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Optimization of steady suction for disturbance control on infinite
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We present a theory for computing the optimal steady suction distribution to suppress convectively
unstable disturbances in growing boundary layers on infinite swept wings. This work includes
optimization based on minimizing the disturbance kinetic energy and the integral of the shape factor.
Further, a suction distribution in a continuous control domain is compared to an approach using a
number of discrete pressure chambers. In the latter case, the internal static pressures of these
chambers are optimized. Optimality systems are derived using Lagrange multipliers. The
corresponding optimality conditions are evaluated using the adjoint of the parabolized stability
equations and the adjoint of the boundary layer equations. Results are presented for an airfoil
designed for medium range commercial aircraft. We show that an optimal suction distribution based
on a minimization of the integral of the shape factor is not always successful in the sense of delaying
laminar-turbulent transition. It is also demonstrated that including different types of disturbances,
e.g., Tollmien—Schlichting and cross-flow types, in the analysis may be cruciaR0@ American
Institute of Physics.[DOI: 10.1063/1.1597684

I. INTRODUCTION of laminar-turbulence transition at a given suction power. In
the last 10 years, the development of optimal control theory
Reducing the viscous drag on a wing while maintainingand its application to fluid mechanics problems has been
operational properties such as lift for example, is of greatapid and a number of attempts have been made to optimize
interest and the research in this area is Vasis known that e steady suction distribution in order to control the growth

the viscous drag increases dramatically as the boundary Iaygf disturbances, e.g., HiflBalakumar and Hafl, Cathalifaud
flow changes from a laminar to a turbulent state. Therefore, @nd Luchini’ Pralits et al.® Airiau et al® In all of these

Qecrease n Qrag can be. seen as mcreasmg_the laminar PQlorks the optimization methods are gradient based and uti-
tion of the wing, or moving the point of laminar-turbulent

transition downstream. Transition in the boundary layer on“Z? the potential ,Of adj.oint.methods t-o obtain the gradients
aircraft wings is usually caused by breakdown of small disCf Interest. Ot?ler investigations including those by Mudfial,
turbances which grow as they propagate downstream. Th&/alther etal,”™™ Hogberg and Henningsdh consider un-
growth of these disturbances can be analyzed using line&t€ady suction/blowing. This approach may not be suitable
stability theory in which it is assumed that perturbations withfor flow control on aircraft wings at the present tithelue to
infinitely small amplitude are superposed on the laminaithe complexity of its implementation. Acommon approach in
mean flow. The growth rate can then be used to predict ththese work&™ is to minimize some measure of the distur-
transition location using the so-callel method?Here itis  bance growth, either the disturbance kinetic enérggr the
assumed that transition will occur at the location where theN-factor® Airiau et al,® in contrast to the others, did also try
total amplification of the disturbance, with respect to the firstto minimize the shape factor which for 2D disturbances in a
streamwise position where the disturbance starts to grovgp boundary layer should result in a suppression of distur-
attains an empirically determined value, whose logarithm ig)gnce amplification. Minimizing the shape factor is a more
generally denoted biX. _ heuristic approach based on the knowledge that in such flows
The stabilization effgct of stea\%y boundary layer .s.uctlonthe two-dimensional disturbances are stabilized by any thin-
on disturbance growth is well knowmand has been utilized ning of the boundary layer. Their results showed that an op-

for laminar flow control, for an extensive review see Joslin. . . e N
. . . - .. timal suction distribution based on minimizing the shape fac-
However, in most cases the design of suction distributions

relies on the experience of the engineer which may not allo" does have a damping effect on the disturbance growth.

ways give the optimal solution, i.e., to give the largest delay! "€ @dvantage of this approach is that only one state equa-

tion has to be solved which saves computational time. A
) ] . negative aspect of not explicitly minimizing a measure of the
dAlso at Swedish Defense Research Agency, FOI, Aeronautics . . . .
Division. FEA. SE-17290 Stockholm. Sweden. Electronic mail: disturbances is that one cannot know if the computed suction

jan.pralits@mech.kth.se distribution will have a damping effect on the disturbances.
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This has to be calculated afterwards, once the optimal suc-
tion distribution is obtained.

In Pralitset al® the idea of multidisturbance control was
introduced. The reason behind it is that, for certain types of
flows, it is not clear which types of disturbances will be
dominant in terms of amplification. An example is the Bla-
sius flow in which, depending on the initial amplitudes, ei-
ther two-dimensional Tollmien—Schlichtingl'S) waves or
streamwise streaks grow the most. In three-dimensional
boundary layers on wings there is usually a streamwise re- FIG. 1. Definition of the coordinates for the infinite swept wing.
gion close to the leading edge with a strong negative pres-
sure gradient, where cross-flow waves are the most amplified
disturbances. Further downstream, where the pressure gradfinction with state equations and the control energy as con-
ent is zero or positive, TS waves are the most amplified ones$traints. The problem is solved using a Lagrange multiplier
When computing an optimal suction distribution it is also téchnique, which yields an optimality system consisting of
necessary to make sure that the mean flow modification dugfate and corresponding adjoint equations from which an op-
to a computed suction distribution for a specific disturbancdimality condition is evaluated. Here, we couple the adjoint
does not trigger the growth of other disturbances. of the PSE with the adjoint of the boundary-layer equations

In real applications, steady boundary layer suction idn order to find the optimality condition. The derivation of
usually done using a number of discrete pressure chambetde optimality system is similar to that presented in Pralits
(see, e.g., Reneaux and Blanch¥tllis and Poll*® Preist €t al® and is therefore presented here in a more compact
and Paluch® Bieler and Preist’ Joslin). In such cases, the form. Results are presented for control of disturbance growth
suction velocity is a function of the surface porosity, holein @ boundary layer on a wing designed for commercial air-
geometry and the pressure difference between the pressdf'@ﬁ-
distribution on the wing and static pressure in the
chamber§$*l7 This means that the size, position and the in-; prROBLEM FORMULATION
ternal static pressure of each chamber are the design vari-
ables. The suction distribution is then given by the specific ~ The flow field considered here is the boundary layer on a
choice of these parameters. Atkfrused an engineering ap- swept wing with infinite span which is obtained by solving
proach to design of the suction system in which he utilizedhe mass, momentum, and energy conservation equations for
the stability characteristics of the flow. Here, the static presa viscous compressible fluid. The equations are written in an
sure in the pressure chambers, based on an automatized tréthogonal curvilinear coordinate system with streamwise,
and error technique, were chosen such that the amplificatiopanwise, and wall-normal coordinates denotedcasx?,
of disturbances stayed under a specified value. andx3, respectively, see Fig. 1. A length element is defined

Most of the previous works® on optimal steady suction as ds?=(h; dx")?+ (h, dx?)?+(hzdx®)? where h; is the
deal with incompressible boundary layer flows on flat platesscale factor. The total flow fieldy,, is decomposed into a
Hill® analyzed an infinite swept wing for inverse design ofmean,q, and a perturbation pai, as
laminar boundary layers but no details were given of how
this was done. The considered suction distributions have
been applied in a continudtis or a number of discrete con- wherege[U,V,W,P,T,p] andqe[1,5,W,p,T,p]. HereU,
trol domains’ However, so far no study has shown how toV, W are the streamwise, spanwise and wall-normal velocity
incorporate the use of pressure chambers in order to agomponents of the mean flow, respectivalys the tempera-
proach a real application. ture, p the density, andP the pressure. The respective lower

In this paper we extend the work by Pral#sal.® to  case variables correspond to the disturbance quantities. The
compressible boundary flows on infinite swept wings. Hereequations are derived for a quasi-three-dimensional mean
we compare the case of minimizing the disturbance kinetidlow with zero variation in the spanwise direction. The evo-
energy with the simplified approatbf minimizing the inte-  lution of convectively unstable disturbances is analyzed in
gral of the shape factor. The feasibility of the control is ad-the framework of the nonlocal stability theory. The mean
dressed by comparing two different ways of computing theflow and disturbance equations in the following sections are
suction distribution: a continuous distribution of mass fluxgiven in dimensionless form. All flow and material quantities
on the wall in a control domain, and a number of discreteare made dimensionless with the corresponding reference
pressure chambers, which constitutes a more realistic aflow quantities at a fixed streamwise positigfy except the
proach to obtaining a suction distribution on the wall. Thepressure, which is referred to twice the corresponding dy-
evolution of disturbances is analyzed using the parabolizedamic pressure. Here, dimensional quantities are denoted by
stability equationgPSB (see Bertolottiet al,'® Malik and  the superscripk.

