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This article investigates the structural stability and sensitivity properties of the confined turbulent
wake behind an elongated D-shaped cylinder of aspect-ratio 10 at Re = 32 000. The stability analysis
is performed by linearising the incompressible Navier-Stokes equations around the numerically com-
puted and the experimentally measured mean flows. We found that the vortex-shedding frequency
is very well captured by the leading unstable global mode, especially when the additional turbulent
diffusion is modelled in the stability equations by means of a frozen eddy-viscosity approach. The sen-
sitivity maps derived from the computed and the measured mean flows are then compared, showing a
good qualitative agreement. The careful inspection of their spatial structure highlights that the highest
sensitivity is attained not only across the recirculation bubble but also at the body blunt-edge, where
tiny pockets of maximum receptivity are found. The impact of the turbulent diffusion on the obtained
results is investigated. Finally, we show how the knowledge of the unstable adjoint global mode of the
linearised mean-flow dynamics can be exploited to design an active feedback control of the unsteady
turbulent wake, which leads, under the adopted numerical framework, to completely suppress its
low-frequency oscillation. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4974069]

I. INTRODUCTION
Understanding and controlling the flow in the wake of

geometries which give rise to large scale unstable structures,
such as for instance vortex shedding, is of paramount impor-
tance in many engineering applications. This is the case,
for example, of the separated flow over a wing, resulting
in unwanted aerodynamic loading, and of the unstable wake
behind a bluff body, where the flow unsteadiness increases the
aerodynamic drag and becomes a source of acoustic noise. The
idea to use passive or active control strategies to improve the
performance as well as the efficiency of certain applications
is far from new and has been extensively investigated both
numerically and experimentally.1–3

Numerical modelling of fluid flows and mathematically
rigorous theories for their control4,5 have been usually first
tested and verified in simplified conditions, at low or moder-
ate Reynolds numbers.6–9 Within this framework, the concept
of structural sensitivity has gained interest with applications to
a large variety of globally unstable flows.10–15 Indeed this
linearised approach allows one to predict, beforehand, the
effective positioning of a flow disturbance, i.e., a passive
device, able to shift the vortex-shedding frequency or even
to completely suppress the global instability of the flow. A
remarkable example is represented by the possibility to qual-
itatively recover the well-known experimental control map of
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Strykowski and Sreenivasan16 for the circular cylinder wake,
as shown by Marquet, Sipp and Jacquin.17 At the same time,
a main concern is that the underlying theory is limited to low-
Reynolds number flows near the instability threshold, which
often makes these techniques of little interest from practical
and industrial viewpoint.

Despite the lack of a rigorous mathematical foundation,
over the last few years, the above approach has been applied
to turbulent bluff-body wakes, heuristically based on the lin-
ear stability analysis of time-averaged mean flows. For various
flow configurations, past studies18–20 have shown that either
linearised Euler or Navier-Stokes equations around the mean
flow successfully exhibit a mildly unstable global mode with
approximately the same frequency of the unsteady flow. These
results are reminiscent of the seminal work of Malkus,21 first
conjecturing the marginal stability of the mean-flow field, a
conjecture which has been pursued by Mantič-Lugo, Arratia
and Gallaire22 to build-up an effective self-consistent model
of the nonlinear saturation mechanisms of the circular cylinder
wake up to Re = 110. The marginal stability criterion becomes
indeed exact in the case of pure monochromatic oscillations of
the flow, as shown by Turton, Tuckerman and Berkley,23 and
further theoretical insight to the more general case of a broad-
band spectrum has been recently given by Beneddine et al.,24

based on the singular-value analysis of the resolvent operator
associated with the mean-flow linearised equations, with focus
to high Reynolds number weakly non-parallel flows.

A first attempt at pushing forward the structural sensitiv-
ity analysis in the context of turbulent flows has been made by
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Meliga, Pujals and Serre.25 In their study, the authors computed
the time-averaged solution of the unsteady two-dimensional
Reynolds-Averaged Navier-Stokes (RANS) equations for the
flow past a D-shaped cylinder at Re = 13 000 and then per-
formed a sensitivity analysis of the obtained mean flow by
linearising both the flow and the turbulence model equations.
In analogy with the studies of the circular cylinder wake
at low Reynolds numbers, the frequency control map com-
puted by the authors for the considered turbulent flow was
in close agreement with the one experimentally obtained by
Parezanović and Cadot26 through extensive measurements per-
formed for different positions of the secondary cylinder. Later,
similar results were reproduced by Mettot, Sipp and Bézard27

by means of a simpler approach, where the linearisation is
restricted to the flow equations only, thus making the whole
procedure independent from the turbulence modelling. In the
experimental study by Camarri, Fallenius and Fransson28 the
same approach is applied to the mean wake behind a circular
cylinder with transpiration at Re = 3500. Although the stabil-
ity and sensitivity analyses of experimental data pose some
computational difficulties, the authors have shown that this
approach can predict, with good accuracy, not only the vortex-
shedding frequency but also its variation with respect to the
transpiration parameter, based on the induced modifications of
the mean flow.

The present study further explores the possibility to cap-
ture and control low-frequency unsteadiness in turbulent bluff-
body wakes based on the stability properties of the inher-
ent mean flow. To this purpose, we consider the confined
incompressible flow past an elongated D-shaped cylinder at
Re = 32 000 by means of both numerical and experimen-
tal investigations. In analogy with the aforementioned stud-
ies,25,27 numerical simulations are undertaken in the RANS
framework while the experimental measurements are per-
formed by means of Particle Image Velocimetry (PIV) in the
near-wake region of the flow. Notwithstanding that the accu-
rate and reliable numerical prediction of turbulent flows over
bluff-body geometries still represents a great challenge, RANS
computations define a consolidated modelling approach for
several industrial applications, whose ability in reproducing
basic mean-flow features and turbulence statistics has been
assessed over the last decades. The mean-flow analysis of
Mettot, Sipp and Bézard27 based solely on the linearisation
of the momentum and mass conservation equations is adopted
here and applied to both the numerical and the experimental
flow data, thus allowing a direct comparison of the obtained
sensitivity maps. In the context of the adopted RANS mod-
elling, we carefully investigate the impact of a frozen eddy

viscosity approximation when introduced in the stability equa-
tions. Finally we show how the obtained stability results can be
exploited to design an active feedback control of the unsteady
wake targeting its vortex-shedding mechanism. The control
design is based on the mean-flow linearised description of the
fluid plant, under the well-established framework of the lin-
ear optimal control theory.4,5 The Minimal Energy Control
(MCE) technique,29 which has been successfully applied to
the laminar cylinder wake,30 is extended here to the control of
organized low-frequency waves in turbulent flow oscillators,
as described by the mean-flow global mode dynamics. The
main advantage of this technique is that the computation of
the stabilizing feedback gain field only requires the knowledge
of the unstable adjoint mode, bypassing any model reduction
step and thus providing directly a physical insight of the most
relevant flow regions for a velocity feedback control.

The paper is organized as follows. We present in Sec. II
the flow configuration, the employed numerical and experi-
mental setups, and we compare the obtained results in terms
of the vortex-shedding frequency and of the mean-wake flow
structure. Then in Sec. III we introduce the global stability
and sensitivity analyses of the computed and measured mean-
flows, with the details of the related numerical procedures.
The proposed active feedback control of the unsteady RANS
flow is described in Sec. IV, showing that the vortex-shedding
is completely suppressed. In addition, a brief summary and
concluding remarks are given in Sec. V.

II. FLOW CONFIGURATION

The considered flow configuration is illustrated in Fig. 1,
featuring an elongated D-shaped cylinder of aspect ratio
AR = 10 located at the centre of a channel. The body lead-
ing edge is defined by a semi-ellipse which extends down to
the mid-chord, while the remaining body half is represented
by a thick flat-plate. The geometry in Fig. 1 exactly corre-
sponds to a longitudinal plane of the wind-tunnel test section
employed in our experimental setup, which is also illustrated
in Fig. 3. Within this plane, the fluid motion is described using
a Cartesian coordinate system where the x-axis is aligned with
the direction of the incoming fluid stream, and the origin is
located at the intersection between the symmetry axis and the
body stern. The flow is modelled by means of the incompress-
ible Navier-Stokes equations which are made dimensionless
using the body thickness H, the velocity of the uniform fluid
stream U1 at the inlet and the constant density ⇢. The corre-
sponding Reynolds number is Re = U1H/⌫ = 32 000, ⌫ being
the kinematic viscosity of the fluid.

FIG. 1. Schematic diagram of the con-
sidered flow configuration.



