

Leaky Waves in Spatial Stability Analysis

Jan O. Pralits
Paolo Luchini
Dipartimento di Ingegneria Meccanica, Università di Salerno, Italy

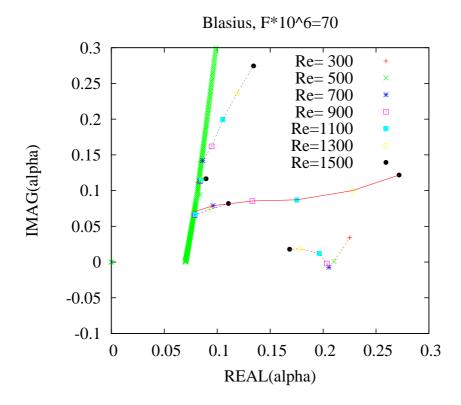
17th AlMeTA Congress of Theoretical and Applied Mechanics Firenze, 11-15 Settembre 2005

Background and motivation

- Laminar-turbulent transition in flat plate boundary layers, subject to low free strem turbulence, usually caused by infinitesimal perturbations which grow as they propagate downstream.
- Commonly analysed solving Orr-Sommerfeld equations (OSE) (eigen value problem)
- Solution of OSE composed of: a number of **discrete** modes decaying outside the boundary layer, a **continuous** spectrum behaving as $\exp(i\beta y)$ in the free stream.
- The number of discrete modes changes with the Reynolds number, and seem to disappear behind the continuous spectrum at certain Reynolds numbers.

Investigation

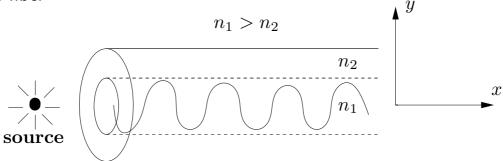
- Why does this happen ?
- Is it possible to have an all-discrete representation of the modes ?



Leaky waves

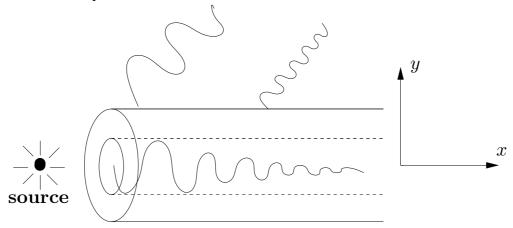
Short description of Leaky waves in fiber optics.

Ideal fiber



propagation constant α is real

Real fiber: leaky fiber, some radiation comes out



propagation constant has $Imag(\alpha) < 0$

$$k^2=\alpha^2+\beta^2$$
 is real, gives $Imag(\beta)>0,$ when $Imag(\alpha)<0$

The wave diverges as $\exp(-\mathrm{i}\beta y)$ for $y\to\infty$ when it decays for $x\to\infty$

Problem formulation

Consider the initial value problem, Orr-Sommerfeld equation

$$\left(\frac{\partial}{\partial t} + \mathrm{i}\alpha U\right)\Delta_2 \, v + \mathrm{i}\alpha U'' v = \frac{1}{Re}\Delta_2 \, \Delta_2 v, \quad \Delta_2 = \frac{d^2}{dy^2} - \alpha^2,$$

with initial condition

$$v(y, t = 0) = v_0(y).$$

Solution of the Laplace-transform

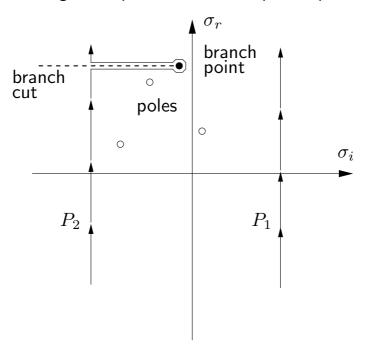
$$v = \frac{1}{2\pi i} \int \int G(y, y', \sigma, \alpha) \Delta_2 v_0(y') dy' e^{\sigma t} d\sigma,$$

where the Green function, G, is the solution of

$$\left((\sigma + i\alpha U)\Delta_2 + i\alpha U'' - \frac{1}{Re}\Delta_2 \Delta_2 \right) G = \delta_D(y - y')$$

with boundary conditions G(0)=G'(0), and $G\to 0$ as $y\to \infty$

integration path's in the complex σ -plane



The singularities of G depend on the free stream boundary conditions.

