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Minimal model for zero-inertia instabilities in shear-dominated non-Newtonian flows
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The emergence of fluid instabilities in the relevant limit of vanishing fluid inertia (i.e., arbitrarily close to zero
Reynolds number) has been investigated for the well-known Kolmogorov flow. The finite-time shear-induced
order-disorder transition of the non-Newtonian microstructure and the corresponding viscosity change from
lower to higher values are the crucial ingredients for the instabilities to emerge. The finite-time low-to-high
viscosity change for increasing shear characterizes the rheopectic fluids. The instability does not emerge in
shear-thinning or -thickening fluids where viscosity adjustment to local shear occurs instantaneously. The lack of
instabilities arbitrarily close to zero Reynolds number is also observed for thixotropic fluids, in spite of the fact
that the viscosity adjustment time to shear is finite as in rheopectic fluids. Renormalized perturbative expansions
(multiple-scale expansions), energy-based arguments (on the linearized equations of motion), and numerical
results (of suitable eigenvalue problems from the linear stability analysis) are the main tools leading to our
conclusions. Our findings may have important consequences in all situations where purely hydrodynamic fluid
instabilities or mixing are inhibited due to negligible inertia, as in microfluidic applications. To trigger mixing in
these situations, suitable (not necessarily viscoelastic) non-Newtonian fluid solutions appear as a valid answer.
Our results open interesting questions and challenges in the field of smart (fluid) materials.
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I. INTRODUCTION

Control of mixing in fluid environments with very low
Reynolds numbers is a need of paramount importance for many
practical purposes [1]. Applications range from biochemistry
analysis in microfluidic devices [2], where mixing has to be
rapid and efficient, to lab-on-a-chip applications, where mixing
has to be reduced to avoid spurious effects as in microfluidic
rheometer applications [3].

For small Reynolds numbers, the resulting flow of a
Newtonian fluid is typically laminar, and mixing occurs via
diffusion. This mechanism is, however, extremely inefficient
and slow. Fortunately, in many low-Reynolds number ap-
plications, including microfluidics, fluids are viscoelastic (a
form of non-Newtonianity), a fact that has been recognized
as an enormous advantage with respect to Newtonian fluids
for the possibility of generating mixing via purely elastic
instabilities [4]. If properly triggered, these instabilities can
originate the so-called elastic turbulence [5]. Elastic turbulence
is characterized by the algebraic decay of velocity power
spectra over a wide range of scales and by its ability to generate
more efficient mixing than in an ordered flow.

Elastic instabilities and elastic turbulence are characteristics
of viscoelastic fluids: long polymer molecules added to a fluid
make it elastic and capable of storing stresses that depend
on the history of deformation, thereby providing the fluid
a memory. The streamline curvature was thought to be a
necessary ingredient to trigger the instability via a balance
between normal stresses and streamline curvature [6–8]. More
recently, simple parallel flows clearly showed the emergence
of purely elastic instabilities [9,10] and turbulence [11] even
in the absence of curvature. Remarkably, the same class of
viscoelastic parallel flows also displays other nontrivial vis-
coelastic properties including the well-known drag reduction
by polymer additives [12,13].

Our aim here is to show that the existence of purely
non-Newtonian instabilities (a prelude to mixing in the
nonlinear stage) occurring arbitrarily close to zero Reynolds
number also exist for non-Newtonian fluids which are not
viscoelastic. Interesting discussions on the relationship be-
tween viscoelasticity and other forms of non-Netwonianity
(including thixotropy and rheopecticity) can be found in
Ref. [14]. The instabilities we have identified originate from
the interplay between shear and order-disorder transitions
associated with the non-Newtonian structure. Microstructural
disorder is related to large shear and manifests itself at
mesoscopic scales via a low-to-high-viscosity change. Such a
change in the viscosity characterizes the so-called rheopectic
fluids, which share with shear-thickening fluids the property
that their apparent viscosities increase with strain. The crucial
difference is that, for shear-thickening fluids, the response to
strain is almost instantaneous while this is not so for rheopectic
fluids. We found that this apparently innocent difference is the
key point for purely non-Newtonian instabilities to emerge
even for vanishing Reynolds numbers.