Balakumar® Simen?! Herbert?), and the laminar mean flow The reference length scale is taken ak

is computed using the two-dimensional three-component (vgxs/Ug)Y2 The Reynolds and Mach number are defined
boundary layer equation(BLE). We use optimal control as Re=I5Uy/vy and M =Ug/(RyTg)2 respectively, where
theory, in which the aim is to minimize a given objective R is the specific gas constantthe kinematic viscosity, and

Qeo( X1 X2, x3,0) =q(x1,x3) +G(xL,x2, %3, 1),
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v the ratio of the specific heats. In the proceeding sectiongvhere superscrip denotes the complex conjugate trans-
the scale factorh,, hy=1 are due to the infinite swept wing pose. Equatiori3) is integrated in the downstream direction

assumption. normal to the leading edge with an initial condition given by
local stability theory. At eachx® position the streamwise
A. Mean-flow equations wave number is iterated such that the condition given by

Eq. (4) is satisfied. After a converged streamwise wave num-
dber has been obtained, the growth rate of the disturbance
kinetic energy can be calculated from the following relation:

The dimensionless boundary layer equati@isE) writ-
ten in primitive variable form can be seen in Appendix A an
are here written in symbolic form as

LgQ=0, oY) o=—a;+ aixl('”@’
whereQ=(U,V,W,T)". The suction distribution is imposed
using the wall normal velocity component at the wall Where
W,,(x})=W(x!,0). Non-slip conditions are applied to the o
other velocity components and we assume an adiabatic wall E:j p(|0]7+[o]2+ [ W[?)dx.
condition for the temperature. Equaticl) is integrated from 0
the stagnation point in the downstream direction normal torhe growth rate can then be used to predict the transition
the leading edge. Note that for the boundary layer approxitocation using the so-callegl method?* The N-factor based
mation to be valid, the wall normal velocity at the waw,,, on the disturbance kinetic energy is given as
should be ofO(Re™%). Here, it is assumed that the pressure X
distribution on the airfoil does not change as the suction NE:J odxt,
distribution is applied. If the suction distribution would result Xn1
in a large change in the boundary layer thickness, then ifyhereX,,, is the lower branch of the neutral curve. A com-
might be necessary to update the pressure distribution in thglete description of Eq(3) is found in Pralitset al,>* and
optimization process. corresponding numerical schemes used here are given in

Hanifi et al?*
B. Disturbance equations

The perturbations are assumed to be time and spanwisg opTIMAL CONTROL
periodic waves as
i a1 g The approach of the current work is to use optimal con-
4(x,0)=a(x"x")e, trol theory to find the optimal mean flow suction distribution

where in order to suppress the growth of convectively unstable dis-
L turbances. In this paper we investigate different control vari-

®=exp( i fx a(x")dx' +iB—iwt|. ) ables and objective functions. First, a general introduction is

Xo given in this section. Then follows a concise description of

the Lagrange multiplier technique applied to the problem of

Here « is the complex streamwise wave numbgrthe real o2 . :
minimizing a measure of the disturbances using the mass

spanwise wave number anad the real disturbance angular f th I =W trol iabl
frequency. X, is the initial streamwise position where the UX_(I_);‘ € Vl\)'? = .";’)W)fﬁ co? ;O varlae. 45
disturbances are superimposed on the mean flow. We assume e problem consists of the state variab@sindd; a

a scale separation Re&between the weak variation in tixé C?”Frct)l varltﬁbletgtlven pyblthe massbfll:t)]( Ong]e v(;/alll;ségn- q
direction and the strong variation in tké direction. Further, straints on the state variables given by the an an

it is assumed that/9x:~O(Re ) andW~O(Re™Y). Intro- an objective function, a measure of the state, to be mini-

ducing the ansatz given by E@2) and the assumptions mlzeTc:]. final | of boundarv-I tion is 1o i

above in the linearized governing equations, yields a set Otfh | € fina g(;a ° f tr?un _ary-.aye; suc |ont;]s IO mgreasfe
nearly parabolic partial differential equatiot’s?? The sys- € laminar portion ot the wing, 1.€., 1o move the focation o
tem of equations, denoted parabolized stability equationLam'nar'turbmem transition further downstream, and thus de-

(PSB, can be seen in Appendix A and are here written increase the viscous drag. It is therefore important that the
symb’olic form as chosen objective function can be related to the transition

process. One choice is to measure the kinetic energy of a
LpG=0, (3)  certain disturbance at a downstream position, Xay This

PP P - . can be written as
whered=(p,0,0,W,T)". HereQ, 0, W, andT are subject to

Dirichlet boundary conditions. To remove the ambiguity of I S . 2 4.3

havingx* dependence of both the amplitude and wave func- Ef_i 2, Jo G"Mgh, dx"dx”, ®)

tion in the ansatz, and to maintain a slow streamwise varia- ) ] )

tion of the amplitude functiorii, a so-called auxiliary con- WhereM,=diag(0,1,1,1,0) which means that the disturbance

dition is introduced kinetic energy is calculated from the disturbance velocity
A components. Hanifet al?® used a measure which also in-
JHOC]Hﬂng:O (4) Cludedp and T. If the positionX; is chosen as the upper
axt ' branch of the neutral curve, then the measure can be related
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to the maximum value of th&l factor® If in addition, the Xy (2 [+

value of theN factor of the measured disturbance is the one (¥, ¢>:f f f yH phy dxtdx? dx®, (10
which first(with zero control reaches the transitiod factor, %o 720 S0

then the position can be related to the onset of laminarfor complex valued vectorg and ¢. We can now define the
turbulent transition. It is, however, not clear,priori, that ~ problem as follows: find the controh,,, statesQ, § and
such a measure will damp the chosen disturbance or oth@djoint variables\*, x*, Q*, g*, andr* such that( is
ones in the whole unstable region, especially if differentrendered stationary according to the first-order necessary
types of disturbances are present, such as TS and cross-fl@@ndition for an extremal point. This is done by setting the
waves. For Blasius flow, it has been shown that an objectivéirst variation of £ with respect to the variables considered
function based on a single TS wave is sufficient to succesgiere to zero, while each af’s arguments are considered to
fully damp the growth of other TS wav&$.0n a wing how-  be independent variables. This requirement comes from the
ever, it is common that both TS and cross-flow waves ardact that at an extremal point the first variation 6fwith
present. An alternative is therefore to measure the kinetitespect to each variable vanishes. We start by setting the first
energy as the streamwise integral over a defined domairvariation of £ with respect to each adjoint variable to zero,
Using such an approach several different disturbances, witthich gives the state equatiort$), (3), and (4), and the
respective maximum growth rate at different positions, carconstraint on the control effort, E¢8). We continue by set-

be accounted for in the same domain. Here, the siz& of ting the first variation of the state variablgs «, andQ to
disturbances superimposed on the mean flow at an upstrea#gro. After a procedure which involves successive integra-
position X,, is measured by their total kinetic energy as  tions by part$, this yields the adjoint equations

