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Optimization of steady suction for disturbance control on infinite
swept wings
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We present a theory for computing the optimal steady suction distribution to suppress convectively
unstable disturbances in growing boundary layers on infinite swept wings. This work includes
optimization based on minimizing the disturbance kinetic energy and the integral of the shape factor.
Further, a suction distribution in a continuous control domain is compared to an approach using a
number of discrete pressure chambers. In the latter case, the internal static pressures of these
chambers are optimized. Optimality systems are derived using Lagrange multipliers. The
corresponding optimality conditions are evaluated using the adjoint of the parabolized stability
equations and the adjoint of the boundary layer equations. Results are presented for an airfoil
designed for medium range commercial aircraft. We show that an optimal suction distribution based
on a minimization of the integral of the shape factor is not always successful in the sense of delaying
laminar-turbulent transition. It is also demonstrated that including different types of disturbances,
e.g., Tollmien–Schlichting and cross-flow types, in the analysis may be crucial. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1597684#
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I. INTRODUCTION

Reducing the viscous drag on a wing while maintaini
operational properties such as lift for example, is of gr
interest and the research in this area is vast.1 It is known that
the viscous drag increases dramatically as the boundary l
flow changes from a laminar to a turbulent state. Therefor
decrease in drag can be seen as increasing the laminar
tion of the wing, or moving the point of laminar-turbulen
transition downstream. Transition in the boundary layer
aircraft wings is usually caused by breakdown of small d
turbances which grow as they propagate downstream.
growth of these disturbances can be analyzed using lin
stability theory in which it is assumed that perturbations w
infinitely small amplitude are superposed on the lami
mean flow. The growth rate can then be used to predict
transition location using the so-calledeN method.2,3 Here it is
assumed that transition will occur at the location where
total amplification of the disturbance, with respect to the fi
streamwise position where the disturbance starts to g
attains an empirically determined value, whose logarithm
generally denoted byN.

The stabilization effect of steady boundary layer suct
on disturbance growth is well known4 and has been utilized
for laminar flow control, for an extensive review see Josli1

However, in most cases the design of suction distributi
relies on the experience of the engineer which may not
ways give the optimal solution, i.e., to give the largest de
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of laminar-turbulence transition at a given suction power.
the last 10 years, the development of optimal control the
and its application to fluid mechanics problems has b
rapid and a number of attempts have been made to optim
the steady suction distribution in order to control the grow
of disturbances, e.g., Hill,5 Balakumar and Hall,6 Cathalifaud
and Luchini,7 Pralits et al.,8 Airiau et al.9 In all of these
works the optimization methods are gradient based and
lize the potential of adjoint methods to obtain the gradie
of interest. Other investigations including those by Mugha10

Walther et al.,11 Högberg and Henningson12 consider un-
steady suction/blowing. This approach may not be suita
for flow control on aircraft wings at the present time13 due to
the complexity of its implementation. A common approach
these works6–9 is to minimize some measure of the distu
bance growth, either the disturbance kinetic energy7–9 or the
N-factor.6 Airiau et al.,9 in contrast to the others, did also tr
to minimize the shape factor which for 2D disturbances in
2D boundary layer should result in a suppression of dis
bance amplification. Minimizing the shape factor is a mo
heuristic approach based on the knowledge that in such fl
the two-dimensional disturbances are stabilized by any th
ning of the boundary layer. Their results showed that an
timal suction distribution based on minimizing the shape f
tor does have a damping effect on the disturbance grow
The advantage of this approach is that only one state e
tion has to be solved which saves computational time
negative aspect of not explicitly minimizing a measure of t
disturbances is that one cannot know if the computed suc
distribution will have a damping effect on the disturbanc

s

6 © 2003 American Institute of Physics
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2757Phys. Fluids, Vol. 15, No. 9, September 2003 Optimization of steady suction for disturbance control
This has to be calculated afterwards, once the optimal s
tion distribution is obtained.

In Pralitset al.8 the idea of multidisturbance control wa
introduced. The reason behind it is that, for certain types
flows, it is not clear which types of disturbances will b
dominant in terms of amplification. An example is the Bl
sius flow in which, depending on the initial amplitudes,
ther two-dimensional Tollmien–Schlichting~TS! waves or
streamwise streaks grow the most. In three-dimensio
boundary layers on wings there is usually a streamwise
gion close to the leading edge with a strong negative p
sure gradient, where cross-flow waves are the most ampl
disturbances. Further downstream, where the pressure g
ent is zero or positive, TS waves are the most amplified o
When computing an optimal suction distribution it is al
necessary to make sure that the mean flow modification
to a computed suction distribution for a specific disturban
does not trigger the growth of other disturbances.

In real applications, steady boundary layer suction
usually done using a number of discrete pressure cham
~see, e.g., Reneaux and Blanchard,14 Ellis and Poll,15 Preist
and Paluch,16 Bieler and Preist,17 Joslin1!. In such cases, the
suction velocity is a function of the surface porosity, ho
geometry and the pressure difference between the pres
distribution on the wing and static pressure in t
chambers.16,17 This means that the size, position and the
ternal static pressure of each chamber are the design
ables. The suction distribution is then given by the spec
choice of these parameters. Atkin18 used an engineering ap
proach to design of the suction system in which he utiliz
the stability characteristics of the flow. Here, the static pr
sure in the pressure chambers, based on an automatized
and error technique, were chosen such that the amplifica
of disturbances stayed under a specified value.

Most of the previous works6–9 on optimal steady suction
deal with incompressible boundary layer flows on flat plat
Hill 5 analyzed an infinite swept wing for inverse design
laminar boundary layers but no details were given of h
this was done. The considered suction distributions h
been applied in a continuous6–9 or a number of discrete con
trol domains.9 However, so far no study has shown how
incorporate the use of pressure chambers in order to
proach a real application.

In this paper we extend the work by Pralitset al.,8 to
compressible boundary flows on infinite swept wings. H
we compare the case of minimizing the disturbance kin
energy with the simplified approach9 of minimizing the inte-
gral of the shape factor. The feasibility of the control is a
dressed by comparing two different ways of computing
suction distribution: a continuous distribution of mass fl
on the wall in a control domain, and a number of discr
pressure chambers, which constitutes a more realistic
proach to obtaining a suction distribution on the wall. T
evolution of disturbances is analyzed using the paraboli
stability equations~PSE! ~see Bertolottiet al.,19 Malik and
Balakumar,20 Simen,21 Herbert22!, and the laminar mean flow
is computed using the two-dimensional three-compon
boundary layer equations~BLE!. We use optimal contro
theory, in which the aim is to minimize a given objectiv
Downloaded 07 Oct 2004 to 193.205.183.44. Redistribution subject to AI
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function with state equations and the control energy as c
straints. The problem is solved using a Lagrange multip
technique, which yields an optimality system consisting
state and corresponding adjoint equations from which an
timality condition is evaluated. Here, we couple the adjo
of the PSE with the adjoint of the boundary-layer equatio
in order to find the optimality condition. The derivation o
the optimality system is similar to that presented in Pra
et al.8 and is therefore presented here in a more comp
form. Results are presented for control of disturbance gro
in a boundary layer on a wing designed for commercial a
craft.

II. PROBLEM FORMULATION

The flow field considered here is the boundary layer o
swept wing with infinite span which is obtained by solvin
the mass, momentum, and energy conservation equation
a viscous compressible fluid. The equations are written in
orthogonal curvilinear coordinate system with streamwi
spanwise, and wall-normal coordinates denoted asx1, x2,
andx3, respectively, see Fig. 1. A length element is defin
as ds25(h1 dx1)21(h2 dx2)21(h3 dx3)2 where hi is the
scale factor. The total flow field,qtot is decomposed into a
mean,q̄, and a perturbation part,q̃, as

qtot~x1,x2,x3,t !5q̄~x1,x3!1q̃~x1,x2,x3,t !,

whereq̄P@U,V,W,P,T,r# andq̃P@ ũ,ṽ,w̃,p̃,T̃,r̃ #. HereU,
V, W are the streamwise, spanwise and wall-normal veloc
components of the mean flow, respectively,T is the tempera-
ture,r the density, andP the pressure. The respective low
case variables correspond to the disturbance quantities.
equations are derived for a quasi-three-dimensional m
flow with zero variation in the spanwise direction. The ev
lution of convectively unstable disturbances is analyzed
the framework of the nonlocal stability theory. The me
flow and disturbance equations in the following sections
given in dimensionless form. All flow and material quantiti
are made dimensionless with the corresponding refere
flow quantities at a fixed streamwise positionx0

!, except the
pressure, which is referred to twice the corresponding
namic pressure. Here, dimensional quantities are denote
the superscript!.