Our findings call for a thorough research in the field of
smart fluid materials to maximize the rheological properties,
here identified as crucial for instabilities and mixing to emerge,
even for vanishing fluid inertia.

As a model of rheopectic fluids we modified, in a physically
consistent way, the well-known and widely used Carreau-Bird
model [15] in order to model a finite-time response of the
apparent viscosity to shear. This property is here achieved in
terms of a simple kinetic equation mimicking the unceasing
order-disorder transition originated by the competition be-
tween network restoring forces and shear-induced network.
With the term network we here denote collective behaviors,
such as those originated in dense suspensions or by polymers
in water when subjected to shear. Another relevant example
is the transition from a flow of colloids (corresponding to a
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low-viscosity state) to jamming of the colloids with formation
of chains (corresponding to a high-viscosity state) [16].

For sufficiently large network relaxation times, the network
acquires proper dynamics with characteristic times that can
become comparable to those of the underlying flow. Under
these conditions of strong coupling, nontrivial effects includ-
ing network instabilities are expected. The investigation of this
intriguing possibility is one of the main subjects of this paper.

II. THE NON-NEWTONIAN MODEL

Let us start from the definition of the static version of our
non-Newtonian fluid. Here, static is used to emphasize that
the fluid response to stresses takes place instantaneously. The
next step will be to incorporate a finite time response of the
fluid that, as we will show, will be the crucial ingredient for
network instabilities to emerge.

A widely accepted model to describe the dependence on
shear rates of the apparent viscosity is the so-called Carreau-
Bird model [15]. According to this model, the expression for
the viscosity is

μ = μ∞ + (μ0 − μ∞)(1 + 2a2γ̇ 2)
n−1

2 , (1)

where γ̇ ≡ (2eαβeαβ)1/2 is the strain rate, eαβ ≡ 1
2 (∂αuβ +

∂βuα) is the strain tensor, a is a constant, and n (not
necessarily integer and n < 1 to model shear-thinning fluids)
is a measure of how far different fluid properties are from
a purely Newtonian fluid. Tensorial components α and β

range from 1 to 2 and, as customary, we use the Einstein
convention that repeated indices are implicitly summed over.
The Newtonian limit is achieved for n = 1 and/or a → 0.
The physical meaning of 1/a is that of a threshold on the
strain-rate γ̇ above which the non-Newtonian character of the
fluid smoothly emerges. The constant a is thus not related to a
typical response time of the fluid to the strain.

The parameter μ0 is the viscosity at zero shear rate (i.e.,
for γ̇ → 0) and μ∞ is the infinite-shear-rate viscosity (i.e.,
for γ̇ → ∞). Taking n as an adjustable parameter, one can
properly describe numerous non-Newtonian substances [17].

In many cases the infinite shear viscosity μ∞ is negligible
[18] and the model simplifies to

μ = μ0(1 + 2a2γ̇ 2)
n−1

2 , (2)

where only three free parameters are involved.
Despite the fact that the model was originally proposed to

describe shear-thinning fluids, the currently available (limited)
information on shear-thickening fluids suggests the use of
Eq. (2) with n > 1 to describe this class of non-Newtonian
fluids [17]. Notwithstanding the paucity of rheological data
on such systems, it is not yet possible to say with confidence
whether these materials also display limiting viscosities μ0

and μ∞. We nevertheless assume in the following, for the
sake of continuity with the Newtonian case, the existence of a
well-defined zero-shear-rate viscosity μ0.

Let us now proceed to include a fluid finite time response
to shear. The idea is to introduce a kinetic equation for a
scalar structure parameter λ in the same spirit of thixotropic
modeling [14] where such an equation is inspired by chemical
kinetics.

