
Noname manuscript No.
(will be inserted by the editor)

Methods for solution of large optimal control problems
that bypass open-loop model reduction

Thomas Bewley · Paolo Luchini · Jan Pralits

Received: date / Accepted: date

Abstract Three algorithms for efficient solution of op-

timal control problems for high-dimensional systems

are presented. Each bypasses the intermediate (and, un-

necessary) step of open-loop model reduction. Each also

bypasses the solution of the full Riccati equation cor-

responding to the LQR problem, which is numerically

intractable for large n. Motivation for this effort comes

from the field of model-based flow control, where open-

loop model reduction often fails to capture the dynam-

ics of interest (governed by the Navier-Stokes equation).

Our Minimum Control Energy (MCE) method is a sim-

plified expression for the well-known minimum-energy

stabilizing control feedback that depends only on the

left eigenvectors corresponding to the unstable eigenval-

ues of the system matrix A. Our Adjoint of the Direct-

Adjoint (ADA) method is based on the repeated itera-
tive computation of the adjoint of a forward problem,

itself defined to be the direct-adjoint vector pair asso-

ciated with the LQR problem. Our Oppositely-Shifted

Subspace Iteration (OSSI, the main new result of the

present paper) method is based on our new subspace

iteration method for computing the Schur vectors cor-

responding, notably, to the m � n central eigenvalues

(near the imaginary axis) of the Hamiltonian matrix

related to the Riccati equation of interest. Prototype

OSSI implementations are tested on a low-order con-

trol problem to illustrate its behavior.

Thomas Bewley
Dept of MAE, UC San Diego, La Jolla CA 92093-0411, USA
E-mail: bewley@eng.ucsd.edu

Paolo Luchini
Università di Salerno, DIIN, 84084 Fisciano, Italy
E-mail: luchini@unisa.it

Jan Pralits
Università di Genova, DICCA, 16145 Genova, Italy
E-mail: jan.pralits@unige.it

Keywords Computational mechanics · Optimal

control · minimum-energy control · subspace iteration

1 Introduction & Background

A primary difficulty of the linear feedback control prob-

lem is that its computational complexity scales poorly

with problem size. Though it is quite routine with mod-

ern computers to perform numerical simulations of com-

plex systems with state dimension n ≥ O(106), it is rare

to see a feedback control problem solved directly on sys-

tems with state dimension larger than O(103). Instead,

the most common strategy is a two-step approach: first

apply some sort of “balanced” open-loop model reduc-

tion to the system [16,19], then solve a control problem

based on this reduced-order model. While this two-step

approach proves to be successful for some problems, it

is problematical for others.

The reason for this difficulty is twofold. First, though

a balanced truncation of a system accounts for the con-

trollability and observability of the various eigenmodes

of the system (i.e., the matrices B and C in the system

model), such a truncation is inherently an “open-loop”

model reduction strategy, and does not account for the

closed-loop control objective (i.e., the matrices Q and

R in the cost function).

The second issue is related to the condition of eigen-

vector nonorthogonality of the system matrix A. In sys-

tems characterized by this condition, the eigenvalues

of the system matrix, and the controllability and ob-

servability of the corresponding eigenvectors, do not

tell the whole story, and very large transfer-function

norms and transient energy growth (a.k.a. “peaking”)

are possible even if all of the eigenvalues of the sys-

tem are stable and “well damped”. The mechanism

2 Thomas Bewley et al.

for such transient energy growth is the possibility of

initial destructive interference of multiple nonorthog-

onal eigenvectors of the system [6,4]; this destructive

interference can reduce substantially in time (as dif-

ferent modes decay at different rates), leading to sub-

stantial energy growth in the system, before ultimate

energy decay due to the stability of the correspond-

ing eigenvalues. The energy growth via such mecha-

nisms can be several orders of magnitude, and can thus

lead quickly to nonlinear (a.k.a. “secondary”) instabil-

ity even when the initial perturbations on the system

are quite small. Eigenvector nonorthogonality thus re-

duces the relevance of eigenmodes considered on their

own, and model reduction strategies based on retain-

ing certain open-loop eigenmodes from the spectrum,

but not others, can lead to significant problems, as the

full set of eigenvectors necessary to capture the tran-

sient energy growth mechanisms present in the system

are generally not contained by a model that has been

reduced in such a fashion [4,13].

Finally, the two-step approach described above ap-

pears to be an unfortunate duplication of effort: an al-

gorithm with the complexity of an eigenvalue problem is

first used to reduce the order of a model, then another

algorithm with the complexity of an eigenvalue prob-

lem is used to solve a control problem based on this

reduced-order model. The central idea of the present

paper is to consider control formulations which solve

one such eigenvalue problem, not two.

