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Abstract Flow control has been the subject of numerous experimental and theoretical works. We analyze
full-order, optimal controllers for large dynamical systems in the presence of multiple actuators and sensors.
The full-order controllers do not require any preliminary model reduction or low-order approximation: this
feature allows us to assess the optimal performance of an actuated flow without relying on any estimation
process or further hypothesis on the disturbances. We start from the original technique proposed by Bewley
et al. (Meccanica 51(12):2997–3014, 2016. https://doi.org/10.1007/s11012-016-0547-3), the adjoint of the
direct-adjoint (ADA) algorithm. The algorithm is iterative and allows bypassing the solution of the algebraic
Riccati equation associated with the optimal control problem, typically infeasible for large systems. In this
numerical work, we extend the ADA iteration into a more general framework that includes the design of
controllers with multiple, coupled inputs and robust controllers (H∞ methods). First, we demonstrate our
results by showing the analytical equivalence between the full Riccati solutions and the ADA approximations
in the multiple inputs case. In the second part of the article, we analyze the performance of the algorithm
in terms of convergence of the solution, by comparing it with analogous techniques. We find an excellent
scalability with the number of inputs (actuators), making the method a viable way for full-order control design
in complex settings. Finally, the applicability of the algorithm to fluid mechanics problems is shown using the
linearized Kuramoto–Sivashinsky equation and the Kármán vortex street past a two-dimensional cylinder.

Keywords Flow control · Optimization · Stability analysis

1 Introduction

Linear control has been applied to a large variety of flows in the last decades [2–5]. The interest in such
applications has been invigorated by the possible, numerous outcomes ranging from drag reduction to acoustic
emissionmitigation. From a physical point of view, one of themain assumptions is that the flow can bemodified
by properly acting on the small-amplitude perturbations before the transition to turbulence occurs or on the
large coherent structures at higher Reynolds numbers. If the linear approximation is valid, rigorous methods
for linear control can be applied.
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Fig. 1 Sketch of a control unit for boundary layer flows; the blue dots indicate a row of localized actuators (Bu), the red circles
are the sensors (Cz) for the performance evaluation. The aim is to modify the flow using actuators in order to fulfill a control
objective. Adapted from [4] (color figure online)

In this paper we focus on active control, which by definition is characterized by energy input into the
system. Control energy is introduced by means of actuators, and the system to be controlled is referred to as
the plant. The presence of actuators allows having more flexibility in the control design, while sensors can be
introduced such that the actuation is optimized with respect to an objective function.

An example of a plant based on a fluid mechanics system is given in Fig. 1, where the sketch of a boundary
layer flow developing on a flat plate is shown, including m actuators Bu and p sensors Cz . We seek a control
law u(t), feeding them actuators. A possible way is to define a control kernel K ∈ R

m×n such that the control
signal u(t) is proportional to the state vector q ∈ R

n , i.e., u(t) = Kq. The controller is designed to fulfill a
target; in linear quadratic regulators (LQR), this target is represented by the quadratic function

J = 1

2

∫ T

0

(
zHz + uH Ru

)
dt (1)

to be minimized. The first term includes the signals recorded by the sensors Cz, as z = Czv. The matrix R
contains the control penalties for tuning the control effort (see for instance [6] and reference therein).

A difficulty in fluid mechanics is represented by the dimensions of the dynamical systems: although it is
relatively common to deal with numerical simulations with a number of degrees of freedom n > 106, control
design tools become infeasible for much smaller dimensions. A standard approach to circumvent this limitation
consists in replacing the full-order system with a reduced-order model capturing the essential dynamics of the
system. This methodology is called reduce-then-design and, besides the modeling step, is necessary to enable
the application of the control in realistic cases thanks to the reduced number of degrees of freedom.

1.1 Full-order control design

Control design is characterized by numerous choices; among the others, we can mention the location and the
spatial distribution of the sensors/actuators pairs, their number, or the coupling among these pairs. For this
reason, given a plant, it is not always straightforward to assess whether or not a system is controllable and—
when possible—if the performances of the closed-loop are the best achievable. During this preliminary step,
full-order controllers can be of help in guiding the design of the control unit as we avoid the model reduction
step or the estimation design. However, the full-order controllers cannot be directly used in real application: a
reduction in the control dimensionality is still required; moreover, we are limiting ourselves to an optimization
perspective, without facing directly the robustness issue [5].

With this in mind, an optimal controller K can be obtained as solution of the continuous algebraic Riccati
equation (CARE) [7], for systemsof dimensionsn ≈ 103−104 [8].Alternativemethods for the full-order design
in large systems were proposed in the last decades, based on the solution of surrogate systems of equations,
iterative procedures or algorithms exploiting the inherent sparsity of the plants.A common trait of thesemethods
is their feasibility when the number of actuators m � n. A classic technique is the Chandrasekhar method:
the full-order CARE is replaced by a set of partial differential equations. Alternatively, the projection on low-
order Krylov spaces by means of Arnoldi-type processes (see [9] and references therein) and Newton methods
have been proposed [10]. An efficient solution method for the Chandrasekhar equations was proposed in [11],
where long-time integrators are used in combination with reduced-order models based on proper orthogonal
decomposition (POD) for the control of the Kármán vortex street developing behind a cylinder.

Full-order controllers were computed for the control of the channel flow by [12]; in this work, optimal
control kernels with a compact support in physical space are designed by solving an optimal control problem
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for each wavenumber pair in Fourier space, independently. Indeed, in the limit of parallel flows, the optimal
control problems in Fourier space are decoupled from each other as suggested by [13]. An inverse Fourier
transform allows reconstructing the kernel in physical domain. The procedure was applied to weakly non-
parallel, spatially developing flows [14,15], although themain drawback is the distribution of sensors/actuators
pairs that cannot be localized in space using this approach.

Methods based on the pole placement include the minimum-energy control (MCE), discussed in [1]; in
this limit, the control kernel is computed using the unstable adjoint modes of the system. Examples from fluid
mechanics are given by [16] for the control of vortex shedding behind a cylinder, and [17] for the control of
the instabilities rising in the wake of a thick plate at higher Reynolds number. In the latter contribution, the
linearization is performed around different mean flows, computed as RANS and U-RANS solutions.

1.2 Iterative methods

Finally, iterative methods can be considered. The standard approach consists of an iteration based on the direct
equation describing the system dynamics and its adjoint (see [18] and citations therein). The unknown of the
iteration is the optimal control law u(t) in a given time window; the approach can be generalized to nonlinear
settings or to the design of controllers with receding time-horizon of optimization ([19–21]).