1 e 2 1 b=, ap
Eq= >, —f f f M Gich, dxt dx® dxC. (6)
k=1 2 JxpnsJzo Jo J [*=  ,olp. s
Frell P e s
We now define the objective function based on the distur-
bance growth as 0 VX' ¢ [Xms: Xmel,
= _ = . te o 12
Jo=EEq+(1-§)Ey, (7) _|||2j g*Mah, 3 Vxte[Xome, Xonel, (12
0
where the parametgrcan be chosen between zero and one,
depending on the quantity one wants to minimize. In order td-§Q* =Sg , (13

have a well-posed problem, the control needs to be bounde

%h k(% koo, % gk gx)T * * \/*
This is done by guantifying the control effort as ere " =(p%,u*vr,w,0%) and  QT=(U%,V7,

W* T*)T. Equation(11) is the adjoint of the PSEAPSE

Xee whereu*, v*, w*, and#* are subject to Dirichlet boundary
Ec=j mGhy dxt. (8)  conditions. The right-hand sid8} is due to the auxiliary
Xes condition of the PSE and the objective function. Equation

This measure has a physical meaning and also enables cofh2) is & closure relation obtained by setting the first varia-
parison of efficiency of different objective functions. Taking tion of £ with respect to the streamwise wave numbeto
the square ofn,, means that both blowing and suction will Z€ro. At each streamwise positiort; is solved iteratively
be accounted for i . such that Eq(12) is satisfied. Equatiofil3) is the adjoint of

A concise description of the objective can now be madethe BLE (ABLE) and the right-hand sidSj is the sensitivity
find the controln,,, and corresponding stat@sandg which of the PSE with re§pect to.the mean flow. Both the APSE and
minimizes the objective function/, with the constraints ABLE are parabolic equations which are solved by backward
given by Egs(1), (3), (4), and(8). We now use a Lagrange INtégration in the streamwise direction. The above equations
multiplier technique to replace the original constrained prob2re found in Appendix A2, and the complete derivations are
lem with an unconstrained one, see, e.g., Gunzbdfger. found in Pralitset al: % and Pralits.’ Finally, we set the first
order to enforce the constraints we introduce the adjoint varivariation of £ with respect tom, to zero which gives the
ablesQ*, g*, r*, \*, x* and the Lagrangian functional ~ SO-called optimality condition as

L=To— T, ) W, +2x*m,=0. (14

The left-hand side of the above expression is the gradient of
the Lagrangian functional with respect to the mass flux at the
wall. As shown in Eq(9), x* is the adjoint variable used to
Ec enforce the control effort and can be solved iteratively in the
optimization by substituting Eq14) into Eq. (8) as

where

XCE
J1=(Q*,LgQ)+ JX N [m(xh,0) =y, Jhy dxt+ x*

Cs

XCE
-2 1
—f myh, dx

Ccs

1 98 1/2
H{(qF Lpl)+ [ 18— ) e, o[ L [oogrzn gy 15

where c.c. denotes the complex conjugate. The inner prodFhe complete optimality system contains E¢B, (3), (4),
ucts(-, -) appearing above are defined as and (11)—(15) which can be found in Appendix A.
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A. Solution procedure 15

The procedure of solving the optimization problem de-
rived in Sec. lll is described here. We start by considering
the case of minimizing a single disturbance, ikes 1 in Eq.

(6).

The optimal distribution of the mass flow is found
through an iterative procedure. During each iteration step,
we perform successive calculations of boundary layer and

stability equations fromX, to X;; and adjoint boundary 05 S peeee ST R
layer and stability equations frox; to X,. Then, a new : : :
mass-flow distribution is computed using the gradient infor- _1(')—0‘2 o2 0‘6 03 ]

mation given by solution of the adjoint equations. Here we
use the L-BFGS-B optimization routine, see Zhtal,?®
Byrd et al?® The calculations are repeated until the reIativeFIG' 2. Th? pressure distributio@,, , as a function of the arc-length normgl
change in the objective function is less than a prescribe&’ the leading edges/c. The black box shows the available control domain,
value.

If K>1 in Eq.(6) then instead of solving both state and
adjoint equationK times, we can utilize the fact that the
ABLE are linear equations. In this case the optimality con-suction system has been specified by the manufacturer. The
dition is evaluated as follows: the BLE is solved once; thecontrol domain is limited in the upstream directions6/c
PSE and APSE are solvédtimes; the forcing of the ABLE, <0.006, by a suction strip used to control the stagnation line

slc

c-

Sy, is calculated as and in the downstream direction by the front spafc(
K =0.17). Heresis the arc-length normal to the leading edge
-3 s measured from the stagnation point arid the chord length.
B &L B The suction strip at the stagnation line is case specific and

Finallv. th timalit dition i luated f inal will be held unchanged. However, this does not create any
inaily, the optimality: condition 1S evaluated rom a SIngi€ e lties in the optimization procedure. In Fig. 2 the pres-

calculation of the ABLE. . __sure coefficienC, is plotted as a function a#/c. The avail-

The results presented here are obtained by numerlcallXble control domain 0.086s/c<0.17 is also indicated in
integrating the discretized state and adjoint equationsxfhe .. . ' '

2 ) . this figure as a black box.
derivatives are approximated by a first- or second-order ac- " o yeters for the disturbances analyzed here are given
curate backward Euler scheme. Tké derivatives of the Table 1. At the initial streamwise position s/c
PSE and APSE are approximated by a fourth-order accurate :

A =0.0075), the flow h t f bl dient
compact finite-difference scheme and a second-order accy, ) the flow has a strong favorable pressure gradien

rate finite-difference scheme for the BLE and ABLE. The nd the mean flow velocity component perpendicular to the

N -y _outer streamline has an inflection point. There, waves with
co?vertg;hengte crtl'terla 'S‘Tb j’?éjk ltO . \t/yherek ded the wave number vectdrx approximately perpendicular to
notes the fieration number n the oplimizalion proceaure,q . ;o streamline have positive growth rate. These are the

Furt_her,. iir: all calculationg; the initial guess on the suc.tion o-called cross-flowCF) waves. Further downstreans/¢
proﬂl_e, m,, , has been varied to ”.‘?".e sure that the c)pt'm""=0.05) where the pressure gradient is weaker and adverse,
solution does not depend on the initial state. Tollmien—Schlichting(TS) waves are amplified. The angles
between the wave number vectors of the TS waves analyzed
here and the outer streamline are 0—60 degrees. In Fig. 3 the
The flow studied here is the boundary layer on the uppeenvelope of envelopeéEoE) of the Ng-factor curves are
side of a wing designed for commercial aircraft. The flow plotted for the CF and TS disturbances given in Table | and
conditions are characterized by a free stream Mach numbédor zero suction rate.
M..=0.8, temperaturel,,=230 K, Reynolds number Re The control effort which is quantified by E(B) depends
=3.04x 10" and leading edge sweep angle,=30.2°. The on the specific suction system chosen, i.e., compressors and
control domain,I'.=[ X.s,Xce], available for mounting the tubing. We have therefore chosen a number of different mag-

B. Case studied

TABLE I. Initial position (s/c=X,), dimensional frequencyf{), dimensional spanwise wave numbg*(
and type of disturbances analyzed (€&ross-flow wave, TS Tollmien—Schlichting wave Af* and A B*
denote respective dimensional step-length.