The initial value problem

$$\left((\sigma + i\alpha U)\Delta_2 + i\alpha U'' - \frac{1}{Re}\Delta_2 \Delta_2 \right) G = \delta_D(y - y')$$

has only one solution. So does the homogeneous problem

$$\left((\sigma + i\alpha U)\Delta_2 + i\alpha U'' - \frac{1}{Re}\Delta_2 \Delta_2 \right) G = 0.$$

The free stream behaviour (with $U_{\infty}=1$) is given by

$$\left(\sigma + i\alpha - \frac{1}{Re}\Delta_2\right)\Delta_2 G = 0,$$

and the solution of $\Delta_2 G$ can be written

$$A_1 e^{\beta y} + A_2 e^{-\beta y}$$

with

$$\beta^2 = \alpha^2 + Re(\sigma + i\alpha).$$

A solution decaying as $y\to\infty$ can be obtained as a combination of the forced and homogeneous problems if $A_1\neq 0$

The square-root realation between β and σ gives the branch point.

σ -formulation (original problem)

$$\left((\sigma + i\alpha U)\Delta_2 + i\alpha U'' - \frac{1}{Re}\Delta_2 \Delta_2 \right) G = \delta_D(y - y')$$

boundary conditions

$$G(0) = G'(0) = 0, \quad \text{and} \quad G \sim e^{-\sqrt{\alpha^2 + Re(\sigma + i\alpha)} \, y}$$

This solution is multi-valued as $y \to \infty$ (branch point)

β -formulation (alternative)

We write σ as a function of β

$$\sigma = -\mathrm{i}\alpha + \frac{1}{Re}(\beta^2 - \alpha^2)$$

and introduce it into the governing equation

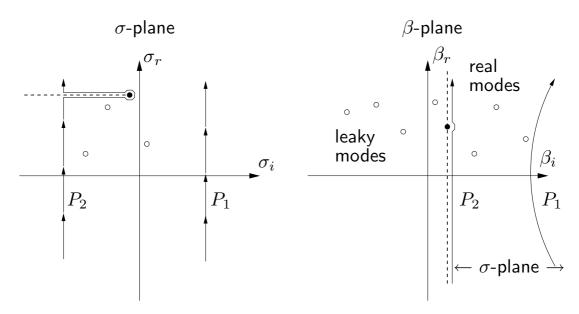
$$\left((-i\alpha + \frac{1}{Re}(\beta^2 - \alpha^2) + i\alpha U)\Delta_2 + i\alpha U'' - \frac{1}{Re}\Delta_2 \Delta_2 \right) G = \delta_D(y - y'),$$

boundary conditions

$$G(0) = G'(0) = 0, \quad \text{and} \quad G \sim e^{-\beta y}$$

This solution is one-valued as $y \to \infty$

Change of variables from σ to β introduces the Leaky modes



With $G \sim e^{-\beta y}$, G is a one-valued function of β (as $y \to \infty$).

The integral over P_2 in the β -plane is the sum of residues of Leaky modes.

Numerical calculation

In the free stream solution, $A_1 e^{\beta y} + A_2 e^{-\beta y}$, want to keep growing solution, and zero decaying solution, Ill-conditioned.

Method 1: Solve in the complex y-plane

The mean flow, Blasius, converges for $\varphi \approx \pm 30^{\circ}$. Here, $\tan(\varphi) = \max(y_i)/\max(y_r)$.

A direction is chosen in which the required β is dominant. Here, the analytical continuation of the real modes is found for $y_i < 0$.

