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1 Introduction

Mixing control in microchannels is a problem of

paramount importance in a variety of situations

ranging from applications in chemistry and biochem-

istry [1] to fundamental research in fluid mechanics

and transport [2]. The main problem to solve is related

to the fact that purely hydrodynamic fluid instabilities

are inhibited due to negligible inertia of microchannel

flow. Since mixing times or distances can be very long,

strategies are required to enhance mixing in microde-

vices [3, 4]. Along this line, the suggestion of a new

strategy is the main concern of our paper. Two

different approaches are commonly used to induce

mixing, according to their active or passive character

[5]. Active micromixers use the disturbance generated

by an external time-dependent field for the mixing

process, eg., pressure gradient [6], electric fields [7]

and sound [8]. Those methods are often difficult

because of the tiny scales involved and they also pose

several problems from a manufacturing point of view.

Passive micromixer do not require external energy, the

mixing process relies entirely on diffusion [9] or

chaotic advection [4]. In the first approach, the

molecular diffusion is enhanced by increasing the

contact surface and decreasing the mixing path [9]. In

the second, the geometrical structure of the micro-

channel is projected to trigger Lagrangian chaos (and

thus mixing via eddy-diffusivity mechanisms [10–

12]). Suitable non-Newtonian fluid solutions [17, 18]

often provide an alternative valid answer to trigger

mixing exploiting elastic instabilities in the limit of

very small Reynolds numbers [13–16] or, eventually,

turbulence [19–21].

Our aim here is to show how, exploiting state-of-

the-art control/optimization techniques, the mixing of

a passive scalar quantity emitted in a microchannel

can be easily enhanced by a time-dependent injection

in punctual and multi-source configuration. The

control we propose relies on the optimal interplay

between advection, injection and diffusion for the

actual mixing. The technique is active but does not

require any time-dependent variation of the emission

source position. The system is especially suitable for

noncontinuous mixing [22] and, at the same time, for

dosing with a minimal emitted substance.
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2 Problem formulation

In this analysis we model the dispersion of a substance

in a microchannel with infinite depth. A sketch of the

domain is given in Fig. 1 where x and y denote the

streamwise and cross stream directions, L the channel

length and H the channel height, respectively. The

governing equations are made dimensionless using the

centerline velocity U�c , channel height H�, diffusion

coefficient j� and kinematic viscosity m�. Here,

superscript fg� denotes dimensional quantity. The

basic flow is considered laminar and given by the

parabolic Poiseuille profile uðyÞ ¼ 1� 4y2. The gov-

erning advection-diffusion equation in non-dimen-

sional form is given as

oC

ot
þ u

oC

ox
� 1

Pe

o2C

ox2
þ o2C

oy2

� �
� S ¼ 0; ð1Þ

where Cðx; y; tÞ is the concentration, Pe ¼ U�c H�=j�

the Péclet number and Sðx; y; tÞ a source term used to

model the dosage. Moreover, the corresponding

Reynolds and Schmidt numbers are defined as Re ¼
U�c H�=m� and Sc ¼ m�

j� respectively. Note that S must be

sufficiently small not to alter the (assigned) velocity

profile. Equation (1) is accompanied with homoge-

neous conditions on the streamwise boundaries and

no-flux conditions on the channel walls: Cð0; y; tÞ ¼
0; Cðx2; y; tÞ ¼ 0 and oCðx; y; tÞ=oyjy¼�0:5 ¼ 0, and

the initial condition is simply given by Cðx; y; 0Þ ¼ 0.

The source term S represents a dosage source located

at some fixed point (x0; yi) and modeled as Sðx; y; tÞ ¼
siðtÞdðx� x0Þdðy� yiÞ where ith is the dosage con-

centration flux of the ith source and d is the Dirac delta

function.

3 Optimal dosage

The aim is to compute an optimal dosage concentra-

tion siðtÞ in a given time interval 0� t� T which gives

a desired concentration profile in the channel at a

certain streamwise location, x1, at the final time t ¼ T .