1.1 Brief review of the optimal control problem

As a point of reference for the derivations in the sec-

tions to come, it is necessary to review concisely the

key equations and standard methods of solution of the

optimal control problem (written here in its simplest

form, which is sufficient for the discussion that follows).

This background material is broadly known [5,16], and

is leveraged heavily in the following form in the sec-

tions that follow. In short, we seek to minimize a finite-

horizon cost function

J(x(u),u) =
1

2

∫ T

0

(xHQx + uHRu) dt

+
1

2
xH(T)QTx(T)

(1)

where Q ≥ 0, R > 0, QT ≥ 0, and (·)H denotes the

conjugate transpose, and where the state x = x(u) is

related to the control u via a linear (or, linearized) time-

varying (LTV), possibly complex system

dx/dt = Ax +Bu with x(0) = x0. (2a)

Toward this end, we may define an adjoint field related

to the optimization problem of interest,

−dp/dt = AHp +Qx with p(T) = QTx(T). (2b)

For any initial condition x0, the control u on t ∈ [0, T]

which minimizes J(x(u),u) may be found using (2a)-

(2b) by iterative state/adjoint computation, starting

from an initial guess u = 0 on t ∈ [0, T] and at each it-

eration updating the control u (using, e.g., a conjugate

gradient or BFGS method) based on the gradient

DJ(x(u),u)/Du = BHp +Ru, (2c)

computed using the adjoint field p.

To verify the relevance of the adjoint equation (2b)

for the minimization of J(x(u),u) in (1) when x is re-

lated to u by (2a), consider a linear perturbation anal-

ysis of (1) and (2a): replacing u← u+ u′, x← x+ x′,

and J ← J + J ′ and keeping all terms which are linear

in the perturbation quantities gives

J ′ =

∫ T

0

(xHQx′ + uHRu′) dt+ xH(T)QTx
′(T) (3a)

and a linear evolution equation for x′:

Lx′ = Bu′ with x′(0) = 0 (3b)

where L , d/dt−A. (3c)

Defining the inner product 〈a,b〉 =
∫ T

0
aHb dt, we may

express an adjoint identity

〈p,Lx′〉 = 〈L∗p,x′〉+ b. (3d)

Using integration by parts, it follows that

L∗ = −d/dt−AH , b = pHx′|t=T − pHx′|t=0. (3e)

Using L∗ to define an appropriate evolution equation

for p [which is equivalent to (2b)],

L∗p = Qx with p(T) = QTx(T), (3f)

and substituting both (3b) and (3f) into the identity

(3d) allows us to rewrite (3a) as

J ′ =

∫ T

0

[
BHp +Ru

]H
u′ dt =

∫ T

0

[DJ
Du

]H
u′ dt, (3g)

from which the gradient in (2c) is readily identified.

Rather than using an iterative vector-based method

to find the u on t ∈ [0, T] to minimize J(x(u),u) for the

initial condition x0, leveraging (2a)-(2c) as described

above, we may instead enforce the condition that

DJ(x(u),u)/Du = 0 directly, thus reducing (2c) to

u = −R−1BHp. (4)

Methods for solution of large optimal control problems that bypass open-loop model reduction 3

Substituting this condition into (2a) allows us to rewrite

the two-point boundary-value problem (TPBVP) for

the state/adjoint pair {x,p}, as listed in (2a)-(2b), in

the convenient combined matrix form

d

dt

[
x

p

]
︸︷︷︸
v

=

[
A −BR−1BH

−Q −AH

]
︸ ︷︷ ︸

Z

[
x

p

]
︸︷︷︸
v

(5a)

with initial and terminal conditions{
x = x0 at t = 0,

p = QTx at t = T,
(5b)

which may be solved for arbitrary initial conditions x0

by the sweep method: assuming a relation exists be-

tween the state vector x and adjoint vector p such that

p = Wx, (5c)

inserting this assumed form of the solution into the

combined matrix form (5a) to eliminate p, combining

rows to eliminate dx/dt, factoring out x to the right,

and noting that this equation holds for all x, it follows

that the matrix W (t) ≥ 0 itself obeys the differential

Riccati equation (DRE)

−dW (t)/dt =AHW (t) +W (t)A

−W (t)BR−1BHW (t) +Q
(5d)

with terminal conditions

W (T) = QT . (5e)

The solution W (t) of the DRE (5d)-(5e) may be deter-

mined using any of a wide variety of well-known time

marching methods, such as any of those in the Runge-

Kutta family. By (4) and (5c), the control may then be

determined according to the feedback rule

u = K(t)x where K(t) = −R−1BHW (t). (5f)