Method 2: Use biorthogonality condition

$$(A - \beta B) u = 0$$
 right eigen vector

$$v \cdot (A - \beta B) = 0$$
 left eigen vector

From these two equations we obtain

$$(\beta_i - \beta_i) v_i \cdot B u_i = 0,$$

where

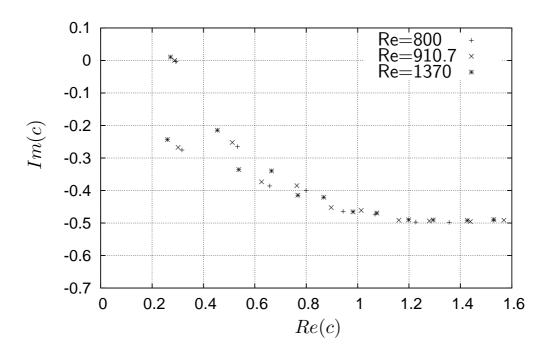
$$v_j \cdot B u_i = 0, \quad i \neq j.$$

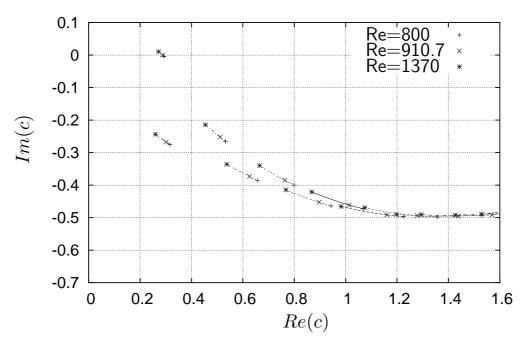
The free stream boundary condition to impose is

$$v_j \cdot B \, u = 0,$$

where subscript j denotes the solution we want to exclude.

Temporal stability analysis





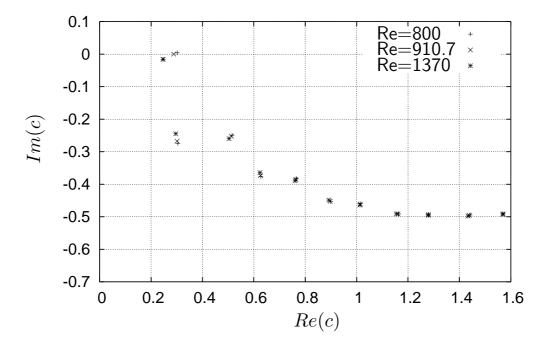
Temporal eigen value spectrum of the Blasius boundary layer for three values of Re, with $\alpha=0.086$. At Re=910.7 Im(c)=0 for the least stable eigen value. The "old" continuous spectrum: Re(c)=1. Bottom: including trajectories of the discrete eigen values

Parameter dependency

Rewrite the OSE as

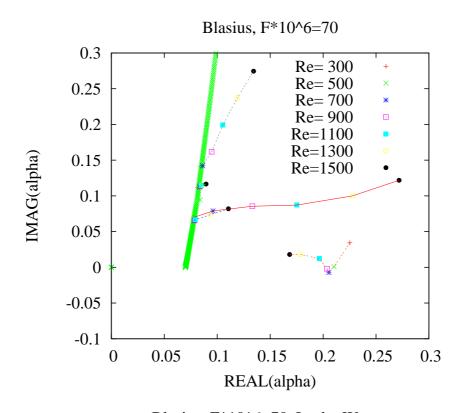
$$\left[i\alpha Re\left\{(U-c)(\mathcal{D}^2-\alpha^2)-U''\right\}-(\mathcal{D}^2-\alpha^2)^2\right]v=0$$