Xo f* Af* B* AB* Type
0.0075 [1000, 8500 500 [1000, 6000 500 CF
0.0075 0 0 [500, 6500 500 CF

0.05 [2250, 9500 250 0 0 TS

0.05 [2250, 7000 250 [25, 225 50 TS
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16 : : 45

0 0.1 02 0.3 04 0.5
s/c

FIG. 5. Shape factoi,,, given zero(dotted and optimal suction distri-
bution from Fig. 4 minimizing the disturbance kinetic energy of a CF wave
(f*=5500 s'!, B*=2500 ni'') measured a&,, (dashed, E; (solid). Q¢

=0, 0.35, and 0.58, and the arrow marks increas)g

FIG. 3. Envelope of envelopes df:-factor curves for the two disturbance
types given in Table | for the case of zero suction.

nitudes of E- to examine the dependency of the achieved

stabilization on the amplitude of the control energy. Here wemodification that minimizes some measure of one type of
introduce a new paramet&c=Ec Re,. In our calculations disturbance may amplify rather than damp disturbances of
the values ofQ. are chosen so that a noticeable controlanother type. One should keep in mind that the larger num-
effect is achieved and to avoid the magnitude of mean wallber of disturbances considered, the more costly the optimi-
normal velocity(at the wal) W,, exceedingO(Re ). This  zation procedure will be.

was checked after each calculation. As a first investigation, a comparison is made between
minimizing the kinetic energy of a single disturbance inte-
C. Results grated in a streamwise domaig=£1), with the case of

e . minimizing th me disturban final streamwi i-
Results are shown here for minimization of the d'Stur'tion (gzog)]t e same disturbance at a final strea S€ pos

bance kinetic energy, Ed7), in which £ has been chosen

dependmg on the destged obJecftl\t/he fllj(nct[{(?n. Wt&m;n;he control domain which means that the aim is to delay transi-
measure is given as the sum of the kinetic energit afis- tion at least up to this positioiX; in Eq. (5) is chosen as the

':jurb.z(ijnze.sf. Before the optlm(;l.z?tmbn IS perf?]rmtla(;i,blt haslt% bsyosition where the maximum disturbance kinetic energy is
ecided 1r one or several disturbances shou € INCUCCGHuNnd over all disturbances in Table I, heXg=0.105. The

Onefgtth?hconc:.u5|c:ns frtqm z.rath% a:l a?d Alrla}uet %I: ¢ corresponding disturbance, which also has the largest
was that the optimal suction distribution for a given diStur- .o o1 gisturbances in Table 1, is chosen as the one to mini-

bance will also have a damping effect on other disturbanceﬁqize in both cases. This disturbance is a CF wave with di-

of the same type. The reason for including more than ON€. ansional frequency and spanwise wave number of
disturbance in the meas@res that in some cases it is not 5500 s 1 and 2500 m respectively. The calculations are

clear_v_vhlch_ type of disturbance ywll cause I_am'nar'turbUIemperformed forQ=0.25, 0.35, 0.45, and 0.58.
transition first. Another reason is that if different types of
disturbances are present in the flow, then the mean-flow

Equation(6) is integrated betweeX, and the end of the

The optimal suction distributions given by the two

20

p : | AT
~15H-- . SR . .. '\ /
- o2

0 0.1 02 0.3 0.4 0.5

0.05 0.1 0.15 0.2 s/c
s/c

FIG. 6. Envelope of envelopes dic-factor curves for the disturbances
FIG. 4. Optimal suction distributionsn,,, minimizing the disturbance ki- given in Table | given zergdotted and optimal suction distribution from
netic energy of a CF waveff =5500 s!, g*=2500 m!) measured as Fig. 4 minimizing the disturbance kinetic energy of a CF wavé (
E, (dashe E; (solid). Qc=0.35 and 0.58, and the arrow marks increasing =5500 s, g*=2500 m!) measured a£,, (dashedl E; (solid). Q¢
Qc- =0, 0.35 and 0.58, and the arrows mark increashg
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FIG. 7. Contours oE(, for CF waves comparing zero
(solid) and optimal suction distributiofdasheg mini-
00 6000 8000 00 2000 \4090 6000 $000 mizing the disturbance kinetic energy of a CF wave
i (f*=5500s!, g*=2500m1). Both cases are nor-
2000 2000 malized with their respective maximum value and the
contour spacing 0.1. The control effortQ. and the
(b) @ ratio between the maximum values are, respectivaly,
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different objective functions can be seen in Fig. 4. HereAiriau et al® The reason for this may be that the growth and
results are only shown for two different values of the controldecay of CF waves in the case analyzed here occurs over a
energy to make the plot more clear. The arrow indicates thehort streamwise interval, and as a consequence the growth
direction of increasingQc and the uppermost streamwise measured byE approach that foE;. In all cases, the op-
suction distribution is the fixed stagnation line control. It is timal control acts primarily in the region where a strong fa-
interesting to note the similarity between the results whervorable pressure gradient exists and then decays further
comparing the two objective functions as opposed to a simidownstream. As the control effort is increased, the additional
lar comparison for control of TS waves reported by control energy is concentrated to the beginning of the control

7000

7000

FIG. 8. Contours oE(, for TS waves comparing zero
(solid) and optimal suction distributiofdasheg mini-
mizing the disturbance kinetic energy of a CF wave
(f*=5500s?, B*=2500ni'). Both cases are nor-
malized with their respective maximum value and the
contour spacing0.1. The control effortQ. and the
ratio between the maximum values are, respectiyaly,
0.25, 0.214(b) 0.35, 0.16c) 0.45, 0.1;(d) 0.58, 0.092.
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5 ; j ; Figs. 7 and 8, this has been emphasized by plotting contours
' ‘ : of E, for CF and TS waves in theft, 8*)-plane comparing
zero and optimal suction distributions for all valuesQ@g .

In all cases the kinetic energy of all disturbances has been
reduced. It is clear from the ratio between the maximum
value of E, for the zero and optimal control, that the CF
waves are mostly affected. This is true for all valuesQf
studied here.

Z1sHeen FRUU S SRR From these results, as discussed in Praditsl® and
: : : Airiau et al,® one can conclude that minimizing the distur-
20 : ‘ : bance kinetic energy of one disturban@e this case CF
005 01 015 02 waves does have a damping effect on other disturbances of

/ ! . .
e the same type. To confirm this, computations were also per-

FIG. 9. Optimal suction distributionsp,,, minimizing the disturbance ki-  formed in which the TS wave with the largest total distur-

netic energyE, of a CF (] =5500s", j=2500m ") and TS wave pance kinetic energy was controlled. The suction distribution

fr:ér::;ggsc pz=225m"). Qc=0.35 and 0.58, and the amow marks ¢ thase calculations had a damping effect on all other TS
waves. These results are not shown here.

The absence of control in the region where the TS waves
domain. The effect of the control on the shape factor is howare amplified can be overcome by adding a disturbance of TS
ever small, which can be seen in Fig. 5. type in the objective function wheg=1. Therefore, as a

The magnitudes of the suction distributions presented imext step both the CF and TS wave with the largagtover
this paper are all within the range of validity for the bound-all respective disturbances in Table | are considered. The
ary layer equations, i.e., of ord€@(Re 1). This was inves- dimensional frequency and spanwise wave number for the
tigated by Airiauet al.® where suction distributions with TS wave are 5750¢ and 225m*, respectively, and the
magnitudes within the limits experienced locally rapid calculations are performed with the same value®gfused
streamwise variations. They compared solutions from thdor control of a single CF wave.
Navier—Stokes equations with those using the boundary In Table Il the ratio between the maximum values=of
layer equations. They found that the pressure gradient frorfor CF waves using optimal and zero suction are given. Here,
the Navier—Stokes solution varies rapidly close to the sucwe compare the case of optimal suction based on minimizing
tion peak but relaxes very rapidly downstream where it bea CF wave with the case of minimizing the sum of a CF and
comes small, in accordance with the parabolic assumption a TS wave. It is seen that the change of the ratio is small
the boundary layer equations. They further showed thabetween the cases, even wh@g is increased. In Table Il
shape factors from the boundary layer and Navier—Stokethe same comparison is done for the ratio of the maximum
solutions agree well and conclude that there is a weak deralues ofE(, for TS waves. Here, it is clear that the ratio has
pendence of the shape factor on the mean pressure gradietécreased when both CF and TS disturbances are considered.
and that the solutions of the boundary-layer equations ar@s the same amount of control effort is used, this means that
valid. Qc is redistributed in the streamwise direction to control the

