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Motivation and outline

Classical optimal-control theory requires the solution of a
matrix Riccati equation, intractable for large fluid problems.

As an alternative to model reduction, for the last few years we
have been developing Riccati-less solutions:

Minimal-control-energy (MCE) stabilization: only requires
knowledge of the direct and adjoint unstable modes.
Adjoint of the direct-adjoint (ADA): only requires iterations of
the direct and adjoint problem.

Both have been successful on the cylinder wake (only one
complex conjugate pair of unstable eigenvalues).

As a problem with more than one unstable eigenvalue, we are
now applying these techniques to the wake of a thin airfoil.
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The standard, linear, optimal control problem

Full state information is assumed;

a dual estimation problem can always be solved separately.

The classical full-state-information control problem is formulated
as follows: to find the control u that minimizes the cost function

J =
1

2

∫ T

0
[xHQx + l2uHRu] dt,

where l is a penalty on the control energy, and the state x and the
control u are related via the state equation

∂x

∂t
= Ax + Bu on 0 < t < T , with x = x0 at t = 0.

The solution depends on: x0, T , Q, R and l .
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Optimization

The adjoint variable p is introduced as a Lagrange multiplier. The
augmented cost function is written

J =

∫ T

0

1

2
[xHQx + l2uHRu] − pH[

∂x

∂t
− Ax − Bu] dt.

Integration by parts and δJ = 0 give

0 =

∫ T

0
δuH[Bp + l2Ru

︸ ︷︷ ︸

=0

] + δxH[
∂p

∂t
+ AHp + Qx

︸ ︷︷ ︸

=0

] dt + [δxHp]T0 ,

adjoint equations

∂p

∂t
= −AHp − Qx, with p(t = T ) = 0,

and optimality condition

u = −
1

l2
R−1BHp.
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Two-point boundary value problem

The direct and adjoint equations can be combined in a block
matrix form

dz

dt
= Zz where Z = Z2n×2n =

[
A −l−2BR−1BH

−Q −AH

]

(1)

z =

[
x
p

]

, and

{
x = x0 at t = 0,
p = 0 at t = T .

(Z has a Hamiltonian symmetry, such that eigenvalues appear in
pairs of equal imaginary and opposite real part.)

This linear ODE is a two-point boundary value problem and may
be solved using a linear relationship between the state vector x(t)
and adjoint vector p(t) vi a matrix X (T ) such that p = Xx, and
inserting this solution ansatz into (1) to eliminate p.
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The Riccati equation

It follows that matrix X obeys the differential Riccati equation

−
dX

dt
= AHX +XA−Xl−2BR−1BHX +Q with X (T ) = 0. (2)

Once X is known, the optimal value of u may then be written in
the form of a feedback control rule such that

u = Kx where K = −l−2R−1BHX .

Finally, if the system is time invariant (LTI) and we take the limit
that T → ∞, the matrix X in (2) may be marched to steady state.
This steady state solution for X satisfies the continuous-time
algebraic Riccati equation

0 = AHX + XA − Xl−2BR−1BHX + Q,

where additionally X is constrained such that A + BK is stable.
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The classical way of solution

A linear time-invariant system (LTI) can be solved using its
eigenvectors. Assume that an eigenvector decomposition of the
2n × 2n matrix Z is available such that

Z = VΛcV
−1 where V =

[
V11 V12

V21 V22

]

and z =

[
x
p

]

and the eigenvalues of Z appearing in the diagonal matrix Λc are
enumerated in order of increasing real part. Since

z = VeΛc tV−1z0

the solutions z that obey the boundary conditions at t → ∞ are
spanned by the first n columns of V . The direct (x) and adjoint
(p) parts of the these columns are related as p = Xx, where

[p1, p2, · · · ,pn] = X [x1, x2, · · · , xn] → X = V21V
−1
11
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Minimal-control-energy stabilization

In the limit that l2 → ∞ we consider

J =

∫ T

0

1

2
[l−2xHQx + uHRu]

With this defintion the same derivation as before leads to

dz

dt
= Zz where Z = Z2n×2n =





A −BR−1BH

−l−2Q
︸ ︷︷ ︸

→0

−AH





Z becomes block triangular. The direct and adjoint equations are

∂x

∂t
= Ax + Bu, u = −R−1BHp,

∂p

∂t
= −AHp + 0
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Minimal-control-energy stabilization

The eigenvalue spectrum of this system is given by the union of
the eigenvalues of A and the eigenvalues of −AH .
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Minimal-control-energy feedback