However, the control signal in the standard direct-adjoint iteration (hereafter indicated with DA) depends
on the initial condition from which the trajectory emanates. This limitation is tackled in Bewley et al. [1],
where the adjoint of the direct-adjoint (ADA) algorithm is introduced, a method capable of identifying the
gain K . From the theoretical point of view, the ADA algorithm replaces the original direct-adjoint optimization
with the corresponding sensitivity analysis by considering the adjoint of the entire problem. This procedure
changes an optimization problem of size n, the number of states, into a problem of size m, the number of
inputs. In [22], the ADA technique is applied to the control of Tollmien–Schlichting waves developing in a
two-dimensional boundary layer flow and extended to the estimation problem.

1.3 Present investigation and organization of the work

Building on the findings by [1], in this work we further analyze the algorithm by extending it into a more
generalized framework that includes the design of multiple inputs controllers and a class of robust controllers.
The optimal control problem is stated in Sect. 2. The ADA algorithm is described in Sect. 3, where the original
formulation is revisited and an analytical demonstration applied to a scalar problem is introduced. In Sect. 4,
we discuss the design of multiple inputs controllers, optimal estimators and robust, optimal controllers H∞
[23]. We compare the multiple inputs ADA algorithm with an iterative methodology based on the stochastic
gradient introduced in [24] (Sect. 5). The comparison makes use of a simple distributed system. Finally, in
Sect. 6, we apply the algorithm to fluid mechanics applications: the two-dimensional version of the Kuramoto–
Sivashinsky (KS) equation in Sect. 6.1 and the flow past a two-dimensional cylinder in Sect. 6.2. The work
finalizes with conclusions in Sect. 7.

2 Linear quadratic regulator (LQR): statement of the problem, classical approaches and
multiple-variable systems

In this section, we concisely state the optimal control problem and derive the time-continuous algebraic Riccati
equation (CARE). For a deeper discussion, we refer to the specialized literature [7]. We introduce the input–
output equations

dv

dt
= Av + Buu, with v(0) = v0, (2a)

z = Czv, (2b)

where A ∈ R
n×n is the system matrix and the variable n indicates the degrees of freedom. In this work, we

consider time-continuous, spatially discretized systems. The spatial distribution of m actuators is described
by the matrix Bu ∈ R

n×m . The variable z is scalar and represents a time signal. If the system arises from the
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discretization of the Navier–Stokes equations linearized around a baseflow or amean flow, the vector v(t) ∈ R
n

represents the state of the fluid system. We want to identify a control signal u(t) such that

J = 1

2

∫ T

0

(
vHWv + uH Ru

)
dt + 1

2
v(T )HWT v(T ) (3)

is minimized. The matrices W ≥ 0 ∈ R
n×n , R > 0 ∈ R

m×m and WT ≥ 0 ∈ R
n×n contain weights in the

entries. In our setup, the matrixW is defined asW = CzCH
z and is low-rank (see Fig. 1 and Eq. 1); moreover,

the matrix R is assumed to be diagonal, and the final conditionWT is set to be null. These assumptions do not
lead to any loss of generality.

The solution of the control problem in Eqs. (2–3) can be obtained by defining an augmented cost function
J̃

J̃ = J −
∫ T

0
λH

(
dv

dt
− Av − Buu

)
dt. (4)

Applying integration by parts, the following system of equations is cast

dv

dt
= Av + Buu, with v(0) = v0, (5a)

dλ

dt
= −AHλ − Wv, with λ(T ) = 0, (5b)

∂J̃
∂u

= BH
u λ + Ru. (5c)

The equation for the adjoint state λ(t) ∈ R
n is obtained by zeroing the gradient ∂J̃ /∂v and is integrated

backward in the interval t ∈ [T, 0]. The matrix AH denotes the adjoint operator, satisfying the inner-product
〈Av, λ〉 = 〈v, AHλ〉. The unknown of the system is the control signal u(t) in the time interval t ∈ [0, T ]. The
solution can be approximated using iterations: the control signal is updated at each step of the direct-adjoint
iteration as

u(t)i+1 = u(t)i − β i

(
∂J̃
∂u

)i

, (6)

using Eq. 5(c). A gradient descent algorithm can be used for defining the step β [25]. The resulting control
signal is optimal for a given initial condition v0. In what follows, wewill refer to this technique as direct-adjoint
(DA) iteration.

The system in Eq. 5 can be written in compact form as ẋ = Tx where the vector x contains the direct state
v and the adjoint state λ. The matrix T ∈ R

2n×2n is Hamiltonian and defined as

T =
[

A −BuR−1BH
u

−W −AH

]
.

In the following, the upper-right block of the Hamiltonian matrix BuR−1BH
u —containing the spatial distri-

bution of the actuators Bu—will be denoted as Ψ .
A direct solution of the control problem is obtained by solving the associated Riccati equation. Assuming

the relation λ = Xv, the algebraic Riccati equation for the control

AH X + XA − XΨ X + W = Ẋ (7)

is obtained. The equation can be solved, for instance, by involving Runge–Kutta time-integrations. Also, for
linear time-invariant system in the steady case limit Ẋ = 0, a direct solution may be computed by taking an
ordered Schur decomposition of the Hamiltonian matrix T (Laub’s method, see [26]). The resulting solution
is the matrix X ∈ R

n×n , positive-definite and symmetric. The control signal u(t) is proportional to the state v
as u(t) = Kv; the constant control kernel K ∈ R

m×n is finally computed as

K = −R−1BH
u X . (8)

For large-system n > 103 the direct solution of the Riccati equation is not feasible, due to computational costs
of order O(n3)—regardless of the structure of the system matrix A—and storage requirements which are at
least of order O(n2), see [9]. A viable alternative is represented by iterative methods for the computation of
the control kernel K .
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Fig. 2 Two different control-units with the same number of actuators (blue circles) and performance sensors (red circles) are
sketched. On the left, each actuator is “connected” with one sensor, leading to a control-unit composed by three single-input
single-output (SISO) controllers. In this case, the control-unit is based on a decentralized design. On the right, one controller
is designed based on all elements. This design accounts for the cross talks among the actuators and is usually referred to as
centralized design, or multiple inputs multiple-outputs (MIMO) design (color figure online)

2.1 Multiple-variable systems: the MIMO design

In the previous section, we tacitly discussed the plant to be controlled by considering m actuators Bu. Yet, we
did not mention the implications on the control design when multiple actuators are introduced in the plant.
Indeed from the design point of view, amultiple-variable system is potentially characterized by cross-couplings
between the inputs (actuators) and the outputs (sensors for the objective function or performance sensors).
These cross-couplings are one of the difficulties in multiple-variable control [27]: indeed, a change in one
input can affect multiple-outputs (and vice versa).