In Fig. 6, the EoE of thé\g-factor curves of CF and TS TS wave. The corresponding optimal suction distributions
waves are plotted for the cases of zero and optimal suctioare plotted in Fig. 9 for the cases wheg=0.35 and 0.58.
distributions shown in Fig. 4. In the control domain, the CFThe suction distributions in the upstream part of the control
waves are more damped @g is increased. However, down- domain are similar to the ones in Fig. 4, but the magnitudes
stream of the control region the CF waves are increasinglare smaller. Further downstream, the suction distribution is
amplified asQ is increased. As expected the TS waves argather constant before it goes to zero at the end of the control
less affected by the controls since we know that the controlomain. The latter is similar to what is shown in Pralits
acts upstream of the region where the TS waves are amplet al® for control of two-dimensional TS waves in two-
fied. dimensional boundary layer flows when a small control ef-

In the results shown here, the optimal suction distribu-fort is used. The effect of the control on the shape factor is
tions are based on minimizing a single disturbance only. Thelotted in Fig. 10. Compared to the results given in Fig. 5, a
damping effect of such a control on other disturbances of théarger decrease dfi;, occurs in the downstream portion of
same type can be seen from EOE curves given in Fig. 6. Ithe control domain. The corresponding thinning of the

TABLE Il. Ratio between maximum values &, for CF waves when zero and optimal suction distribution
minimizing the disturbance kinetic energy is applied. The ratio is calculated whef6Emcludes CF and
CF+TS for different values of). .

Disturbance Qc=0.25 Qc=0.35 Qc=0.45 Qc=0.58
CF 1.4<10°8 6.7x1071° 6.4x10° 1! 5.5x 1012
CF+TS 2.2x10°8 1.4x10°° 5.7x 107! 1.1x10°
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TABLE lIl. Ratio between maximum values &, for TS waves when zero and optimal suction distribution
minimizing the disturbance kinetic energy is applied. The ratio is calculated whe(6Emcludes CF and
CF+TS for different values of)¢ .

Disturbance Qc=0.25 Q:=0.35 Qc=0.45 Qc=0.58
CF 2.1x107t 1.6x10°t 1.0x10° ! 9.2x10°2
CF+TS 6.1x 1073 8.6x10°° 1.1x10°3 6.6x107°

boundary layer is favorable in terms of damping the TSbased on the knowledge that any thinning of the boundary
waves. The EoE of th&lg-factor curves are plotted in Fig. layer has a stabilizing effect on the boundary layer. Success-
11. Here, the CF waves are less damped compared to thel results are shown for control of TS waves. The positive
previous case, see Fig. 6. However, the TS waves are nofeatures of this approach motivates an investigation here.
more damped.

It is of interest to know if a larger reduction of the dis- A. Optimality system
turbance kinetic energy can be obtained for a given control
effort if additional modes, apart from the two discussed here,
are included in the calculations. Such a parameter study has
been performed and the results show that the additional de-
crease in disturbance kinetic energy is small when more
modes are included. The reason is that the control mainl;‘fv

The objective function is now given as

Xme
j():f lehldxl,
X

ms

here

acts on the modes with the largest energy. Since the control +o pUst| 4
affects all other disturbancéshown herg it will continue to f - dx
. o . o1 0 peQe
act on the mode with the initially largest energy even if ad- === . (16)
ditional modes are included. %2 j+m pUS"( 1- USL)dx3
0o PpeQe Qe

IV. SIMPLIFIED APPROACH Both the displacemens; and momentum thickness,

In design of suction distributions for the purpose of de-are based on the velocity componetts =U cos(p)
laying laminar-turbulent transition, it is important that the +Vsin(¢) which is in the direction of the outer streamline.
procedure is not computationally expensive. The same argidere ¢ =tan 1(V,/Uy) andQ.= (U2+V2)¥2. Now, only one
ment can be made when designing on-line control systemstate equation is considered and the problem consists of find-
where fast feedback is needed. For this purpose, an alternarg the controlm,,, and corresponding stat@ which mini-
tive approach was analyzed in Airian al® for the control of  mizes 7, given the constraints shown in Egd) and (8).

TS waves in incompressible flat-plate boundary layers. InThe technique using Lagrange multipliers is also used here to
their study the optimal suction distribution is computed byenforce the constraints. The adjoint variab®@$, \*, y*
minimizing the streamwise integral of the shape factor. Thisare introduced and the new Lagrangian functional is given as
means that only the boundary layer and corresponding ad- =TT 17)

joint equations are involved in the optimization process 0o v
which is computationally more efficient. However, the effectwhere 7, is now written
of the optimal suction distribution on the disturbance growth

is analyzed afterwards. This choice of objective function is

45

FIG. 11. Envelope of envelopes dfc-factor curves for the disturbances
FIG. 10. Shape factoH,,, given zero(dotted and optimal suction distri-  given in Table | given zerddotted and optimal suction distribution from

bution (solid) from Fig. 9 minimizing the disturbance kinetic energy, of Fig. 9 minimizing the disturbance kinetic enerdy, of a CF (f]
a CF (f¥=5500s1, gf=2500m1) and TS wave {5=5750s!, 8} =5500s1, B¥=2500m ) and TS wave {3 =5750s %, g5 =225m 1),
=225m1). Qc=0, 0.35 and 0.58, and the arrow marks increagig Qc=0, 0.35, and 0.58 and the arrows mark increashg
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FIG. 12. Shape factotl,, for zero (dotted and optimal suction distribu-
tions (solid) minimizing the shape factoQ.=0, 0.1, 0.3, 0.58, 0.81, and
1.43 and the arrows mark increasifQg .

FIG. 14. Envelope of envelopes Wf-factor curves for the two disturbance
types given in Table | given zer@otted and optimal suction distribution
minimizing (solid) the shape factoQ-=0, 0.1, 0.3, 0.58, 0.81, 1.43 and the
arrows mark increasin@c .

Xce
J1=(Q",LeQ)+ fx N*[n(x*,0)— iy, ]hy dx! sponding suction profiles are plotted in Fig. 13. Note that the
CS uppermost streamwise suction distribution is due to the stag-
nation line control which is taken to be fixed. In all cases, the
' optimal control is divided roughly a/c=0.04 into blowing

o . , . upstream and suction downstream, and the magnitude of the
The derivation is performed as previously described which, ) o1 is increased in both regions @ is increased. At

yields an OP“ma"tY §ystem Wh'Ch contams. the.BLE, El) this position the flow goes from a strongly accelerating one
corresponding adjom.t equatlop and optlmallty condition.; o weekly decelerating one.
F:ompared to the prev_lc_Just derived ABLE, differences oceur Compared to Fig. 3, one can see that the region of blow-
in the boundary conditions and forcing tej . These dif- ;. is \where the CF waves are amplified and the region of
ferences are due to the objective function, Bf). Details g tion s where the TS waves are amplified. In Fig. 14 the
of the optimality system can be seen in Appendix B. EOE of theNg-factor curves for CF and TS waves are plotted
for zero and optimal suction distributions Q¢
=0,0.1,0.3,0.58,0.81,1.43). When control is applied, the TS
Results are shown here on minimizing the shape factonwaves are completely stabilized in the control domain and
First we consider control in the whole available domEjn are then amplified downstream, except @¢=0.1. The CF
and the objective function is integrated in the same streamwaves are instead amplified in the region where blowing oc-
wise region used for Ed6) in Sec. 1l C. The control efforts curs and this becomes more pronounce@gass increased.
in these calculations ai®-=0.1, 0.3, 0.58, 0.81, and 1.43. For the airfoil analyzed here, this means that applying an
In Fig. 12 the shape factors for these cases are compared ¢ptimal control based on minimizing the streamwise integral
that of the uncontrolled case. As the control effort is in-of the shape factor will not delay but rather precipitate
creased, the shape factor is decreased within the major pdeminar-turbulent transition.
of the control domain. Downstream of the control domain a
small increase of the shape factor is observed. The corre-

