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Towards virtual surgery of the nose

Assessing virtual surgeries of the human nose
via

computational fluid dynamics

E. Segalerba1, M. Quadrio2, J. O. Pralits1
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Towards virtual surgery of the nose

Anatomy and functioning
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Towards virtual surgery of the nose

It the nose flow important?

At least 1/3 of the adult world population is troubled with nasal breathing
difficulties1

In 2014, the one-year (only!) cost of cronic rhinosinusits (alone!) in US (only!) was
$22bn2

Certain nose surgeries have 50% failure rate3

Very large margin for improvement

1Stewart et al. Int J Gen Med 2010
2Smith et al. The Laryngoscope 2015
3Sundh & Sonnergreen, Eur Arch Otholaringol 2015
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Towards virtual surgery of the nose

The workflow

1 Segment the CT scan

2 Construct a volume mesh

3 Compute the CFD
solution (DNS, LES,
RANS, ...)
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Towards virtual surgery of the nose

How to proceed?

Bringing CFD into the clinical setting requires:

Assess reliability through a solid benchmark

Extract CFD-derived information that is useful to surgeons
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Towards virtual surgery of the nose

The benchmark

Reliability

An unique Reynolds number does not exist

Most authors use RANS, but the flow is not turbulent

Most authors use steady RANS, but the flow is low-Re and unsteady

Geometry created from CT scan not unique

Ongoing

tomo-PIV experiment being developed at OTH Regensburg

An ad-hoc DNS solver has been developed at Polimi (IMB, fast)
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Towards virtual surgery of the nose

How to extract useful information

The lack of the functionally normal nose

CFD solution alone does not help surgeons to find the best surgery

Main reason: lack of functionally normal reference nose

Shape optimization, but an objective function is lacking (well-being?)

Strong inter-subject anatomical variations with different functional significance

How do we compare 2 anatomies? Ex. pre-op and post-op
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Towards virtual surgery of the nose

How to compare 2 anatomies

Purpose

Compare pre-op and post-op, HOW?

Compare 2 healthy anatomies, HOW?

Neglected in the literature

Goal: show that comparison criterion
affects the results
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Towards virtual surgery of the nose

How to compare 2 anatomies

Method

Compare pre-op and post-op

Endoscopic Medial Maxillectomy (EMM)

3 conditions:

CPG (∆p)

CFR (Q̇)

CPI (Power=Q̇∆p)

Flow model:

Large Eddy Simulation (LES)

Mesh: ≈ 15 million cells

1.5 seconds (768 processors, 24 hours)

pre-op post-op
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Towards virtual surgery of the nose

How to compare 2 anatomies

Results: pre-op

same results in all cases: CPG, CFR CPI
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Towards virtual surgery of the nose

How to compare 2 anatomies

Results: post-op, difference between CPG and CFR

VERY large localized differences
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Towards virtual surgery of the nose

How to compare 2 anatomies

Results: comparing global values

flow forcing CPG CFR CPI
cases pre-op post-op pre-op postop pre-op post-op

Q̇ × 104 [m3/s] 2.67 3.12 2.67 2.67 2.67 2.95
pthr [Pa] −24.45 −24.45 −24.52 −18.50 −24.45 −22.14

Power × 103 [W ] −6.53 −7.63 −6.55 −4.94 −6.53 −6.53

variation in [%]
∆Q̇ = 16.9%
∆pthr = 0%

∆Power = 16.9%

∆Q̇ = 0%
∆pthr=−24.6%

∆Power = −24.6%

∆Q̇ = 10.5%
∆pthr=−9.5%
∆Power = 0%

VERY large differences in GLOBAL quantities
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Towards virtual surgery of the nose

How to compare 2 anatomies

Conclusions

The flow forcing choice is crucial

Large differences in GLOBAL quantities

Large differences in LOCAL quantities

Worst choice is CPG (geometry dependent)

CPI or CFR? consensus among clinicians is still to be established.
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Towards virtual surgery of the nose

OpenNOSE community

Active since 2011, Website (www.open-nose.org) launch 2023

Multi-disciplinary (≈30 people), Polimi leader

Driven by clinical problems and ENT surgeons

Aim: develop virtual surgery, support to surgeons

DNS, experimental data, anatomy data will be freely available
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Towards virtual surgery of the nose

Acknowledgement to the OpenNOSE gang
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Analysis of the human eye

Anatomy and functioning of the eye

Anterior chamber flow

production/drainage

myosis/mydriasis

buoyancy-driven

saccades

Vitreous chamber flow

sub-retinal

saccades
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Analysis of the human eye

Retinal detachment

Posterior vitreous detachment (PVD)

more common in myopic eyes;

preceded by changes in vitreous
macromolecular structure reasons.