Within the context of flow control, this is typically the case of full, three-dimensional configurations.
An example is sketched in Fig. 1, based on past investigations discussed in [6] or [28]. When only one
actuator/sensor pair is considered, we usually refer to a single-input single-output (SISO) system. The opposite
case is when multiple inputs/outputs are introduced; in this case, we refer to multiple inputs multiple-outputs
(MIMO) system. For sake of clarity, we consider the cartoon in Fig. 2. A first, simplistic approach for the
MIMO design consists of designing a number of SISO closed-loop that equals the number of sensor/actuator
pairs; considering the example in Fig. 2, m = p closed-loop controllers are designed, one for each of the
actuator-sensor couples, located at the same position z along the spanwise direction. This approach is called
decentralized approach. In this framework, the number of actuators must equal the number of sensors and
the cross-couplings are disregarded, despite this choice may affect both the stability and the performance of
the closed-loop system; indeed, the stability of the closed-loop systems is not guaranteed. However, if the
decentralized controller is stable in each SISO loop and weak couplings characterize the original plant, then
the closed-loop can be also stable. In terms of performance, the resulting controller will be sub-optimal. The
opposite approach consists of designing a controller based on one control unit including all the sensors and
actuators. This methodology is called centralized control design. This choice guarantees optimal performance
and stability of the closed-loop, although it is less easy to implement in practical situations.

In conclusion, we can summarize as follows.

1. Decentralized control:m control gains K of dimension 1×n are designed independently from each other,
solving m Riccati equations.

2. Centralized control: one control gain K of dimensionsm×n is designed, by solving one Riccati equation.

In the following, we will discuss only these two limits. Hybrid solutions are possible, where only a part of the
sensors is connected with some actuators according to their interactions (pairing problem).

3 The adjoint of the direct-adjoint (ADA) algorithm for the solution of the LQR problem

The DA iteration does not allow the direct computation of the optimal control kernel K ∈ R
n ; indeed, the

unknown of the problem for a given initial condition vi0 is the control signal u(t)i defined in t ∈ [0, T ], with
T the final time of optimization. However, as observed by [1], the following linear system can be formed

[
u10 u20 . . . un0

] = K (1×n)

[
v10 v20 . . . vn0

]
(n×n)

, (9)

where n different solutions u(t)i of the optimal control problem emanating from n linearly independent initial
conditions vi0 are used. Thus, n iterations need to be solved, each with a different initial condition. In particular,
the known vector on the left-hand side can be formed by taking the corresponding control signal at t = 0. The
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columns of the matrix on the right-hand side are represented by the initial conditions of each of the n iterative
loops. The last step consists of the solution of a linear system of dimensions n × n; so, for large systems this
iterative scheme is again infeasible.

However, as elucidated in [1], one may drastically reduce the computational costs of the problem by
analyzing the sensitivity with respect to the initial condition using the adjoint of the DA system. The original
demonstration of the algorithm makes use of integration by parts and it is reported in “Appendix B” for sake
of completeness. Here, we propose an alternative version based on the properties of the Hamiltonian systems.
Introducing the symplectic matrix

J =
[

0 I
−I 0

]
,

the following property is fulfilled

T H J + JT = 0. (10)

Let us introduce the state x = (
v
λ

)
as solution of the system ẋ = Tx, with initial condition x0 = (

v0
λT

)
and its

adjoint state x̃ = (ṽ
λ̃

)
, solution of the system ˙̃x = T H x̃, with initial condition x̃0 = ( ṽ0

λ̃T

)
. Note that the state x̃

is the adjoint of the direct state x with respect to the symplectic product Ω(t), defined as

Ω(t) = x̃(t)H Jx(t) = λ̃(t)Hv(t) − ṽ(t)Hλ(t). (11)

In Hamiltonian systems, this product is constant ∀t ; including the boundary conditions, we obtain Ω(t) = 0.
The relation 11 can be compared with the optimality condition at t = 0

λ̃
H
0 v0 = ṽH

0 λ0, (12a)

u = Kv0 = (−R−1BH
u )λ0. (12b)

Considering the case m = 1, if we introduce the row vector −R−1BH
u as initial condition of the dual system

ṽ0, the adjoint solution λ̃
H
0 corresponds to K . This is the exact solution of the optimal problem for T → ∞,

obtained without solving the algebraic equation Eq. 7; in practice, a sufficiently long-time window for the
optimization guarantees convergence toward this solution.

3.1 An analytical demonstration in 1D

In this section, an analytical demonstration of the ADA algorithm is provided considering a scalar system
n = 1 withm > 1 inputs. The demonstration will be useful for the discussion of the MIMO systems in Sect. 4.

We consider the following scalar system

d

dt

(
v
λ

)
=

[
a −ψ

−w −a

](
v
λ

)
, (13)

with m scalar inputs, such that b = (b1, b2, . . . bm); the term ψ reads

ψ = (
b1, b2, . . . bm

)
R

⎛
⎜⎝
b1
b2
. . .
bm

⎞
⎟⎠ =

m∑
i=1

b2i
ri

. (14)

Note that the last equivalence is true only if R is a diagonal matrix. The Riccati equation for such a system
reduces to a second order equation, whose solutions are

x = a

ψ
± 1

ψ

√
a2 + wψ. (15)

The solutions x are scalar-valued and α = √
a2 + wψ . Taking the positive solution, the resulting Kálmán

gains for the control of the system in Eq. 13 are

ki = −bi
ri

[
a + α

ψ

]
, (16)
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with i = 1, 2, . . .m.
It can be shown that the analytical solution of the system in (13) leads to the same result when the ADA

algorithm is applied with T → ∞. The so-called unit solutions technique is applied; the method is described
in the books by [7,29] and summarized in “Appendix A”. Here, we limit ourselves to observe that a general
solution of the system in Eq. 13 can be found by combining two initial-value problems with

1. initial condition v(t0) = v0, λ(t0) = 0,
2. initial condition v(t0) = 0, λ(t0) = 1.

The constant c is defined using boundary conditions at t = 0 and t = T . The resulting solutions of the system
are

v(t) = (α − a)v0 + cψ

2α
e−αt + (α + a)v0 − cψ

2α
eαt , (17)

λ(t) = qv0 + c(α + a)

2α
e−αt + −qv0 + c(α − a)

2α
eαt . (18)

We now introduce the ADA solution. In particular, we take

v(0) = bi
ri

, with i = 1, 2, . . .m (19a)

λ(T ) = 0, (19b)

v(T ) free and λ(0) = ki . For αT → ∞, the terminal conditions in Eq. 19 applied to the solution in Eq. 18,
lead to the following relation

λ(0) = ki = v(0)
w

α − a
= −bi

ri

(
α + a

ψ

)
,

that corresponds to Eq. 16. By observing that the Riccati solution in 1D reads

x = α + a

ψ
,

the demonstration shows that the ADA machinery replaces the Riccati solution X ; similarly to matrix-free
methods based on the time-steppers, the Riccati solution is never written but its action is approximated numer-
ically using the iterative scheme [30]. This result can be applied also to higher-order systems [29].1

4 Multiple-variable version of ADA and other extensions

As shown in Sect. 3, the ADA algorithm does not identify a low-rank representation for the matrix X , but
approximates its action using a direct-adjoint iterative scheme. In the presence of m actuators, the design of
the controller K needs to be performed row-by-row: the design of a control kernel of dimensions K ∈ R

m×n

requires m iteration loops. Due to this requirement, a question naturally arises: how can we guarantee the
coupling among the actuator/sensor pairs?