The reference length scale is taken asl 0
!

5(n0
!x0

!/U0
!)1/2. The Reynolds and Mach number are defin

as Re5l0
!U0

!/n0
! and M5U0

!/(RgT0
!)1/2, respectively, where

R is the specific gas constant,n the kinematic viscosity, and

FIG. 1. Definition of the coordinates for the infinite swept wing.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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g the ratio of the specific heats. In the proceeding secti
the scale factorsh2 , h351 are due to the infinite swept win
assumption.

A. Mean-flow equations

The dimensionless boundary layer equations~BLE! writ-
ten in primitive variable form can be seen in Appendix A a
are here written in symbolic form as

LBQ50, ~1!

whereQ5(U,V,W,T)T. The suction distribution is impose
using the wall normal velocity component at the w
Ww(x1)5W(x1,0). Non-slip conditions are applied to th
other velocity components and we assume an adiabatic
condition for the temperature. Equation~1! is integrated from
the stagnation point in the downstream direction norma
the leading edge. Note that for the boundary layer appro
mation to be valid, the wall normal velocity at the wall,Ww ,
should be ofO(Re21). Here, it is assumed that the pressu
distribution on the airfoil does not change as the suct
distribution is applied. If the suction distribution would resu
in a large change in the boundary layer thickness, the
might be necessary to update the pressure distribution in
optimization process.

B. Disturbance equations

The perturbations are assumed to be time and span
periodic waves as

q̃~xi ,t !5q̂~x1,x3!Q,

where

Q5expS i E
X0

x1

a~x8!dx81 ibx22 ivt D . ~2!

Herea is the complex streamwise wave number,b the real
spanwise wave number andv the real disturbance angula
frequency.X0 is the initial streamwise position where th
disturbances are superimposed on the mean flow. We ass
a scale separation Re21 between the weak variation in thex1

direction and the strong variation in thex3 direction. Further,
it is assumed that]/]x1;O(Re21) andW;O(Re21). Intro-
ducing the ansatz given by Eq.~2! and the assumption
above in the linearized governing equations, yields a se
nearly parabolic partial differential equations.19–22 The sys-
tem of equations, denoted parabolized stability equati
~PSE!, can be seen in Appendix A and are here written
symbolic form as

LPq̂50, ~3!

whereq̂5( r̂,û,v̂,ŵ,T̂)T. Hereû, v̂, ŵ, andT̂ are subject to
Dirichlet boundary conditions. To remove the ambiguity
havingx1 dependence of both the amplitude and wave fu
tion in the ansatz, and to maintain a slow streamwise va
tion of the amplitude functionq̂, a so-called auxiliary con-
dition is introduced

E
0

1`

q̂H
]q̂

]x1 dx350, ~4!
Downloaded 07 Oct 2004 to 193.205.183.44. Redistribution subject to AI
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where superscriptH denotes the complex conjugate tran
pose. Equation~3! is integrated in the downstream directio
normal to the leading edge with an initial condition given
local stability theory. At eachx1 position the streamwise
wave numbera is iterated such that the condition given b
Eq. ~4! is satisfied. After a converged streamwise wave nu
ber has been obtained, the growth rate of the disturba
kinetic energy can be calculated from the following relatio

s52a i1
]

]x1 ~ lnAE!,

where

E5E
0

1`

r~ uûu21uv̂u21uŵu2!dx3.

The growth rate can then be used to predict the transi
location using the so-calledeN method.2,3 TheN-factor based
on the disturbance kinetic energy is given as

NE5E
Xn1

X

s dx1,

whereXn1 is the lower branch of the neutral curve. A com
plete description of Eq.~3! is found in Pralitset al.,23 and
corresponding numerical schemes used here are give
Hanifi et al.24

III. OPTIMAL CONTROL

The approach of the current work is to use optimal co
trol theory to find the optimal mean flow suction distributio
in order to suppress the growth of convectively unstable d
turbances. In this paper we investigate different control va
ables and objective functions. First, a general introduction
given in this section. Then follows a concise description
the Lagrange multiplier technique applied to the problem
minimizing a measure of the disturbances using the m
flux on the wall (ṁw5Wwrw) as control variable.

The problem consists of the state variablesQ and q̃; a
control variable given by the mass flux on the wall; co
straints on the state variables given by the BLE and PSE;
an objective function, a measure of the state, to be m
mized.

The final goal of boundary-layer suction is to increa
the laminar portion of the wing, i.e., to move the location
laminar-turbulent transition further downstream, and thus
crease the viscous drag. It is therefore important that
chosen objective function can be related to the transit
process. One choice is to measure the kinetic energy
certain disturbance at a downstream position, sayXf . This
can be written as

Ef5
1

2 EZ0

Z1E
0

1`

q̃HM q̃h1 dx2 dx3, ~5!

whereMk5diag(0,1,1,1,0) which means that the disturban
kinetic energy is calculated from the disturbance veloc
components. Hanifiet al.25 used a measure which also in
cluded r̂ and T̂. If the positionXf is chosen as the uppe
branch of the neutral curve, then the measure can be rel
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2759Phys. Fluids, Vol. 15, No. 9, September 2003 Optimization of steady suction for disturbance control
to the maximum value of theN factor.9 If in addition, the
value of theN factor of the measured disturbance is the o
which first~with zero control! reaches the transitionN factor,
then the position can be related to the onset of lamin
turbulent transition. It is, however, not clear,a priori, that
such a measure will damp the chosen disturbance or o
ones in the whole unstable region, especially if differe
types of disturbances are present, such as TS and cross
waves. For Blasius flow, it has been shown that an objec
function based on a single TS wave is sufficient to succe
fully damp the growth of other TS waves.8,9 On a wing how-
ever, it is common that both TS and cross-flow waves
present. An alternative is therefore to measure the kin
energy as the streamwise integral over a defined dom
Using such an approach several different disturbances,
respective maximum growth rate at different positions, c
be accounted for in the same domain. Here, the size oK
disturbances superimposed on the mean flow at an upst
positionX0 , is measured by their total kinetic energy as

EV5 (
k51

K
1

2 E
Xms

XmeE
Z0

Z1E
0

1`

q̃k
HMkq̃kh1 dx1 dx2 dx3. ~6!

We now define the objective function based on the dis
bance growth as

J05jEV1~12j!Ef , ~7!

where the parameterj can be chosen between zero and o
depending on the quantity one wants to minimize. In orde
have a well-posed problem, the control needs to be boun
This is done by quantifying the control effort as

EC5E
Xcs

Xce
ṁw

2 h1 dx1. ~8!

This measure has a physical meaning and also enables
parison of efficiency of different objective functions. Takin
the square ofṁw means that both blowing and suction w
be accounted for inEC .