Denoting:

xi and λi the i-th right eigenvector and eigenvalue of A,

yi and −λi∗ the i-th right eigenvector and eigenvalue of −AH ,

yi∗ is left eigenvector of A,

we see that the stable eigenvectors of

∂x

∂t
= Ax + Bu, u = −R−1BHp,

∂p

∂t
= −AHp

are of two possible types:

p = 0, x = xi if ℜ(λi ) < 0 (stable)
p = yi , x = (λi∗ + A)−1BR−1BHyi if ℜ(λi ) > 0 (unstable)
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We now project an arbitrary initial condition x0 onto these modes,

x0 =
∑

stable

djx
j +

∑

unstable

fj(λ
j∗ + A)−1BR−1BHyj (3)

and note that in order to reconstruct p we only need the fj ’s,
because the stable modes have p = 0. The coefficients dj can be
eliminated from (3) by projecting the left eigenvectors:

yi∗x0 = yi∗
∑

unstable

fj(λ
j∗ + A)−1BR−1BHyj =

∑

unstable

cij fj

where, since yi∗ is also a left eigenvector of (λj∗ + A)−1,

cij =
yi∗BR−1BHyj

λi + λj∗

Only the unstable eigenvalues and left eigenvectors are needed.
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Application to the cylinder wake

The linear feedback matrix K which suppresses vortex shedding
from a circular cylinder has been computed using:
Full state information, Actuator: angular oscillation, Re = UD/ν
Dimension of control u is m = 1
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The feedback matrix K (u = Kx)

Re = 55

Re = 75

Re = 100

Re = 150

Ku Kv
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Results: linearized N-S equations

The temporal evolution of the frequency and growth rate is
compared with the eigenvalue λ

The Strouhal number: St = fD/U compared to St = λr/2π

The growth rate: σ = d
dt

log(u(t)) compared to λi

Test case: Re = 55, control is turned on at t = 18
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Control of nonlinear vortex shedding: Re = 55

WithControl
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Control of nonlinear vortex shedding: Re = 55

WithControl
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Adjoint of the direct-adjoint

The aim is to compute the solution for K , which is independent of
x0 and time invariant. This can be solved using an iterative
procedure to “try” different x0 (computationally expensive).
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Adjoint of the direct-adjoint

The aim is to compute the solution for K , which is independent of
x0 and time invariant. This can be solved using an iterative
procedure to “try” different x0 (computationally expensive).

ALTERNATIVELY

For a converged solution at t = 0 we can write

u = Kx0 = −
1

l2
R−1BHp0.
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Adjoint of the direct-adjoint

The aim is to compute the solution for K , which is independent of
x0 and time invariant. This can be solved using an iterative
procedure to “try” different x0 (computationally expensive).

ALTERNATIVELY

For a converged solution at t = 0 we can write

u = Kx0 = −
1

l2
R−1BHp0.

This is a linear relation between the input x0 and output u.

u = − 1
l2

R−1BHp0x0 Direct-Adjoint

The input has a large dimension and the output a small dimension.
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Adjoint of the direct-adjoint

Such a problem is efficiently solved using the adjoint equations.

The adjoint input has a small dimension and the output a large
dimension.

u+
0K

Adjoint of

Direct-Adjoint

K is obtained from the solution of the adjoint of
the direct-adjoint system.
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Adjoint of the Direct-Adjoint system

Introduce the adjoint variables x+ and p+ and multiply with the
direct-adjoint equations, then integrate in time from t = 0 to
t = T . Here we consider that u has dimension m = 1.

∫ T

0

x+H

(
∂x

∂t
− Ax +

1

l2
BR−1BHp

)

dt+

∫ T

0

p+H

(
∂p

∂t
+ AHp + Qx

)

dt = 0.
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Adjoint of the Direct-Adjoint system

Using integration by parts, and considering that both R and Q are
symmetric, we obtain

−

∫ T

0

pH

(
∂p+

∂t
− Ap+ −

1

l2
BR−1BHx+

)

dt−

∫ T

0

xH

(
∂x+

∂t
+ AHx+ − Qp+

)

dt

+
[
pH p+

]T

0
+

[
xH x+

]T

0
= 0.

If we now define the new adjoint equations as
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Adjoint of the Direct-Adjoint system

Using integration by parts, and considering that both R and Q are
symmetric, we obtain

−

∫ T

0

pH







∂p+

∂t
− Ap+ −

1

l2
BR−1BHx+

︸ ︷︷ ︸

=0







dt−

∫ T

0

xH







∂x+

∂t
+ AHx+ − Qp+

︸ ︷︷ ︸

=0







dt

+
[
pH p+

]T

0
+

[
xH x+

]T

0
= 0.