The resulting kinetic equation here simply follows from the
requirement that Eq. (2) must be obtained in the limit of fast
network response. By imposing this constraint one has

dλ

dt
= −λ

τ
+ 2 a2γ̇ 2

τ
, (3)

where dλ
dt

is a material derivative. In the above equation, the
steady state (ss) value of λ (λss) follows from a balance between
the rate for network build-up and breakdown. For a constant
γ̇ , after a time τ one has λss = 2a2γ̇ 2.

To close the circuit it is necessary to assume a relationship
between λ and the viscosity μ (i.e., a relationship between the
structure and the flow). To obtain Eq. (2) at the stationary state,
we assume the following relationship:

μ = μ0(1 + λ)
n−1

2 . (4)

Note that for n < 1 the model describes the so-called
thixotropic behavior; rheopectic behavior is captured by n > 1.

Once the stress tensor is expressed in the generalized
Newtonian form, ταβ = 2μeαβ , the resulting governing
equations read

∂tuα + u · ∂uα = −∂αp/ρ + ∂β(ταβ)/ρ + fα, (5)

∂ · u = 0, (6)

where f is a given volume force. The latter force is chosen
here to excite the celebrated shear-dominated Kolmogorov
parallel flow [19], here assumed in its two-dimensional
form U = (U (y),0) with U (y) = V cos(y/L) and a uniform
pressure P (which can be set to zero). The corresponding
equilibrium expression for λ is 	 = 2a2(∂yU )2. U , P , and 	

thus constitute the basic state of which the stability analysis
will be studied in this paper.

The following dimensionless free parameters enter into
play: Re = ρV L/μ0, De = τV/L, and 
 = aV/L. The first
one is the Reynolds number (in terms of the zero-shear-rate
viscosity), while the second is analogous to the Deborah
number for viscoelastic solutions. The network relaxation time
τ towards an ordered state is indeed the analog of the Zimm
relaxation time in dilute polymer solutions [15]. There, the
ordered state corresponds to polymers in their coiled state and
the disordered phase is associated with elongated polymers.
Finally, 
, sometimes called the Carreau number, is a measure
of the level of how non-Newtonian a fluid is.

A relevant limiting case of the model is the one cor-
responding to De ≡ 
 [i.e., a ≡ τ in Eq. (3)]. For small
De (i.e., fast network response) one recovers the Newtonian
limit; this does not happen for small De when De �= 
. By
increasing De, the apparent viscosity increases proportionally
to De2 and non-Newtonian behavior becomes increasingly
important. The growing importance of non-Newtonian effects
is accompanied by the slowing down of the typical time
associated with the network response. This phenomenon is
expected to cause network instabilities like the purely elastic
instabilities observed in dilute polymer solutions. We will
address this important issue in the following.
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III. LINEAR STABILITY ANALYSIS:
NUMERICAL RESULTS

Let us now consider the linearized equations for the
system of perturbations (w,q,σ ) of the basic state (U,P ,	).
Equations (3), (5), and (6) become

∂ · w = 0, (7)

∂twα + ∂β(Uβwα + wβUα) = −∂αq + ∂βτ ′
αβ, (8)

∂tσ + ∂β(Uβσ + wβ	) = − σ

De
+ 8
2Eαβe′

αβ

De
, (9)

where space coordinates, velocities, time, and pressure have
been made dimensionless as customary in terms of L, V , and
ρ. We have defined

τ ′
αβ = 2μb e′

αβ + 2μ′Eαβ, (10)

where

μb = (1 + 	)
n−1

2

Re
, μ′ = (1 + 	)

n−3
2 (n − 1)σ

2Re
. (11)

Moreover, e′
αβ and Eαβ are the strain tensors based on the

perturbations and the basic state, respectively.
The linear stability of the basic flow is analyzed assuming

solutions of the form (w,q,σ ) = (ŵ,q̂,σ̂ ) exp[ik(x − ct)],
where k is the real-valued streamwise wave number and
c is the complex-valued phase velocity. Equations (7)–(10)
are recast in the form of a generalized eigenvalue problem
where derivatives with respect to y are approximated using
second-order finite differences and periodic boundary condi-
tions are imposed. This constitutes a dispersion relation for
c(Re,De,
,k) where Im(c) > 0 identifies unstable solutions.
The eigenvalue problem is numerically solved using the QZ
algorithm [20] and the marginal curves are defined as solutions
for which Im(c) = 0.