A concise description of the objective can now be ma
find the controlṁw , and corresponding statesQ andq̃ which
minimizes the objective functionJ0 with the constraints
given by Eqs.~1!, ~3!, ~4!, and~8!. We now use a Lagrang
multiplier technique to replace the original constrained pr
lem with an unconstrained one, see, e.g., Gunzburger.26 In
order to enforce the constraints we introduce the adjoint v
ablesQ* , q* , r * , l* , x* and the Lagrangian functional

L5J02J1 , ~9!

where

J15^Q* ,LBQ&1E
Xcs

Xce
l* @ṁ~x1,0!2ṁw#h1 dx11x* S EC

2E
Xcs

Xce
ṁw

2 h1 dx1D 1^q* ,LPq̂&1 K r * q̂,
1

h1

]q̂

]x1L 1c.c. ,

where c.c. denotes the complex conjugate. The inner p
ucts ^•, •& appearing above are defined as
Downloaded 07 Oct 2004 to 193.205.183.44. Redistribution subject to AI
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^c,f&5E
X0

X1E
Z0

Z1E
0

1`

cHfh1 dx1 dx2 dx3, ~10!

for complex valued vectorsc andf. We can now define the
problem as follows: find the controlṁw , statesQ, q̃ and
adjoint variablesl* , x* , Q* , q* , and r * such thatL is
rendered stationary according to the first-order neces
condition for an extremal point. This is done by setting t
first variation ofL with respect to the variables considere
here to zero, while each ofL’s arguments are considered
be independent variables. This requirement comes from
fact that at an extremal point the first variation ofL with
respect to each variable vanishes. We start by setting the
variation ofL with respect to each adjoint variable to zer
which gives the state equations~1!, ~3!, and ~4!, and the
constraint on the control effort, Eq.~8!. We continue by set-
ting the first variation of the state variablesq̂, a, andQ to
zero. After a procedure which involves successive integ
tions by parts,8 this yields the adjoint equations

LP* q* 5SP* , ~11!

]

]x1 E
0

1`

q* H
]LP

]a
q̂h1 dx3

5H 0 ;x1¹@Xms,Xme#,

2 iuQu2E
0

1`

q̂HM q̂h1 dx3 ;x1P@Xms,Xme#,
~12!

LB* Q* 5SB* , ~13!

where q* 5(r* ,u* ,v* ,w* ,u* )T and Q* 5(U* ,V* ,
W* ,T* )T. Equation~11! is the adjoint of the PSE~APSE!
whereu* , v* , w* , andu* are subject to Dirichlet boundar
conditions. The right-hand sideSP* is due to the auxiliary
condition of the PSE and the objective function. Equati
~12! is a closure relation obtained by setting the first var
tion of L with respect to the streamwise wave numbera to
zero. At each streamwise position,r * is solved iteratively
such that Eq.~12! is satisfied. Equation~13! is the adjoint of
the BLE~ABLE! and the right-hand sideSB* is the sensitivity
of the PSE with respect to the mean flow. Both the APSE a
ABLE are parabolic equations which are solved by backw
integration in the streamwise direction. The above equati
are found in Appendix A 2, and the complete derivations
found in Pralitset al.23 and Pralits.27 Finally, we set the first
variation of L with respect toṁw to zero which gives the
so-called optimality condition as

Ww* 12x* ṁw50. ~14!

The left-hand side of the above expression is the gradien
the Lagrangian functional with respect to the mass flux at
wall. As shown in Eq.~9!, x* is the adjoint variable used to
enforce the control effort and can be solved iteratively in
optimization by substituting Eq.~14! into Eq. ~8! as

x* 5S 1

4EC
E

Xcs

Xce
Ww*

2h1 dx1D 1/2

. ~15!

The complete optimality system contains Eqs.~1!, ~3!, ~4!,
and ~11!–~15! which can be found in Appendix A.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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A. Solution procedure

The procedure of solving the optimization problem d
rived in Sec. III is described here. We start by consider
the case of minimizing a single disturbance, i.e.,K51 in Eq.
~6!.

The optimal distribution of the mass flow is foun
through an iterative procedure. During each iteration s
we perform successive calculations of boundary layer
stability equations fromX0 to X1 ; and adjoint boundary
layer and stability equations fromX1 to X0 . Then, a new
mass-flow distribution is computed using the gradient inf
mation given by solution of the adjoint equations. Here
use the L-BFGS-B optimization routine, see Zhuet al.,28

Byrd et al.29 The calculations are repeated until the relat
change in the objective function is less than a prescri
value.

If K.1 in Eq. ~6! then instead of solving both state an
adjoint equationsK times, we can utilize the fact that th
ABLE are linear equations. In this case the optimality co
dition is evaluated as follows: the BLE is solved once; t
PSE and APSE are solvedK times; the forcing of the ABLE,
SB* , is calculated as

SB* 5 (
k51

K

SBk
* .

Finally, the optimality condition is evaluated from a sing
calculation of the ABLE.

The results presented here are obtained by numeric
integrating the discretized state and adjoint equations. Thx1

derivatives are approximated by a first- or second-order
curate backward Euler scheme. Thex3 derivatives of the
PSE and APSE are approximated by a fourth-order accu
compact finite-difference scheme and a second-order a
rate finite-difference scheme for the BLE and ABLE. T
convergence criteria is (Jk112Jk)/Jk,1024, wherek de-
notes the iteration number in the optimization procedu
Further, in all calculations the initial guess on the suct
profile, ṁw

in , has been varied to make sure that the optim
solution does not depend on the initial state.

B. Case studied

The flow studied here is the boundary layer on the up
side of a wing designed for commercial aircraft. The flo
conditions are characterized by a free stream Mach num
M`50.8, temperatureT`5230 K, Reynolds number Re`

53.043107 and leading edge sweep anglef le530.2°. The
control domain,Gc5@Xcs ,Xce#, available for mounting the
Downloaded 07 Oct 2004 to 193.205.183.44. Redistribution subject to AI
-
g

p,
d

-
e

d

-

lly

c-

te
u-

.
n
l

r

er

suction system has been specified by the manufacturer.
control domain is limited in the upstream direction, 0,s/c
,0.006, by a suction strip used to control the stagnation
and in the downstream direction by the front spar (s/c
50.17). Heres is the arc-length normal to the leading ed
measured from the stagnation point andc is the chord length.
The suction strip at the stagnation line is case specific
will be held unchanged. However, this does not create
difficulties in the optimization procedure. In Fig. 2 the pre
sure coefficientCp is plotted as a function ofs/c. The avail-
able control domain 0.006<s/c<0.17 is also indicated in
this figure as a black box.

Parameters for the disturbances analyzed here are g
in Table I. At the initial streamwise position (s/c
50.0075), the flow has a strong favorable pressure grad
and the mean flow velocity component perpendicular to
outer streamline has an inflection point. There, waves w
the wave number vectork approximately perpendicular to
the outer streamline have positive growth rate. These are
so-called cross-flow~CF! waves. Further downstream (s/c
50.05) where the pressure gradient is weaker and adve
Tollmien–Schlichting~TS! waves are amplified. The angle
between the wave number vectors of the TS waves analy
here and the outer streamline are 0–60 degrees. In Fig. 3
envelope of envelopes~EoE! of the NE-factor curves are
plotted for the CF and TS disturbances given in Table I a
for zero suction rate.

The control effort which is quantified by Eq.~8! depends
on the specific suction system chosen, i.e., compressors
tubing. We have therefore chosen a number of different m

FIG. 2. The pressure distribution,Cp , as a function of the arc-length norma
to the leading edge,s/c. The black box shows the available control doma
Gc .
TABLE I. Initial position (s/c5X0), dimensional frequency (f * ), dimensional spanwise wave number (b* )
and type of disturbances analyzed (CF5cross-flow wave, TS5Tollmien–Schlichting wave!. D f * and Db*
denote respective dimensional step-length.

X0 f * D f * b* Db* Type

0.0075 @1000, 8500# 500 @1000, 6000# 500 CF
0.0075 0 0 @500, 6500# 500 CF
0.05 @2250, 9500# 250 0 0 TS
0.05 @2250, 7000# 250 @25, 225# 50 TS
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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nitudes ofEC to examine the dependency of the achiev
stabilization on the amplitude of the control energy. Here
introduce a new parameterQC5EC Rè . In our calculations
the values ofQC are chosen so that a noticeable cont
effect is achieved and to avoid the magnitude of mean w
normal velocity~at the wall! Ww exceedingO(Re21). This
was checked after each calculation.