If we now define the new adjoint equations as

∂p+

∂t
= Ap+ +

1

l2
BR−1BHx+,

∂x+

∂t
= −AHx+ + Qp+,
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Adjoint of the Direct-Adjoint system

with x+(t = T ) = 0 and p(t = T ) = 0, the remaining terms are

x+H(0)x(0) + p+H(0)p(0) = 0.

Recall that the original linear relation was

Kx0 = −
1

l2
R−1BHp0
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Adjoint of the Direct-Adjoint system

with x+(t = T ) = 0 and p(t = T ) = 0, the remaining terms are

x+H(0)x(0) + p+H(0)p(0) = 0.

Recall that the original linear relation was

Kx0 = −
1

l2
R−1BHp0

Choosing p+H(t = 0) as one row of − 1
l2

R−1BH (m = 1)

we can identify one row of K as x+H(0). (m = 1)
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Solution procedure

If we let x+ → −p and p+ → x we easily obtain the original
(Direct-Adjoint) system. (self-adjoint)

Finally: solve the original linear system with new b.c.

∂x

∂t
= Ax −

1

l2
BR−1BHp on 0 < t < T , xH(0) is one row of

1

l2
R−1BH,

∂p

∂t
= −AHp − Qx on 0 < t < T , with p(T ) = 0.

One row of K is then given by −pH(0) (since x+ = −p).
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Solution procedure

If we let x+ → −p and p+ → x we easily obtain the original
(Direct-Adjoint) system. (self-adjoint)

Finally: solve the original linear system with new b.c.

∂x

∂t
= Ax −

1

l2
BR−1BHp on 0 < t < T , xH(0) is one row of

1

l2
R−1BH,

∂p

∂t
= −AHp − Qx on 0 < t < T , with p(T ) = 0.

One row of K is then given by −pH(0) (since x+ = −p).

ADVANTAGE

Avoid solving for Xn×n; solve original system xn×1 m
times
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Results: K for Re = 55

Ku, l2 = 1

Ku, l2 → ∞

Kv , l2 = 1

Ku, l2 → ∞
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Control of vortex shedding

In the temporal evolution of the lift (CL) and control u:

CL and u tend to zero as the control is applied

Control u strengthens as l2 decreases

Test case: Re = 55, control is turned on at t = 0
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Control of vortex shedding

In the temporal evolution of drag (CD) coefficient:

As the control is applied CD tends to the constant value
corresponding to the steady state solution

The control acts more quickly as l2 is decreased

Test case: Re = 55, control is turned on at t = 0
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Vortex shedding past a low-Reynolds-number airfoil

At sufficiently low Re the flow around an airfoil is 2D, laminar and

without separation. In these conditions and above a critical value of Re

the wake oscillates at a recognizable frequency: e.g., McAlister & Carr

(1978), Re
δ

= 145 (Rec = 21000), St ≈ 0.43.

McAlister & Carr (1978)
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Schematization

In such flow conditions it is reasonable to assume that the flow at the

trailing edge is approximately given by a double Falkner-Skan profile1.

Depending on the F-S profile and the Re number the flow on the entire

airfoil might also be sub-critical with respect to convective disturbances.

McAlister & Carr (1978)

1Woodley & Peake, J. Fluid Mech. (1997)
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Related investigations

Flow condition: 2D, laminar flow, no separation

Experiments

Airfoil Rec = 21000: McAlister & Carr (1978)

Flat plate Taneda (1958)

Numerical (trailing edge profile given by double Falkner-Skan profile)

Linear local Woodley & Peake (1997), Taylor & Peake (1999).

Nonlinear Pier & Peake (2008, 2009).
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Problem formulation

2D, incompressible flow

Semi-infinite flow domain downstream of the trailing edge

At trailing edge: double Falkner-Skan profile with pressure
gradient2 −0.09 ≤ m ≤ 0

Reδ = U
∞

δ/ν

Length scale δ = (νx/U∞)0.5

2U
∞

= C xm
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Problem formulation

2D, incompressible flow

Semi-infinite flow domain downstream of the trailing edge

At trailing edge: double Falkner-Skan profile with pressure
gradient2 −0.09 ≤ m ≤ 0

Reδ = U
∞

δ/ν

Length scale δ = (νx/U∞)0.5

Is it sufficient to use the trailing edge as inlet of the
computational domain ?