The answer is found by observing the off-diagonal blocks of the matrix governing the Hamiltonian system,
whose solution is approximated by the ADA iteration. The cross-coupling among the actuators is imposed
by choosing the term Ψ during the design of the input–output system, while the coupling of the sensor is
done selecting W = CH

z Cz. Indeed, in the Riccati problem, the i-th row of the control gain is computed as
K i = −R−1

(i,i)B
H
u,iX : the coupling is guaranteed by X , that is approximated here by means of the iterative

scheme. Thus, the initial condition of each of the iterations is chosen by taking ṽ0
H
i = −R−1

(i,i)B
H
u,i , such that

each of the corresponding i-th rows of the matrix K is obtained as an adjoint solution of the iteration process.
In conclusion, we can design a centralized controller by running m iterative processes with Ψ and W

containing all the actuators and sensors—respectively—and by only changing the initial condition. However,
note that by choosing a-priori the pairs of sensors/actuators that share the strongest interactions, we can
adequately design Ψ and W without including all the pairs. In the limit where only one actuator is considered
for each of them iterations, we recover the decentralized casewhere one controller for each actuator is designed
independently from the other elements.

1 A real solution for n > 1 can be found in [7, p. 156].
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4.1 Estimation problem

The technique can be extended to any problem based on the solution of algebraic Riccati equations. A first
example is provided by the estimation problem as shown in [22] for the single-input single-output setting. An
estimator is defined by the following dynamical system

˙̂v = Av̂ + Buu − L(y − ŷ), (20a)

ŷ = Cyv̂. (20b)

The estimator allows reconstructing the original state v, based on local measurements y; the state v̂ is defined
such that the error y − ŷ is minimized. The estimator is driven by the error term via the matrix L, referred to
as estimation gain. The estimation gain L is the unknown of the associated estimation problem, obtained as
solution of the following Riccati equation

AY + Y AH − YCH
y G−1CyY + BdWBH

d = 0, (21a)

L = −YCH
y G−1. (21b)

The G contains in the diagonal entries the estimation penalty, similarly to the control case. From the mathe-
matical point of view, a fictitious adjoint problem is cast such that the cost function

N (
λ

(
ỹ
)
, ỹ

) = 1

2

∫ T

0

(
λHW p + ỹHGỹ

)
dt (22)

is minimized. In this dual system, the output CH
y is an input of the system, while the adjoint inputs BH

d and

BH
u play the role of the outputs [31]. The analogy is completed by observing that the “feedback law” is now

represented by ỹ(t) = LHλ(t). Thus, the first term of the cost function expresses the energy of the dual state
λ, while the second term minimizes the energy input of the feedback law.

A justification of this deterministic approach is given by [3]. The physical interpretation of the method is
given within the stochastic framework, where the unknown of the Riccati equation (21) is interpreted as the
expected energy of the estimation error e(t), while W is the covariance of the disturbance forcing [32].

The optimization machinery employed for the control problem can be adopted in an analogous manner for
computing the full-dimensional estimation gain L. The full formulation is given in [22], where the algorithm
is referred to as Adjoint of the Adjoint-Direct (AAD). Also the AAD algorithm can be generalized to the
centralized/decentralized case. Thus, in the presence of p estimation sensors Cy, p estimators can be designed
based only on one sensor, independently from each other, or one centralized estimators can be designed by
considering the system with all the p sensors Cy.

4.2 Riccati solution for H∞ problem

We complete this section of extensions of the ADA algorithm considering the H∞ problem. The optimal
control framework can be extended to the solution of robust optimization problems introducing the worst
disturbance scenario. The cost function associated with the problem is

J = 1

2

∫ T

0

(
vHWv + uH Ru − γ −2dHWd

)
dt, (23)

where the extra-term to maximize is the unknown disturbance d. The process consists of a simultaneous
optimization problem: the signal u is computed such that the worst-case disturbance is minimized (min–max
optimization). The control is sub-optimal as the parameter γ is chosen by the user. For γ → ∞, we approach
the limit of the LQR problem already considered. The direct equation of the problem reads

dv

dt
= Av + Bdd + Buu, with v(0) = v0. (24)

By introducing the corresponding augmented Lagrangian, it is possible to define the adjoint equation

dλ

dt
= −AHλ − Wv, with λ(T ) = 0. (25)
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Two optimal conditions are defined, by zeroing the respective gradients. The first condition corresponds to the
optimal control signal u,

u = −R−1BH
u p, (26)

the second condition is the worst disturbance d

d = γ 2W−1BH
d p. (27)

Imposing the equivalence p = Xq, into the Hamiltonian system

T =
[

A γ 2BdW−1BH
d − BuR−1BH

u
−W −AH

]
,

a CARE equation is obtained also for this problem as

AH X + XA − X
(
BuR−1BH

u − γ 2BdW
−1BH

d

)
X + Q = 0, (28a)

K = −R−1BH
u X, (28b)

Y = γ 2W−1BH
d X . (28c)

The control gain K and the worst disturbance Y are computed based on the solution X of the CARE equation.
Thus, the ADA algorithm can be applied for the full-order approximation of this problem. Considering the
single-input single-output setting, K and Y are computed as adjoint solutions at T by introducing as the initial
conditions

qK ,0 = −R−1BH
u , (29a)

qY ,0 = γ 2W−1BH
d , (29b)

respectively. In this framework, the robust problem is the solution of a multiple inputs Riccati equation where
all the inputs are coupled together. Of course, a MIMO controller with more than one disturbance Bd and
m > 1 actuators Bu can be also designed.

From the numerical point of view, a relevant difference between the standard H2 approach and the H∞
problem is the optimization process; in the H∞ case, we seek a saddle point of the objective function cor-
responding to the values that simultaneously minimize and maximize it. This optimization requires more
specialized techniques that we will consider in future investigations (see for instance [33,34]). In the next
sections, we focus on the ADA algorithm only considering full-order LQR controllers.

5 Comparison with other iterative algorithms

In this section, we assess the performance of the ADA algorithm in the presence of multiple inputs and
centralized control. We consider a toy-problem and compare ADA with a recent algorithm proposed by
Mårtensson and Rantzer in [35]. The test bed is mainly meant at verifying the speed of the convergence for
the different algorithms. Fluid mechanics applications are discussed in Sect. 6.