From a mathematical viewpoint, the optimization

problem amounts to find the optimal siðtÞ which

minimizes the objective function

J ¼
ZL

0

Z0:5

�0:5

h½Cðx; y; TÞ � Ct�2 dy dx; ð2Þ

where hðxÞ ¼ exp½�ðx� x1Þ6� is a bell-shaped func-

tion centered in x ¼ x1. The objective function quan-

tifies the difference between the actual concentration

C and the target Ct which we aim to obtain at a

streamwise position x ¼ x1 at the final time t ¼ T . The

current constrained optimization problem can be

recast on the unconstrained form by introducing the

Lagrangian L as

L¼ J�
ZT

0

ha;FðC;SÞidt�hb1ðx;yÞ;Cðx;y;0Þi

�
ZT

0

Z0:5

�0:5

½b2ðy; tÞCð0;y; tÞþ b3ðy; tÞCðL;y; tÞ�dydt

�
ZT

0

ZL

0

b4

oCðx;�0:5; tÞ
oy

þ b5

oCðx;0:5; tÞ
oy

� �
dxdt;

ð3Þ

Fig. 1 a A sketch of the micropipe, where x0, x1 and x3 are the

inlet, target and outlet section, respectively. b A detailed view of

the position of the sources

Table 1 Summary of the source configurations exploited in

the analyzed cases

Case Sources Optimization

1 ref F OFF

1 F ON

2 A,M ON

4 A,B,L,M ON

6 A,B,C,I,L,M ON

8 all-(E,F,G) ON

10 all-F ON

11 all ON

Refer to Fig. 1 for sources geometry and positions
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where FðC;SÞ denotes Eq. (1) and the inner product

hf ;gi ¼
R L

0

R 0:5

�0:5 f ðx;yÞgðx;yÞdydx for two real-valued

functions f and g. Here a and bi¼1::5 are the Lagrange

multipliers and all variables are considered indepen-

dent. The problem is solved by searching for a

stationary point of Eq. (3). In practice this is made

by setting the gradient of L, with respect to each

variable, to zero. In particular for the term FðC;SÞ this

is obtained by performing integration by parts in space

and time in order to transfer the derivatives from C to

a. The procedure is straight forward and the reader is

referred to [23] for further details on the topic and to

[24] for an application example. The gradients of L
with respect to a and bi¼1;...;5 give the governing

Eq. (1) with boundary and initial conditions. The

gradient of L with respect to C gives the adjoint

equation and finally the gradient with respect to s gives

the optimality condition. The adjoint equation is

written

� oa

ot
� u

oa

ox
� 1

Pe

o2a

ox2
þ o2a

oy2

� �
¼ 0; ð4Þ

with boundary conditions að0; y; tÞ ¼ 0; aðL; y; tÞ ¼ 0

and oaðx; yÞ=oyjy¼�0:5 ¼ 0, and initial condition

aðx; y; TÞ ¼ 2h½Cðx; y; TÞ � Ct�. Note that the adjoint

Eq. (4) is integrated backwards in time with the initial

condition given at t ¼ T . The gradient of the Lagrang-

ian L with respect to the control term si is finally

derived from Eq. (3) as

oL
osi

¼ �aðx0; yi; tÞ ð5Þ

The optimization problem is solved iteratively using

the following scheme:

DO

1. Equation (1) is solved from t = 0 to t = T

2. Equation (4) is solved from t = T to t = 0

3. Check dJ ¼ ðJkþ1 � JkÞ=Jk and rsi
L ¼ oL

osi

4. k ¼ k þ 1; skþ1
i ðtÞ ¼ sk

i ðtÞ � qðoL
osi
Þk

WHILE dJ\� and rsi
L\�

where siðtÞ at the first iteration is given an arbitrary

value and � is a given real-valued convergence criteria.