This was the assumption in Woodley & Peake (1997), Taylor & Peake

(1999), Pier & Peake (2008, 2009), and many similar examples...

2U
∞

= C xm
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Trailing edge

Local stability analysis show that the Falkner-Skan profile at
the trailing edge is already absolutely unstable.
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Trailing edge

Local stability analysis show that the Falkner-Skan profile at
the trailing edge is already absolutely unstable.

Solution here: add small plate (Lp) of infinitesimal thickness
upstream of trailing edge.

x

y

Lx

Ly

Lp
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Domain size

Grid and domain convergence tests have been made comparing
results of the unstable global modes. Here computations are
performed using Lx ≥ 400 and Lp ≥ 30.
An example of the dependence on Lp is given below for Re

δ
= 200.

Re
δ

= 200, m = −0.09, Lx = 432, Lp = 32, Ly = 50
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Mean flow on upstream plate

The assumption is to have a similarity solution at x = 0. However,
here the similarity solution is given at x = −Lp. How does the
mean flow change on the added flat plate ? An example is given for
the mean flow used in the previously shown eigenvalue calculation.
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Eigenvalue spectrum

The eigenvalues appear as complex conjugate pairs for a given Re
and m.

The number of unstable modes increases as one goes above the
critical Reynolds number.

Re
δ

= 200, m = −0.09
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Critical Reynolds number

The critical Reynolds number as a function of the pressure gradient
is found by plotting the growth rate of the least stable mode as a
function of Re and m.
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Airfoil wake vortex shedding

AirFoil
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Eigenvalue spectrum, Re = 120 m = −0.09

1 unstable mode
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Eigenvalue spectrum, Re = 140 m = −0.09

6 unstable modes
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Minimal-control-energy stabilization

The linear feedback matrix K which suppresses vortex shedding
modes in an airfoil’s wake has been computed using:
Full state information, Re = Uδ/ν

Actuator: unsteady circulation (velocity difference)

An angular oscillation of the whole airfoil, or of a flap, produces an
instantaneous change of circulation in the potential flow. In the
boundary layer and wake, this appears as a difference between the
upper and lower streamwise outer velocities. This difference is used
as the control parameter in our simulation.

Dimension of control u is m = 1

NoControl
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Control kernel K : Re = 120, m = −0.09

Ku

Kv
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Re = 120, m = −0.09, 1 unstable mode pair
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Re = 140, m = −0.09, 6 unstable mode pairs
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Re = 178, m = −0.05, 1 unstable mode pair
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Re = 190, m = −0.05, 7 unstable mode pairs
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Re = 220, m = 0, 5 unstable mode pairs
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Conclusions: Riccati-less control

Two exact methods have been developed to solve
large-dimensional optimal-control problems:

MCE: minimal-control-energy stabilization: In the limit
l2 → ∞, K can be determined from the unstable eigenvalues
and corresponding left eigevectors only

ADA: adjoint of the direct-adjoint: The feedback matrix K for
the general problem (any value of l2) can be obtained from
the iterative solution of the Adjoint of the Direct-Adjoint
system. This is equivalent to solving the original system with
appropriate initial condition.

Both methods have been successfully tested to control vortex
shedding behind a cylinder.
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Conclusions: low-Reynolds-number airfoil wake

The phenomenon looks qualitatively similar to vortex shedding
behind a cylinder. However,

a local absolute instability already exists at the trailing edge:
inclusion of a tract of the upstream flow region is essential;

the system easily presents more than one unstable mode.

Work is still required to arrive at a conclusion regarding the
effectiveness of control.

Of the present tests, one with 6 unstable modes offers the
most promising results.
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EXTRA SLIDES
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Influence of domain size

Re = 250, m = −0.09
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References: cylinder control using rotational

oscillation

Aim: reduce CD

Exp. Tokumaru & Dimotakis (1991), -20%, Re = 15000
Feedback control:

Exp. Fujisawa & Nakabayashi (2002) -16% (-70% CL), Re = 20000
Exp. Fujisawa et al.(2001) “reduction”, Re = 6700

Optimal control (using adjoints):
Num. He et al.(2000) -30 to -60% for Re = 200 − 1000
Num. Protas & Styczek (2002) -7% at Re = 75, -15% at Re = 150
Bergmann et al.(2005) -25% at Re = 200 (POD)

Aim: reduce vortex shedding
Feedback control:

Num. Protas (2004) reduction, “point vortex model”, Re = 75
Optimal control (using adjoints):

Num. Homescu et al.(2002) reduction, Re = 60 − 1000
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