C. Results

Results are shown here for minimization of the dist
bance kinetic energy, Eq.~7!, in which j has been chose
depending on the desired objective function. Whenj51, the
measure is given as the sum of the kinetic energy ofK dis-
turbances. Before the optimization is performed, it has to
decided if one or several disturbances should be includ
One of the conclusions from Pralitset al.8 and Airiauet al.9

was that the optimal suction distribution for a given distu
bance will also have a damping effect on other disturban
of the same type. The reason for including more than
disturbance in the measure8 is that in some cases it is no
clear which type of disturbance will cause laminar-turbule
transition first. Another reason is that if different types
disturbances are present in the flow, then the mean-fl

FIG. 3. Envelope of envelopes ofNE-factor curves for the two disturbanc
types given in Table I for the case of zero suction.

FIG. 4. Optimal suction distributions,ṁw , minimizing the disturbance ki-
netic energy of a CF wave (f * 55500 s21, b* 52500 m21) measured as
EV ~dashed!, Ef ~solid!. QC50.35 and 0.58, and the arrow marks increasi
QC .
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modification that minimizes some measure of one type
disturbance may amplify rather than damp disturbances
another type. One should keep in mind that the larger nu
ber of disturbances considered, the more costly the opt
zation procedure will be.

As a first investigation, a comparison is made betwe
minimizing the kinetic energy of a single disturbance in
grated in a streamwise domain (j51), with the case of
minimizing the same disturbance at a final streamwise p
tion (j50).

Equation~6! is integrated betweenX0 and the end of the
control domain which means that the aim is to delay tran
tion at least up to this position.Xf in Eq. ~5! is chosen as the
position where the maximum disturbance kinetic energy
found over all disturbances in Table I, hereXf50.105. The
corresponding disturbance, which also has the largestEV

over all disturbances in Table I, is chosen as the one to m
mize in both cases. This disturbance is a CF wave with
mensional frequency and spanwise wave number
5500 s21 and 2500 m21, respectively. The calculations ar
performed forQC50.25, 0.35, 0.45, and 0.58.

The optimal suction distributions given by the tw

FIG. 5. Shape factor,H12 , given zero~dotted! and optimal suction distri-
bution from Fig. 4 minimizing the disturbance kinetic energy of a CF wa
( f * 55500 s21, b* 52500 m21) measured asEV ~dashed!, Ef ~solid!. QC

50, 0.35, and 0.58, and the arrow marks increasingQC .

FIG. 6. Envelope of envelopes ofNE-factor curves for the disturbance
given in Table I given zero~dotted! and optimal suction distribution from
Fig. 4 minimizing the disturbance kinetic energy of a CF wave (f *
55500 s21, b* 52500 m21) measured asEV ~dashed!, Ef ~solid!. QC

50, 0.35 and 0.58, and the arrows mark increasingQC .
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 7. Contours ofEV for CF waves comparing zero
~solid! and optimal suction distribution~dashed! mini-
mizing the disturbance kinetic energy of a CF wav
( f * 55500 s21, b* 52500 m21). Both cases are nor-
malized with their respective maximum value and th
contour spacing50.1. The control effortQC and the
ratio between the maximum values are, respectively,~a!
0.25, 1.431028; ~b! 0.35, 6.7310210; ~c! 0.45, 6.4
310211; ~d! 0.58, 5.5310212.
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different objective functions can be seen in Fig. 4. He
results are only shown for two different values of the cont
energy to make the plot more clear. The arrow indicates
direction of increasingQC and the uppermost streamwis
suction distribution is the fixed stagnation line control. It
interesting to note the similarity between the results wh
comparing the two objective functions as opposed to a s
lar comparison for control of TS waves reported
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Airiau et al.9 The reason for this may be that the growth a
decay of CF waves in the case analyzed here occurs ov
short streamwise interval, and as a consequence the gr
measured byEV approach that forEf . In all cases, the op-
timal control acts primarily in the region where a strong f
vorable pressure gradient exists and then decays fur
downstream. As the control effort is increased, the additio
control energy is concentrated to the beginning of the con
e

e

FIG. 8. Contours ofEV for TS waves comparing zero
~solid! and optimal suction distribution~dashed! mini-
mizing the disturbance kinetic energy of a CF wav
( f * 55500 s21, b* 52500 m21). Both cases are nor-
malized with their respective maximum value and th
contour spacing50.1. The control effortQC and the
ratio between the maximum values are, respectively,~a!
0.25, 0.21;~b! 0.35, 0.16;~c! 0.45, 0.1;~d! 0.58, 0.092.
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domain. The effect of the control on the shape factor is ho
ever small, which can be seen in Fig. 5.

The magnitudes of the suction distributions presented
this paper are all within the range of validity for the boun
ary layer equations, i.e., of orderO(Re21). This was inves-
tigated by Airiau et al.,9 where suction distributions with
magnitudes within the limits experienced locally rap
streamwise variations. They compared solutions from
Navier–Stokes equations with those using the bound
layer equations. They found that the pressure gradient f
the Navier–Stokes solution varies rapidly close to the s
tion peak but relaxes very rapidly downstream where it
comes small, in accordance with the parabolic assumptio
the boundary layer equations. They further showed t
shape factors from the boundary layer and Navier–Sto
solutions agree well and conclude that there is a weak
pendence of the shape factor on the mean pressure gra
and that the solutions of the boundary-layer equations
valid.

In Fig. 6, the EoE of theNE-factor curves of CF and TS
waves are plotted for the cases of zero and optimal suc
distributions shown in Fig. 4. In the control domain, the C
waves are more damped asQC is increased. However, down
stream of the control region the CF waves are increasin
amplified asQC is increased. As expected the TS waves
less affected by the controls since we know that the con
acts upstream of the region where the TS waves are am
fied.

In the results shown here, the optimal suction distrib
tions are based on minimizing a single disturbance only. T
damping effect of such a control on other disturbances of
same type can be seen from EoE curves given in Fig. 6

FIG. 9. Optimal suction distributions,ṁw , minimizing the disturbance ki-
netic energyEV of a CF (f 1* 55500 s21, b1* 52500 m21) and TS wave
( f 2* 55750 s21, b2* 5225 m21). QC50.35 and 0.58, and the arrow mark
increasingQC .
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Figs. 7 and 8, this has been emphasized by plotting cont
of EV for CF and TS waves in the (f * ,b* )-plane comparing
zero and optimal suction distributions for all values ofQC .
In all cases the kinetic energy of all disturbances has b
reduced. It is clear from the ratio between the maximu
value of EV for the zero and optimal control, that the C
waves are mostly affected. This is true for all values ofQC

studied here.
From these results, as discussed in Pralitset al.8 and

Airiau et al.,9 one can conclude that minimizing the distu
bance kinetic energy of one disturbance~in this case CF
waves! does have a damping effect on other disturbance
the same type. To confirm this, computations were also p
formed in which the TS wave with the largest total distu
bance kinetic energy was controlled. The suction distribut
from these calculations had a damping effect on all other
waves. These results are not shown here.

The absence of control in the region where the TS wa
are amplified can be overcome by adding a disturbance o
type in the objective function whenj51. Therefore, as a
next step both the CF and TS wave with the largestEV over
all respective disturbances in Table I are considered.
dimensional frequency and spanwise wave number for
TS wave are 5750 s21 and 225 m21, respectively, and the
calculations are performed with the same values ofQC used
for control of a single CF wave.

In Table II the ratio between the maximum values ofEV

for CF waves using optimal and zero suction are given. He
we compare the case of optimal suction based on minimiz
a CF wave with the case of minimizing the sum of a CF a
a TS wave. It is seen that the change of the ratio is sm
between the cases, even whenQC is increased. In Table III
the same comparison is done for the ratio of the maxim
values ofEV for TS waves. Here, it is clear that the ratio h
decreased when both CF and TS disturbances are consid
As the same amount of control effort is used, this means
QC is redistributed in the streamwise direction to control t
TS wave. The corresponding optimal suction distributio
are plotted in Fig. 9 for the cases whenEC50.35 and 0.58.
The suction distributions in the upstream part of the con
domain are similar to the ones in Fig. 4, but the magnitu
are smaller. Further downstream, the suction distribution
rather constant before it goes to zero at the end of the con
domain. The latter is similar to what is shown in Pral
et al.8 for control of two-dimensional TS waves in two
dimensional boundary layer flows when a small control
fort is used. The effect of the control on the shape facto
plotted in Fig. 10. Compared to the results given in Fig. 5
larger decrease ofH12 occurs in the downstream portion o
the control domain. The corresponding thinning of t
on
TABLE II. Ratio between maximum values ofEV for CF waves when zero and optimal suction distributi
minimizing the disturbance kinetic energy is applied. The ratio is calculated when Eq.~6! includes CF and
CF1TS for different values ofQC .