Taking the limit as T →∞, assuming {A,B,Q,R}
are constant and thus the problem is linear time invari-

ant (LTI), the DRE (5d) reduces to the continuous-time

algebraic Riccati equation (CARE)

0 = AHW +WA−WBR−1BHW +Q. (6a)

The solution W > 0 of the CARE may be found [12]

by taking an ordered Schur (or eigen1) decomposition

of the Hamiltonian matrix2 Z in (5a):

Z = V TV −1 (6b)

1 Numerically, the Schur decomposition is the method of
choice for large-scale problems. In the analysis presented in
§2, however, it is more convenient to consider the eigen de-
composition.
2 A Hamiltonian matrix of this form satisfies a symmetric

root property: for every eigenvalue of Z in the LHP, λ, there
is a corresponding eigenvalue of Z in the RHP, −λ∗, where
(·)∗ denotes the complex conjugate.

where

V =

[
X ∗
P ∗

]
=

 | | |
v1 v2 . . . vn ∗
| | |

 , vi =

[
xi

pi

]
, (6c)

and the eigenvalues of Z on the main diagonal of the

upper triangular (or diagonal) matrix T are enumerated

such that the LHP eigenvalues appear first, followed by

the RHP eigenvalues (that is, we assume that Z has

no eigenvalues on the imaginary axis). Defining y =

V −1v, it follows from (5a) and (6b) that dy/dt = Ty.

The stable solutions of y are spanned by the first n

columns of T (that is, they are nonzero only in the first

n elements of y). Since v = V y, it follows that the

stable solutions of v are spanned by the first n columns

of V . To achieve stability of v via the relation p = Wx

for each of these directions, denoted vi and decomposed

as shown above, we must have pi = Wxi for i = 1 . . . n.

Assembling these equations in matrix form, we have | | |
p1 p2 . . . pn

| | |

 = W

 | | |
x1 x2 . . . xn

| | |

 (6d)

⇒ P = WX ⇒ W = PX−1. (6e)

In order for this equation for W to be uniquely solvable,

X must be nonsingular. Note also in this formulation

that the evolution of v in (5a) is restricted by the rela-

tion p = Wx [i.e., noting (4) and (5f), by u = Kx] to

the space spanned by the stable eigenmodes of the ma-

trix Z, and that the (LHP) eigenvalues corresponding

to these stable eigenmodes of Z are exactly the eigen-

values of the closed-loop system matrix (A+BK).

1.2 Chandrasekhar’s method

The DRE of interest for W = Wn×n in the optimal

control problem is given in (5d), and the correspond-

ing expression for the feedback gain matrix K = Km×n
is given in (5f). If n � m, which is typical in high-

dimensional systems, then solving a Riccati equation for

the enormous n× n matrix W only to extract a trans-

formed narrow “slice” of this matrix to determine the

m× n matrix K is grossly inefficient. Chandrasekhar’s

method [11] addresses this inefficiency in a clever way,

by simultaneously solving an evolution equation for a

low-rank factor F (t) of (dW/dt), and another evolution

equation for K(t). Towards this end, define

dW (t)/dt = F1(t)FH
1 (t)−F2(t)FH

2 (t) = F (t)H FH(t)

where

F =
(
F1 F2

)
, H =

(
I 0

0 −I

)
,

4 Thomas Bewley et al.

and the number of columns of the factors F1 and F2

are the number of positive and negative eigenmodes of

(dW/dt), respectively, retained in the approximation.

Differentiating (5d) with respect to time and inserting

dW/dt = FHFH , assuming {A,B,Q,R} are LTI, it

is easily verified that the following set of equations are

equivalent to (5d), but much cheaper to compute if both

K and F each has a relatively small number of columns:

dK(t)/dt = −R−1BH F (t)H FH(t),

dF (t)/dt = −[A+BK(t)]HF (t),

with terminal conditions

K(T) = −R−1BHQT ,

F (T)H FH(T) = dW (t)/dt
∣∣
t=T

,

where dW/dt|t=T is determined from the original DRE

(5d) evaluated at t = T , and F (T) is determined by

its factorization. Chandrasekhar’s method may be used

to approximate the (time-accurate) solution of the DRE

(5d), or simply marched to steady state to approximate

the solution of the corresponding CARE (6a).

2 MCE: Minimum Control Energy stabilization

Selecting Q = εI, QT = 0, and taking any R > 0 in

the derivation summarized in §1.1, and then taking ε

small, puts the dominant weighting on the control ef-

fort term (uHRu) in the cost function J in (1). The

solution of the optimal control problem on the infinite

horizon (T → ∞) in the limit that ε → 0 is referred

to as the minimum energy stabilizing control feedback.