In the upper panel of Fig. 1 we show marginal curves in
the parameter space Re-
 for n = 1.3 and different De. Below
these curves we have stability; instabilities are found above
the curves. De = 0 corresponds to the case of instantaneous
response of the network. No network instabilities are observed
in this case: the marginal curve increases with 
 as a power
law (see inset) and it does not cross the Re = 0 axis. The
situation drastically changes for finite De: depending on its
value, marginal curves indeed cross the Re = 0 axis. This is
the fingerprint of network instabilities. Although not shown,
this property holds true for all n > 1.

In the lower panel of Fig. 1 marginal curves are presented
in the parameter space Re-De, again for n = 1.3, and different
values of 
. In all cases, a critical De (as Re → 0) exists,
whose value decreases for increasing 
, associated with a
transition to network instabilities. Once again, the key role of
the finite-time response of the network to strain is crucial for
network instabilities to emerge.

So far we have considered 
 and De as independent
parameters. Let us now consider the limiting case of the
model where the two parameters merge in a unique parameter,
i.e., 
 ≡ De. In Fig. 2 the resulting marginal curves are
shown for different values of n. The emergence of network
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FIG. 1. Upper panel: Marginal curves in Re-
 plane and n = 1.3
for different values of De. Here, De = 0 (−), De = 3.5 (- · -) and
De = 5 (· · · ). Inset: log-log plot for the case De = 0 (−) showing
a power-law behavior (- -) with exponent ∼0.3 as 
 → ∞. Lower
panel : Marginal curves in the Re-De plane and n = 1.3 for different
values of 
. Here, 
 = 0.3 (−), 
 = 3 (- · -), and 
 = 5 (· · · ). The
prediction from the multiple-scale expansion discussed in the final
part of this article is shown with the symbol (◦).

instability is observed but in this case the behavior is not
monotonically decreasing toward Re = 0. A maximum exists
for certain values of De (the larger n the smaller De at which
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FIG. 2. Marginal curves in the Re-De plane with 
 ≡ De, for
different values of n. Here, n = 1.3 (−), n = 1.7 (- · -), and n = 2
(· · · ).
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FIG. 3. Wave number k of least stable mode in Re-De plane with

 ≡ De and n = 1.3. The limiting case of k → 0 (−) is shown
together with finite values (· · · ). The latter are given for values of
k = 0.07,0.14,0.21, and 0.28. The finite values of k decrease towards
the solid line.

the maximum is found) above which a rapid decrease to zero
is observed. This behavior is remarkably close to what has
been observed in Ref. [9] for a viscoelastic flow simulated by
the Oldroyd-B model. The model with 
 ≡ De thus seems to
capture viscoelastic behavior of rheopectic fluids.

For thixotropic or shear-thinning cases (n < 1) one can
easily exclude the emergence of network instabilities by means
of the following simple considerations. Large values of a in
Eq. (3) correspond to large values of λ which, from Eq. (4),
cause an apparent viscosity μ = 0 (or μ = μ∞ if one does
not take μ∞ ∼ 0 as in the present study). Under this condition
one thus recovers the Newtonian limit, with μ∞ replacing
μ0. The Newtonian regime is also trivially reached in the
opposite limit a → 0. In both limits no network instabilities
are thus expected, a fact that can be reasonably extrapolated
to all values of a. Although not reported in the present paper,
our stability analysis confirms this simple expectation also for
finite values of τ .

When considering the solution of the stability problem
in the vicinity of the marginal curve, the most unstable
perturbation turned out to be large-scale with respect to the
basic flow and, furthermore, to have zero phase velocity. The
fact that it is large scale will be exploited in Sec. V to obtain
perturbative predictions for the marginal curves.