024102-3 Carini et al. Phys. Fluids 29, 024102 (2017)

A. 2D-RANS setup

A two-dimensional RANS modelling is employed for the
numerical simulation of the considered turbulent flow. Both
steady and unsteady RANS computations have been performed
using the OpenFOAM code.31 The implemented k-! SST
model32 has been selected for such purpose, with the whole
flow state being described by the velocity field U(x, y, t), the
pressure field P(x, y, t) and two additional scalar fields, k(x, y, t)
and !(x, y, t) which are physically related to the turbulent
kinetic energy and to the specific dissipation rate, respectively.
The turbulent viscosity field ⌫t(x, y, t) is defined as follows:

⌫t =
a1k

max (a1!, ⌦)
, (1)

where a1 = 0.31 and ⌦ denotes the magnitude of the vor-
ticity field. Within this framework the governing equations
are spatially discretized using a finite volume approach, with
a combination of centred and upwinded second-order dis-
cretization schemes. For time integration, a three-level second-
order backward difference method is employed. Given the
incompressible description of the flow, the pressure-velocity
coupling is handled using a standard “segregated” approach
based on a momentum predictor, a pressure solver and a
momentum corrector, exploiting the algorithms already imple-
mented in OpenFOAM. In particular, the SIMPLE (semi-
implicit method for pressure linked equations) method33 is
used for steady-state RANS (S-RANS) computations while
the PIMPLE method, which merges the SIMPLE and the
PISO (pressure implicit with split operator)34 algorithms, has
been used for the unsteady simulations. A unit streamwise
velocity is imposed at the inlet of the computational domain
(⌃), where a turbulence level of Tu = 2% and an eddy-to-
kinematic viscosity ratio of ⌫t/⌫ = 100 are prescribed, based
on the recommendations from Menter, Kuntz and Langtry.35

On the outlet boundary, the governing equations are supple-
mented by homogeneous Neumann conditions for the velocity
field, rU · n̂ = 0, n̂ being the outward unit normal vector.
Finally, consistently with the adopted near-wall mesh reso-
lution, direct-wall boundary conditions36 are assigned on the
solid surfaces:

U = 0, k = 0, ! =
60⌫
�1d2

, (2)

where �1 = 0.075 and d is the distance of the first cell cen-
troid from the wall. For the pressure equation, homogeneous

Neumann conditions are assigned everywhere on the domain
boundary except for the outflow boundary where the pres-
sure is fixed to zero. The workflow is the following: first the
S-RANS solution is computed using half of the mesh, thanks
to the inherent mean-flow symmetry, and then it is employed
as the initial condition for the U-RANS computations.

The employed mesh features a hybrid structure, as shown
in Fig. 2. More precisely, the mesh is composed of a struc-
tured layer close to the wall boundaries (for both the body
and the wind-tunnel surfaces) and of an unstructured region
with triangular prismatic cells elsewhere. The use of hexa-
hedral wall layers allows the better control of the near-wall
mesh resolution and the accurate description of the turbulent
boundary layers features. In particular, for the present compu-
tations, a strong clustering of the near-wall cells is adopted,
with d+  1 everywhere, where the notation (·)+ is used here
and in the following to indicate the inner-wall scaling of the
considered physical quantity. The total number of cells is
Nc = 362 162.

In order to validate our numerical solver, we consider a
well known benchmark represented by the flow past a square
cylinder at Re = U1D/⌫ = 22 000, where D is the length
of the square side. For this test case, we employ the same
computational box used by Bosch and Rodi,42 with a near-
wall grid resolution fine enough to guarantee that d+  1 on
the square boundary and resulting in a total mesh size of 43
200 cells. Similarly to the case of the thick flat-plate, a unit
streamwise velocity is imposed at the inlet, where both Tu
and ⌫t/⌫ are prescribed following the recommendations of the
aforementioned authors. On the lateral boundaries, symmetry
conditions are applied while at the outflow, homogeneous Neu-
mann conditions hold for the velocity field. The dimensionless
time-step is �t = 2 ⇥ 10�4. After a transient the flow settles
down to a fully developed vortex-shedding regime, whereafter
the solution is advanced in time and averaged on-the-fly over
600 time units (about 78 shedding cycles). Obtained results in
terms of mean aerodynamic forces and nondimensional vortex-
shedding frequency St = fD/U1, are reported in Table I, and
compare well with numerical and experimental data available
from the literature.

B. Experimental setup

The experiments were conducted in an Eiffel wind tunnel
at ONERA Toulouse. The test section, which is illustrated in

FIG. 2. Hybrid mesh employed for the
RANS computations: detail of the mesh
structure around the thick-flat plate.
Colors are used to visualize the differ-
ent structured and unstructured mesh
regions. Note in particular the narrow
mesh blocks introduced at the body
blunt-edges to better capture the blow-
ing/suction actuation; see Sec. IV for
further details.
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TABLE I. Synoptic table of representative mean and fluctuating quantities for the flow past a square cylinder at
Re = 22 000. C̄D, denotes the mean drag coefficient, C0D and C0L , the r.m.s. of the drag and lift coefficient signals
and St, the vortex-shedding Strouhal number.

Contribution Model C̄D C0D C0L St

Lyn et al.37 Expt. 2.1 · · · · · · 0.132
Lee38 Expt. 2.05 0.16 0.23 · · · · · ·
Rodi et al.39 LES 2.2 0.14 1.01 0.13
Minguez et al.40 LES 2.2 · · · · · · 0.141
Rodi et al.39 2D RANS, two layer k �! 2.004 · · · · · · 0.143
Iaccarino et al.41 2D RANS, v2 f 2.22 0.056 1.83 0.141
Meliga et al.25 2D RANS, SA 2.26 0.37 1.13 0.139
Present 2D RANS, k �! 2.14 0.27 1.58 0.13

Fig. 3 has dimensions 1.2 ⇥ 0.4 ⇥ 0.31 m3 (length ⇥ width
⇥ height). The free-stream velocity ranges from 5 m/s up to
50 m/s with a measured turbulence level lower than 0.5%.
For the present experiments the free-stream velocity is set to
U1 = 10 m/s, yielding the considered Reynolds number of
Re = 32 000.

The D-shaped model is located at the mid-height of the
test section with a zero angle of attack and spans over the
entire width of the wind tunnel. The model is characterized
by a chord length ` = 500 mm and a trailing edge thickness
H = 50 mm, yielding a blockage ratio of 16.5%. Given this
bluff-body geometry, a wake observation area of length⇡ 10 H
was achieved. In order to force the boundary layer transition
to the turbulent state at a fixed streamwise location, a 510 µm
zig-zag strip was placed at the 4.4% of the body chord starting
from the leading-edge. Such a placement is motivated by the
strong flow acceleration induced by the leading-edge geometry
and the blockage ratio.

A high-speed stereo-PIV measurement system has been
employed to characterize the wake of the thick-flat plate. After
a preliminary verification of the two-dimensionality of the
wake mean state with respect to the z-axis (see Fig. 3(a)), flow
measurements were performed in the mid-span xy plane of the
model. The employed PIV system is composed of a Nd:YLF
laser (Litron, LDY304 PIV, 527 nm, 30 mJ at 1 kHz) and two
high-speed cameras (Phantom v711). The latter were mounted
on Scheimpflug adapters positioned on each side of the light
sheet and equipped with 105 mm lenses (AFD Micro Nikkor,
f 1 : 2.8) pointing to the measurement plane with an angle of
35�. The PIV measurements were performed at an acquisition
frequency of 555 Hz over 5405 nondimensional time units. The
velocity field and the related statistics were computed using

the LaVision Davis 8.2 software, with final interrogation win-
dows of 24⇥24 pixels and 75% overlap, which yield a PIV grid
composed of 222 points in x and of 122 points in y for the rect-
angular box of coordinates [0.20, 4.46]⇥ [�1.12, 1.21], which
is represented in Fig. 1. The obtained spatial resolution is 0.963
mm, corresponding to �x =�y⇡ 0.0193 in nondimensional
units.

C. Results

The computed RANS solutions of the confined flow past
the thick flat-plate are depicted in Figs. 5 and 6 by means
of the velocity field magnitude and of the turbulent viscos-
ity field, respectively. A convergence study with respect to
the employed near-wall mesh resolution has been performed
based on the S-RANS results in order to reduce the required
computational effort compared to the U-RANS case. Repre-
sentative results are illustrated in Fig. 4, confirming that for
d+  1, both the body and the wind-tunnel turbulent boundary
layers are accurately captured. With reference to the employed
mesh, the average and maximum values of d+ on the differ-
ent wall boundaries are reported in Table II, indicating that the
distribution of d+ does not significantly change when the time-
averaged U-RANS solution is considered. Note that averaging
is performed over ⇡30 shedding cycles, as done in the study
by Meliga et al.43 for the turbulent flow past a square.