Such feedback applies as little control effort as possi-

ble in order to make J finite; in other words, control

applied in the ε → 0 limit leaves those modes of the

system which are already stable alone, and swings the

unstable eigenvalues of the system into the LHP in a

way that uses the minimum amount of control effort. It

is seen immediately from the form of Z in (5a) that the

stable eigenvalues of Z in this case (with Q → 0) are

given by the union of the stable eigenvalues of A and

the stable eigenvalues of −AH (that is, the reflection

of the unstable eigenvalues of A into the LHP across

the imaginary axis); by the last sentence of §1.1, this

is where the eigenvalues of (A + BK) in the optimal

control solution are as well. This result is classical.

Since we know where the eigenvalues of the closed-

loop system matrix (A+BK) are in this case, the req-

uisite feedback gain matrix K in this problem may be

computed by the process of pole assignment. Applying

this process to the equation governing the dynamics of

the unstable modes of the system in modal form and

transforming appropriately, this leads to a simple ex-

pression for K, as shown below and discussed in [14].

2.1 The pole assignment problem

Consider now the Hamiltonian matrix Z in (5a) and its

eigen decomposition in (6b). Defining a diagonal ma-

trix Λc with the n desired (stable) eigenvalues λc of

the closed-loop system on the main diagonal, and the

corresponding eigenvectors of Z in the columns of Vc
(which may be partitioned appropriately), the stable

components of the eigen decomposition of Z satisfy[
A −BR−1BH

−Q −AH

]
︸ ︷︷ ︸

Z

Vc = VcΛc where Vc =

[
X

P

]
. (7)

In a typical pole assignment problem, the closed-

loop eigenvalues λc are prescribed in advance, then the

control feedback matrixK [equivalently, the off-diagonal

blocks of the matrix on the LHS of (7) in the optimal

control problem] is selected in order to put these eigen-

values in the desired locations.

In the present pole assignment problem, however, we

happen to know both the closed-loop eigenvalues λc and

the off-diagonal blocks of Z in (7); all that remains is

for us to compute the corresponding eigenvector matrix

Vc. Exactly as in (5f) and (6e), once these eigenvectors

are calculated, the desired feedback rule is given by

u = Kx with K = −R−1BHW (8a)

where W = PX−1. (8b)

Multiplying out (7), it follows immediately that

AX −BR−1BHP = XΛc, (9a)

−QX −AHP = PΛc. (9b)

Solving (9b) for X and substituting into (9a) gives

AQ−1(AHP + PΛc) +BR−1BHP =

Q−1(AHP + PΛc)Λc

(10a)

and

QX = −(AHP + PΛc). (10b)

Note (10a) is linear in the unknown matrix P . Once a

nonsingular P is obtained from this equation, calcula-

tion of X is trivial using (10b) or, equivalently, (9a).

Methods for solution of large optimal control problems that bypass open-loop model reduction 5

2.2 Simplification of (8)-(10) in modal coordinates

It is straightforward to transform the original system

(2a) into a modal representation and then to truncate

appropriately in order to develop a model of just the

unstable system dynamics. Performing an ordered eigen

decompositionA = SΛS−1, in which the unstable eigen-

values of A appear on the main diagonal of Λ first, fol-

lowed by the stable eigenvalues of A,

Λ =

[
Λu 0

0 Λs

]
,

and multiplying (2a) from the left by S−1, we have

dχχχ/dt = Λχχχ+B̄u where χχχ = S−1x, B̄ = S−1B. (11)

Note that Λ is diagonal. Denoting the inverse of the

eigenvector matrix as3 Y H = S−1, the portion of (11)

governing the unstable dynamics of the system may eas-

ily be written as

dχχχu/dt = Λuχχχ
u + B̄uu (12)

where

Y =
[
Yu Ys

]
, B̄ =

[
B̄u

B̄s

]
, B̄u = Y H

u B, χχχu = Y H
u x.

