)

;- X and x=xy at t=0,
lp |’ p=0 at t=T.

(Z has a Hamiltonian symmetry, such that eigenvalues appear in
pairs of equal imaginary and opposite real part.)

dz
dt

This linear ODE is a two-point boundary value problem and may
be solved using a linear relationship between the state vector x(t)
and adjoint vector p(t) vi a matrix X(T) such that p = Xx, and
inserting this solution ansatz into (1) to eliminate p.




Optimal control

The Riccati equation

It follows that matrix X obeys the differential Riccati equation

dX
= ARX £ XA-XI72BR7IBFX+Q with X(T)=0. (2)
Once X is known, the optimal value of u may then be written in

the form of a feedback control rule such that

u=Kx where K= /2R 1BHx,

Finally, if the system is time invariant (LTI) and we take the limit
that T — oo, the matrix X in (2) may be marched to steady state.
This steady state solution for X satisfies the continuous-time
algebraic Riccati equation

0=A"X+ XA - XI?BR!B"X + Q,

where additionally X is constrained such that A+ BK is stable.



Optimal control

The classical way of solution

A linear time-invariant system (LTI) can be solved using its
eigenvectors. Assume that an eigenvector decomposition of the
2n x 2n matrix Z is available such that

_ V11 \/12 ] |: X :|
Z=VAV! where V= and z=
c [ Vor Voo p

and the eigenvalues of Z appearing in the diagonal matrix A are
enumerated in order of increasing real part. Since

z = Vet V~lz,

the solutions z that obey the boundary conditions at t — oo are
spanned by the first n columns of V. The direct (x) and adjoint
(p) parts of the these columns are related as p = Xx, where

[P1, P2, Pl = X[x1, X2, -, %] — X = Vo Vi,



Min-energy control:

Minimal-control-energy stabilization

In the limit that /2 — oo we consider
T
J= / f[/_zx"'Qx + u”Ru]
0 2

With this defintion the same derivation as before leads to

A —BR1BH
dz -2 H
— =7z where Z="/opxon=| —1"°Q —A
dt ——

-0

Z becomes block triangular. The direct and adjoint equations are

%:AXJFBU, u=—R1Bp,

)

ot —Alp+-0




Min-energy control:

Minimal-control-energy stabilization

The eigenvalue spectrum of this system is given by the union of
the eigenvalues of A and the eigenvalues of —A".

-0.5 —-04 -03 —-0.2 -0.1 0 0.1 0.2 0.3

R(Ax)

The eigenvalues of (+) the discretized open-loop system, and (o)
the closed-loop system A + BK after minimal-energy control is
applied.




Min-energy control:

Minimal-control-energy feedback

Denoting:
@ x' and A’ the i-th right eigenvector and eigenvalue of A,
@ y' and —\* the i-th right eigenvector and eigenvalue of —A”,
@ y™* is left eigenvector of A,

we see that the stable eigenvectors of

ox _ op
ot X+ B, “ P ot P

are of two possible types:

p=0,x=x if R(\) <0 (stable)
p=y, x=(\*+A)1BR By if R(N)>0 (unstable)




Min-energy control:

We now project an arbitrary initial condition xg onto these modes,
=Y d¥+ D KW +A)TIBRTIBAY  (3)
stable unstable

and note that in order to reconstruct p we only need the f;’s,
because the stable modes have p = 0. The coefficients d; can be
eliminated from (3) by projecting the left eigenvectors:

yi*xo — yi* Z E(AJ* + A)leRleHyj — Z C,Jf;
unstable unstable

where, since y'* is also a left eigenvector of (M* + A)~!

o yi*BR—lBHyj
u Y + M*

Only the unstable eigenvalues and left eigenvectors are needed.



cylinder wake

Application to the cylinder wake

The linear feedback matrix K which suppresses vortex shedding
from a circular cylinder has been computed using:

Full state information, Actuator: angular oscillation, Re = UD /v
Dimension of control uis m=1
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vort_Re55_periodic.avi
Media File (video/avi)


cylinder wake

The feedback matrix K (u = Kx)

@ Re =55
@ Re=175
@ Re =100

® Re =150




cylinder wake

Results: linearized N-S equations

St

The temporal evolution of the frequency and growth rate is
compared with the eigenvalue A

@ The Strouhal number: St = fD/U compared to St = A, /27
@ The growth rate: o = 2 log(u(t)) compared to \;

Test case: Re = b5, control is turned on at t = 18
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cylinder wake

Control of nonlinear vortex shedding: Re = 55

WithControl
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cylinder wake

Control of nonlinear vortex shedding: Re = 55

WithControl
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Adjoint of the direct-adjoint:

Adjoint of the direct-adjoint

The aim is to compute the solution for K, which is independent of
Xp and time invariant. This can be solved using an iterative
procedure to “try" different xo (computationally expensive).