As expected, the S-RANS solution features a longer recir-
culation bubble compared to the U-RANS one, Figs. 5(a) and
5(c). At the same time, a remarkable difference is observed
in the spatial distribution of the turbulent viscosity field.
Indeed, while in the S-RANS case, Fig. 6(a), ⌫̄t(x, y) is mainly
concentrated in the near-wake region, reaching its maximum

FIG. 3. Experimental setup. (a) Sche-
matic of the D-shaped body installed in
the wind tunnel test section. (b) Picture
of the wind-tunnel test section.
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FIG. 4. Convergence study of the
S-RANS mean flow in the near-wall
region with respect to the adopted mesh
resolution. (a) Thick-flat plate boundary
layer at x = 0.5. (b) Wind tunnel
boundary layer at x = 0.5.

TABLE II. Near-wall layer resolution at both the wind tunnel and the thick flat-plate solid surfaces. The average
and the maximum values of the nondimensional distance of the first cell centroid from the wall, d+avg and d+max ,
respectively, are reported.

Wind tunnel wall Body wall (x < 0) Body stern (x = 0)

Mean flow d+avg d+max d+avg d+max d+avg d+max

S-RANS 0.36 1.0 0.30 0.40 0.1 0.30
U-RANS (time-averaged) 0.37 1.0 0.35 0.82 0.3 0.55

value just downstream of the recirculation bubble, in the time-
averaged U-RANS solution, Fig. 6(c), the eddy viscosity val-
ues gradually increase from the body stern up to the outflow
boundary. Note that ¯(·) is used to denote a time-averaged quan-
tity. Similar considerations hold for ⌫t(x, y, t) during the fully
developed vortex-shedding regime, as shown by an instan-
taneous snapshot in Fig. 6(b), where the structure of the
von Kármán wake is clearly highlighted. The corresponding
velocity snapshot is depicted in Fig. 5(b). The flow evolution

from the S-RANS state to the oscillatory regime is described in
Figs. 7(a) and 7(c) by means of the time traces of the body aero-
dynamic coefficients which are defined based on the adopted
reference velocity and length scales:

CD(t) =
2Fa(t) · x̂
⇢HU21

, CL(t) =
2Fa(t) · ŷ
⇢HU21

, (3)

where Fa(t) stands for the aerodynamic force, per unit width,
acting on the thick flat-plate and x̂, ŷ denote the unit vectors

FIG. 5. RANS simulation of the con-
fined flow past the thick flat-plate: mag-
nitude of the velocity field, kU k. (a)
S-RANS solution. (b) U-RANS snap-
shot during the fully-developed vortex-
shedding regime. (c) Time-averaged
U-RANS solution; averaging is per-
formed over ⇡ 30 shedding cycles.
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FIG. 6. RANS simulation of the con-
fined flow past the thick flat-plate: tur-
bulent viscosity field, ⌫t . (a) S-RANS
solution. (b) U-RANS snapshot dur-
ing the fully-developed vortex-shedding
regime. (c) Time-averaged U-RANS so-
lution; averaging is performed over⇡ 30
shedding cycles.

of the Cartesian reference system. At regime, the lift coeffi-
cient displays a fairly regular harmonic oscillation, Fig. 7(b),
with a dominant frequency peak at St = f H/U1 = 0.276
and a small secondary peak at St = 0.83, which approxi-
mately corresponds to the third harmonic of the dominant
frequency, Fig. 7(d). With the onset of the unsteady sepa-
ration, the value of the mean drag coefficient C̄D increases
of ⇡ 200%. However, due to the high blockage ratio, care
should be taken when comparing this value with experimental
and numerical results aimed at characterizing similar geome-
tries in an open-flow. By following the provisions of Barlow,
Rae and Pope,44 a first estimate of the effects introduced
by the wind-tunnel walls for the considered two-dimensional
geometry results in a corrected value of C̄D,c ⇡ 0.87, which

appears more consistent with the value of ⇡0.98 measured by
Pastoor et al.45 for a D-shaped body of aspect-ratio 3.64 at
Re = 23 000.

The obtained numerical results are then compared with
the available PIV measurements of the turbulent wake. With
reference to Table III, the time-averaged U-RANS solution
underpredicts the recirculation length LR, a fact that can be
ascribed to the occurrence of strong three-dimensional phe-
nomena (such as oblique vortex-shedding and vortex disloca-
tions) in the near-wake dynamics. A value of LR ⇡ 0.85 has
been measured by Naghib-Lahouti, Lavoie and Hangan46 for
a D-shaped body of AR = 12.5, at Re = 30 000. At the same
time, the estimated value of St results in close agreement with
the experimental one. A small deviation is observed when

FIG. 7. Unsteady RANS simulation:
time history of the thick-flat plate aero-
dynamic force coefficients. (a) Lift coef-
ficient, CL . (b) Detail view of CL when
the vortex-shedding is fully developed.
(c) Drag coefficient, CD. (d) Spectral
content of CL during the fully developed
vortex-shedding regime.
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TABLE III. Confined turbulent flow past the thick flat-plate: Comparison
between experimental and numerical results.

LR St Ste

U-RANS (time-averaged) 0.67 0.275 0.207
Expt. 1.00 0.276 0.225

the vortex shedding frequency is made dimensionless using
the effective body thickness He = H + 2�⇤ (with �⇤ being
the boundary layer displacement thickness) and the maximum
streamwise velocity Ūmax at the trailing edge, thus account-
ing for the high blockage-ratio effects. The obtained values of
Ste,c = f He/Ūmax are also listed in Table III and compare well
with Ste ⇡ 0.231 reported by the aforementioned authors in the
range of 15 000  Ree  25 000, where Ste = f He/U1 and
Ree = U1He/⌫, and with the value of Ste ⇡ 0.229 obtained
by Bull et al.47 for blunt trailing-edge profiled bodies with
fully turbulent boundary layers. Finally, a detailed compar-
ison of the near-wake flow structure is illustrated in Fig. 8
by inspecting the streamwise velocity profile at different x-
stations downstream of the body stern. The major deviations
from the experimental measurements are observed just down-
stream of the flow separation, where the detached shear-layers
display an excessive diffusion with respect to the experimental
measurements. On the contrary, moving downstream, the tur-
bulent wake is better approximated in its self-similar region.
The fact that the numerical results cannot adequately capture
the details of the reverse flow region (as frequently occurs
for RANS computations around bluff-body geometries) could
question the physical relevance of their subsequent stabil-
ity and sensitivity analyses. However, in the aforementioned
work,25 Meliga, Pujals and Serre have shown that, even if
LR is underestimated by ⇡30% (as in the present case), the
global stability analysis still provides a fairly good prediction
of the measured vortex-shedding frequency, and, moreover,
a very good qualitative agreement in terms of the experi-
mental frequency sensitivity map obtained by Parezanović
and Cadot.26 The comparison between the experimental and
numerical mean flow could probably be improved by means

of more advanced and computationally expensive techniques,
such as LES or DES, which are, however, still far from the
state-of-the-art of many industrial CFD applications.

III. GLOBAL STABILITY AND SENSITIVITY ANALYSES

The global stability and sensitivity analyses of the consid-
ered turbulent flow are carried out based on the so-called mean
flow approach, as described by Mettot, Sipp and Bézard.27

This approach simply relies on the linearisation of the mass
conservation and momentum equations around the given time-
averaged mean flow, either numerically computed or exper-
imentally measured, neglecting any turbulence modelling.
Although lacking of a rigorous mathematical foundation, past
studies18,19,25,27 have shown that the mean-flow linearised
Navier–Stokes equations can be used to efficiently predict the
leading frequency of large-scale organized waves in various
laminar and turbulent flows driven by an oscillator-like insta-
bility mechanism. A common variant of this approach is based
on the use of a modified viscosity ⌫̃(x, y) in the stability equa-
tions, with ⌫̃ being equal to the sum of the molecular viscosity
⌫ and of the time-averaged eddy viscosity ⌫̄t(x, y). This vari-
ant, often known as frozen eddy-viscosity approach, is also
employed here in the analysis of the U-RANS data, investi-
gating the impact of such an approximation on the stability
and sensitivity results. In the following, the same terminology
introduced by Mettot, Sipp and Bézard27 will be adopted, with
the mean-flow approach based on the molecular viscosity only
being termed quasi-laminar approach, and its frozen eddy-
viscosity variant, quasi-laminar mixed approach. Finally, the
global stability of the S-RANS solution will be also exam-
ined using the above described methodologies. However, it
is worthwhile to note that, in this case, the stability analysis
should be interpreted within a base-flow like framework,19,27

since the involved mean flow, which corresponds to a steady
solution of the RANS equations, is only driven by the Reynolds
stresses stemming from the fine-scale turbulent motions and
not by the large-scale flow unsteadiness. The relevance of such
results for the active control of the flow will be addressed in
Sec. IV.