The pole assignment process in the minimal-energy sta-

bilizing feedback control problem, as derived in §2.1,

can be simplified greatly when applied to the equa-

tion for the unstable dynamics of the original system

in modal form, as given in (12). Assuming A has p un-

stable eigenvalues, taking A = Λu, B = B̄u, Q = εI,

R > 0, and4 Λc = −ΛH
u in (10a), partitioning P into its

respective columns, P =
[
p1 p2 . . . pp

]
, and applying

the above relationships, it follows after some simplifi-

cations5 that (10a) may be written in the simple form

[εB̄uR
−1B̄H

u +D]pk ,Mkp
k = 0 (13)

for k = 1, . . . , p, where D = diag(d
(k)
1 , . . . , d

(k)
p) with

d
(k)
i =

{
(λi + λ∗k)(λ∗i − λ∗k) for i 6= k

0 for i = k,
(14)

where, again, (·)∗ denotes the complex conjugate. Thus,

the vectors pk lie in the nullspace of Mk, and may be

found by the process of Gaussian elimination, manipu-

lating Mk to row-echelon form. In the limit ε→ 0, Mk

3 The columns of Y are referred to as the left or adjoint
eigenvectors of A.
4 We take Λc = −ΛH

u following the first paragraph of §2,
noting that all eigenvalues in Λu are unstable.
5 If Λ is diagonal, the product ΛV corresponds to scaling

the i’th row of V by λi for all i, whereas the product V Λ
corresponds to scaling the i’th column of V by λi for all i.

approaches a diagonal matrix with a zero in the k’th

diagonal element, and thus6 P → I. To avoid taking

the difference of two quantities which are almost equal

in the computation of X, we return to (9a), which, in

the ε→ 0 limit, may be written in the form

ΛuX +XΛH
u = B̄uR

−1B̄H
u , C (15a)

⇒ xij = cij/(λi + λ∗j). (15b)

With P = I, it follows from (8b) that W = X−1, and

thus, by (8a), the minimal-energy feedback control that

stabilizes (12) in the ε → 0 limit is given by u = K̄χχχu

where K̄ = −R−1B̄H
u X

−1. Writing this feedback in

terms of the original state variable x, we have u = Kx

where K = K̄Y H
u .

The solution for the minimum control energy (MCE)

controller derived above is now summarized:

Theorem 1. Consider a stabilizable system dx/dt =

Ax + Bu where A has no pure imaginary eigenvalues.

Determine the unstable eigenvalues and corresponding

left eigenvectors of A such that Y H
u A = ΛuY

H
u (equiv-

alently, determine the unstable eigenvalues and corre-

sponding right eigenvectors of AH such that AHYu =

YuΛ
H
u). Define B̄u = Y H

u B and C = B̄uR
−1B̄H

u , and

compute a matrix X with elements xij = cij/(λi +

λ∗j). The minimal-energy stabilizing feedback controller

is then given by u = Kx, where K = −R−1B̄H
u X

−1Y H
u .

Note that any of a number of existing subspace it-

eration methods (see, e.g., §4.1) may be used to deter-

mine the unstable eigenvalues (that is, those eigenval-

ues on the far right edge of the spectrum of eigenvalues)

and corresponding left eigenvectors of A; the implicitly-

restarted Arnoldi method [15] is a popular choice.

2.3 Alternative derivation of the MCE method

The derivation of the MCE method given in §2.1 - 2.2 is

based on pole assignment in the Riccati equation in the

minimum control energy case. An alternative derivation

of this method based on analysis of the corresponding

state and adjoint vectors is now presented; this alterna-

tive derivation foreshadows the methods developed in

§3 and §4, which are similarly based on careful analysis

of the state and adjoint components of the Hamiltonian.

6 If all unstable eigenvalues of A are distinct, then d
(k)
i 6= 0

for i 6= k; P necessarily becomes diagonal in this case in the
ε → 0 limit, and its columns may be normalized such that
P → I. If some of the unstable eigenvalues of A are repeated,
then there are other solutions as well. However, P → I is a
valid solution in either case in the ε→ 0 limit.

6 Thomas Bewley et al.

Taking Q = εI in the limit that ε → 0, the Hamil-

tonian system (5a) may be written

d

dt

[
x

p

]
︸︷︷︸
v

=

[
A −BR−1BH

0 −AH

]
︸ ︷︷ ︸

Z

[
x

p

]
︸︷︷︸
v

, (16a)

which may equivalently be written

dx/dt = Ax +Bu, u = −R−1BHp, (16b)

dp/dt = −AHp. (16c)

Due to the block triangular structure of Z, the eigenval-

ues of Z in this limit are simply the union of the eigen-

values of A (that is, λk for k = 1, . . . , n) and the eigen-

values of −AH (that is, −λ∗k for k = 1, . . . , n). Let p be

the number of unstable eigenvalues of A, denote by sk

the eigenvectors of A [that is, Ask = λks
k], and denote

by yk the eigenvectors of AH [that is, AHyk = λ∗ky
k];

note that the yk are also known as the left eigenvec-

tors of A [that is, (yk)HA = λk(yk)H], and that the

yi and sk vectors are orthogonal for i 6= k and may be

normalized such that

(yi)Hsk = δik. (17)