5.1 Full-order controllers using stochastic gradients

The algorithm introduced in [35], and here indicated as MR, is used for comparison. The algorithm computes
the control gain by updating at each step the solution as

K i+1 = K i − β i
(
∇K J̃

)i
, (30)

where ∇K J̃ is the gradient of J with respect to K . The basic formulation is proposed in “Appendix C”. In
principle, the algorithm suffers from the same limitations of the DA iteration: the identified solution depends
on the initial condition. The problem is circumvented by choosing a new initial condition randomly at each
iteration. The method can be interpreted as a stochastic gradient descent; at each step of the iteration, an initial
state is chosen for which the gradient is computed. Using different initial states at every iteration, the final
solution will not depend on any of the initial conditions.
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5.2 Implementation

The implemented routines are in prototypical form. Themain idea is to analyze the scaling of the computational
costs as a function of the number of actuators m and compare the resulting trends; following this rationale, a
simple steepest descent algorithm is applied. The performance of the iterative approach can be improved by
applying techniques such as the implicit restarting or Nesterov’s accelerated methods [35]. Two stop criteria
are chosen: the difference of the control cost between two consecutive iterations and the norm of the gradient.
The iterations stop when one of the two criteria is fulfilled below a chosen tolerance.

In Table 1, we highlight the main features of the algorithms. For all the cases, the centralized/decentralized
synthesis needs to be imposed when choosing the actuators of each single-input sub-system. In this section, we
only consider the centralized version of the algorithm that is the most expensive from the computational point
of view. Note that for the MR algorithm the basic form is analyzed, so without considering a predetermined
structure for the final solution. Moreover, due to the random selection of the initial conditions, the assessment
of the performance is done by considering 10 simulations for each of the analyzed cases.

5.3 Numerical example: a distributed system

A toy-problem mimicking a distributed system of dimensions n = 50 is considered. The system matrix
A ∈ R

n×n is in tridiagonal form

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −4 0
−1 −4 1

1 −4 −2
. . .

. . .
. . .

1 −4 −2
8 −8 −1

0 −2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The matrix B ∈ R
n×m contains non-null, unitary entries only along the main diagonal. The chosen system

resembles the one used in [35]. The number of actuators is indicated by m; 10 cases are analyzed, where the
number of actuators is chosen as m = [5, 10, 15, . . . , 50]. For the last case, n = m. The system is marched in
time until the final time T = 20, with nt = 501. The value of the final time was deemed sufficient for properly
approximating the solution.

The solution of the optimal problem is computed using the penalties l = [25, 50, 100], and benchmarked
against the Riccati solution, obtained in MATLAB using care.m.

In Fig. 3, the number of iterations necessary for the convergence is shown as a function of the number of
actuators m. The process stops when a difference below ε = 1.0 × 10−6 is attained between two successive
iterations. All the algorithms scale with the number of actuators m. In particular, it is possible to observe a
remarkable regularity for the ADA algorithm, that scales linearly with m; different control penalties require
different number of iterations. In particular, decreasing l requires a greater number of iterations; the behavior
was already observed in [22] and it is found here to characterize also the DA algorithm; in fact, only at l = 100
is observed a constant number of iterations with m, while a larger number of iterations is required with the
increasing number of actuators for the solution of the problem at lower l.

The DA algorithm requires on average more iterations when compared to the other iterative methods. This
is not surprising, as n loops are required. However, the main bottleneck of DA is the final solution of a linear

Table 1 The table summarizes the main features of the algorithms compared in Sect. 5.3: the column IC indicates the initial
conditions used; the third columnGrad. indicates the dimensions of the gradients used during the process of update; in the column
Loops, the number of iteration loops required for computing the control gains of dimension n×m is indicated. In the last column,
the main features of the methods are highlighted

Algorithm IC Grad. Loops Notes

DA Random at each loop m × nt n K is solution of a linear system
ADA −R−1

i,i Bi m × nt m Each row of K is solution of one iteration loop
MR Random at each iter. m × n 1 K is solution of one iteration loop, ∀m
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Fig. 3 Convergence of the iterative algorithms. The number of iterations as a function of the number of actuators m and control
penalty l is considered for the algorithms described in Sects. 2, 3 and 5.3
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Fig. 4 Comparison among the iterative algorithms for l = 25 and l = 100. TheADA algorithm is characterized by high scalability
with the number of actuators and a number of iterations smaller with respect to the alternative choices

system, together with the storage of a large matrix containing along the columns the n initial conditions; in
that sense, the use of the DA algorithm is infeasible for large systems and is considered here only for the sake
of completeness.

The MR algorithm has a less clear behavior, due to the choice of the initial conditions; an increase in the
number of iterations is observed withm also for this case. The choice of the penalty does not affect the number
of iterations required. This is illustrated in Fig. 4, where the number of iterations as a function of m is shown
for l = 25 and l = 100.

We can summarize as follows the main features observed for the three algorithms

1. For all the cases, an increase in the total number of iterations withm is observed. This is expected in ADA,
where m iteration loops are required, while it is less obvious for the MR case, where only one iteration
loop is required regardless of m.

2. ADA scales linearly with m. This is not the case for the MR algorithm, due to the stochastic gradient
application.

3. For the MR algorithm, the averaged number of iterations is not affected by the control effort applied (i.e.,
the choice of the control penalty l).
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In general, we found that the ADA algorithm performs considerably better and is more robust if compared
with the analogous iterative algorithm proposed by [35].

6 Numerical examples

In this section, we report two fluid mechanics examples: a planar flow governed by the linear Kuramoto–
Sivashinsky equation (Sect. 6.1) and the flow past a two-dimensional cylinder (Sect. 6.2).

6.1 Kuramoto–Sivashinsky model

A modified version of the Kuramoto–Sivashinsky equation is used for testing the multiple inputs case, mim-
icking the three-dimensional setup sketched in Fig. 1. The flow field is two-dimensional, defined in the x-z
plane, and governed by the equation

∂v

∂t
= −V

∂

∂x

(
v − 1

8P

∂2v

∂z2

)
− 1

R

(
P

∂2v

∂x2
+ ∂4v

∂x4
+ S

∂4v

∂z4

)
. (31)

With respect to the original equation, the dynamics is linearized around the convective velocity, V = 0.4. The
non-dimensional terms R and P are defined as

R = V L3

μ
, P = ηL2

μ
, (32)

with η representing an energy production term and μ the dissipation; L is the reference length of the system.
The parameters are chosen ad-hoc such that the dispersion relation of the system mimics the evolution of
traveling packets of Tollmien–Schlichting (TS) waves on a flat plate at Reδ∗ = 1000 (see [6]). Introducing
the maximum streamwise wavenumber αmax, the maximum spanwise wavenumber βmax and the complex
temporal frequency ω, the non-dimensional numbers can be expressed as

R = P2

4ωmax
, P = 2

α2
max

, S = ωmaxR

β4
max

, (33)

with S providing the modulation along the spanwise direction of the wave.
The computational box extends along the streamwise direction in the interval x ∈ [0, 500] and along the

spanwise direction in z ∈ [−90, 90]; a grid with Nx = 256 and Nz = 96 is chosen. The spatial discretization
is performed by means of a pseudo-spectral method that includes a fringe region extending between x = 400
and x = 500; periodic boundary conditions are imposed along the spanwise direction. The time marching is
performed using a three-steps Runge–Kutta scheme; the basic implementation can be found in the repository
https://github.com/nfabbiane/ks2D. More details are reported by [36].