FIG. 8. Mean flow past the thick flat-
plate: near-wake velocity profiles at dif-
ferent x stations. Comparison between
the U-RANS prediction (continuous red
line) and the PIV experimental measure-
ments (grey dots). (a) x = 0.1974. (b)
x = 0.5057. (c) x = 1.007. (d) x = 1.5076.
(e) x = 2.0028.
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A. Mathematical formulation

The linear global stability analysis of the given mean flow
Qm(x, y)= (Um, Pm) is performed by solving for a small per-
turbation field q = (u, p) in the normal mode form q(x, y, t)
= q̂(x, y) exp(�t), where q̂(x, y) denotes the spatial mode shape
and � 2 C. By introducing this ansatz into the “linearised”
incompressible Navier–Stokes equations around Qm, we get

�û + (Um ·r)û + (û ·r)Um

+rp̂ � r·
⇣
⌫̃
⇣
rû + rûT

⌘⌘
= 0,

r· û = 0,

(4)

where ⌫̃(x, y) = 1/Re + ⌫̄t(x, y) and (·)T stands for the trans-
pose. Note that any term stemming from the linearisation of
the turbulence model has been neglected in the above formu-
lation, except for the frozen turbulent diffusion. When the
quasi-laminar approach is employed (⌫̄t = 0), this corre-
sponds to implicitly assume that, at least at a first-order, the
turbulence affects the dynamics of the large-scale fluctuations
only indirectly, through the induced mean-flow corrections.
As concerns the boundary conditions, a distinction has to be
made between the analysis of the numerical and the experi-
mental data. In the first case, the same computational domain
employed for the RANS computations is adopted, where û

is assumed to vanish at the inlet and on the solid boundaries
while the following condition is imposed at the outflow:

p̂n̂ � ⌫̃
⇣
rû + rûT

⌘
· n̂ = 0. (5)

In the stability analysis of the experimental data, which are
available only within a smaller flow region (see Fig. 1), the
above condition, Eq. (5), is imposed on the whole bound-
ary of the corresponding domain, except at the inlet, where
û = 0. Once supplemented with these homogeneous boundary
conditions, Eq. (4) define a generalized eigenvalue problem
for �. Any solution q̂ associated with an eigenvalue � repre-
sents a global mode of the mean-flow linearised dynamics with
growth-rate <(�) and angular frequency =(�). The sensitiv-
ity properties of the leading global mode are then investigated
by computing and making use of the properties of the corre-
sponding adjoint mode, q̂

† = (û†, p̂†), which is solution of the
following (adjoint) eigenvalue problem:

�⇤û† � (Um ·r)û†

+ rUm
T · û† + rp̂† � r·

⇣
⌫̃
⇣
rû† + rû†T ⌘⌘

= 0,

r· û† = 0,

(6)

where (·)⇤ stands for the complex conjugate. As discussed by
Giannetti and Luchini10 and by Pralits, Brandt and Giannetti,11

the regions of the flow acting as a “wavemaker” in the exci-
tation of the global instability mechanism can be identified as
the regions of highest receptivity to a structural perturbation
in the form of a local force-velocity feedback,

� 0E(x, y)q̂0 �A(x, y)q̂0 = H(x, y; x0, y0)q̂0, (7)

where we have introduced the following compact notation for
the linearised Navier–Stokes operator

E(x, y)q =
 

u

0

!
, A(x, y)q = *

,
�(Um ·r)u � (u ·r)Um � rp + r·

⇣
⌫̃
⇣
ru + ruT

⌘⌘

r· u
+
- , (8)

and the feedback operator

H(x, y; x0, y0)q =
 
�(x � x0, y � y0)K0u

0

!
, (9)

K0 being a constant feedback tensor while (·)0 has been used
to denote the perturbed quantities. By carrying out a first-
order sensitivity analysis of the perturbed eigenvalue problem,
Eq. (7), the corresponding first-order variation of �, ��, can
be expressed as follows:

�� = S(x0, y0) : K0, (10)

whereS(x, y) is the structural sensitivity tensor associated with
the considered global mode and defined as

S(x, y) =

⇣
û

†⌘⇤ ⌦ û

hû†, ûi
, (11)

with

hû†, ûi =
⌅

⌃

⇣
û

†⌘⇤ · û d⌃ , (12)

being the vector-field scalar product on the considered spa-
tial domain (⌃ ). In Eqs. (10) and (11), the symbols “:”
and “⌦” stand for the double contraction and the dyadic
products, respectively. Relevant information about the eigen-
value sensitivity can be extracted by plotting at each spatial
point a suitable norm of S(x, y), such as, for instance, its
Frobenious norm, kS(x, y)kF , for which the following identity
holds:

kS(x, y)kF = kû†(x, y)kkû(x, y)k, (13)

with the global modes being normalized such that hû†, ûi = 1.
In addition to the wavemaker analysis, the eigenvalue sen-

sitivity to a perturbation of the mean flow defines another
important quantity to get a physical insight in the instability
mechanism, especially for control purpose. Indeed it provides
a useful tool to predict how the mean flow should be varied
by the control action in order to significantly affect the leading
global mode. In particular, this kind of analysis has been shown
to accurately predict the vortex-shedding frequency variation
produced by a small secondary cylinder placed in the turbu-
lent wake of a D-shaped body.25,27 When a generic variation
of the considered mean flow �Um is assumed, at a first-order,
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the corresponding eigenvalue drift can be formally expressed
as

�� = hr
Um�, �Umi, (14)

where the complex-valued sensitivity vector-field r
Um� has

the following expression11,17

r
Um� = �rûH · û† + (û⇤ ·r)û†, (15)

with (·)H indicating Hermitian conjugation.

B. Numerical method

The linear stability and sensitivity problems are numer-
ically solved by means of a finite element discretization on
unstructured grids made of triangular cells, using a standard
P2-P1 representation for the velocity and the pressure per-
turbation fields, respectively. The open-source finite element
library FEniCS48 is employed for such purpose. Within this
numerical framework all the required matrix inversions are
handled by means of the sparse direct-solver MUMPS49,50

while the involved large-scale eigenvalue problems are solved
using the Krylov-Schur algorithm implemented in the SLEPc
library,51,52 with a shift-invert transformation. A “discrete”
approach is adopted to compute the adjoint modes, which
allows one to account for the proper boundary conditions
of the adjoint problem automatically and to preserve the
bi-orthogonality property of the eigenmodes up to machine
precision.

Once computed using the RANS solver, both the veloc-
ity and the turbulent viscosity fields are linearly interpolated
from the original hybrid mesh to a triangularization of the
same computational domain made of 834 470 triangles, which
correspond to a total number of 3 774 800 degrees of free-
dom. A strong mesh refinement is introduced in the neigh-
bourhood of the thick flat-plate blunt edges with a minimum
mesh size of ⇡ 5 ⇥ 10�5, to properly capture the extremely
localized features of the adjoint mode, as will be described in
the following. At the same time, in order to reduce the com-
putational effort without significantly affecting the stability
results, the unstructured grid is made a little bit coarser in
the wind-tunnel boundary layer regions which will be shown
to marginally contribute to the stability and sensitivity spa-
tial structures. A mesh refinement with a subsequent linear
interpolation of the turbulent mean flow is also introduced in
the stability analysis of the experimental data. Starting from
the PIV measurement window, the computational domain is

resized in the y direction to [ 0.85, 0.85], in order to skip
those regions where the available flow measurements are not
trustable. Then, the initial triangle mesh is easily obtained
from the original Cartesian PIV grid, resulting in a total num-
ber of 35 024 triangles which is increased up to 537 347
by means of subsequent refinement steps, avoiding the intro-
duction of any numerical stabilization term of the governing
equations.

C. Results
1. Global modes

The global spectrum extracted from the analysis of the
RANS mean flow is illustrated in Fig. 9, for both the S-RANS
and the time-averaged U-RANS flow fields, Figs. 9(a) and 9(b),
respectively. In both cases, the spectrum computed using the
quasi-laminar approach (black round dots) features the exis-
tence of a leading unstable mode whose frequency is close
to the vortex-shedding frequency. In addition, and in anal-
ogy to the results described by Mettot, Sipp and Bézard,27

we observe the existence of some slightly unstable modes
lying on the real axis. When the turbulent diffusion is taken
into account in the stability analysis (quasi-laminar mixed
approach), the whole spectrum is damped, with all the afore-
mentioned real modes becoming stable. Moreover, the esti-
mation of the vortex-shedding frequency is further improved.
In Fig. 9(b) the quasi-laminar spectrum of the PIV measured
mean-flow is also reported. The structure of the spectrum
is analogous to the one observed for the U-RANS based
results, although the mode displaying the vortex-shedding fre-
quency is much more damped. It is interesting to note that
no unstable real modes have been observed in the global
eigenspectrum reported by Camarri, Fallenius and Fransson28

for the PIV measured mean-flow past a porous cylinder at
Re = 3500.