Assuming that A has no pure imaginary eigenvalues,

the n eigenvectors vk of Z corresponding to the stable

eigenvalues of Z are given, for k = 1, . . . , n, by

vk =

[
xk

pk

]
=


[
sk

0

]
if <(λk) < 0,[

f k

yk

]
if <(λk) > 0,

(18)

where, by the first block row of (16a),

f k = (A+ λ∗kI)−1BR−1BHyk. (19)

Let Is = {all k | <(λk) < 0} and Iu = {all k | <(λk) >

0}. Expanding the current state x in terms of the xk

components of the stable eigenmodes vk given in (18),

and expanding the corresponding adjoint p in a com-

patible manner, we have

x =
∑
k∈ Is

skck+
∑
k∈ Iu

f kdk, (20a)

p =
∑
k∈ Iu

ykdk, (20b)

for the as-yet undetermined coefficients ck for k ∈ Is,

and dk for k ∈ Iu, which we assemble into the vectors

c and d, respectively. Note in particular [in (20b)] that

the adjoint field p upon which the control u is based [in

(16b)] is itself based solely upon the coefficients dk. To

compute these coefficients, we simply premultiply (20a)

by (yi)H for all i ∈ Iu and apply the orthogonality (17):

(yi)H

{
x =

∑
k∈ Is

skck +
∑
k∈ Iu

f kdk

}
⇒ (yi)Hx =

∑
k∈ Iu

(yi)Hf kdk. (21)

Premultiplying (19) by [(yi)H(A+ λ∗kI)] results in

(yi)H(A+ λ∗kI) f k = (yi)HBR−1BHyk,

and thus, since (yi)HA = λi(y
i)H , it follows that

(yi)Hf k =
(yi)HBR−1BHyk

λi + λ∗k
, xik. (22a)

Collecting the vectors yi for i ∈ Iu together as the

columns of a matrix Yu and noting the definition of the

elements of X in (22a), we may write (20b) and (21) in

matrix form as

p = Yud and Y H
u x = Xd ⇒ d = X−1Y H

u x

and thus, by (16b),

u = Kx where K = −R−1BHYuX
−1Y H

u , (22b)

as summarized in Theorem 1.

3 ADA: the Adjoint of the Direct-Adjoint

As described in the first paragraph (and verified in the

second paragraph) of §1.1, for any given x0, adjoint

optimization of u for minimization of J(x(u),u) in (1)

(taking QT = 0) proceeds as indicated in Algorithm 1;

when this algorithm converges, DJ(x(u),u)/Du = 0,

and thus the following optimality condition holds:

u = −R−1BHp on t ∈ [0, T]. (23)

The input to this problem is x0, and we will focus for

now on the output u at time t = 0, which we denote

here u0. If x = xn×1 and u = um×1 and we solve this

problem n times for n linearly independent values of x0

(e.g., the n columns of In×n), then we may write[
u1
0 u2

0 . . . u
n
0

]
= K0

[
x1
0 x2

0 . . . x
n
0

]
(24)

and solve for K0, thus determining the feedback gain

matrix K at time t = 0,

u(0) = K0x(0). (25)

Note also that (25) taken together with (23), evaluated

at t = 0, may be written

u(0) = [KH
0]Hx(0) = [−BR−1]Hp(0). (26)

Methods for solution of large optimal control problems that bypass open-loop model reduction 7

Algorithm 1 Direct-adjoint problem for optimizing u,

framing (1) and (2a)-(2c) as a numerical algorithm (tak-

ing QT = 0).

Initialize i = 0, u(t) = 0 on t ∈ [0, T], and the tolerance ε
loop

March dx/dt = Ax +Bu with x(0) = x0 for t = 0→ T
Compute Ji = J(x(u),u) [see (1)]
if i > 0 and (Ji − Ji−1)/Ji < ε then break end if
March dp/dt = −AHp−Qx with p(T) = 0 for t = T→0
Compute gradient DJ(x(u),u)/Du = BHp +Ru
Update u via gradient-based algorithm (CG, BFGS, . . .)

end loop

The approach described above requires n optimizations

to set up (24), which may be solved to compute the

m×n matrix K0. If n� m, it is much more efficient to

consider the adjoint of this problem, thus leading to an

algorithm requiring only m optimizations to compute

K0, which can be achieved as described below.