Disturbance QC50.25 QC50.35 QC50.45 QC50.58

CF 1.431028 6.7310210 6.4310211 5.5310212

CF1TS 2.231028 1.431029 5.7310211 1.1310211
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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TABLE III. Ratio between maximum values ofEV for TS waves when zero and optimal suction distributi
minimizing the disturbance kinetic energy is applied. The ratio is calculated when Eq.~6! includes CF and
CF1TS for different values ofQC .

Disturbance QC50.25 QC50.35 QC50.45 QC50.58

CF 2.131021 1.631021 1.031021 9.231022

CF1TS 6.131023 8.631023 1.131023 6.631025
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boundary layer is favorable in terms of damping the
waves. The EoE of theNE-factor curves are plotted in Fig
11. Here, the CF waves are less damped compared to
previous case, see Fig. 6. However, the TS waves are
more damped.

It is of interest to know if a larger reduction of the di
turbance kinetic energy can be obtained for a given con
effort if additional modes, apart from the two discussed he
are included in the calculations. Such a parameter study
been performed and the results show that the additional
crease in disturbance kinetic energy is small when m
modes are included. The reason is that the control ma
acts on the modes with the largest energy. Since the con
affects all other disturbances~shown here!, it will continue to
act on the mode with the initially largest energy even if a
ditional modes are included.

IV. SIMPLIFIED APPROACH

In design of suction distributions for the purpose of d
laying laminar-turbulent transition, it is important that th
procedure is not computationally expensive. The same a
ment can be made when designing on-line control syste
where fast feedback is needed. For this purpose, an alte
tive approach was analyzed in Airiauet al.9 for the control of
TS waves in incompressible flat-plate boundary layers.
their study the optimal suction distribution is computed
minimizing the streamwise integral of the shape factor. T
means that only the boundary layer and corresponding
joint equations are involved in the optimization proce
which is computationally more efficient. However, the effe
of the optimal suction distribution on the disturbance grow
is analyzed afterwards. This choice of objective function

FIG. 10. Shape factor,H12 , given zero~dotted! and optimal suction distri-
bution ~solid! from Fig. 9 minimizing the disturbance kinetic energyEV of
a CF (f 1* 55500 s21, b1* 52500 m21) and TS wave (f 2* 55750 s21, b2*
5225 m21). QC50, 0.35 and 0.58, and the arrow marks increasingQC .
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based on the knowledge that any thinning of the bound
layer has a stabilizing effect on the boundary layer. Succe
ful results are shown for control of TS waves. The positi
features of this approach motivates an investigation here

A. Optimality system

The objective function is now given as

J05E
Xms

Xme
H12h1 dx1,

where

H125
d1

d2
5

E
0

1`S 12
rUSL

reQe
Ddx3

E
0

1` rUSL

reQe
S 12

USL

Qe
Ddx3

. ~16!

Both the displacementd1 and momentum thicknessd2

are based on the velocity componentUSL5U cos(f)
1Vsin(f) which is in the direction of the outer streamlin
Heref5tan21(Ve/Ue) andQe5(Ue

21Ve
2)1/2. Now, only one

state equation is considered and the problem consists of
ing the controlṁw , and corresponding stateQ which mini-
mizesJ0 given the constraints shown in Eqs.~1! and ~8!.
The technique using Lagrange multipliers is also used her
enforce the constraints. The adjoint variablesQ* , l* , x*
are introduced and the new Lagrangian functional is given

L5J02J1 , ~17!

whereJ1 is now written

FIG. 11. Envelope of envelopes ofNE-factor curves for the disturbance
given in Table I given zero~dotted! and optimal suction distribution from
Fig. 9 minimizing the disturbance kinetic energyEV of a CF (f 1*
55500 s21, b1* 52500 m21) and TS wave (f 2* 55750 s21, b2* 5225 m21).
QC50, 0.35, and 0.58 and the arrows mark increasingQC .
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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J15^Q* ,LBQ&1E
Xcs

Xce
l* @ṁ~x1,0!2ṁw#h1 dx1

1x* S EC2E
Xcs

Xce
ṁw

2 h1 dx1D .

The derivation is performed as previously described wh
yields an optimality system which contains the BLE, Eq.~1!,
corresponding adjoint equation and optimality conditio
Compared to the previously derived ABLE, differences oc
in the boundary conditions and forcing termSB* . These dif-
ferences are due to the objective function, Eq.~16!. Details
of the optimality system can be seen in Appendix B.

B. Results

Results are shown here on minimizing the shape fac
First we consider control in the whole available domainGc ,
and the objective function is integrated in the same stre
wise region used for Eq.~6! in Sec. III C. The control efforts
in these calculations areQC50.1, 0.3, 0.58, 0.81, and 1.43
In Fig. 12 the shape factors for these cases are compare
that of the uncontrolled case. As the control effort is
creased, the shape factor is decreased within the major
of the control domain. Downstream of the control domain
small increase of the shape factor is observed. The co

FIG. 12. Shape factor,H12 for zero ~dotted! and optimal suction distribu-
tions ~solid! minimizing the shape factor.QC50, 0.1, 0.3, 0.58, 0.81, and
1.43 and the arrows mark increasingQC .

FIG. 13. Optimal suction distributions,ṁw , minimizing the shape factor
H12 . QC50.1, 0.3, 0.58, 0.81, 1.43 and the arrows mark increasingQC .
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sponding suction profiles are plotted in Fig. 13. Note that
uppermost streamwise suction distribution is due to the s
nation line control which is taken to be fixed. In all cases,
optimal control is divided roughly ats/c50.04 into blowing
upstream and suction downstream, and the magnitude o
control is increased in both regions asQC is increased. At
this position the flow goes from a strongly accelerating o
to a weekly decelerating one.

Compared to Fig. 3, one can see that the region of blo
ing is where the CF waves are amplified and the region
suction is where the TS waves are amplified. In Fig. 14
EoE of theNE-factor curves for CF and TS waves are plott
for zero and optimal suction distributions (QC

50,0.1,0.3,0.58,0.81,1.43). When control is applied, the
waves are completely stabilized in the control domain a
are then amplified downstream, except forQC50.1. The CF
waves are instead amplified in the region where blowing
curs and this becomes more pronounced asQC is increased.
For the airfoil analyzed here, this means that applying
optimal control based on minimizing the streamwise integ
of the shape factor will not delay but rather precipita
laminar-turbulent transition.

FIG. 14. Envelope of envelopes ofNE-factor curves for the two disturbanc
types given in Table I given zero~dotted! and optimal suction distribution
minimizing ~solid! the shape factor.QC50, 0.1, 0.3, 0.58, 0.81, 1.43 and th
arrows mark increasingQC .

FIG. 15. Comparison of optimal suction distributions for the cases of m
mizing the disturbance kinetic energy of a TS wave measured asEV ~solid!,
Ef ~dashed–dotted!, and the case of minimizing the shape factor~dashed!.
QC50.01, 0.05, and the arrow indicates increasingQC .
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In the results shown so far, the most efficient way
control CF waves is a suction distribution based on minim
ing the most amplified CF wave. The TS waves, on the ot
hand, have so far shown to be more efficiently control
using the suction distribution based on minimizing the sh
factor. In order to further investigate the control of TS wav
the case of minimizing the shape factor is compared with
cases of minimizing the integrated disturbance kinetic ene
of a TS wave and its value at a given streamwise posi
Xf . The latter two objective functions are obtained by sett
j equal to one and zero, respectively, in Eq.~7!. In this com-
parison, a smaller control domain,GC5@0.05,0.17#, is used,
as the TS waves are amplified downstream of the region w
negative pressure gradient. The disturbances are measu
Xf5Xce and in the control domain forj equals zero and on
respectively. For the comparison, a noticeable reduction
the disturbance growth is obtained choosing the control
fort asQC50.01 and 0.05. The corresponding suction dis
butions can be seen in Fig. 15. For the cases of minimiz
the shape factor, and the disturbance kinetic energy aXf

evenly distributed suction distributions are obtained for b
values ofQC . The suction distributions based on minimizin
the total disturbance kinetic energy, on the other hand, c
centrates the control effort close to the lower branch of
neutral curve. The corresponding EoE of theNE-factor
curves for TS waves are shown in Fig. 16 and are compa
with the uncontrolled case. In all cases when control is
plied a reduction of the disturbance growth is obtain
When the lower value of the control effort is used, the d
ference between the three approaches is small, see also
15. As the control effort is increased, the suction distribut
based on minimizing theEV completely stabilizes the distur
bances upstream ofs/c'0.12. The other two approache
due to the evenly distributed suction, produce a continu
thinning of the boundary layer and consequently lar
damping of disturbances downstream.