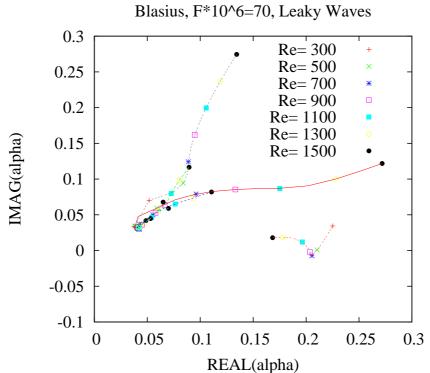
keep the product αRe constant



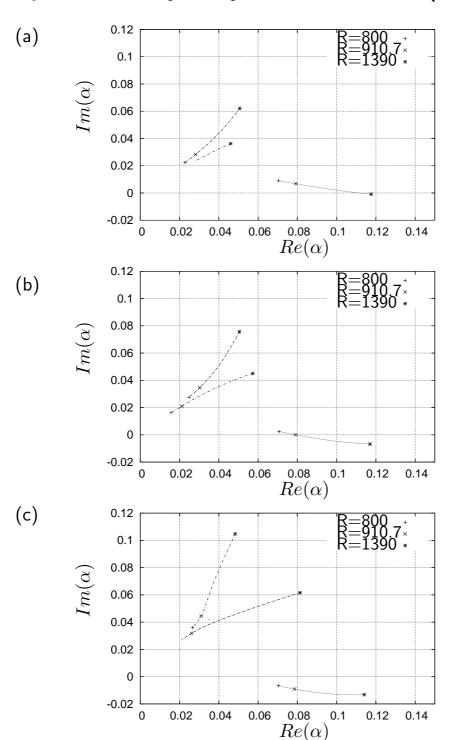
Temporal eigen value spectrum for three values of Re, keeping the value of αRe constant. At Re=910.7, α is chosen such that Im(c)=0 for the least stable eigen value.

Spatial stability analysis, Blasius



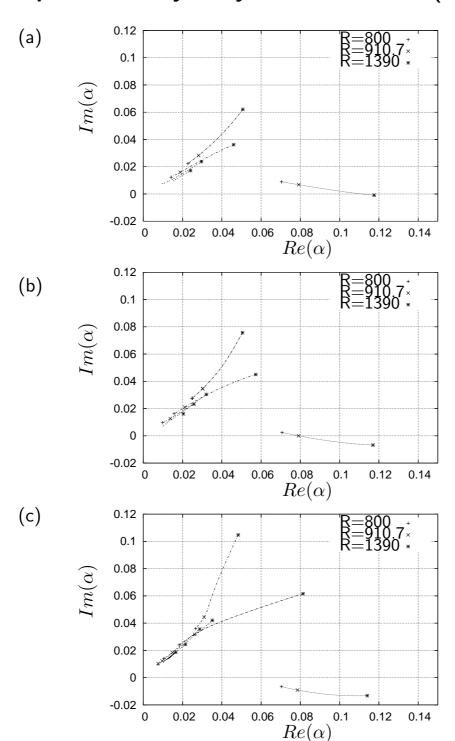


Spatial stability analysis, Falkner Skan (classic)



Spatial eigen value spectrum, α , three values of the Reynolds number, given $F=25.10^{-6}$. The pressure gradient in the mean flow is given by the Hartree parameter (a) $\beta_H=0.1$, (b) $\beta_H=0$, (c) $\beta_H=-0.1$.

Spatial stability analysis, Falkner Skan (Leaky)



Spatial eigen value spectrum, α , three values of the Reynolds number, given $F=25.10^{-6}$. The pressure gradient in the mean flow is given by the Hartree parameter (a) $\beta_H=0.1$, (b) $\beta_H=0$, (c) $\beta_H=-0.1$.

Applications

- Increase understanding for ordering of modes
- Any application where "higher" modes are important
- Computing the first order correction of the eigen functions in Multiple-Scales analysis.

$$(A - \alpha_0 I) u_0 = 0$$

$$(A - \alpha_0 I) u_1 = -\frac{du_0}{dx}$$

$$v_0 \cdot \frac{du_0}{dx} = 0$$

$$u_1 = \sum_{j=2}^{N} \frac{1}{\alpha_j - \alpha_0} v_j \cdot \frac{du_0}{dx} u_j$$