If the retina detaches → loss of vision;

Rhegmatogeneous retinal detachment:

fluid enters through a retinal break into
the sub retinal space and peels off the
retina.

Risk factors:

myopia;

posterior vitreous detachment (PVD);

lattice degeneration;

...
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Analysis of the human eye

Investigations
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Analysis of the human eye Rhegmatogenous retinal detachment

Computer modeling of Rhegmatogenous Retinal Detachment

D. Natali1, S. Kheirandish1, R. Repetto1, J. O. Pralits1,
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1 Department of Civil, Chemical and Environmental Engineering, University of Genoa, Italy,
2 Department of Bioengineering, Imperial College London, London SW7 2AZ, UK,
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Published:
Journal of Fluids and Structures, 2018; 82:245–257
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Analysis of the human eye Rhegmatogenous retinal detachment

Purpose

1 in 10,000 of the population

Caused by retinal breaks in the peripheral retina

Unchecked RRD is a blinding condition

Postulated that saccadic eye movements create liquefied vitreous flow in the eye,
which help to lift the retina

Experience says that the hole condition detaches quicker than the free flap condition

Objective: investigate if hole or free flap has larger tendency to detach
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Analysis of the human eye Rhegmatogenous retinal detachment

Method I

A A A A

GRT

Detached retinaRetinal ap

Liqui ed vitreous

Liqui ed vitreous

Hole

Giant retinal tear Retinal hole

Section A-A Section A-A

Retinal surface

Eye wall

Retinal surface

Eye wall

(a) (b)
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Analysis of the human eye Rhegmatogenous retinal detachment

Method II
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Analysis of the human eye Rhegmatogenous retinal detachment

Method III

Wall motion (Repetto et al. (2005)), angles tested 8◦, 15◦, duration 0.045 s
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All data from the literature

Retinal thickness 70 µ

Youngs modulus from measurements

Liquid similar to water

Varying: L, θ and ∆
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Analysis of the human eye Rhegmatogenous retinal detachment

Dynamics for retinal tear

L=2 mm, θ = 33.6◦

Movie 1
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Analysis of the human eye Rhegmatogenous retinal detachment

Dynamics for retinal hole

L=2 mm, θ = 33.6◦, ∆ = 0.17 mm

Movie 2
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Analysis of the human eye Rhegmatogenous retinal detachment

Winkler theory

kT

r(s)

s

v(s)
Fc,n

Mcs

d = max(v |s=0, 0) = max(
αMc + Fc,n

2α3γ
, 0),

where α is the ratio between the soil spring rigidity kT and foundation beam stiffness γ.

d is the tendency to detach
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Analysis of the human eye Rhegmatogenous retinal detachment

Different filament lengths L∗: maximum tendency to detach

clamping angle θ = 33.56◦, ∆∗ = 0.17mm (retinal hole)
15 degree saccade, 8 degree saccade
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Analysis of the human eye Rhegmatogenous retinal detachment

Different clamping angles θ: maximum tendency to detach

length L∗ = 2 mm, ∆∗ = 0.17mm (retinal hole)
15 degree saccade, 8 degree saccade
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A maximum value of dmax is found
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Analysis of the human eye Rhegmatogenous retinal detachment

Comparison horseshoe tear & hole: maximum tendency to detach

clamping angle θ = 33.56◦, ∆∗ = 0.17mm (retinal hole)
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The retinal hole is more prone to detach compared to horseshoe tear
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Analysis of the human eye Rhegmatogenous retinal detachment

Conclusions

The main results, for GRT and RH using realistic parameter values, show:

Increasing L∗ increases the tendency to detach (both GRT & RH).

Changing θ, the maximum tendency to detach is found for; GRT at a clamping
angle of ≈ 25◦ (8 degrees saccade) and ≈ 35◦ for RH, independently of the saccadic
amplitude.

Changing ∆∗, the hole size, has little effect on the tendency to detach for both
saccades tested.

RH vs GRT, the tendency to detach of a RH, compared to a GRT, is 2-3.5 times
larger for retinal flaps of 1.5-2.5 mm, and the ratio increases for longer flap lengths.
This ratio increases as the saccadic amplitude is increased.