A more general picture of the stability characteristics can
be obtained by evaluating the phase velocity, growth rate, and
corresponding wave number also in the rest of the parameter
space. Such analysis has been performed for the case of 
 ≡
De and n = 1.3 by computing the least stable solution, over
all possible wave numbers k � 0 in the Re-De plane. In Fig. 3
the wave number for the least stable solution is reported. In
the vicinity of the marginal curve the least stable solution is
obtained for k → 0, and this holds true also in the stable region.
A finite value of k is instead found in the unstable region with
increasing value moving away from the marginal curve. It was
further found that the phase velocity is zero for both stable and
unstable solutions. The growth rate of the results reported in
Fig. 3 is shown in Fig. 4. In the stable region the variation of the
growth rate is low; on the contrary in the unstable region the
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FIG. 4. Growth rate in the Re-De plane with 
 ≡ De and n = 1.3.
Here, positive (−) and negative (· · · ) growth rate is shown together
with the marginal curve (thick line). The contour spacing is 0.01.

growth rate increases rapidly moving away from the marginal
curve. This is enhanced as the Reynolds number is decreased.
In the vicinity of zero Reynolds number, close to the marginal
curve, the growth rate increases rapidly as De is increased
indicating a large sensitivity of the stability characteristics
with respect to De.

Moreover, considering three-dimensional spanwise peri-
odic perturbations for the cases analyzed here it was found that
the least stable solution was always two dimensional. Finally,
a general observation regarding the shape of the least stable
disturbances, independently of the value of the parameters
Re,De, and 
, is that the vertical velocity component remains
constant unlike the other components. A quantification regard-
ing the onset of the instabilities in terms of interaction with
the basic flow is considered in Sec. IV by analyzing the energy
equation for the linearized system.

IV. ENERGETIC CONSIDERATIONS

In this section we address the emergence of network
instabilities in terms of the energy equation for the velocity
perturbation. This latter equation follows from Eqs. (7) and (8).
Multiplying both sides of Eq. (8) by wα , averaging over
the periodicity box (an operation denoted by brackets) and
exploiting the solenoidal condition (7) one obtains

∂tE = −〈wαwβ∂βUα〉 − 2 〈μb e′
αβe′

αβ〉 − 2 〈μ′Eαβe′
αβ〉,

(12)

where E = 1
2 〈wαwα〉. All divergence terms, once averaged,

are identically zero due to the periodic boundary conditions.
From the above equation one recognizes the production

term (first term on the right-hand side), the viscous dissipation
(second term on the right-hand side) and, finally, the new term
originated from the contribution of the network to the fluid
kinetic energy.

In the purely Newtonian case, instabilities appear when
the production term becomes negative and overcomes viscous
dissipation. In the present non-Newtonian case the situation is
more complicated and follows from a detailed balance between
production, viscous dissipation, and the contribution from the
network.
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We first explore the case De = 0 corresponding to an
instantaneous reaction of the network to shear. Equation (9)
reduces to

σ = 8
2Eαβe′
αβ, (13)

and the second of Eqs. (11) becomes

μ′ = 4
2(1 + 	)
n−3

2 (n − 1)Eαβe′
αβ

Re
. (14)

Inserting Eq. (14) into the third term of Eq. (12), one obtains

〈μ′Eαβe′
αβ〉= 〈4
2(1 + 	)

n−3
2 (n− 1)Eαβ e′

αβErs e′
rs〉

Re
, (15)

which shows, because of its positive sign, the absence of
network-induced instabilities for shear-thickening fluids (i.e.,
n > 1). Interestingly, the above quantity is negative for n < 1
(i.e., for shear-thinning fluids). In these cases, however,
both viscous dissipation and production turned out to act to
stabilize possible instabilities induced by the network. These
results quantitatively confirm our main claim that a finite-time
network response is the crucial ingredient for instabilities in
the relevant limit of vanishing inertia to emerge.