The spatial structures of the direct and adjoint modes
are compared in Fig. 10 for the PIV based and the U-RANS
based quasi-laminar computations. The direct mode, repre-
sented by its real streamwise component in Figs. 10(a) and
10(c), displays the typical pattern of the von Kármán insta-
bility, and despite a phase difference still remains after adopt-
ing the same normalization, the two mode shapes compare
fairly well. Note that the computational domain employed
for the stability analysis of the experimental mean flow is
exactly the one used to depict the direct mode in Fig. 10(c).

FIG. 9. Global eigenspectrum of the
turbulent mean flow past the thick
flat-plate. (a) S-RANS mean flow. (b)
U-RANS (time averaged) mean flow.
For both cases, results obtained using
the quasi-laminar approach (black dots)
and the quasi-laminar mixed approach
(green downward triangles) are illus-
trated. In the panel (b) the spectrum
extracted from the quasi-laminar stabil-
ity analysis of the PIV measured mean
flow is also reported (upward red trian-
gles).
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FIG. 10. Leading direct and adjoint
global modes resulting from the stabil-
ity analysis of the PIV measured ((a)
and (b)) and the U-RANS computed ((c)
and (d)) time-averaged mean flows. For
both cases the quasi-laminar approach
is used. ((a) and (c)) Real streamwise
component of the direct mode veloc-
ity field normalized using the condition
û(2, 0) = 1. ((b) and (d)) Magnitude
of the adjoint mode velocity field nor-
malized with respect to its maximum
value within the considered region. In
the panels ((b) and (d)) the mean flow
streamlines are also illustrated.

The spatial distribution of the adjoint field magnitude is illus-
trated in Figs. 10(b) and 10(d). In this case, each scalar map
has been rescaled to the maximum value attained within the
employed representation window. Notwithstanding the dif-
ference in the near-wake structure, both modes are highly
localized on the boundary of the recirculation bubble, showing
qualitatively the same spatial distribution. As already men-
tioned, in order to accurately capture the thin layers char-
acterizing the adjoint mode, the original PIV mesh has been
strongly refined in the near-wake region. The computed eigen-
value for an increasing mesh resolution is reported in Table IV.
In addition, similarly to what has been done by Camarri,
Fallenius and Fransson,28 the influence of the adopted bound-
ary conditions and of the continuity errors are investigated.
When the velocity disturbances are assumed to vanish on the
lateral boundaries, the eigenvalue associated with the vortex-
shedding mode moves to the left-half of the complex plane
and the associated frequency increases of ⇡ 10%, thus indi-
cating that these boundary conditions are too severe for the
small employed computational domain. On the contrary, when
the experimental mean flow is projected on a divergence-free

subspace at a pre-processing stage, only a slight variation
of the eigenvalue is observed. More precisely, the projection
step is performed by solving the following system of coupled
equations:

U

c
m = Um � r�,

r· Um
c = 0,

(16)

where U

c
m is the corrected mean flow and the scalar field �(x, y)

is a Lagrange multiplier introduced to enforce the incompress-
ibility constraint. The above system is discretized using the
finite element method outlined in Sec. III B and � is computed
by solving the associated Schur-complement system, thus
avoiding the introduction of ad hoc boundary conditions for �.
It is interesting to note that homogeneous Dirichlet conditions
on the lateral boundaries have been employed by Camarri, Fall-
enius and Fransson28 without observing any damping effect on
the leading eigenvalue, although the crosswise extent of their
computational domain is comparable to the present one. How-
ever, a slight sensitivity of the eigenvalue to these boundary
conditions is shortly mentioned by the authors.

TABLE IV. Quasi-laminar stability analysis of the PIV measured mean flow past the thick flat-plate. Eigenvalue
associated with the vortex-shedding instability obtained for different mesh resolutions and boundary conditions
on the top and bottom sides of the computational box. The results obtained by projecting the experimental mean
flow on a divergence-free subspace are also reported.

Ne Bcs top & bottom side Divergence free <(�) ⇥ 102 =(�)

35 024 Stress-free No 3.028 394 1.801 678
70 839 Stress-free No 2.989 337 1.801 810
123 441 Stress-free No 2.987 804 1.801 801
181 191 Stress-free No 2.985 676 1.801 798
461 943 Stress-free No 2.985 290 1.801 795
537 347 Stress-free No 2.985 263 1.801 795
537 347 Homogeneous Dirichlet No 6.178 652 1.981 686
537 347 Stress-free Yes 4.060 024 1.778 353



024102-11 Carini et al. Phys. Fluids 29, 024102 (2017)

FIG. 11. Leading direct and adjoint
global modes resulting from the stability
analysis of the time-averaged U-RANS
mean flow using the quasi-laminar
mixed approach. (a) Real streamwise
component of the direct-mode veloc-
ity field normalized using the condi-
tion û(2, 0) = 1. (b) Magnitude of the
adjoint-mode velocity normalized with
respect to its maximum value. In the
panel (b) a color-scale saturated at the
2.5% has been employed to better high-
light the overall spatial structure of the
adjoint mode.

For the sake of comparison, the above representations of
the direct and adjoint modes have been necessarily limited
to the small measurement window. Their whole spatial struc-
ture as extracted from the quasi-laminar mixed analysis of the
U-RANS mean flow is depicted in Fig. 11. By comparing
Figs. 10(c) and 11(a), we can observe that the turbulent dif-
fusion does not substantially modify the shape of the direct
mode. On the contrary, the sharp gradients characterizing the
adjoint mode are noticeable smoothed, Figs. 10(d) and 11(b).
Note that, with respect to Fig. 10(d), the adjoint map illustrated
in Fig. 11(b) has now been rescaled to the maximum value
attained over the entire computational domain (⌃). However,
in the same picture, a colormap saturated at 2.5% has been
used for visualization purposes, in order to better highlight
the regions of highest receptivity in the near-wake. Indeed, the
inspection of the whole spatial structure of the adjoint mode
reveals that the mode maxima are extremely localized at the
blunt edges of the thick flat-plate, as shown in the inset of
Fig. 11(b) (where a full-range colormap is used instead), with
an amplitude of two orders of magnitude greater than the values
reached on the boundary of the recirculation bubble. The same
considerations hold also for the quasi-laminar results where
the difference in amplitude with the thinner layers of near-
wake receptivity reduces to ⇡ 1 order of magnitude, as well
as for the S-RANS-based results (not shown here). As already
mentioned, an ad hoc mesh refinement has been introduced to
accurately capture this fine-scale structure of the adjoint mode,
and, as an example, the convergence study carried out for the
S-RANS-based quasi-laminar results is summarized in
Table V.

Note that similar features of the adjoint mode have not
been described, nor pointed out in past studies of the global

TABLE V. Quasi-laminar stability analysis of the computed S-RANS mean
flow past the thick flat-plate. Leading eigenvalue convergence with respect
to an increasing mesh resolution. Successive mesh refinement areas have
been introduced around the thick flat-plate blunt edges to properly capture
the adjoint global mode maxima.

Ne <(�) =(�)

737 447 0.325 948 1.823 954
778 411 0.326 169 1.824 223
873 011 0.326 194 1.824 223

stability properties of turbulent flow past a D-shaped cylin-
der.25,27 The existence of a receptivity pocket at the sharp
corner where flow separation occurs (and its implications for
flow control) have been described not only in several studies
concerning cavity flows,53–55 but also for a backward facing
step geometry.56 Despite, the experimental reverse mean flow
is poorly captured by the numerical results, the detached upper
and lower boundary layer profiles reported in Fig. 8(a) are
well reproduced, which can suggest that also the detaching
boundary layer at the trailing-edge is adequately captured.
Unfortunately, no PIV measurements were performed in this
region, which prevented us to include it in the stability analysis
of the experimental mean flow to get a direct comparison with
the above results. As it will be shown in the following, these
receptivity pockets are suggested to play a relevant role in the
sensitivity picture as well as in the active control of the flow.