Collaborations with a surgeon confirms that these results are in line with their findings
and will give useful guidelines for treatment of retinal breaks.
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Analysis of the human eye Analysis of healing after corneal transplantation

Optimization of patient positioning for improved healing after
corneal transplantation

M. Alberti1, J. Cabrerizo1,2, V. Garcia Bennett3, M. Quadrio3, J. O. Pralits4

1 Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark
2 Copenhagen Eye Foundation, Copenhagen, Denmark

3 Department of Aerospace Science and Technologies, Politecnico di Milano, Milano, Italy
4 Department of Civil, Chemical and Environmental Engineering, University of Genoa, Italy

Published:
Translational Vision Science & Technology, 2019; 8(6):9

Submitted:
Journal of Biomechanics, 2022
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Analysis of the human eye Analysis of healing after corneal transplantation

Purpose I

Corneal endothelial cell dysfunctions

Fuchs’ endothelial dystrophy (up to 11% of US population above 40 years)

Congenital hereditary endothelial dystrophy

Corneal edema due to complications from other types of eye surgery
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Analysis of the human eye Analysis of healing after corneal transplantation

Purpose II

DMEK procedure (about 15 minutes)

Post-operative problem

graft peal off, mostly in lower quadrant (> 20% of cases)

Objective

Analyse optimal patient positioning for improved healing
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Analysis of the human eye Analysis of healing after corneal transplantation

Method I

Compute stationary solution of air bubble in aqueous humor (≈ water) solving

incompressible Navier-Stokes equations...

coupled with transport equation for phase fraction γ (VOF)

∇ · U = 0,

ρ
∂U

∂t
+ ρU · ∇U − µ∇2U = −∇pd − ρg · x + σκ∇γ,

∂γ

∂t
+∇ · (Uγ) +∇ · [Ur (1− γ)] = 0,

Important parameters

anterior chamber shape

surface tension

static contact angles (our measurements)

densities

gravitational acceleration

LESS Important parameters

viscosities
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Analysis of the human eye Analysis of healing after corneal transplantation

Method II

Parametric study

ACD

with and without natural lens

gas fill (time)

patient position
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Analysis of the human eye Analysis of healing after corneal transplantation

Method III

Measurements

gas-graft coverage in %

gas exposure on graft over
time
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Analysis of the human eye Analysis of healing after corneal transplantation

Results I

Gas-graft coverage
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Analysis of the human eye Analysis of healing after corneal transplantation

Results II

Patient position that maximises gas-graft coverage
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Analysis of the human eye Analysis of healing after corneal transplantation

Results III

Mean graft coverage changing patient position over time
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Analysis of the human eye Analysis of healing after corneal transplantation

Results IV

Gas exposure on graft over time: Optimal versus Random patient positioning

Jan O. Pralits (University of Genoa) Biofluid dynamics 42 / 53



Analysis of the human eye Analysis of healing after corneal transplantation

Conclusions

Patient positioning is negligible if ACD is small

Optimal patient positioning important only for larger ACD

Exposure (position of gas bubble) more sensitive than Coverage (%) w.r.t. patient
positioning
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Biodegradable vascular prostheses

Engineered small-diameter vascular prostheses: a study in bioreactor

P.F. Ferrari1,3, G. De Negri Atanasio1, J.O. Pralits1,3, D. Palombo2,3 & P. Perego1,3

1 Department of Civil, Chemical and Environmental Engineering, University of Genoa, Italy,
2 Dipartimento di scienze chirurgiche e diagnostiche integrate - DISC, University of Genoa, Italy
3 Centro Interdipartimentale BELONG, Research Centre of Biologically Inspired Engineering in

Vascular Medicine and Longevity, University of Genoa, Italy

Submitted:
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Biodegradable vascular prostheses

Motivation

Current strategies for aterosclerosi is substitute with bioprotesi

Available protesi are D > 7mm (eg. Dacron)

Goal: produce engineered bioprotesi D < 6mm
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Biodegradable vascular prostheses

Method I
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Biodegradable vascular prostheses

Method II

Modelling of fluid dynamics

Predictive tool: experiments are long and costly

Detailed results difficult to obtain experimentally

Step-by-step:

1 Newtonian steady state

2 Newtonian unsteady (heart beat)

3 Non-newtonian (similar to blood) unsteady
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Biodegradable vascular prostheses

Method III

Newtonian steady state

Incompressible flow

Pipe geometry with smooth walls

Steady state

Solution is analytical

τW = −µ8U

D
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Biodegradable vascular prostheses

Results I
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Biodegradable vascular prostheses

Results II
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Biodegradable vascular prostheses

Ongoing

Newtonian unsteady
Incompressible flow

Pipe geometry with smooth walls

Unsteady (signal from heart beat)

Solution is analytical

τW = real

{
N∑

n=1

P ′n
R

Λn

J1(Λn)

J0(Λn)
e inωt

}
where Λn depends on the Womersly number (non-dimensional frequency)

Movie 1 Movie 2
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