6.1.1 A multiple inputs full-order controller

The dynamics of the waves governed by the linear KS are depicted in Fig. 5a, c, e, where the impulse response
of the system is shown at three different instants. The disturbance is introduced at x0 = (x0, z0) = (2.5, 0),
and its spatial distribution is modeled as

B = exp

(
− (x − x0)2

σ 2 − (z − z0)2

σ 2

)
, (34)

with σ = 4. The dynamics of the wavepackets mimics the evolution of a TS wave, growing as it propagates
downstream along the streamwise direction and extending along the spanwise direction with a backward
bending. The corresponding energy growth associated with the evolving wavepacket is shown in Fig. 6b
(black, solid line); the root mean square energy is obtained by averaging over T = 10,000 time units a
stochastically driven linear simulation.

A LQR controller is designed using the ADA algorithm. The setup closely resembles the one analyzed by
[6] and reproduced schematically in Fig. 1: a row composed by n = 9 localized actuators (Bu) is placed along

https://github.com/nfabbiane/ks2D
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Fig. 5 The propagation of a wavepacket in a flow governed by the modified Kuramoto–Sivashinsky equation (a, c, e) is compared
with the controlled case (b, d, f). The non-dimensional parameters in Eqs. 32 and 33 are chosen for mimicking the propagation
of the Tollmien–Schlichting waves at Re = 1000, with αmax = 1.68 × 10−1, βmax = 2.15 × 10−1 and ωmax = 2.67 × 10−3
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Fig. 6 Left: full-order controller associated with the actuator Bu placed at x = (200, 0) and with l = 100. Right: the root mean
square (RMS) of the velocity is shown as a function of the streamwise direction x . The value is computed using N = 10000
snapshots. The clean configuration (black, solid line) is compared to the controlled cases designed using l = 100 (red solid line)
and l = 500 (blue solid line) (color figure online)

the spanwise direction at x = 200, equi-spaced of Δz = 20. The same setup along the spanwise direction is
chosen for the sensors Cz , placed at x = 300. All the chosen elements are modeled as Gaussian distributions,
Eq. 34.

A centralized controller is designed with m = 9 actuators and p = 9 sensors. Nine iterations are set, one
for each row of the control gain. An example of the results is given in Fig. 6a, where the control gain is placed
at x = (200, 0); the controller shows the typical signature of the adjoint solution, as it is bent backward in
the plane with respect to the direction of propagation x . Performances of the controllers are shown in Fig. 6b
in terms of energy evolution in time; the clean configuration is compared with two cases: l = 100 (red solid
line), and l = 500 (blue solid line). The results are in qualitative agreement with [6].
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Fig. 7 Streamwise component of the baseflow at Re = 50. The cylinder is placed in (x0, y0) = (0, 0). The diameter is unitary

6.2 Cylinder flow

The second numerical case is the flowdeveloping behind a two-dimensional cylinder. The literature for this case
is rather rich, and we refer to the detailed stability analysis contained in [37,38] (and references therein) for a
deeper discussion. For our example, the dynamics of the incompressible flow is governed by the Navier–Stokes
equations

∂u
∂t

= −(u · ∇)u − ∇P + 1

ReD
Δu, (35)

0 = ∇ · u, (36)

where u indicates the velocity field, while P is the pressure. The diameter D is assumed as reference length
such that the Reynolds number is defined as ReD = UD/ν, where ν is the kinematic viscosity. We consider
the supercritical case at ReD = 50. The full set of Navier–Stokes equations is solved for the computation of
the baseflow Ubf ; since we are considering the supercritical case after the first bifurcation at Re ≈ 47.6, we
apply the selective frequency damping method for the computation of the baseflow, [39]. The residual norm
of the final baseflow has been chosen below 10−9.

The Navier–Stokes equations linearized around the baseflowUbf , and the corresponding adjoint equations,
are used for the control design and its verification. For both cases, the equations are formulatedfirst in continuous
form and then discretized.

The computational domain extends in the interval x ∈ [−20, 50] along the streamwise direction, and
y ∈ [−20, 20] along the normal direction, with (xo, y0) = (0, 0) being the cylinder position. The Navier–
Stokes equations are solved using the Nek5000 code [40], based on the spectral element method [41]. In
each cell, the velocity field is defined on Gauss–Legendre–Lobatto points and approximated using Lagrange
polynomials of order N , while the pressure is computed on a grid of order N −2 using the same approximation
(PN -PN−2); the results are obtained with a grid of order N = 8. The final mesh is composed by Nc = 2520
cells for a total of Ngp = Nc × N 2 grid points and approximately 3, 2 × 105 degrees of freedom. The time
integration is based on the BDF3/EXT3 scheme: the convective term is integrated explicitly using a third-order
scheme (EXT3), while the diffusion is solved using a backward differentiation (BDF3). Symmetric boundary
conditions are imposed along x = −20 and x = 20, while Neumann conditions are imposed at the outflow.
For the inflow, unitary velocity and null perturbation velocity are imposed for the nonlinear simulations
and linearized simulations, respectively. The streamwise component of the resulting baseflow is shown in
Fig. 7.