FIG. 16. Comparison of envelope of envelopes ofNE-factor curves for the
cases of minimizing the disturbance kinetic energy of a TS wave meas
asEV ~solid!, Ef ~dashed–dotted!, the case of minimizing the shape facto
~dashed!, and zero control~dotted!. QC50, 0.01, 0.05, and the arrow indi
cates increasingQC .
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V. CONTROL USING PRESSURE CHAMBERS

The most common approach for computing optimal s
tion distributions is to use the wall mass flux as the cont
variable.6,8,9 In a realistic setting, such as an experiment
suction systems used on wings, the suction velocity is a fu
tion of the surface porosity, hole geometry and the press
difference between the pressure distribution on the surf
and static pressure in a number of discrete chambers.1,14–17

The aim here is to derive the optimal control problem of S
III using the static pressures of a number of discrete cha
bers, with fixed size and position, as control variables.
will then compare the results with the previously comput
continuous suction distribution to assess the feasibility of
latter approach.

If a porous surface is used, then at least for flows w
low free-stream velocity, the relation between the press
difference and the suction velocity is linear, in accordan
with Darcy’s law. The relation between the pressure diff
ence and suction velocity used here is taken from Bieler
Preist.17 It is based on measurements carried out in
framework of the ELFIN~European Laminar Flow INvesti
gation! program. In dimensionless form this formula is give
as

DPj5
C1

rw
ṁw

2 1C2

mw

rw
ṁw ;x1P@Xcsj

,Xcej
#,

j 51,...,K, ~18!

whereDPj5Pe2Pcj
, in which Pe is the pressure distribu

tion on the wing andPcj
is the static pressure in chamberj.

The first term on the right-hand side of Eq.~18! is due to the
dynamic pressure loss, and the second term is the pres
loss due to skin friction. The coefficientsC1 andC2 together
with a brief description of Eq.~18! are given in Appendix C.
The choice of static pressure in the chambers is not with
restrictions. The Mach number of the flow through the ho
of the porous plate should be limited. IfDPj is too small
then blowing instead of suction might occur. Disturbanc
might be introduced as an effect of strong suction throu
discrete holes, which can accelerate instead of delay lami
turbulent transition.14,15 These restrictions are related to th
design of the perforated plate and therefore not considere
constraints in the theory presented here.

A. Optimality system

Here a concise description of the derivation of the op
mality system including pressure chambers is given for
case of minimizing the disturbance kinetic energy. The op
mal control problem is now defined as: find controlsPcj

, and
statesQ and q̃ which minimize the objective functionJ0

given by Eq.~7! with the constraints given by Eqs.~1!, ~3!,
~4!, and~8!. The Lagrange multiplier technique is also us
here to enforce the constraints. The adjoint variablesQ* ,
q* , r * , x* , andl j* wherej 51,...,K, are introduced and the
new Lagrangian functional is given as

L5J02J1 , ~19!

where

ed
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J15^Q* ,LBQ&1(
j 51

K E
Xcsj

Xcej
l j* @ṁ~x1,0!2ṁw#h1 dx1

1x* S EC2(
j 51

K E
Xcsj

Xcej
ṁw

2 h1 dx1D 1^q* ,LPq̂&

1 K r * q̂,
1

h1

]q̂

]x1L 1c.c.

Compared to the previously described Lagrangian functi
als, the wall boundary condition has now been divided intoK
discrete domains, and the mass flux at the wall is given
Eq. ~18!. No additional difficulties appear in the derivatio
compared to the one in Sec. III. The optimality condition
now obtained by setting the functional derivative with r
spect to the static pressure of each chamber to zero.
resulting optimality system can be seen in detail in Appen
C.

B. Results

Here results are given for the case of minimizing t
disturbance kinetic energy using pressure chambers. The
rameters in Eq.~18! which specify the porous surface a
taken from Bieler and Preist.17 The plate thicknessL and
hole diameter at the surfaced are 0.9 mm and 0.046 mm
respectively. The porosityp/(4e2) is calculated given a hole
pitch to diameter ratioe513.8. The coefficients of inertia
and viscous pressure loss areA51.6 andB50.092, respec-
tively.

FIG. 17. Pressure distribution on the wing~thin lines! and optimal static
pressure in the chambers~thick lines! for the cases of~a! 5, ~b! 6, and~c! 7
pressure chambers minimizing the disturbance kinetic energyEV of a CF
( f 1* 55500 s21, b1* 52500 m21) and TS wave (f 2* 55750 s21, b2*
5225 m21) whenQC50.35.
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Before the calculations are performed, the size, posit
and number of pressure chambers must be set. The diffe
sizes are chosen such that the chambers are smaller w
the pressure gradient of the wing is large and vice verse. T
is done to avoid large pressure drops which result in la
suction peaks. The whole control domainGc5@Xcs ,Xce# is
used such that the pressure chamber closest to the lea
edge starts atXcs1

5Xcs and the last pressure chamber en
at XceK

5Xce .
The results in Sec. IV B show that minimizing the sha

factor does not always give an optimal suction distributi
which reduces the disturbance growth. Further, it is seen
Sec. III C that both CF and TS type disturbances should
included in the calculations when the disturbance kinetic
ergy is minimized. Therefore, we choose to minimize t
total disturbance kinetic energy,j51 in Eq. ~7!, including
both the CF and TS waves given in Sec. III C. The cont
effort QC50.35 and the calculations are done for the ca
of 5, 6, and 7 pressure chambers.

Results of the optimal static pressuresPcj
of each case

are plotted~thick lines! in Fig. 17. The pressure distributio
on the wingPe is also plotted~thin lines! for comparison.
The regions/c5@0.05,0.175# has been magnified to enhanc
the details. As shown, the pressure differenceDPj5Pe

2Pcj
is larger close to the leading edge and decreases do

stream.
The suction distributions corresponding to the optim

static pressures in Fig. 17 are plotted in Fig. 18. Note that
uppermost streamwise suction distribution in each cas
due to the stagnation line control and is taken be fixed.
each case the suction distribution downstream ofs/c50.05

FIG. 18. Suction distributions~thick lines! corresponding to the optima
pressure drop for the cases of~a! 5, ~b! 6, and~c! 7 pressure chambers in
Fig. 17. A comparison is done with the optimal suction distribution~thin
lines! from Fig. 9 whenQC50.35.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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is rather constant. Upstream of this streamwise position
suction distributions have more of a sawtooth shape.
latter is an effect of the strong pressure gradient in this
gion.

For each case in Fig. 18, a comparison is made with
optimal suction distribution from Fig. 9~thin lines! for the
case whenQC50.35. As the same control effort is used
these calculations, it is interesting to compare the optim
suction distribution in a continuous control domain with t
cases using pressure chambers. It is seen that the magn
of both the suction distribution from Fig. 9 and the sucti
distributions using pressure chambers is rather cons
downstream ofs/c50.05 and increases upstream of this p
sition. Further, the distribution using pressure chambers
proaches the continuous one when the number of cham
is increased. This is most evident downstream ofs/c
50.05.