To better understand the physical mechanism at work in
rheopectic fluids when instabilities for vanishing inertia are
triggered, let us move to the Lagrangian view of Eq. (9). For
large 
 and De such an equation can be integrated along the
characteristics [defined by ẏ(τ ) = U( y(τ ))] to obtain

σ (x,t) = σ (x,0) −
+ 4
2

∫ t

0
wα( y(τ ),τ )∂α [Eab( y(τ ))Eab( y(τ ))] dτ,

(16)

where x = y(t). The integral in Eq. (16) represents the
sum of the base-flow squared strain-rate variations along
the Lagrangian trajectories, built with velocity perturbations
alone, measured along the characteristics of the base flow. The
crucial difference with respect to the shear-thickening case
(where the sign of μ′ coincides with that of Eαβe′

αβ with the
result that the network reduces the fluid kinetic energy) is that
now σ (x,t) [and thus μ′(x,t) as it follows from the second of
Eqs. (11)] can be either positive or negative depending on the
past evolution of the base-flow squared strain rate. Network
instabilities arise when, for a given sign of Eαβ(x)e′

αβ(x,t), μ′
acquires the opposite sign.

Although a similar mechanism might work also in the
thixotropic case, from our previous analysis both viscous
dissipation and the classical production term are always able
to stabilize possible instabilities induced by the network.

Let us now continue our analysis focusing on the different
contributions in Eq. (12). Because all terms in Eq. (12) are real
and involve products of perturbations, the temporal structure
of each term is proportional to exp[2kIm(c)t]. Prefactors in
front of each term is a number (i.e., time independent) and its
sign determines if the contribution stabilizes or destabilizes the
system. To understand the role of different terms in Eq. (12),
the model with De = 
 = 4 and n = 1.3 has been considered
and the Reynolds number is varied from Re = 0 to Re = 2.5.
This latter value is larger than the purely hydrodynamic
threshold to instability (corresponding to Re = √

2). As one

FIG. 5. Energy balance for De = 
 = 4 and n = 1.3. Along the
ordinates we report the different contributions to the total logarithmic
derivative, ∂tE/E, from Eq. (12). The symbols represent production
(· · · ), dissipation (- -), network (- · -), and total (−), respectively. The
last has been scaled by a factor of 10 for readability.

can see in Fig. 2, for these parameters instabilities are predicted
for all Re. It is now interesting to investigate whether,
for different Re, different mechanisms of instability arise.
The result of this analysis is reported in Fig. 5, where the
contributions to the logarithmic derivative of Eq. (12), ∂tE/E,
arising from the three terms on the right-hand side of Eq. (12)
are shown.

The scenario emerging from this figure can be clearly
explained. As expected, for arbitrarily small Re, instability
is caused by the term associated with the network. Its
contribution becomes smaller and smaller up to a critical Re (of
about 1.1 in Fig. 5) above which the classical hydrodynamics
term dominates the scene. In this regime, the contribution from
the network tends to stabilize the system acting as a sort of
enhanced molecular viscosity.

V. MULTIPLE-SCALE EXPANSION

The fact that the most unstable perturbation is on scales
much larger than that of the basic flow (k � 1) suggests
the possibility of capturing network instabilities by means of
asymptotic perturbative methods. To investigate this possibil-
ity, let us denote by ε the ratio of small to large scales as the
natural perturbative parameter in a multiple-scale expansion
[21]. According to this technique, let us introduce a set of slow
variables (x̃ = εx, t̃ = ε2t) in addition to the fast variables
(x,t) to describe the evolution of the basic flow. The scaling
of the slow time t̃ is suggested by physical reasons: we are
expecting a diffusive behavior at large scales and the relation
between space and time is thus assumed to be quadratic.

The multiple-scale technique [21] treats slow and fast
variables as independent in order to capture the secular
effects shaping the macroscopic dynamics. The differential
operators appearing in Eqs. (7)–(10) transform according to the
chain rule as ∂i → ∂i + ε∂̃i and ∂t → ∂t + ε2∂̃t where i = 1,2
denotes x and y and the tilde over the differential operators
means differentiation with respect to slow variables. Owing
to the linear character of the differential problem (7)–(10) the
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field amplitudes can then be rescaled out so that φ ≡ (w,q,σ )
is expanded as

φ = φ(0) + εφ(1) + ε2φ(2) + · · · , (17)

where all functions depend on (y,t,x̃,ỹ,t̃) and have the same
periodicity as the basic state.