2. Sensitivity analysis

In agreement with the theory shortly recalled in Sec. III A,
we can now quantify the unstable mode sensitivity to a force-
velocity feedback, Eq. (11), and its sensitivity to a generic
perturbation of the mean flow, Eq. (15). The corresponding
maps obtained from the quasi-laminar analysis of the numeri-
cal (U-RANS) and the experimental time-averaged mean flows
are compared in Fig. 12. Similarly to the adjoint mode depicted
in Figs. 10(b) and 10(d), the regions of highest sensitivity are
localized along the shear-layers delimiting the average recir-
culation bubble, and more precisely, towards the closure of
the bubble itself. The structure of both the wavemaker in Fig.
12(a) and of the frequency sensitivity field, =(r

Um�), shown
in Figs. 12(d) and 12(e), closely resemble the ones described
for the turbulent flow past a porous cylinder.28 However the
maximum sensitivity is remarkably higher in the present case,
of one order of magnitude for kS(x, y)kF and of two orders
of magnitude for =(r

Um�). The U-RANS and the experimen-
tal based results agree well, both in terms of the sensitivity
spatial distribution with respect to the underlying mean flow
structure, and of the attained values. The main difference is
represented by the existence of a secondary region of high
sensitivity across the wake centreline, which is not observed
in the PIV based results. The existence of this additional region
can be associated with the higher back-flow velocity observed
in the computed mean-flow, which is approximately two times
greater than the corresponding experimental value.
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FIG. 12. Quasi-laminar sensitivity analysis of the unstable global mode associated with the vortex-shedding instability. ((a)-(e)) PIV based results. ((f)-(l))
U-RANS based results. ((a) and (f)) Sensitivity to a local force-velocity feedback. ((b) and (g)) Mode growth-rate sensitivity with respect to streamwise mean-
flow modifications, <(r

Um�) · x̂. ((c) and (h)) Mode growth-rate sensitivity with respect to crosswise mean-flow modifications, <(r
Um�) · ŷ. ((d) and (i))

Mode frequency sensitivity with respect to streamwise mean-flow modifications =(r
Um�) · x̂. ((e) and (l)) Mode frequency sensitivity with respect to crosswise

mean-flow modifications,=(r
Um�) · ŷ. Note that in the bottom panels the employed colormaps are saturated at the range of values attained within the represented

spatial region.

FIG. 13. Adjoint-based sensitivity
analysis of the leading unstable mode
associated with the time-averaged
U-RANS mean flow. Left column:
quasi-laminar approach. Right column:
quasi-laminar mixed approach. ((a) and
(b)) Sensitivity to a local force-velocity
feedback. ((d) and (e)) Magnitude of
the mode growth-rate sensitivity with
respect to mean-flow modifications,
k<(r

Um�)k. ((f) and (g)) Magnitude
of the mode frequency sensitivity with
respect to mean-flow modifications,
k=(r

Um�)k. Note that in the central
and bottom row panels saturated
colormaps have been employed while
the corresponding full-range colormap
is reported in the corresponding insets.
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The effects of the additional turbulent diffusion on the
mean-flow sensitivity are investigated in Fig. 13 by comparing
the quasi laminar and the quasi-laminar mixed results obtained
from the analysis of the time-averaged U-RANS mean flow.
In both cases the visual inspection of the sensitivity maps,
which now include the body stern region, shows that the high-
est sensitivity is always attained within a tiny pocket just above
the blunt edge of the thick-flat plate. This is true also for
the wavemaker structure in Figs. 13(a) and 13(b), thus sug-
gesting (according to the analysis of Giannetti and Luchini10)
that the “core” of the instability is composed of two distinct
regions: a primary region corresponding to the blunt edge, and
a secondary one at the end of the recirculation bubble, already
described in Figs. 12(a) and 12(f). This is even more evident
when the turbulent viscosity is taken into account in the sen-
sitivity analysis, Fig. 13(b), with the values of kSkF close to
the body stern being approximately one order of magnitude
greater than those found at the downstream edge of the recircu-
lation bubble. The difference between these two regions further
increases when considering the scalar maps associated with
k<(r

Um�)k and k=(r
Um�)k, depicted in Figs. 13(c)–13(f),

respectively. Indeed, due to the additional turbulent diffusion,
the sensitivity layers lying on the boundary of the recircula-
tion bubble are considerably smoothed, while the thin region
along the centreline almost disappears. At the same time, it is
worthwhile to note that the shape of the blunt-edge sensitivity
pocket is not substantially affected by ⌫̄t , and although the cor-
responding peak value is different between the quasi laminar
and the quasi-laminar mixed results, it keeps the same order
of magnitude.

IV. ADJOINT-BASED FEEDBACK CONTROL

The mean-flow stability analysis has been shown to accu-
rately capture the leading frequency of the unsteady thick flat-
plate wake, especially when a quasi-laminar mixed approach
is used. In this section we investigate the possibility to fur-
ther exploit these results in order to actively control the global
instability of the considered flow. Recent studies25,27 have
shown how the mean-flow based sensitivity analysis can be
used to effectively predict before hand the impact of a small
control cylinder on the vortex-shedding frequency of a bluff-
body wake, thus paving the way for the efficient design of
passive control devices. Motivated by these results, we numer-
ically explore here the possibility to design an active feedback
control of the considered flow based on the linearized Navier–
Stokes equations around a selected mean-flow, leaving aside
any turbulence modelling except for the frozen eddy viscosity
approximation, as done in the stability and sensitivity analyses.
This makes the control design independent of the particu-
lar choice of the turbulence model. Indeed, in a real control
experiment, while we can have access to phase-averaged mea-
surements of the turbulent flow field, it is rather difficult or
even unrealistic to adequately estimate turbulence modelling
quantities, such as k(x, y, t) and !(x, y, t), even based on their
physical counterparts.

In the following we consider a full-information control
within the well-established framework of the linear opti-
mal control theory.4,5,57 More precisely, we present here an

original extension of the Minimal Control Energy (MCE) tech-
nique29,30 to the control of turbulent bluff-body wakes. This
technique allows the efficient computation of a stabilizing
feedback rule of the linearised flow model based solely on
the knowledge of the unstable adjoint modes. The proposed
extension relies on the particular choice of the mean flow
employed to build up the linear model which corresponds to
the S-RANS solution instead of the time-averaged U-RANS
one. It is well known that for bluff-body configurations, the
steady solution of the RANS equations often exhibits a lower
mean drag coefficient with respect to the real one, due to the
overprediction of the mean wake recirculation length. Indeed,
both these quantities are better estimated by means of unsteady
RANS computations, where the mean-flow corrections due
to the large-scale instabilities are taken into account. Never-
theless the quasi-laminar mixed analysis performed around
the S-RANS mean flow has shown that the vortex-shedding
frequency is accurately predicted, Fig. 9(a). These observa-
tions provide us the rational to employ the S-RANS mean
flow in the derivation of the linearised flow model for control
design. Indeed, as shown in the control of the laminar cylinder
wake,30 the base solution around which the “linearisation” is
performed, i.e., the generalized base flow, not only specifies the
linearised dynamics, but also plays the role of the “target flow”
of the control action. Therefore, a control design based on the
S-RANS mean flow is expected to drive the unsteady flow
around a time-averaged state characterized by an elongated
mean wake with a lower pressure drag.

Finally, even if it would be hard to introduce a full-
information feedback control in a real control experiment
(since it would require the measurement, at each time instant,
of the whole flow field), the inspection of the spatial distribu-
tion of the computed feedback gain (vector) field can provide
relevant information about those flow regions which are of
utmost importance for feedback control, thus guiding and sup-
porting the experimental investigations. In addition, bypassing
any open-loop model reduction, it is possible to assess the best
control performance in absence of model reduction errors, with
the model reduction step being postponed after the control
design step, i.e., in closed loop, or restricted to the estimation
problem only.

A. Control definition, methodology
and implementation

The unsteady RANS flow is controlled by means of
a couple of blowing/suction slots symmetrically positioned
on the upper and lower surfaces of the thick flat-plate for
x 2 [�0.1,�0.05], as sketched in Fig. 14. This placement of
the actuators, very close to the body stern results as a com-
promise between the need of a realistic control configuration,
with body-embedded actuators, and the results of the sensitiv-
ity analysis described in Sec. III C 2, showing that the highest
sensitivity is located at the blunt edge of the thick flat-plate.
The reference crosswise velocity profile of the blowing/suction
actuation is also illustrated in the inset of Fig. 14, featuring
a smoothed top-hat shape which is given by the following
expression:

v(⇠) = hm(⇠/w � 1) + hm((⇠ � 1)/w + 1), ⇠ 2 [0, 1], (17)
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FIG. 14. Schematic diagram of the flow
configuration with active feedback con-
trol. Blowing/suction slots (denoted by
the small red arrows) are introduced
on the upper and lower body surfaces
close to the stern, for x 2 [�0.1,�0.05].
The inset illustrates the non-dimensional
reference jet profile for the y velocity
component.

where ⇠ is a non-dimensional abscissa along the slot width and hm(s) is a mollified step function defined as

hm(s) =
8>><>>:

0 if s  �1,
0.5 + s(0.9375 � s2(0.625 � 0.1875s2)) if s 2 (�1, 1),
1 if s � 1,

(18)

where the smoothing parameter w has been set equal to
w = 0.15. Note that the two actuators are operated in phase
opposition with the same amplitude, resulting in a zero net-
mass blowing/suction actuation. Therefore, a single control
variable '(t) is defined, which represents the instantaneous58

maximum blowing/suction velocity, where a positive sign
means blowing from the upper surface and suction from the
lower one.