The effect on the disturbance growth using the optim
pressure differences for the cases of 5, 6, and 7 pres
chambers is shown in Fig. 19. Here the EoE of theNE-factor
curves for CF and TS waves are plotted for zero and opti
pressure differences of all cases~solid lines!. The arrows
mark the direction of increasing number of pressure cha
bers. A decrease in the growth of both CF and TS wave
obtained for all optimal pressure differences calculated h
compared to the case of zero suction. The CF waves
more damped in the control domain when the number
pressure chambers is increased. However, the difference
tween the cases of having 6 and 7 pressure chambers is
as the additional chamber is placed where the CF wa
begin to decay. The results for the TS waves show that
stream ofs/c50.1, the EoE curves increase in magnitude
the number of pressure chambers increases. Downstrea
this position EoE curves decrease in magnitude. A comp
son is made with the EoE of theNE-factor curves in Fig. 11
which are calculated using the suction distribution from F
9 with QC50.35~dashed lines!. It is seen that as the numbe
of pressure chambers are increased, the results within
control domain using pressure chambers approach thos

FIG. 19. Envelope of envelopes~EoE! of NE-factor curves for the distur-
bances given in Table I for the cases of zero control~dotted! and the optimal
pressure chambers in Fig. 17~solid!. The arrows mark increasing number o
pressure chambers. A comparison is done with the EoE ofNE-factor curves
~dashed! from Fig. 11 withQC50.35.
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ing a suction distribution in a continuous control doma
This is true for the results of both the CF and TS waves.

VI. DISCUSSION AND CONCLUSIONS

A method to control convectively unstable disturbanc
in boundary layers on infinite swept wings for compressi
fluids has been derived and analyzed. The method has
developed in the framework of optimal control theory. T
mean of disturbance control is a modification of the me
flow by the mass flow through a porous surface. The opti
zation problem is derived using Lagrange multipliers fro
which optimality systems are obtained containing the adjo
of the parabolized stability equations~APSE! and the adjoint
of the boundary layer equations~ABLE!.

Two different control variables are considered. The fi
control variable is the mass flow at the wall. Here, it is a
sumed that given a certain control domain, the suction d
tribution is not constrained by how it will be implemented o
the wing and thus has the optimal distribution with respec
a certain objective function. The second control variable
the static pressure in a number of pressure chambers. H
the suction velocity is a function of the surface porosity, ho
geometry and the pressure difference between the pres
distribution on the wing and the internal static pressure of
pressure chambers. In this case, the internal static pressu
each box is optimized. In both cases, the control effort
not been regularized, but instead enforced as a constrain

Different measures of the state~objective functions!
have been analyzed. The first objective function is a meas
of the disturbance kinetic energy. A comparison has b
made between minimizing the kinetic energy of a single d
turbance at a fixed streamwise position, and minimizing
streamwise integral of the kinetic energy of an arbitra
number of disturbances. For control of a single CF wave,
difference between the two objective functions is small. T
advantage of the latter is that more than one disturbance
be included in the measure. On the wing studied here, b
cross flow and TS waves are amplified on the upstream p
Results show that both disturbance types need to be
counted for in the objective function in order for the contr
to decrease their growth. Further, it is sufficient to acco
for one of each disturbance type in order to control all oth
disturbances of the same type.

The second measure of the state used here is the str
wise integral of the shape factor,H12. Airiau et al.9 showed
that this quantity is successful for control of two-dimension
disturbances in Blasius flow. In terms of computational
fort, the approach of minimizing the shape factor is efficie
The optimality condition for each iteration in the optimiz
tion process is obtained after solving the boundary layer
corresponding adjoint equation once. The disadvantage
in the fact that one does not take into account the disturba
growth in the optimization process, and consequently the
fect of the control on the disturbance growth needs to
analyzed afterwards. Results here show that a control ba
on this objective function amplify instead of damp cros
flow modes in the region close to the leading edge of
wing. In this region, the optimal mass-flow distribution has
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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positive sign, i.e., blowing occurs. The amplification of d
turbances mean that the point of laminar-turbulent transi
will move upstream and the laminar portion of the wing w
decrease. Further, as the current way of implementing
tion systems relies on pressure chambers, a region of b
ing is not realizable.

Results are also presented for the optimal static pres
in a number of pressure chambers. These results depen
the choice of size, position and number of the chamb
However, it can be shown that the corresponding suc
distributions are similar in magnitude compared to the re
of the optimal suction distribution in a continuous contr
domain. This similarity increases as the number of press
chambers is increased.

The magnitudes of the suction distributions presented
this paper are all of orderO(Re21), which is within the range
of validity of the boundary-layer equations. As Airiauet al.9

showed, for the suction rate of this order, the boundary-la
and Navier–Stokes calculations agreed well though the o
mal mass flux experiences locally large streamwise variat
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APPENDIX A: OPTIMAL CONTROL USING THE WALL
MASS FLUX TO MINIMIZE THE DISTURBANCE
KINETIC ENERGY

1. State equations

The boundary-layer equations for a viscous compress
flow over a swept wing with an infinite span are

1

h1

]~rU !

]x1 1
]~rW!

]x3 50, ~A1!

rU

h1

]U

]x1 1rW
]U

]x3 52
1

h1

dPe

dx1 1
1

Re

]

]x3 S m
]U

]x3D , ~A2!

rU

h1

]V

]x1 1rW
]V

]x3 5
1

Re

]

]x3 S m
]V

]x3D , ~A3!

cp

rU

h1

]T

]x1 1cprW
]T

]x3

5
1

Re Pr

]

]x3 S k
]T

]x3D1~g21!
UM2

h1

dPe

dx1

1~g21!
mM2

Re F S ]U

]x3D 2

1S ]V

]x3D 2G . ~A4!

The parabolized stability equations are lengthy and here
given in a symbolic form

Aq̂1B ]q̂

]x3 1C ]2q̂

~]x3!2 1D 1

h1

]q̂

]x1 50, ~A5!

E
0

1`

q̂H
]q̂

]x1 dx350, ;x1P@X0 ,X1#, ~A6!
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whereq̂5( r̂,û,v̂,ŵ,T̂)T. The coefficients of the 535 matri-
cesA, B, C, andD are found in Pralitset al.23 The corre-
sponding boundary conditions are

W~x1,0!5Ww~x1! ;x1PGc ,

W~x1,0!50 ;x1¹Gc ,

FU,V,
]T

]x3G~x1,0!5@0,0,0# ;x1P@XS ,X1#,

lim
x3→1`

@U,V,T#~x1,x3!5@Ue ,Ve ,Te#~x1! ;x1P@XS ,X1#,

@ û,v̂,ŵ,T̂#~x1,0!5@0,0,0,0# ;x1P@X0 ,X1#,

lim
x3→1`

@ û,v̂,ŵ,T̂#~x1,x3!5@0,0,0,0# ;x1P@X0 ,X1#,

where variables with subscriptw are evaluated at the wall
and subscripte at the boundary layer edge. The initial co
ditions are

Q~XS ,x3!5QS~x3! ;x3P@0,1`!,

q̂~X0 ,x3!5q̂0~x3! ;x3P@0,1`!,

where the solution of variables with subscript 0 is given
the local stability analysis, and subscriptSby the solution at
the stagnation line.

2. Adjoint equations

The adjoint of the boundary-layer equations are

r
]~h1W* !

]x3 2h1rS ]U

]x3 U* 1
]V

]x3 V* 1cp

]T

]x3 T* D5FWh1 ,

~A7!

]~rUU* !

]x1 1
]~h1rWU* !

]x3

2rS ]U

]x1 U* 1
]V

]x1 V* 2
]W*

]x1 1cp

]T

]x1 T* D1~g21!

3M2
dPe

dx1 T* 2
2~g21!

Re
M2

]

]x3 S h1m
]U

]x3 T* D
1

1

Re

]

]x3 S m
]~h1U* !

]x3 D5FUh1 , ~A8!

]~rUV* !

]x1 1
]~h1rWV* !

]x3
2

2~g21!

Re
M2

]

]x3 S h1m
]V

]x3 T* D
1

1

Re

]

]x3 S m
]~h1V* !

]x3 D5FVh1 , ~A9!

cp

]~rUT* !