* Kee | 2 1
+x*| Ec— my,h, dx

cs

B. Results

0.05 0.1 0.15
sfc

0.05 0.1 0.15 02 ' ! L -
slc FIG. 15. Comparison of optimal suction distributions for the cases of mini-

mizing the disturbance kinetic energy of a TS wave measurét,asolid),
FIG. 13. Optimal suction distributionsy,,, minimizing the shape factor, E; (dashed—dottedand the case of minimizing the shape fadmashed
Hi. Qc=0.1, 0.3, 0.58, 0.81, 1.43 and the arrows mark increaQgag Qc=0.01, 0.05, and the arrow indicates increasip\g.
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V. CONTROL USING PRESSURE CHAMBERS

The most common approach for computing optimal suc-
tion distributions is to use the wall mass flux as the control
variable®®° In a realistic setting, such as an experiment or
suction systems used on wings, the suction velocity is a func-
tion of the surface porosity, hole geometry and the pressure
difference between the pressure distribution on the surface
and static pressure in a number of discrete chambérs.’
The aim here is to derive the optimal control problem of Sec.
Il using the static pressures of a humber of discrete cham-
bers, with fixed size and position, as control variables. We
will then compare the results with the previously computed
continuous suction distribution to assess the feasibility of the
FIG. 16. Comparison of envelope of envelopedNgffactor curves for the  latter approach.
cases of minimizing the disturbance kinetic energy of a TS wave measured  If a porous surface is used, then at least for flows with
asEg (solid), E; (dashed—dottedthe case of minimizing the shape f_act_or low free-stream velocity, the relation between the pressure
f:i?i?fc?en;siﬁgz _Comro(doned' Qc=0. 0.0, 0.05, and the arow indi- - e rence and the suction velocity is linear, in accordance

with Darcy’s law. The relation between the pressure differ-
ence and suction velocity used here is taken from Bieler and
Preist’ It is based on measurements carried out in the
framework of the ELFIN(European Laminar Flow INvesti-

In the results shown so far, the most efficient way togation program. In dimensionless form this formula is given
control CF waves is a suction distribution based on minimiz-as
ing the most amplified CF wave. The TS waves, on the other c 1
hand, have so far shown to be more efficiently controlled APj:—lmﬁ,Jr Co—ny, VX e[Xes, Xee ],
using the suction distribution based on minimizing the shape Pw Pw : :
factor. In order to further investigate the control of TS waves, i=1,..K, (18

the case of minimizing the shape factor is compared with th%vhereAPj —p— ch’ in which P, is the pressure distribu-

cases of minimizing the integrated disturbance kinetic energy. . . . . .
9 g g¥|on on the wing andDCj is the static pressure in chamber

of a TS wave and its value at a given streamwise position

X; . The latter two objective functions are obtained by settingThe first term on the right-hand side of H48) is due to the

¢ equal to one and zero, respectively, in Eg). In this com- dynamic pressure loss, and the second term is the pressure

parison, a smaller control domaific=[0.05,0.17, is used, loss due to skin friction. The coefficien®;, andC, together

o . . with a brief description of Eq18) are given in Appendix C.
as the TS waves are amplified downstream of the region Wltq'he choice of static pressure in the chambers is not without

negative pre'ssure gradient. The'disturbances are measuredr@é.trictions. The Mach number of the flow through the holes
Xi=Xce and in the control domain fof equals zero and one ¢ the norous plate should be limited. AP, is too small

respectively. For the comparison, a noticeable reduction ifhen plowing instead of suction might occur. Disturbances
the disturbance growth is obtained choosing the control efmight be introduced as an effect of strong suction through
fort asQc=0.01 and 0.05. The corresponding suction distri-giscrete holes, which can accelerate instead of delay laminar-
butions can be seen in Fig. 15. For the cases of minimizingurbulent transitiot**° These restrictions are related to the

the shape factor, and the disturbance kinetic energ¥(at design of the perforated plate and therefore not considered as
evenly distributed suction distributions are obtained for bothconstraints in the theory presented here.

values ofQ. . The suction distributions based on minimizing
the total disturbance kinetic energy, on the other hand, corA. Optimality system
centrates the control effort close to the lower branch of the ..o 4 <oncise description of the derivation of the opti-

neutral curve. The corresponding EOE of the-factor i system including pressure chambers is given for the
curves for TS waves are shown in Fig. 16 and are compareghse of minimizing the disturbance kinetic energy. The opti-

with the uncontrolled case. In all cases when control is apmg| control problem is now defined as: find contrBls, and
J,

plied a reduction of the disturbance growth is Obtained'statesQ and g which minimize the objective functiot,

When the lower value of the control effort is used, the dif'given by Eq.(7) with the constraints given by Eq&l), (3),

ference between the three approaches is small, see also Fi@y and(8). The Lagrange multiplier technique is also used
15. As the control effort is increased, the suction distributionygre to enforce the constraints. The adjoint variatf¥s

based on minimizing th&,, completely stabilizes the distur- g * ,* and\* wherej =1,...K, are introduced and the
bances upstream affc~0.12. The other two approaches, new Lagrangian functional is given as

due to the evenly distributed suction, produce a continuous

thinning of the boundary layer and consequently larger L=Jo= 1, (19
damping of disturbances downstream. where
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FIG. 17. Pressure distribution on the wilthin lines and optimal static
pressure in the chambe(thick lines for the cases ofa) 5, (b) 6, and(c) 7
pressure chambers minimizing the disturbance kinetic energyf a CF
(f¥=5500s?!, By=2500m?') and TS wave {}=5750s?, g;
=225m 1) whenQ=0.35.
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0.05 0.1 0.15 0.2

FIG. 18. Suction distributiongthick lines corresponding to the optimal
pressure drop for the cases @ 5, (b) 6, and(c) 7 pressure chambers in
Fig. 17. A comparison is done with the optimal suction distributithin
lines) from Fig. 9 whenQ.=0.35.

Before the calculations are performed, the size, position
and number of pressure chambers must be set. The different
sizes are chosen such that the chambers are smaller where
the pressure gradient of the wing is large and vice verse. This
is done to avoid large pressure drops which result in large
suction peaks. The whole control domdin=[X.s,Xce] IS
used such that the pressure chamber closest to the leading
edge starts aX¢s =X¢s and the last pressure chamber ends
at Xceszce.

The results in Sec. IV B show that minimizing the shape
factor does not always give an optimal suction distribution

Compared to the previously described Lagrangian functionwhich reduces the disturbance growth. Further, it is seen in
als, the wall boundary condition has now been divided Kito Sec. 111 C that both CF and TS type disturbances should be
discrete domains, and the mass flux at the wall is given byncluded in the calculations when the disturbance kinetic en-

Eqg. (18). No additional difficulties appear in the derivation ergy is minimized. Therefore, we choose to minimize the
compared to the one in Sec. lll. The optimality condition istotal disturbance kinetic energg=1 in Eq. (7), including
now obtained by setting the functional derivative with re-poth the CF and TS waves given in Sec. IllC. The control
spect to the static pressure of each chamber to zero. Theffort Q.=0.35 and the calculations are done for the cases
resulting optimality system can be seen in detail in Appendixof 5, 6, and 7 pressure chambers.

C.

B. Results

Results of the optimal static pressurlé§j of each case

are plotted(thick lines in Fig. 17. The pressure distribution
on the wingP, is also plotted(thin lines for comparison.

Here results are given for the case of minimizing theThe regions/c=[0.05,0.17% has been magnified to enhance
disturbance kinetic energy using pressure chambers. The p#ie details. As shown, the pressure different®;=P,
rameters in Eq(18) which specify the porous surface are — P, is larger close to the leading edge and decreases down-

taken from Bieler and Preidf. The plate thickness and
hole diameter at the surfackare 0.9 mm and 0.046 mm,
respectively. The porosityt/ (4€?) is calculated given a hole
pitch to diameter ratice=13.8. The coefficients of inertial
and viscous pressure loss ae-1.6 andB=0.092, respec-
tively.

stream.