To frame the adjoint of the problem described above

in a manner analogous to the standard adjoint-based

optimization framework reviewed in (3a)-(3g), we first

introduce a bit of notation. Define

y =

[
p

x

]
and L =

[
BR−1BH d/dt−A
−d/dt−AH −Q

]
(27a)

where Q ≥ 0 and R > 0, and note that the converged

solution of the “forward TPBVP” (2a)-(2b) with (4)

and QT = 0, which may be calculated using Algorithm

1, may now equivalently be written

Ly = 0 with

{
x(0) = x0,

p(T) = 0.
(27b)

[Note that, in (27a), we have arranged the variables

and equations appropriately to include the d/dt opera-

tor in the off-diagonal blocks of the linear operator L;

this slightly nonstandard approach simplifies and sym-

metrizes the subsequent analysis.] Defining as before

the inner product 〈a,b〉 =
∫ T

0
aHb dt, we may express

the adjoint identity

〈ỹ,Ly〉 = 〈L∗ỹ,y〉+ b where ỹ =

[
p̃

x̃

]
. (27c)

Using integration by parts, it follows immediately that

L∗ = L (that is, the state/adjoint TPBVP considered

as a whole is itself self-adjoint), and that

b = (p̃Hx− x̃Hp)t=T − (p̃Hx− x̃Hp)t=0. (27d)

[Note the permutation (that is, p̃H multiplies x, whereas

x̃H multiplies p), which arises due to the off-diagonal

location of the d/dt terms in L.] We now use L∗ to

define an appropriate adjoint equation

L∗ỹ = 0 with

{
x̃(0) = x̃0,

p̃(T) = 0,
(27e)

which may equivalently be written

dx̃/dt = Ax̃ +B(−R−1BH p̃︸ ︷︷ ︸
,ũ

) with x̃(0) = x̃0,

(28a)

−dp̃/dt = AH p̃ +Qx̃ with p̃(T) = 0. (28b)

By (27a)-(27b), this TPBVP is exactly the same as that

given in (2a), (2b), and (4), it is just written in different

variables, and has a different interpretation given to the

“input” x̃(0) and the “output” p̃(0). Thus, this “adjoint

TPBVP” may also be solved using Algorithm 1.

The key to relate the solution of the “adjoint TP-

BVP” (27e) to the “forward TPBVP” (27b) is the ad-

joint identity (27c), which reduces upon substitution of

(27d), (27b), and (27e) to

[p̃(0)]Hx(0) = [x̃(0)]Hp(0). (29)

Comparing (29) and (26), it is seen that, setting x̃(0)

to the first column of [−BR−1] and solving the adjoint

TPBVP (27e) via Algorithm 1, the resulting value of

p̃(0) is just the first column of KH
0 , etc. Thus, after

solving the adjoint TPBVP (27e) via Algorithm 1 just

m times (not n times!), the entire K0 is constructed

directly. Further, for an LTI system and T sufficiently

large, K0 approximates the LTI feedback gain K.

3.1 Interpretation of the ADA method

The optimality condition DJ(x(u),u)/Du = 0 relating

the state x to the control u is linear, as it is given by the

first derivative of a quadratic cost function J(x(u),u)

with respect to u, where x is a linear function of u

via the state equation. The linearity of this problem is

sometimes obscured by the fact that this relationship is

usually solved by considering a quadratic matrix equa-

tion (the Riccati equation); the purpose for introducing

this quadratic matrix equation is simply to convert the

TPBVP for the vector x and a supplemental vector p

at the core of this linear problem into an initial value

problem for a matrix W that relates these two vectors.

For low-dimensional systems, this quadratic initial

value problem for the matrix W is easy to solve [in the

infinite-horizon LTI case, leveraging eigen- or Schur-

based analysis, as reviewed in §1.1]. For high-dimensional

systems, however, computation of W is intractable, and

8 Thomas Bewley et al.

in certain situations it is useful to reconsider to the op-

timality condition in its original linear form.

Since the optimality condition is linear, it may be

considered in one of two directions, a “forward” analysis

(itself based on iterative solution of a direct/adjoint for-

mulation), which as shown in §1.1 comes up naturally

when examining the control problem, and the “adjoint”

of this analysis. If the state x and the control u are

roughly the same dimension, both of these directions

have similar computational expense. However, if the di-

mension of the state x is significantly larger than that

of the control u, the “adjoint” analysis of this problem

is significantly more efficient computationally.

Finally, since the state/adjoint pair at the core of

the “forward” analysis is itself a self-adjoint system,

exactly the same numerical machinery may be used for

the “forward” and “adjoint” analyses, it is only the in-

puts and outputs to these analyses that change.