]x1 1cp

]~h1rWT* !

]x3

1
rU

T S ]U

]x1 U* 1
]V

]x1 V* 2
]W*

]x1 1cp

]T

]x1 T* D
1

k

Re Pr

]2~h1T* !

~]x3!2 1
~g21!

Re
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3M2
dm

dT F S ]U

]x3D 2

1S ]V

]x3D 2GT*

2
1

Re

dm

dT F ]U

]x3

]~h1U* !

]x3 1
]V

]x3

]~h1V* !

]x3 G5FEh1 ,

~A10!

where FE5(FT1FW W/T)h1 , and FW , FU , FV , FT are
found in Pralits.27 The adjoint of the parabolized stabilit
equations can be written as

Ãq* 1B̃ ]q*

]x3 1 C̃ ]2q*

~]x3!2 1D̃ 1

h1

]q*

]x1 5SP* , ~A11!

]

]x1 E
0

1`

q* HS ]A
]a

1
]B
]a D q̃h1 dx3

5H 0 ;x1¹@Xms,Xme#,

2 i uQu2E
0

1`

q̃HM q̃h1 dx3 ;x1P@Xms,Xme#,
~A12!

where

Sp* 5H 2 r̄ *
]q̂

]x12
]~r * q̂!

]x1 ;x1¹@Xms,Xme#,

2 r̄ *
]q̂

]x12
]~r * q̂!

]x1 1jMHq̂uQu2 ;x1¹@Xms,Xme#,

and

Ã5AH2
]BH

]x3 2m13BH1
]2CH

~]x3!2 12m13

]CH

]x3 2
]DH

]x1 ,

B̃52BH12
]CH

]x3 12m13CH,

C̃5CH,

D̃52DH.

The vector q* 5(r* ,u* ,v* ,w* ,u* )T, and the complete
derivation of these equations is found in Pralitset al.23 The
above equations are subjected to the following bound
conditions:

@u* ,v* ,w* ,u* #~x1,0!5@0,0,0,0# ;x1P@X0,X1#,

lim
x3→1`

@u* ,v* ,w* ,u* #~x1,x3!5@0,0,0,0# ;x1P@X0 ,X1#,

@U* ,V* #~x1,0!5@0,0# ;x1P@X0 ,X1#,

F k

Re Pr

]~h1T* !

]x3 1h1rcpWT* G~x1,0!50 ;x1P@X0 ,X1#,

lim
x3→1`

@U* ,V* ,W* ,T* #~x1,x3!5@0,0,0,0#

;x1P@X0 ,X1#.

The initial conditions are

q* ~X1 ,x3!5~12j!q1* ~x3! ;x3P@0,1`!,

r * ~X1!5~12j!r 1* ;x3P@0,1`!,
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Q* ~X1 ,x3!50 ;x3P@0,1`!,

with q1
* and r 1

* evaluated atx15X1 as

q1* 5uQu2D1~M2c1I!q̂, r 1* 5uQu2c1 ,

c̄15

E
0

`S h1q̂HMD1HS ]A
]a

1
]B
]a D q̂2 i q̂HM q̂Ddx3

E
0

`

q̂HD1HS ]A
]a

1
]B
]a D q̂h1 dx3

,

~A13!

whereD15(DH)21.

3. Optimality condition

The optimality condition is

Ww* 5H 22x* ṁw ;x1PGc ,

0 ;x1¹Gc,
~A14!

where

x* 5S 1

4EC
E

Xcs

Xce
Ww*

2h1 dx1D 1/2

.

APPENDIX B: OPTIMAL CONTROL USING THE WALL
MASS FLUX TO MINIMIZE THE SHAPE FACTOR

1. State equations

The boundary layer equations are given by Eqs.~A1!,
~A2!, ~A3!, and ~A4! with corresponding boundary and in
tial conditions as given in Appendix A 1.

2. Adjoint equations

The adjoint boundary layer equations are given by E
~A7!, ~A8!, ~A9!, and ~A10! where the component of th
forcing SB* 5(FW ,FU ,FV ,FE) are now

FW50,

FU5
1

d2
r cos~f!~11H12~122USL!!

Ue0

Qe
,

FV5
1

d2
r sin~f!~11H12~122USL!!

Ue0

Qe
,

FE52
1

d2

r

T
USL~11H12~12USL!!

Te0

Te
.

The initial and boundary conditions are the ones given
Appendix A 2, except for free stream boundary conditio
which are now given as

lim
x3→1`

F]U*

]x3 ,
]V*

]x3 ,W* ,
]T*

]x3 G~x1,x3!5@0,0,0,0#

;x1P@X0 ,X1#.

3. Optimality condition

The optimality condition is given by Eq.~A14!.
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APPENDIX C: OPTIMAL CONTROL USING
PRESSURE CHAMBERS TO MINIMIZE THE
DISTURBANCE KINETIC ENERGY

1. Relation between internal static pressure and mass
flux

The relation between the pressure difference and suc
velocity used here is taken from Bieler and Preist.17 It is
based on measurements carried out in the framework of
ELFIN ~European Laminar Flow INvestigation! program. In
dimensionless form this formula is given as

DPj5Pe2Pcj
5

C1

rw
ṁw

2 1C2

mw

rw
ṁw,

where

C15
A

2 S 4e2

p D 2

, C25
32B

Re

4e2

p

L

d2 .

The porous plate has a thicknessL and a hole diameterd
at the surface. Due to manufacturing reasons the holes w
slightly conical with an inner diameterD. The porosity is
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given asp/(4e2), where e is the ratio between the hol
diameter on the surface and the distance between the h

It was found in experiments that the relationship b
tween the suction velocity and pressure difference was n
linear and that adding a term due to dynamic pressure
with an empirically obtained coefficientA gave a good
agreement with experiments.17 The second term on the right
hand side of the formula is based on the Hagen–Poise
equation for pressure loss due to skin friction in a hole w
parallel walls. The coefficientB is a function of the inner and
outer hole diameters and serves as a correction due to
conical shape of the holes.

2. State equations

The boundary-layer equations are given by Eqs.~A1!,
~A2!, ~A3!, and~A4! with corresponding initial conditions a
given in Appendix A 1. All boundary conditions are the sam
as given in Appendix A 1, except for the wall normal me
velocity at the wall, which is now given by
by

l

ix A 2,
W~x1,0!5H 0 ;x1¹@Xcsj
,Xcej

#,

2
1

2

C2

C1

mw

rw
1AS 1

2

C2

C1

mw

rw
D 2

1DPj

rw

C1
;x1¹@Xcsj

,Xcej
#.

The values used here forA, B, L, d, ande are taken from Bieler and Preist.17 The parabolized stability equations are given
Eqs.~A5! and ~A6! with corresponding boundary and initial conditions as given in Appendix A 1.

3. Adjoint equations

The adjoint parabolized stability equations are given by Eqs.~A11! and ~A12! with corresponding boundary and initia
conditions as given in Appendix A 2. The adjoint boundary layer equations are given by Eqs.~A7!, ~A8!, ~A9!, and~A10! with
corresponding initial conditions as given in Appendix A 2. All boundary conditions are the same as given in Append
except forT* at the wall, which is now given by

F k

Re Pr

]~h1T* !

]x3 1h1rcpWT* G~x1,0!5H 0 ;x1¹@Xcsj
,Xcej

#,

K j~W* 12x* ṁw! ;x1P@Xcsj
,Xcej

#,

where

K j5
]Pcj

]Tw
Y ]Pcj

]ṁw
,

and

]Pcj

]Tw
5

1

rwTw
C1ṁw

2 1C2

1

rw
S mw

Tw
1

dmw

dTw
D ṁw

]Pcj

]ṁw
5

2C1

rw
ṁw1C2

mw

rw

6 ;x1P@Xcsj
,Xcej

#.

4. Optimality condition

We find

2E
Xcsj

Xcej
~Ww* 12x* ṁw!S ]Pcj

]ṁw
D 21

h1 dx150, j51,...,K,
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where

x* 5S 1

4EC
(
j 51

K E
Xcsj

Xcej
Ww*

2h1 dx1D 1/2

.
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