Once Eq. (17) are plugged into Eqs. (7)–(10), the sought
large-scale equation emerges from the solvability condition at
the second order. In terms of the large-scale stream function
defined by the relationships〈

w(0)
x

〉 = ∂̃y�,
〈
w(0)

y

〉 = −∂̃x�, (18)

where brackets denote averages over the periodicity box, the
large-scale equation has the diffusive form

∂̃t ∂
2� = ναβ ∂̃2

α∂̃2
β�, (19)

where ναβ is the so-called eddy-viscosity tensor [22]. Unlike
what happens for a passive scalar [23–25], here the eddy
viscosity can be either positive or negative definite (see, e.g.,
Ref. [26] for a relevant example of negative eddy viscosity for
Newtonian fluids). Negative eddy viscosity is the fingerprint
of large-scale instabilities.

The problem here is thus reduced to study the sign of the
operator ναβ ∂̃2

α∂̃2
β , a fact that can be easily done in Fourier

space. To do so, let us define θ to be the angle between the
perturbation and the basic flow. Longitudinal perturbations
correspond to θ = 0 while transverse perturbations correspond
to θ = π/2. The stability of the system is obtained when As2 +
Bs + C = 0 ∀ s � 0 where s = tan2 θ and the coefficients
A, B, and C are nontrivial functions of 
, Re, De, and n.
Their expressions are long and do not add any particular
information and will therefore be reported elsewhere. We wish
to point out that to obtain these coefficients we performed a
(regular) perturbative expansion for small 
, here up to the
fourth order. The level of accuracy of the two combined
expansions, the multiple-scale expansion, and the small-

expansion, can be seen in the right-hand part of Fig. 1 in
the parameter space Re-De for 
 = 0.3 and n = 1.3. The
agreement between the perturbative prediction (open circles)
and that from the numerical strategy (continuous line) is
excellent: the multiple-scale expansion thus correctly captures
network instabilities.

VI. CONCLUSIONS

A class of purely non-Newtonian instabilities originated
by the finite-time response to shear of an underlying

non-Newtonian fluid has been investigated both analytically,
by means of multiple-scale expansions, and numerically by
solving the eigenvalue problem associated with the linear
stability analysis of the system.

The main result was the identification of the key physical
character a general non-Newtonian fluid has to posses to trigger
instabilities even for arbitrarily small fluid inertia. A fluid
must react to shear variations in a finite time (compared to
the hydrodynamic time scale). Furthermore, the change of
viscosity induced by shear variations must be as in rheopectic
fluids, i.e., viscosity must increase for increasing shear and
this change must occur in a finite time. In this respect, both
shear-thinning and shear-thickening fluids do not have the
right properties to trigger instabilities arbitrarily close to zero
Reynolds number. Their adjustment time to shear variations
indeed occur almost instantaneously (i.e., De ∼ 0). The same
holds true also for thixotropic fluids. The reaction time is
finite in this case as for rheopectic fluids but an increasing
shear is here associated with a high-to-low transition in
the viscosity. As shown by the present analysis, this latter
property does not allow instability at vanishing inertia to
emerge.

It also clearly emerges that geometry (i.e., phenomena of
alignment of the network with the flow) does not play any role
here. The network indeed manifests its effects via a scalar field
and not via a tensor field as, for example, in the Oldroyd-B
model for polymer transport.

Our findings call for numerical investigations and experi-
ments on the deeply nonlinear stage, both for the Kolmogorov
flow and for more realistic flow configurations: a natural and
speculative question indeed arises on the possible existence
of enhanced mixing regime that we can dub “network
turbulence.” The possible existence of this regime is of
paramount importance in microfluidic devices to generate
mixing otherwise impossible for Newtonian fluids due to
negligible inertia. Our fluid model applies to the class of
rheopectic fluids, not necessarily viscoelastic. Our results call
for fundamental research in the field of smart materials to
synthesize optimal fluid solutions highlighting the rheological
properties responsible for the instability mechanism here
identified.
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