Given the above configuration and the linearised descrip-
tion of the flow dynamics around the considered mean flow,
the “flow plant”, is defined as follows:

E(x, y)
@q

@t
= A(x, y)q, on (⌃),

q(x, y, t)|�c = h(x, y)'(t),

B(x, y)q(x, y, t)|@⌃/�c = 0,

(19)

where h(x, y) stands for the spatial distribution of the applied
Dirichlet condition on the control boundary �c. On the remain-
ing portion of (@⌃) the same homogeneous boundary condi-
tions of the eigenvalue problem (4), here formally expressed
through the operator B(x, y), are applied. The above bound-
ary control problem can be conveniently recast in a vol-
ume control formulation by means of a lifting procedure6

of the inhomogeneous datum on (�c). This is obtained by
introducing the solution qc(x, y) of the following steady
problem:

A(x, y, t)qc = 0, on (⌃),

qc(x, y)|�c = h(x, y),

B(x, y)qc(x, y)|@⌃/�c = 0,

(20)

and then expressing the original flow state as q(x, y, t)
= q̃(x, y, t) + qc(x, y)'(t) where, upon a substitution into
Eq. (19), we derive the following problem for the auxiliary
flow state q̃(x, y, t):

E(x, y)
@q̃

@t
= A(x, y)q̃ + b(x, y)c(t), on (⌃),

q̃(x, y, t)|�c = 0,

B(x, y)q̃(x, y, t)|@⌃/�c = 0,

(21)

where b(x, y)= E(x, y)qc(x, y) and c(t) =�d'(t)/dt. The above
equations are spatially discretized using the same finite ele-
ment approach described in Sec. III B, obtaining

E
dx

dt
= Ax(t) + Bc(t), (22)

with x(t) being the array of velocity and pressure states, while
the matrices E, A and B denote the discrete representation of
the linear operators E(x, y), A(x, y) and of the forcing vector
field b(x, y), respectively. At this point, the linear feedback
control is designed directly within the discrete setting, with a
control law of the form c(t)=Kx(t). More precisely, the feed-
back gain (row) matrix K is computed as the MCE solution
of the classical Linear Quadratic Regulator (LQR) problem,57

through the following formula:30,59

K = �r�1BH
u F�1PH

u E, (23)

where Pu is the matrix of the unstable left eigenvectors of the
pencil (A, E), i.e., the discrete representation of the complex-
conjugate pairs of unstable adjoint modes, q̂

† and (q̂†)
⇤
,

Bu =PH
u B and r is the control weight associated with the def-

inition of the optimal control cost function J = s 10 x

HQx

+ rc(t)2dt which is minimized. Note that the state weight
matrix Q does not enter the computation of the MCE solu-
tion.59 Furthermore, it can be shown that when a single control
variable is considered, the particular value of r, with r � 0,
does not affect the resulting gain values.30 In the following
expressions, r is reported only for the sake of completeness
and we can simply assume r = 1. The matrix F in Eq. (23) is
defined as

F =

2666666664

M11

2<(�)
M12

2�

M21

2�
M22

2<(�)

3777777775
with M = r�1BuBH

u . (24)

Therefore, as previously anticipated, the computation of the
MCE feedback gains requires only the knowledge of the unsta-
ble adjoint modes of the the mean-flow linearised dynamics.
Once computed, the linear feedback rule can be re-interpreted
within the continuous setting by introducing the field qk(x, y)
of feedback gains:
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TABLE VI. MCE control law: computed values of ↵, ↵̃ and � for both the laminar cylinder wake at Re = 50 and
the turbulent flow past the thick flat-plate at Re = 32 000.

↵ ↵̃ �

Laminar cylinder wake �6.3871 ⇥ 10�2 �7.6871 ⇥ 10�2 �6.8107 ⇥ 10�14

Turbulent thick-flat plate flow �9.6076 ⇥ 10�1 �1.2010 �3.2720 ⇥ 10�12

c(t) = Kx(t) = k

HEx ⇡
⌅

⌃
q

⇤
k · E(x, y)q̃ d⌦ = huk , ũi, (25)

where the array k = �r�1PuF�HBu denotes the discrete coun-
terpart of qk(x, y) = (uk , pk), storing the corresponding veloc-
ity and pressure gain degrees of freedom. It is worthwhile to
observe that in the derived feedback law, the pressure does not
contribute to c(t), since E is positive semidefinite, according
to the incompressibility constraint. Both k and qk are real-
valued quantities and, in the present case, simply correspond
to a linear combination of the real and the imaginary parts of
the unstable adjoint mode. We can further manipulate Eq. (25)
in order to express the feedback law in terms of the original
control variable '(t) and of the inhomogeneous linearised flow
state q(x, y, t). By taking into account the lifting procedure and
substituting for the definition of q̃(x, y, t) and c(t) in Eq. (25),
we get

d'(t)
dt
= �huk , u � '(t)uci = ↵'(t) � huk , ui, (26)

with ↵ = huk , uci being a constant coefficient. An additional
step is required when the control is applied directly to the
nonlinear RANS flow model. In fact, consistently with the
adopted linear mean-flow model, within the fully nonlinear
U-RANS setting q is approximated as the difference between
the instantaneous flow velocity U(x, y, t) and the considered
mean-flow Um(x, y), yielding to

d'(t)
dt
= ↵'(t) � huk , Ui + �, (27)

where the additional constant coefficient � is equal to
� = huk , Umi. It is worthwhile to note that, due to the intro-
duced lifting procedure, a feedback control of integral type is
finally obtained in terms of '(t)

'(t) = '(0)e↵t �
⌅ t

0
e↵(t�⌧)�(⌧) d⌧, (28)

with �(t) = huk , Ui � �. Indeed it is easy to show that the over-
all closed-loop system features a pole at the origin, which can
lead to a constant value of '(t) different from zero at infinite
time, i.e., a constant non zero actuation. In order to prevent
this, at least within the linearised setting, the value of ↵ can be
tuned by a small variation which results to be approximately of
the same order of�<(�), and in the following we denote by ↵̃,
the modified value of ↵ which is employed in the simulations
of the control systems.

Within the adopted U-RANS setup described in Sec.
II A, the feedback control is numerical implemented using
a “segregated-like” approach where at each time-step of the
closed-loop dynamics, the value of '(t) (which enters the
boundary conditions of the U-RANS equations) is linearly
extrapolated from the previous time-steps and, at the same
time, the coupling term huk , Ui in Eq. (27) is integrated explic-
itly by means of the second-order Adam-Bashforth scheme.
This allows us to encapsulate the control algorithm within
an ad hoc created C++ class of boundary conditions derived
from the general OpenFOAM class named fixedValue, mak-
ing the control implementation independent from the specific
choice of the OpenFOAM flow solver and thus ready avail-
able for a wide range of flow simulations. Once computed by
means of the finite-element discretization, the feedback gain
field uk(x, y) is interpolated on the hybrid finite-volume mesh
and given in input to the control algorithm in the U-RANS
simulation. The whole numerical setup has been first vali-
dated on the cylinder wake at low Reynolds numbers, where
the MCE approach has been shown to completely suppress
the vortex-shedding.30 For such test case, a coarse rectangular
unstructured mesh composed of 38 646 triangles is employed,
with a minimum mesh size of ⇡0.02. The cylinder is placed
at a distance of 15 diameters from the inlet and the lateral
boundaries and of 30 diameters from the outflow boundary. A
uniform streamwise velocity is assigned at the inlet, while on
the remaining portions of the external boundary rU · n̂ = 0
is assumed. For Re = 50, the unstable eigenvalue extracted
from the global stability analysis of the inherent base flow is

FIG. 15. MCE control of the laminar
cylinder wake at Re = 50. (a) Lift coef-
ficient CL(t). (b) Control variable '(t)
corresponding to the cylinder angular
velocity which is assumed positive in the
courter-clockwise direction. The con-
trol starts at the nondimensional time
t = 1500.
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FIG. 16. Active feedback control of the
confined turbulent flow past the thick-
flat plate. (a) Magnitude of the lifting
velocity field, kuc(x, y)k. (b) Magnitude
of the feedback gain field, kuk(x, y)k.
Note that in both panels the colormap
has been saturated for visualization pur-
pose, highlighting the near-wake flow
structure. The insets in each panel illus-
trate a detailed view of the x and y
components of the corresponding vec-
tor field in the neighbourhood of the
thick-flat plate blunt edge, using the
corresponding full colormap.