6.2.1 Control

The control-unit consists ofm = 2 actuators Bu and p = 2 sensorsCz.We considerGaussian-shaped functions
for describing the spatial distribution of the actuators/sensors pairs

g(x0, y0) = exp

(
− (x − x0)2

σ 2 − (y − y0)2

σ 2

)
, (37)

with σ = 0.5. The actuators Bu are located at (x0, y0) = (0.75,±0.75), while the sensors Cz are located
further downstream at (x0, y0) = (3.00,±0.75). The actuators act only along the streamwise velocity and are
approximately located in the region where the structural sensitivity is higher [37]. Sensor measurements are
taken only in the streamwise direction. The control penalty of the LQR is l2 = 50. Note that we do not optimize
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Fig. 8 Left panels: the streamwise (a) and normal (c) components of the control kernel K are shown, for the actuator B(0.75, 0.75).
It is possible to note the classical features of the adjoint solution and the localization in the region where the structural sensitivity
is higher. Right panels: uncontrolled (b) versus controlled (d) flow at t = 350; note that the two cases show a difference of almost
two orders of magnitude (on the maximum amplification of the perturbations)

250 260 270 280 290 300 310 320 330 340 350
−20

−10

0

10

20

z

(a) Signals z

250 260 270 280 290 300 310 320 330 340 350
−5

0

5

t

u

(b) Signals u

0 100 200 300

10
0

10
2

10
4

10
6

E

(c) Perturbation energy

Fig. 9 Quantitative analysis. In all figures, the black lines indicate results of the uncontrolled configuration while the red lines
indicate the controlled case. In the panel (a) we show the signals taken at Cz(3, 0.75)—solid line—and Cz(3, −0.75)—dashed
line—compared with the corresponding signals recorded when the control is active. In the right panel (c), the energy perturbation
for the two cases is shown. In the panel (b), the control signals feeding Bu(0.75, 0.75)—solid line—and Bu(0.75, −0.75)—dashed
line—are shown (color figure online)

the choice of l or the location/distribution of the actuator/sensor pairs; the main goal is to show the feasibility
of the approach in designing a multiple inputs, full-order controller also for systems where the Riccati solution
is not available.

The ADA iteration is performed using a fixed step β = 0.01 for the update in Eq. 6. The loop terminates
when the norm of the gradient ‖∂J /∂u‖ is below a tolerance of O(10−8). For this case, Ni = 19 iterations
were sufficient for reaching this threshold. In Fig. 8, the streamwise component (a) and the normal component
(c) of the controller associated with the actuator Bu(0.75, 0.75) are shown; the resulting solution shows the
typical features of the adjoint structures. Moreover, the spatial distribution of the control gain is localized in
both the regions y > 0 and y < 0. This is due to the choice of a centralized controller; indeed, the adjoint
solution is forced at the locations of both the sensors and the coupling among the actuators is not discarded.
Also, note that the control kernel approximately self-localizes in the region where the sensitivity is higher.

The control performances are analyzed by comparing the evolution of the linear perturbations at ReD = 50
with the simulation where the controller is turned on at t = 20. In Fig. 8b, d, we show two snapshots taken
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at t = 350, for the clean configuration and the controlled case, respectively. As it is possible to verify, the
vortex street is damped by two orders of magnitude. In Fig. 9, the comparison is performed quantitatively by
considering the signals recorded in Cz and the perturbation energy, computed as the weighted inner-product
of the perturbation velocities. In the figures, the controlled case is always indicated with red lines, while the
uncontrolled case is indicated with black lines. When the controller is turned on, the perturbation energy
(Fig. 9c) and the signals z (Fig. 9a) quickly drop, while the clean configuration exploits the exponential energy
growth. Finally, in Fig. 9b the control signals are shown.

7 Conclusions and discussion

In this work, we extended the Adjoint of the direct-adjoint (ADA) algorithm for the computation of full-order
controllers in large systems. In particular, we address the cases with multiple inputs/outputs, by highlighting
how decentralized, centralized and coupled controllers can be computed. The analysis is performed both
analytically and numerically.

First, we demonstrate the equivalence between the solution of the Riccati equation and the ADA solution
using a scalar problem. Similarly to matrix-free techniques based on the time-steppers, we observe that the
iterative scheme approximates the action of the Riccati solution. The result extends also to large systems. These
observations apply to the dual problem—i.e., the estimation problem—and to robust controllers belonging to
the H∞ framework.

In the second part of the manuscript, we consider numerical examples. A toy-problem mimicking a dis-
tributed system is analyzed for assessing the convergence performance of ADA against an analogous algorithm
by Mårtensson et al. [35], indicated as MR. The results show a remarkable scalability of ADA, with respect to
the number of actuators. Finally, examples from fluid mechanics applications are shown using the linearized
Kuramoto–Sivashinsky, representative of a subcritical flow, and the flow past a two-dimensional cylinder at
Re = 50. The feasibility of the approach is shown by designing multiple inputs LQR controllers for both
cases.

As final discussion, we suggest some future directions based on this work and stress some of the short-
comings of this approach. Starting from the limitations of the ADA approach, it is important to note that this
application is restricted to plants in numerical settings where a full model is available. In general, an accurate
model of an experimental settings is not available unless using a reduced-order model approach. Also, when it
is possible to apply controllers based on numerical models to experiments, the reduction step is still necessary;
in this perspective, one of the main problems in control design is the robustness to uncertainties of the model
or the robustness of the closed-loop system with respect to off-design operative conditions (see for instance
[42]). Using ADA, we tackle the optimization aspect of the closed-loop control problem, but not directly the
robustness issues, for which we refer to the recent review by [5]. Among the advantages of the algorithm, we
can certainly mention: i) the possibility of assessing preliminarily the optimal performance of a controlled
plant, at the design point; ii) the independence of the final solution with respect to the initial conditions, imply-
ing that it is not required by any knowledge of the disturbances active in the flow for the control problem;
iii) the easiness of implementation of the scheme, largely based on a standard direct-adjoint loop. Within this
perimeter, future work will be devoted to the optimization of the sensor/actuator pairs coupling, their optimal
placement, and the numerical solution of the full-order H∞ problem. Indeed, the sensors/actuators pairing
and their placement in our application is predetermined and not optimized, while convergence issues can arise
when a min–max optimization is applied for the robust optimal control. For both cases, modern techniques of
optimization might be a successful ingredient; an example is given by the sparsity promoting algorithms (see
[43]), potentially well-fitted for the pairing problem.
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A Method of the unit solutions

We demonstrated in Sect. 3.1 the equivalence between the ADA method and the Riccati equation using the
analytical solution based on the method of the unit solutions ([7,29]). The method allows us to calculate the
solution of the problem starting from two initial-value problems, reported in the following.

Initial-value problem I We consider as the initial conditions v1(t0) = v0 and λ1(t0) = 0, resulting in the
solution

[
v1(t)
λ1(t)

]
= v0

2α

[
α − a

w

]
e−αt + v0

2α

[
α + a
−w

]
eαt , (38)

where α = √
a2 + wψ corresponds to one of the eigenvalues of the Hamiltonian problem in Eq. 13.