Adjoint of the direct-adjoint:

Adjoint of the direct-adjoint

The aim is to compute the solution for K, which is independent of
Xp and time invariant. This can be solved using an iterative
procedure to “try" different xo (computationally expensive).

ALTERNATIVELY

For a converged solution at t = 0 we can write

1

7R~ B"po.

u= Kxg =




Adjoint of the direct-adjoint:

Adjoint of the direct-adjoint

The aim is to compute the solution for K, which is independent of
Xp and time invariant. This can be solved using an iterative
procedure to “try" different xo (computationally expensive).

ALTERNATIVELY

For a converged solution at t = 0 we can write

1

u = Kxo = —7R7B"po.

This is a linear relation between the input xg and output u.

—_—

xo — | Direct-Adjoint |— u= —,%R_IBHpo

—_—

The input has a large dimension and the output a small dimensio



Adjoint of the direct-adjoint:

Adjoint of the direct-adjoint

Such a problem is efficiently solved using the adjoint equations.

The adjoint input has a small dimension and the output a large
dimension.

Adjoint of
= | Direct-Adjoint

+

-— Uy

K is obtained from the solution of the adjoint of
the direct-adjoint system.




Adjoint of the direct-adjoint:

Adjoint of the Direct-Adjoint system

Introduce the adjoint variables x™ and p* and multiply with the
direct-adjoint equations, then integrate in time from t = 0 to
t = T. Here we consider that u has dimension m = 1.

T T
ox 1 op
(= _ Ax+ = BR™!BY / HHZE A —0.
/Ox (at X+ 5 p)dt—I—op 8t+ p+Q@x|dt=0




Adjoint of the direct-adjoint:

Adjoint of the Direct-Adjoint system

Using integration by parts, and considering that both R and Q are
symmetric, we obtain

op +_ 1gH+ / ox* Hoy +
/Op<at — Ap lzBR BFx* | dt— 0 o TAXT—Qp" ) dt

+[ppt]y + [x]g =0.

If we now define the new adjoint equations as




Adjoint of the direct-adjoint:

Adjoint of the Direct-Adjoint system

Using integration by parts, and considering that both R and Q are
symmetric, we obtain

T 1 T Oxt
—/ p" | =— — Ap™ — = BR!B"x* dt—/ x| =+ AT —Qp" | dt
0 2 0 ot

=0 =0

+[pp']y + [x]g =0.

If we now define the new adjoint equations as

op* 1
= Ap" BR™'B"xT,
ot JrI
Ox*
— _AH + +
B X"+ QpT,




Adjoint of the direct-adjoint:

Adjoint of the Direct-Adjoint system

with xT(t = T) = 0 and p(t = T) = 0, the remaining terms are
x*1(0)x(0) + p**(0)p(0) = 0.
Recall that the original linear relation was

1

Kxo = B R~*B"pg




Adjoint of the direct-adjoint:

Adjoint of the Direct-Adjoint system

with xT(t = T) = 0 and p(t = T) = 0, the remaining terms are
x*1(0)x(0) + p**(0)p(0) = 0.
Recall that the original linear relation was

1

Kxo = B R~*B"pg

@ Choosing p™(t = 0) as one row of —/%R_lB” (m=1)

@ we can identify one row of K as x*"(0). (m=1)




Adjoint of the direct-adjoint:

Solution procedure

If we let x© — —p and p™ — x we easily obtain the original
(Direct-Adjoint) system. (self-adjoint)

Finally: solve the original linear system with new b.c.

1 1

% — Ax — EBR_IBHP on 0<t<T, x"(0) isonerow of /—2R_IBH,
op H i

o= AP—Qx on 0<t<T, with p(T)=0.