The suction distributions corresponding to the optimal
static pressures in Fig. 17 are plotted in Fig. 18. Note that the
uppermost streamwise suction distribution in each case is
due to the stagnation line control and is taken be fixed. In
each case the suction distribution downstreans/cf=0.05
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20 ‘ ‘ 5 5 ing a suction distribution in a continuous control domain.
' ' This is true for the results of both the CF and TS waves.
16

VI. DISCUSSION AND CONCLUSIONS

A method to control convectively unstable disturbances
in boundary layers on infinite swept wings for compressible
fluids has been derived and analyzed. The method has been
developed in the framework of optimal control theory. The
mean of disturbance control is a modification of the mean
flow by the mass flow through a porous surface. The optimi-
zation problem is derived using Lagrange multipliers from
which optimality systems are obtained containing the adjoint
FIG. 19. Envelope of envelopg&oB) of Ng-factor curves for the distur-  Of the parabolized stability equatiof&PSE and the adjoint
bances given in Table | for the cases of zero corflotted and the optimal  of the boundary |a_yer equatio[@ABLE)_
pressure chambers in Fig. 15olid). The arrows mark increasing number of Two different control variables are considered. The first
pressure chambers. A comparison is done with the EdRefactor curves . . .

(dashed from Fig. 11 withQ.=0.35. control vanab_le is the mass flow at the wall. Here, |§ is as-
sumed that given a certain control domain, the suction dis-
tribution is not constrained by how it will be implemented on
the wing and thus has the optimal distribution with respect to

is rather constant. Upstream of this streamwise position tha certain objective function. The second control variable is

suction distributions have more of a sawtooth shape. Théhe static pressure in a number of pressure chambers. Here,
latter is an effect of the strong pressure gradient in this rethe suction velocity is a function of the surface porosity, hole
gion. geometry and the pressure difference between the pressure

For each case in Fig. 18, a comparison is made with thelistribution on the wing and the internal static pressure of the
optimal suction distribution from Fig. &hin lineg for the  pressure chambers. In this case, the internal static pressure of
case whermQ-=0.35. As the same control effort is used in each box is optimized. In both cases, the control effort has
these calculations, it is interesting to compare the optimahot been regularized, but instead enforced as a constraint.
suction distribution in a continuous control domain with the Different measures of the stat@bjective functions
cases using pressure chambers. It is seen that the magnituidave been analyzed. The first objective function is a measure
of both the suction distribution from Fig. 9 and the suctionof the disturbance kinetic energy. A comparison has been
distributions using pressure chambers is rather constambhade between minimizing the kinetic energy of a single dis-
downstream o8/c=0.05 and increases upstream of this po-turbance at a fixed streamwise position, and minimizing the
sition. Further, the distribution using pressure chambers apstreamwise integral of the kinetic energy of an arbitrary
proaches the continuous one when the number of chambermsimber of disturbances. For control of a single CF wave, the
is increased. This is most evident downstream st  difference between the two objective functions is small. The
=0.05. advantage of the latter is that more than one disturbance can

The effect on the disturbance growth using the optimalbe included in the measure. On the wing studied here, both
pressure differences for the cases of 5, 6, and 7 pressupeoss flow and TS waves are amplified on the upstream part.
chambers is shown in Fig. 19. Here the EoE offhefactor  Results show that both disturbance types need to be ac-
curves for CF and TS waves are plotted for zero and optimatounted for in the objective function in order for the control
pressure differences of all casésolid lineg. The arrows to decrease their growth. Further, it is sufficient to account
mark the direction of increasing number of pressure chamfor one of each disturbance type in order to control all other
bers. A decrease in the growth of both CF and TS waves idisturbances of the same type.
obtained for all optimal pressure differences calculated here The second measure of the state used here is the stream-
compared to the case of zero suction. The CF waves anise integral of the shape factd,;,. Airiau et al® showed
more damped in the control domain when the number othat this quantity is successful for control of two-dimensional
pressure chambers is increased. However, the difference bdisturbances in Blasius flow. In terms of computational ef-
tween the cases of having 6 and 7 pressure chambers is smédtt, the approach of minimizing the shape factor is efficient.
as the additional chamber is placed where the CF wave$he optimality condition for each iteration in the optimiza-
begin to decay. The results for the TS waves show that uption process is obtained after solving the boundary layer and
stream ofs/c=0.1, the EoE curves increase in magnitude ascorresponding adjoint equation once. The disadvantage lies
the number of pressure chambers increases. Downstream iofthe fact that one does not take into account the disturbance
this position EoE curves decrease in magnitude. A comparigrowth in the optimization process, and consequently the ef-
son is made with the EoE of thég-factor curves in Fig. 11 fect of the control on the disturbance growth needs to be
which are calculated using the suction distribution from Fig.analyzed afterwards. Results here show that a control based
9 with Q¢-=0.35(dashed lines It is seen that as the number on this objective function amplify instead of damp cross-
of pressure chambers are increased, the results within tiflow modes in the region close to the leading edge of the
control domain using pressure chambers approach those using. In this region, the optimal mass-flow distribution has a
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positive sign, i.e., blowing occurs. The amplification of dis- whereg= (p,0,0,W,T)T. The coefficients of the 85 matri-
turbances mean that the point of laminar-turbulent transitiorzes 4, B, ¢, and D are found in Pralitet al?® The corre-
will move upstream and the laminar portion of the wing will sponding boundary conditions are
decrease. Further, as the current way of implementing suc- 1
tion systems relies on pressure chambers, a region of blowV/(X 1,0)=Wi(x)
ing is not realizable. W(x1,00=0 Vx'el
Results are also presented for the optimal static pressure = ' ¢
in a number of pressure chambers. These results depends[)n

vxlel,,

T

the choice of size, position and number of the chamberg.Y:V: >3 (x1,0=[0,0,0] Vx'e[Xs,X4],

However, it can be shown that the corresponding suction

distributions are similar in magnitude compared to the result lim [U,V,T](x}x

of the optimal suction distribution in a continuous control x*- +<

domain. This similarity increases as the number of pressur -

chambers is increaseB(;. P fﬂ,z},v‘v,T](xl,O):[0,0,0,q Vxte[Xo, Xl,
The magnitudes of the suction distributions presented in im [0,5

this paper are all of ordgd(Re ), which is within the range Y

of validity of the boundary-layer equations. As Airiatial® e

showed, for the suction rate of this order, the boundary-layeWhere variables with subscript are evaluated at the wall,

and Navier—Stokes calculations agreed well though the opti@nd subscripe at the boundary layer edge. The initial con-

mal mass flux experiences locally large streamwise variatiorflitions are
Q(Xs,x%)=Qs(x%)
A4(Xo.,x%)=0Go(x%)

where the solution of variables with subscript 0 is given by

3):[UeaveaTe](X1) VXlE[xS-Xl],

W, T1(x%,x%)=[0,0,0,0 Vxte[Xq,X4],

Vx3e[0,+x),
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APPENDIX A: OPTIMAL CONTROL USING THE WALL
MASS FLUX TO MINIMIZE THE DISTURBANCE

the local stability analysis, and subscripby the solution at
the stagnation line.