4 Results and discussions

The results are obtained by numerically integrating the

discretized equations (1) and (4), approximated using

FTCS (Forward Time, Central Space) finite differ-

ences. The scheme is first-order explicit in time and

second-order accurate in space. Numerical simula-

tions are characterized by: L ¼ 5; H ¼ 1; Pe ¼
100 and 150; T¼16; ds ¼ 0:04; dt ¼ 0:01; Ct ¼
10; q ¼ 0:99; � ¼ 0:005. The corresponding Reynolds

numbers are Re ¼ ½100
Sc

and 150
Sc
�. Several source con-

figurations are tested, as summarized in Table 1 with

reference to Fig. 1, in order to identify the benefits of a

multi-source strategy. It is worth observing that, for

uniaxial flows, the distance along the channel that is

required for complete mixing to occur is Dxm�Uc 	
ðH2=jÞ ¼ Pe H [4]. In this work, we compare the

mixing results at a fixed distance L ¼ 5 H using the

above described optimization technique.

The results are compared against a reference case,

here denoted by ‘‘1 ref’’, that achieves the same

concentration mean value in the target section with a

constant injection rate. The total mass injected is

defined as

M ¼
ZT

0

X
i

si dt : ð6Þ
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Fig. 2 Concentration profiles in the target section x1 at time T,

for Pe ¼ 150, in the following cases: ‘‘1 ref’’ with the same total

mass of the optimal case (thick line),‘‘ 1 ref’’ (solid line), ‘‘1’’

(dashed) and ‘‘11’’ (dash-dot). The horizontal dotted line

indicates the target concentration value
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To quantify the degree of mixing, we measure the

standard deviation of the concentration in the target

section x1, as

r ¼ hðCðx1; y; TÞ � hCiÞ2i1=2 ; ð7Þ

where himeans averages along the y direction. In order

to compare model performances, r and the total mass

M are normalized using the reference case ‘‘1 ref’’,

denoted by the subscript ref , as r̂ ¼ r
rref

and M̂ ¼
M

Mref
; respectively. Figure 2 shows the qualitative

effects of the proposed mixing technique. The opti-

mization system is able to avoid the central concen-

tration lobe, typical of the dispersion in laminar flows.

The multi-source configuration enhances the mixing,

especially when the advective transport became pre-

dominant (Pe ¼ 150). Figure 3 shows the shape of the

optimal injection curves for the single source config-

uration. The substance is emitted with a discharge s

that grows slightly until it reaches a peak at

t 
 T � TA, where TA ¼ L
UC

is the so-called advective

time. The first part of the injection curve is used to fill

the boundary region of the target section. The

robustness of the strategy is confirmed for a multi-

source configuration, as represented in Fig. 4. The

lateral sources (A–M,B–L and C–I) provide the

substance for the boundary region, characterized by

a low advective transport, while the internal sources

(D–H) supply the core region at about the advective

time TA. Figure 5 represents the mixing performances

for the various cases with respect to the reference case.

The mixing enhancement is more effective for Pe ¼

1 2 4 6 8 10 11
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σ̂

Case

Fig. 5 Normalized standard deviation of the concentration

Cðx; y;TÞ for all the cases indicated in Table 1. Circle and

square markers indicate the cases Pe ¼ 100 and Pe ¼ 150,

respectively
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Fig. 4 Injection curves for the case ‘‘8’’, Pe ¼ 100 for the

source: A–M (solid), B–L (dash-dot), C–I (dashed) and D–H

(dotted). Refer to Fig. 1 and Table 1 for details
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Fig. 6 Normalized total mass injected from 0 to T for all the

cases indicated in Table 1. Circle and square markers indicate

the cases Pe ¼ 100 and Pe ¼ 150, respectively
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Fig. 3 Injection curves for the cases Pe ¼ 100 (thick line) and

Pe ¼ 150 (thin line): ‘‘1 ref’’ (dashed), ‘‘1’’ (solid)
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150 than Pe ¼ 100. As expected, the best results are

associated with the maximum number of sources

(n = 11). Besides, some intermediate cases offer

interesting trade-offs, such as n = 2 and n = 4 for

Pe ¼ 100 and Pe ¼ 150, respectively. Moreover, the

proposed technique allows to strongly reduce the

emitted quantity with respect to the reference case, as

indicated in the Fig. 6. In general, the injected mass is

more than halved and the effect increases using a

multi-source configuration.
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