One row of K is then given by —p"(0) (since xt = —p).




Adjoint of the direct-adjoint:

Solution procedure

If we let x© — —p and p™ — x we easily obtain the original
(Direct-Adjoint) system. (self-adjoint)

Finally: solve the original linear system with new b.c.

% = Ax — /%BR‘lBHp on 0<t<T, x"(0) isonerowof /%R‘lBH,
%:—A”p—()x on 0<t< T, with p(T)=0.
One row of K is then given by —p"(0) (since xt = —p).
ADVANTAGE
Avoid solving for X« p; solve original system x,x1 m

times




cylinder wake

Results: K for
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cylinder wake

Control of vortex shedding

In the temporal evolution of the lift (C;) and control u:
@ (; and u tend to zero as the control is applied

@ Control u strengthens as /> decreases

Test case: Re = 55, control is turned on at t =0
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cylinder wake

Control of vortex shedding

In the temporal evolution of drag (Cp) coefficient:

@ As the control is applied Cp tends to the constant value
corresponding to the steady state solution

@ The control acts more quickly as /2 is decreased

Test case: Re = 55, control is turned on at t =0
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Airfoil wake

Vortex shedding past a low-Reynolds-number airfoil

At sufficiently low Re the flow around an airfoil is 2D, laminar and
without separation. In these conditions and above a critical value of Re
the wake oscillates at a recognizable frequency: e.g., McAlister & Carr
(1978), Res; = 145 (Re. = 21000), St ~ 0.43.

McAlister & Carr (1978)




Airfoil wake

Schematization

In such flow conditions it is reasonable to assume that the flow at the
trailing edge is approximately given by a double Falkner-Skan profile®.
Depending on the F-S profile and the Re number the flow on the entire
airfoil might also be sub-critical with respect to convective disturbances.

pressurized to
one at

McAlister & Carr (1978)

'Woodley & Peake, J. Fluid Mech. (1997)



Airfoil wake

Related investigations

Flow condition: 2D, laminar flow, no separation

Experiments
@ Airfoil Re. = 21000: McAlister & Carr (1978)
@ Flat plate Taneda (1958)

Numerical (trailing edge profile given by double Falkner-Skan profile)
@ Linear local Woodley & Peake (1997), Taylor & Peake (1999).
@ Nonlinear Pier & Peake (2008, 2009).




Airfoil wake

Problem formulation

@ 2D, incompressible flow
@ Semi-infinite flow domain downstream of the trailing edge

@ At trailing edge: double Falkner-Skan profile with pressure
gradient? —0.09 < m <0

] Re(; = UOO5/Z/
@ Length scale § = (vx/Us)>

2y, =Cx™



Airfoil wake

Problem formulation

o

2D, incompressible flow

Semi-infinite flow domain downstream of the trailing edge

At trailing edge: double Falkner-Skan profile with pressure
gradient? —0.09 < m <0

Res = U,.0/v
Length scale § = (vx/Us)%>

(]

(]

Is it sufficient to use the trailing edge as inlet of the
computational domain ?
This was the assumption in Woodley & Peake (1997), Taylor & Peake
(1999), Pier & Peake (2008, 2009), and many similar examples...

2y, =Cx™




Airfoil wake

Trailing edge

@ Local stability analysis show that the Falkner-Skan profile at
the trailing edge is already absolutely unstable.
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Here: Maximum value at trailing edge for m = —0.09, Re = 2000




Airfoil wake

Trailing edge

@ Local stability analysis show that the Falkner-Skan profile at
the trailing edge is already absolutely unstable.

@ Solution here: add small plate (L,) of infinitesimal thickness
upstream of trailing edge.

y




Airfoil wake

Domain size

Grid and domain convergence tests have been made comparing
results of the unstable global modes. Here computations are
performed using L, > 400 and L, > 30.

An example of the dependence on L, is given below for Re; = 200.