2. Adjoint equations

The adjoint of the boundary-layer equations are

KINETIC ENERGY

; d(h,W* ou oV JT
1. State equations p ( 1)(3 )_ lp(muhrmv“rcpm-r* —Fyhy,
The boundary-layer equations for a viscous compressible (A7)
flow over a swept wing with an infinite span are
* *
P ) (Al) axt X
hy odx xS
pU U U 1dP, 1 4 U AT ARV AL LIS IV
tpWog=—— g+ — =l pu—s|,  (A2) oxt axt axt " Poxt
h oxt ax3 h, dx* Reodx X
pU v N 1 o[ av iz SPeq 2= 9 Y
+oW-—3=>=-3| p—3/, (A3) dx Re X X
h1 axt x>  Redx X
1 9 d(hU*)
py T il +——3(u—3 =Fyhy, (A8)
__+ —_
Cp hy oxt cppWaX3 Re dx X
“Reprad| “ac) TV R @k 7 7 Re ™ o ax
1 9 d(h,V*)
pM2[ (U2 (V)2 +——3(M—3 ~Fyhy. (A9)
=D ®e (m) e (Ad) Re ox ax
The parabolized stability equations are lengthy and here arg I(pUT*) e d(h,pWT)
given in a symbolic form Pooxt P ax®
a4 9°q 194 pU [ aU oV OW* 4T
+ + + = —| = —T
AQ+ B3 +C— 3 37 D— hy oxt 0, (A5) + 5 (ﬁxlu* VT T e T
o 94 Kk 3*(hT*) (y—1)
—dx3=0, Vxte[Xq, X1, A6 L
Jo q -1 e[ Xo,X1] (A6) + RePr (ox)2 + Re
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Quaf (201 [ VT Q* (XaxH) =0 ¥x®e[0+2),
dT || ox® ax3 L x 1
with g, andr; evaluated ak =X, as
1 du|oU a(hU*) oV a(hV*) * _ 1@ 2+ N *_ @2
S R A qi =|®°D"(M—c,0)§, ri=|0|cy,
RedT|ox® ax° ax3  ax3 eny, ! ! ! '
o JA B
(A10) f (hquMDJrH(a—a—l—a—a q—quMq)dx3
where Fe=(F1+Fy W/T)h,, andFy,, Fy, Fy, Fr are G= ,
found in Pralits?’ The adjoint of the parabolized stability fquDm(‘?AJrﬁ)qh 43
equations can be written as 0 da da) T
Al
_ (9q* Fq* 199" 1 (AL3)
Aq +B Jrc(oms)2 Dh_lﬁ_ 5, (A1) whereD*=(D") L
N d B 3. Optimality condition
lJ' *H _+_'thdx3 p y - N -
X" Jo da  da The optimality condition is
0 VXlEE[Xmsyxme]y {—2X*mw Vxlefc, ( )
= Al4
_ + oo w 1
07 [ aMan 0 Ve DXns X, A1 0 wxel
0 where
where 12
2
94 ar*a) X‘(4ch thx) '
- X_ &X VX 64t—[>(ms,vxme]
Kk
SP - aq Ar*q) APPENDIX B: OPTIMAL CONTROL USING THE WALL
-T* v R + &M q|®|2 vxt & [ Xms: Xmel» MASS FLUX TO MINIMIZE THE SHAPE FACTOR
and 1. State equations
BH 20H oM gpH The boundary layer equations are given by Edsl),
A= A" = J —my B+ J 3 5+ 2m13(9 _ J - (A2), (A3), and(A4) with corresponding boundary and ini-
S (9x%) x> ox tial conditions as given in Appendix A 1.
- b 0Ct y dio .
B=-B +2&—Xg+2m1§ , 2. Adjoint equations
5 The adjoint boundary layer equations are given by Egs.
c=Cc", (A7), (A8), (A9), and (A10) where the component of the
_ forcing S§ = (Fw,Fy,Fv,Fg) are now
D=-7H.
FW: 0,

The vector g* =(p*,u*,v*,w*,6*)T, and the complete

derivation of these equations is found in Praétsal. 2 The 1

above equations are subjected to the following boundary Fu= 5, = pCogp)(1+H1x(1-2Us)) - Q
conditions:

[u*,0* w*,0*](x},00=[0,0,0,0 Vx'e[XqX1],
lim [u*,0*,w*,60*](x5x3)=[0,0,0,0 Vx'e[Xq,X;],

e

1 Ue
szé—zpsin<¢><1+H12<1—2u5L>>Q—",

e

X3 4o 1 T
[U* V*](x%,0)=[0,0] Vx*e[Xq,X4], FE:‘??USL(”le(l USL))_

Kk d(hT*) L L The initial and boundary conditions are the ones given in
RePr @ ThpCpWTH(x500=0 VX" e[Xo,X4], Appendix A2, except for free stream boundary conditions

which are now given as

lim [U*,v* W* T*](x%x%)=[0,0,0,0 U* v -

3

XT— e lim 07X W W* —3- (X X3):[0,0,0,q
1 3
VX E[Xo,xl]. XZ—F e
The initial conditions are Vxte[Xg,X1].

* 3\ (1 e* (3 3
9" (X1x)=(1=Haq1 (x°)  Vx*e[0,+), 3. Optimality condition

r*(Xy=(1-9r; Vx*e[0,+), The optimality condition is given by EqA14).
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APPENDIX C: OPTIMAL CONTROL USING
PRESSURE CHAMBERS TO MINIMIZE THE
DISTURBANCE KINETIC ENERGY

1. Relation between internal static pressure and mass
flux

Optimization of steady suction for disturbance control 2771

given as/(4€?), where e is the ratio between the hole
diameter on the surface and the distance between the holes.
It was found in experiments that the relationship be-
tween the suction velocity and pressure difference was non-
linear and that adding a term due to dynamic pressure loss

The relation between the pressure difference and suctiowith an empirically obtained coefficiend gave a good

velocity used here is taken from Bieler and Préfstt is

agreement with experiment§The second term on the right-

based on measurements carried out in the framework of thieand side of the formula is based on the Hagen—Poiseuille

ELFIN (European Laminar Flow INvestigatibprogram. In
dimensionless form this formula is given as

Cl . 2 Mw .
Apjzpe— ch=EmW+C2EmW,

where

c A 4e?\2 38 4€? L
172 ' Y27 Re 1w d¥

The porous plate has a thickndsand a hole diametet

o

equation for pressure loss due to skin friction in a hole with
parallel walls. The coefficier® is a function of the inner and
outer hole diameters and serves as a correction due to the
conical shape of the holes.

2. State equations

The boundary-layer equations are given by Edsl),
(A2), (A3), and(A4) with corresponding initial conditions as
given in Appendix A 1. All boundary conditions are the same

at the surface. Due to manufacturing reasons the holes wegs given in Appendix A 1, except for the wall normal mean

slightly conical with an inner diametdd. The porosity is

0 Vxlet[Xcsj,Xcej],

_£2@+\/(1%@
2Cy py

W(x1,0) =

]Cl

velocity at the wall, which is now given by

2
FAPE" VXt [Xog Xo |-

The values used here fé; B, L, d, ande are taken from Bieler and PreistThe parabolized stability equations are given by
Egs.(A5) and (A6) with corresponding boundary and initial conditions as given in Appendix A 1.

3. Adjoint equations

The adjoint parabolized stability equations are given by EA%1) and (A12) with corresponding boundary and initial
conditions as given in Appendix A 2. The adjoint boundary layer equations are given bgAE@s(A8), (A9), and(A10) with
corresponding initial conditions as given in Appendix A 2. All boundary conditions are the same as given in Appendix A 2,

except forT* at the wall, which is now given by

“ a(th*)'f'h WT*
RePr ox° 1PCp
where
JdP. P,
K.= i i
y aTW/ am,,’
and
P 1 1 (M d )
j . 2 w Mw) .
= Cimy+Cyr—|=—+ =M
ITw  pwTw 1w pr Ty dTw "
Pe 2C
i 1. Mw
—=—m,+C,—
am,, Pw " 2pw
4. Optimality condition
We find
Xee. P\t
e * 5 1 H
— (W, +2x*m,,) ey h,dx*=0, j=1,..K,
XCSJ My

0 Vx1¢[XCSj,Xcej],
K](W* + ZX* mw) Vxl € [Xcsjrxcej]!

vxte [Xes: Xce,]-
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where

172
*

i 2
4Ec;— JCSW* hy dxt
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