Initial-value problem II We consider as the initial conditions v2(t0) = 0 and λ2(t0) = 1. In a more general
case, with N degrees of freedom, a number of independent initial conditions is considered such that λi+1 = ei
with i = 1 . . . N . Here, we consider only one solution

[
v2(t)
λ2(t)

]
= 1

2α

[
ψ

α + a

]
e−αt + 1

2α

[ −ψ
α − a

]
eαt . (39)

A general solution of the problem is obtained as a linear combination of the initial-value problems

[
v(t)
λ(t)

]
=

[
v1(t)
λ1(t)

]
+ c

[
v2(t)
λ2(t)

]

= 1

2α

[
(α − a)v0 + cψ
wv0 + c(α + a)

]
e−αt + 1

2α

[
(α + a)v0 − cψ

−wv0 + c(α − a)

]
eαt ,

where the constant c is unknown. Recombining the solutions we get

v(t) = (α − a)v0 + cψ

2α
e−αt + (α + a)v0 − cψ

2α
eαt , (40)

λ(t) = wv0 + c(α + a)

2α
e−αt + −wv0 + c(α − a)

2α
eαt . (41)

Finally, we impose the 4 terminal conditions at t = 0 and t = T for the initial-value problem. By introducing
the hyperbolic functions, the direct solution v and the adjoint λ at t = 0 and t = T are written as

v(0) = v0 (42)

λ(0) = c (43)

v(T ) = αv0 cosh(αT ) + (av0 − cψ) sinh(αT ) (44)

λ(T ) = −(wv0 + ca) sinh(αT ) + cα cosh(αT ). (45)

These are the solutions of the optimal control problem as stated in Sect. 2. For the ADA case, we introduce
v(0) = v0 = −bi/ri and λ(T ) = 0. Thus, the constant c is

c = wv0

α − a tanh(αT )
tanh(αT ). (46)

The demonstration of the equivalence finalizes by observing that the control kernel ki = λ(0) = c. The exact
solution of the optimal control problem is obtained for T → ∞.
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B Derivation of ADA algorithm using integration by parts

In this section, we briefly summarize the original derivation of the ADA algorithm, as first proposed by [1].
We start from the direct-adjoint system

dv

dt
= Av − Ψ λ, with v(0) = v0, (47a)

dλ

dt
= −AHλ − Wv, with λ(T ) = 0, (47b)

where Ψ = BuR−1BH
u and the optimality condition has already been included. By introducing two variables,

namely the state vectors a(t) and b(t), we can recombine the system as

∫ T

0
aH

(
dv

dt
− Av − Ψ λ

)
dt +

∫ T

0
bH

(
dλ

dt
+ AHλ + Wv

)
dt.

Integration by parts allows rewriting the relation as

∫ T

0
vH

(
−da
dt

− AH a + Wb
)
dt +

∫ T

0
λH

(
−db
dt

+ Ab − Ψ a
)
dt

+(aHv + bHλ)T − (aHv + bHλ)0

Gathering the state equations for a(t) and b(t), and changing the variables a → λ̃, b → −ṽ, allow us to write
the following system

dṽ

dt
= Aṽ + Ψ λ̃, ṽ(0) = ṽ0, (48a)

−dλ̃

dt
= AH λ̃ + W ṽ, λ̃(T ) = 0, (48b)

λ̃(T )Hv(T ) − ṽ(T )Hλ(T ) = λ̃(0)Hv(0) − ṽ(0)Hλ(0). (48c)

Equation 48 corresponds to the ones of the original optimal control problem 47. The last relation 48(c) is
exactly the condition recovered by symplectic product in Eq. (11); thus, the observations done in Eqs. (11–12)
are valid also for this case.

C Full-order controllers using stochastic gradients

In this appendix, the algorithm discussed by Mårtensson and Rantzer [35] is derived following the Lagrangian
approach. For sake of conciseness, we will indicate the algorithm with the acronymMR. The state equation is
rewritten as

dv

dt
= (A + BuK )v with v(0) = v0, (49)

The problem is rewritten now assuming the control kernel K to be the unknown of the problem. The cost
function is now

J = 1

2

∫ T

0

(
vHWv + vH K H RKv

)
dt = 1

2

∫ T

0
vH

(
W + K H RK

)
v dt, (50)

and the resulting augmented Lagrangian is

J̃ = J −
∫ T

0
λH

(
dv

dt
− Av − BuKv

)
dt.
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The resulting system is obtained by considering the gradients with respect to λ, v and K

∂J̃
∂λ

= dv

dt
− Av − BuKv, (51a)

∂J̃
∂v

= dλ

dt
+ AHλ + K H BH

u λ +
(
W + K H RK

)
v, (51b)

∂J̃
∂K

=
∫ T

0

(
RKv + BH

u λ
)

vH dt. (51c)

Zeroing the gradients, the system can be arranged in matrix form as

˙(
v
λ

)
=

[
A + BuK 0

− (
W + K H RK

) − (A + BuK )H

] (
v
λ

)
.

The solution is updated by using 51c as

K i+1 = K i − β∇K J̃ . (52)

The iteration is usually initialized with a guess for K , unless the system under consideration is asymptotically
stable; in the latter case, the controller is designed for modifying the transient dynamics and the starting guess
is simply a null vector. In this formulation, the problem depends on the initial conditions. The solution is not
guaranteed to be the one corresponding to the global minimum for a given initial condition. This drawback
is circumvented by using ad-hoc strategies as the stochastic gradient approach described in [35]. Moreover,
with respect to the standard algorithm, the MR algorithm does not require the solution of Lyapunov equations,
replaced with an approximation based on the adjoint and direct solutions.

C.1 Relation with the ADA algorithm: generalizing the sensitivity approach

The symplectic product adopted in ADA can be introduced also for the system in Eq. 51. It is possible to show
that the relation

λ̃(t)Hv(t) = ṽ(t)Hλ(t) ∀t, (53)

is fulfilled also in this case. Considering again the gradient,

∇K J̃ =
∫ T

0

(
RKv + BH

u λ
)

vH dt, (54)

it is null ∀v if

RKv(t) = −BH
u λ(t). (55)

By rescaling the relation via R−1, we recover the equivalence between the product and the optimality condition
at t = 0

λ̃(0)Hv0 = ṽ(0)Hλ0, (56a)

Kv0 = −R−1BH
u λ0. (56b)

Thus, also for the basic equation of the MR algorithm, introducing as initial conditions of the system q̃ =
−R−1

i,i Bu,i , the iteration enables to compute the i-th kernel K as solution of the adjoint equation at the final
time T . All the observations done for the multiple inputs, coupled version of the ADA algorithm are valid also
for this algorithm. Interestingly, this algorithm produces the control kernels in two different ways: i) as adjoint
solution; ii) as result of the gradient-based iteration

K n+1 = K n − β∇KJ . (57)
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The sensitivity with respect to the initial conditions applied to the optimal control problem leads to the same
results with different choice of gradients. The gradient with respect to K can be rewritten, using the chain-rule,
as

∂J̃
∂K

= ∂J̃
∂u

∂u
∂K

=
(
RKv + BH

u λ
)

vH . (58)

The underlying system of equations is equivalent in the two cases.
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