Res =200, m= —0.09, L, =432, L, =32, L, =50

Yy
0.03 T T T T T T T
; ; ; ; P lp=0 ®
0.02 |l Ly =160 O .
. : : : : : L,=32 o
o S . m B .
0.01 . - QI e G. ; a. 6. .
® : : : : : :
001
-0.02 1 1 1 1 1 1 1
0.1 012 0.14 0.16 0.18 0.2 0.22 0.24

O



Airfoil wake

Mean flow on upstream plate

The assumption is to have a similarity solution at x = 0. However,
here the similarity solution is given at x = —L,. How does the

mean flow change on the added flat plate 7 An example is given for
the mean flow used in the previously shown eigenvalue calculation.

15
10

X = —L”

13
~x =0 (Lp, =16)
x =0 (Lp = 32)




Airfoil wake

Eigenvalue spectrum

The eigenvalues appear as complex conjugate pairs for a given Re
and m.

The number of unstable modes increases as one goes above the
critical Reynolds number.

Res = 200, m = —0.09
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Airfoil wake

Critical Reynolds number

The critical Reynolds number as a function of the pressure gradient
is found by plotting the growth rate of the least stable mode as a
function of Re and m.
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Airfoil wake

Airfoil wake vortex shedding

AirFoll
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Airfoil wake

Eigenvalue spectrum, Re = 120 m = —0.09

1 unstable mode
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Airfoil wake

Eigenvalue spectrum, Re = 140 m = —0.09

6 unstable modes
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Airfoil wake

Minimal-control-energy stabilization

The linear feedback matrix K which suppresses vortex shedding
modes in an airfoil's wake has been computed using:
Full state information, Re = Ud /v

Actuator: unsteady circulation (velocity difference)

An angular oscillation of the whole airfoil, or of a flap, produces an
instantaneous change of circulation in the potential flow. In the
boundary layer and wake, this appears as a difference between the
upper and lower streamwise outer velocities. This difference is used
as the control parameter in our simulation.

Dimension of controluis m=1

NoControl
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Airfoil wake

Control kernel K: Re =120, m = —0.09
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Airfoil wake

Re = 120, m = —0.09, 1 unstable mode pair
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Airfoil wake

Re = 140, m = —0.09, 6 unstable mode pairs
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Airfoil wake

Re = 178, m = —0.05, 1 unstable mode pair
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Airfoil wake

Re = 190, m = —0.05, 7 unstable mode pairs
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Airfoil wake

Re = 220, m = 0, 5 unstable mode pairs
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Conclusions

Conclusions: Riccati-less control

@ Two exact methods have been developed to solve
large-dimensional optimal-control problems:

@ MCE: minimal-control-energy stabilization: In the limit
12 — 0o, K can be determined from the unstable eigenvalues
and corresponding left eigevectors only

@ ADA: adjoint of the direct-adjoint: The feedback matrix K for
the general problem (any value of /?) can be obtained from
the iterative solution of the Adjoint of the Direct-Adjoint
system. This is equivalent to solving the original system with
appropriate initial condition.

@ Both methods have been successfully tested to control vortex
shedding behind a cylinder.




Conclusions

Conclusions: low-Reynolds-number airfoil wake

@ The phenomenon looks qualitatively similar to vortex shedding
behind a cylinder. However,

@ a local absolute instability already exists at the trailing edge:
inclusion of a tract of the upstream flow region is essential;

@ the system easily presents more than one unstable mode.

@ Work is still required to arrive at a conclusion regarding the
effectiveness of control.

@ Of the present tests, one with 6 unstable modes offers the
most promising results.
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Conclusions

Influence of domain size

Re =250, m = —0.09
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Conclusions

References: cylinder control using rotational
oscillation

Aim: reduce Cp
Exp. Tokumaru & Dimotakis (1991), -20%, Re = 15000

Feedback control:
Exp. Fujisawa & Nakabayashi (2002) -16% (-70% C.), Re = 20000
Exp. Fujisawa et al.(2001) “reduction”, Re = 6700
Optimal control (using adjoints):
Num. He et al.(2000) -30 to -60% for Re = 200 — 1000
Num. Protas & Styczek (2002) -7% at Re = 75, -15% at Re = 150
Bergmann et al.(2005) -25% at Re = 200 (POD)

Aim: reduce vortex shedding
Feedback control:
Num. Protas (2004) reduction, “point vortex model”, Re = 75
Optimal control (using adjoints):
Num. Homescu et al.(2002) reduction, Re = 60 — 1000
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