� = 1.597⇥ 10�2 + 0.7454i which compares well with the
value reported by Carini, Pralits and Luchini.30 The same
occurs for the corresponding direct and adjoint modes (not
shown here). As done in the aforementioned study, the
unsteady wake is controlled by means of angular oscillations
of the cylinder surface around its axis, with '(t) represent-
ing the cylinder angular velocity, which is assumed positive
in the courter-clockwise direction. The computed value of
↵, ↵̃ and � are reported in Table VI. In particular � ⇡ 0
which follows from the fact that the control gain field uk dis-
plays the opposite symmetry with respect to the base flow,
i.e., it is antisymmetric with respect to the flow centreline.
The computed MCE control is turned on during the fully-
developed vortex-shedding regime and the time traces of
CL(t) and '(t) illustrated in Fig. 15 confirm that the flow
instability is completely suppressed and the base flow state
restored.

B. Results

The solution of the lifting problem Eq. (20) is illustrated
in Fig. 16(a) by means of the magnitude of the related velocity
field. In addition, a detailed view of the velocity components,
uc and vc, in the neighbourhood of the control boundary �c
is reported. A similar representation is also adopted for the
feedback gain field uk(x, y) in Fig. 16(b). Note that, for visu-
alization purpose, the colormaps associated with kuc(x, y)k
and kuk(x, y)k have been saturated to a value lower than the
maximum one. Both vector fields are anti-symmetric with
respect to the x-axis, consistently with the employed anti-phase
blowing/suction actuation. Not surprisingly, uk(x, y) displays
a spatial structure which is very similar to the one of the unsta-
ble adjoint mode extracted from the stability analysis of the
S-RANS mean flow (not shown here). Correspondingly, the
highest gains are reached within a small region close to the

FIG. 17. Active feedback control of the
confined turbulent flow past the thick-
flat plate: time traces of the thick-flat
plate aerodynamic coefficients and of
the control amplitude '(t). (a) Drag
coefficient, CD. (b) Lift coefficient, CL .
(c) Control amplitude '(t).
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FIG. 18. Active feedback control of the
confined turbulent flow past the thick-
flat plate: U-RANS vorticity snapshots
at various time instants during the con-
trol. (a) t = 380. (b) t = 440. (c) t = 560.
(d) t = 680. Note that the same satu-
rated color-scale has been used for all
the panels. In addition in panel (d), the
flow streamlines are also illustrated, in
order to better highlight the asymmetric
structure of the final steady wake.

thick flat-plate blunt edges, these values being almost two
orders of magnitude greater than those attained in the near-
wake, where, however, larger low-frequency velocity fluctua-
tions are expected.

The feedback control law Eq. (27) is now introduced
into the U-RANS simulations and applied directly to the fully
developed vortex-shedding regime reached in the uncontrolled
case, Fig. 7. The values of the control coefficients ↵, ↵̃ and �
are listed in Table VI. As expected from symmetry consider-
ations, � ⇡ 0 while with respect to the circular cylinder test
case the values of ↵ and ↵̃ are ⇡ 1 order of magnitude greater.
The obtained control results are illustrated in Fig. 17, by means
of the time traces of the aerodynamic force coefficients and of
'(t), and in Fig. 18, by means of vorticity snapshots taken at
different time instants. With reference to Fig. 17(a), after a first
transient of ⇡40 time units from the control start-up, both the
oscillation amplitude of CD(t) and its local mean value result
greatly reduced and, finally, the CD(t) slowly converges toward
a constant value, slightly above the one associated with the S-
RANS solution. Similarly, the oscillation amplitude of CL(t)
finally reduces to zero, as shown in Fig. 17(b). However the
asymptotic flow state is characterized by a constant negative
lift force due to a constant blowing (suction) from the upper
(lower) body surface at ⇡17% of the free-stream velocity, as
observed from the time trace of '(t) in Fig. 17(c). Note that the
maximum blowing/suction velocity reached during the tran-
sient is of nearly 2 times the free-stream velocity. The control
is able to completely suppress the flow unsteadiness associ-
ated with the vortex-shedding instability and the corresponding
flow evolution is illustrated in Fig. 18. The vortex-rollup is first
delayed downstream of the body stern, resulting in the forma-
tion of a “dead water” region, Fig. 18(b), which produces an
increase of the base pressure and thus considerably reduces
the body drag after the first transient of ⇡40. It is interest-
ing to note that this physical mechanism is very similar to
the one described by Pastoor et al.45 in their active control
experiment of the turbulent flow past a D-shaped cylinder.
Then the alternating character of the wake and the associated
vortex structures result progressively mitigated, Fig. 18(c),
until a slightly asymmetric steady wake is established under
the action of a constant non-zero blowing-suction actuation,
showing nearly the same recirculation length of the target

S-RANS solution. The asymmetry of the asymptotic flow state
of the fully nonlinear closed-loop system can be associated
to the integral character itself of the feedback control law,
Eq. (28), as well as to a destabilization of one of the modes
lying on the real axis of the linearized (quasi-laminar mixed)
flow spectrum, Fig. 9(b), through a “water-bed” effect.

V. SUMMARY AND CONCLUSIONS

We presented in this study a linear stability analysis of
the confined turbulent mean flow past an elongated D-shaped
cylinder using a quasi-laminar approach and its mixed vari-
ant.27 In analogy with previous works,25,27,28 we found that
the vortex-shedding frequency measured in the experiments
is very well captured by the leading unstable global mode,
especially when the eddy viscosity is introduced in the sta-
bility equations. Despite the discrepancies observed between
the measured and the computed mean wake, a good qualita-
tive agreement is found when comparing the corresponding
sensitivity maps in the near-wake region, where PIV measure-
ments of the flow are performed. Both for the direct-adjoint
product, i.e., the wavemaker, and the sensitivity to generic
mean-flow variations, regions of high intensity display as thin
layers along the boundary of the recirculation bubble. Sim-
ilar spatial structures were described by Camarri, Fallenius
and Fransson28 in their stability investigation of the turbulent
mean wake behind a circular cylinder with transpiration. How-
ever, the visual inspection of these fields when extended to the
whole spatial domain reveals that huge values of receptivity
are present at the trailing edge of the body within a tiny region
of size of O(H�3). The core of the instability is thus composed
by two distinct regions, the one located at the downstream edge
of the recirculation bubble, common to the circular cylinder
wake, and a second one located at the blunt edge of the thick
flat-plate. These findings, which have not been pointed out in
the aforementioned studies over a D-shaped geometry, suggest
that particular care should be taken in the global stability anal-
ysis of PIV measured flow field when fixed separation points
are left outside of the measurement window. In addition, the
comparison between the quasi-laminar and the quasi-laminar
mixed results show that the turbulent viscosity has a greater
impact on the near-wake sensitivity structures rather than on
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the trailing-edge ones, with the former resulting appreciably
smoothed.

As an additional application of the obtained stability
results we explored the possibility to control the low-frequency
oscillations of the wake. With respect to the works of Meliga
Pujals and Serre25 and of Mettot, Sipp and Bézard,27 we con-
sidered here the design of an active feedback control using
the linear optimal control theory. An original extension of
the MCE technique29,30 to turbulent flow oscillators has been
proposed under the frame of their RANS modelling. When
applied directly to the fully developed vortex-shedding in
the U-RANS simulations, the derived full-information con-
trol achieves a complete suppression of the wake oscillations.
The control action results in a synchronization between the
lower and upper shear layers with a mechanism similar to
the one experimentally investigated by Pastoor et al.45 Such
results indirectly support the relevance of the mean-flow sta-
bility and sensitivity analyses. Nevertheless attention need to
be paid to the proper interpretation of the control performance.
Although from a physical viewpoint a complete suppression
of the vortex-shedding at high Reynolds numbers is rather
unrealistic, the control results suggest that the computed gain
field can select the most relevant “phase-averaged” velocity
information for the effective mitigation of the global insta-
bility. Therefore the spatial distribution of the feedback gains
can be used to guide the design of a real control experiment
where phase-averaged measurements of the flow are available.
In particular, for the present geometry, the structure of the gain
field, as inherited from the underlying adjoint mode, can be
used, at least in principle, to design a simple proportional con-
trol exploiting localized flow measurements at the body stern,
where the highest gain values are found. These issues will
be considered in a future work more focused on flow control
aspects.
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26V. Parezanović and O. Cadot, “Experimental sensitivity analysis of the
global properties of a two-dimensional turbulent wake,” J. Fluid Mech.
693, 115–149 (2012).
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