4 OSSI: Oppositely-Shifted Subspace Iteration

“Subspace iteration” refers to the core framework of a

class of iterative eigenvalue solvers designed to extract

m � n eigenvalues, and the corresponding eigenvec-

tors or Schur vectors, from an n × n matrix A when

n� 1. Two modern extensions of such solvers, dubbed

Arnoldi (for general matrices) and Lanczos (for sym-

metric matrices), are today commonly applied to sparse

systems with n ≥ O(106). There are a wide variety

of well-established techniques available for accelerating

the convergence of such algorithms, including deflating

and implicit restarting, which for brevity will not be

expounded upon here; some reviews of this fascinating

and now fairly mature subject include [22,17,20,8,15].

In §4.1, we describe two “prototype” subspace it-

eration algorithms, including an explicit form and an

implicit form, which demonstrate the essence of how

such algorithms may be used to extract a basis of the

eigenvectors and Schur vectors corresponding to the m

most unstable eigenvalues of a matrix A. It is impor-

tant to note that the explicit form considered needs

access solely to a subroutine which computes the ma-

trix/vector product Av; it does not need access to A−1,

nor even to A itself. This is useful in many complex

applications with n ≥ O(106), such as those arising

in the field of flow control, where a subroutine which

effectively computes the matrix/vector product Av is

often all that is available. An implicit form is also con-

sidered, which is built around a subroutine designed to

efficiently solve (1+hA)x = v for x, which is also some-

times available and numerically tractable (and, when

it is, can be leveraged to significantly speed conver-

gence of the subspace iteration algorithm when A is

stiff, meaning that it has a large range of eigenval-

ues reaching far out into the LHP, as is common in

the spatial discretization of PDE systems [9]). Signifi-

cantly, many such implicit solvers are only approximate,

such as those based on incomplete Cholesky factoriza-

tion (for symmetric A), or those on based on iterative

solvers (such as the multigrid algorithm) when such

solvers are not driven fully to convergence7. Note also

that the subroutine which computes the matrix/vector

product Av in the explicit case, or the subroutine which

solves (1+hA)x = v for x in the implicit case, is called

only m times per iteration8 in the core algorithms pre-

sented; this is important because these subroutines are

typically computationally expensive.

In §4.2, we demonstrate how a simple modification,

dubbed “opposite shifting”, of these prototype subspace

iteration algorithms may be used to target the cen-

tral eigenvalues (that is, those near the imaginary axis)

of a matrix Z of Hamiltonian structure. The resulting

oppositely-shifted subspace iteration (OSSI) algorithms

are again developed in prototype explicit and implicit

forms, and are quite similar to the explicit and implicit

forms of the standard subspace iteration algorithms

upon which they are based. The OSSI algorithms pro-

posed again depend only on the matrix/vector product

Av in the explicit case, or on the (possibly, approx-

imate) solution of (1 + hA)x = v for x in the im-

plicit case (that is, they do not require direct access

to, or storage of, A or A−1). Once the simple “opposite

shifting” modification is made, the wide variety of tech-

niques available to accelerate the convergence of such

algorithms are again directly applicable. [For brevity,

we will not focus on such acceleration techniques here.]

Finally, in §5, we discuss the application of these

prototype OSSI algorithms to the approximate solu-

tion of large eigenvalue problems arising in optimal con-

trol formulations while bypassing the preparatory (and,

sometimes, problematical) step of open-loop model re-

duction, and briefly compare these algorithms to the

other strategies for the control of large-scale systems

discussed previously in this article.

4.1 Prototype subspace iteration algorithms

To understand the basic idea of standard subspace it-

eration methods, consider first the simple ODE

dv/dt = Av, (30)

7 In future work, it would be valuable to consider the myr-
iad of subtle issues that arise when coupling the implicit OSSI
algorithm developed in §4.2 with approximate inverses such
as those arising in the multigrid setting.
8 That is, once per column of V being computed [see (31b)

and (39b)].

Methods for solution of large optimal control problems that bypass open-loop model reduction 9

and order the eigenvalues λi and corresponding eigen-

vectors si of A by the real parts of λi [that is, λ1 is the

eigenvalue of A with the greatest real part, and λn is

the eigenvalue of A with the least real part; note that

high-dimensional ODE systems arising from the spatial

discretization of diffusive PDE systems typically have

just a few unstable eigenvalues]. The utility of consid-

ering this ODE is that, as it evolves, it preferentially

amplifies the component of v in the direction s1 as com-

pared with the other components of v.

4.1.1 Subspace iteration via EE discretization of (30)

Based on the above discussion, we are motivated to

march (30) with a simple explicit Euler (EE) numerical

discretization,

vk+1 = (I + hA)vk = vk + hAvk, (31a)

while using as large a timestep h as possible to acceler-

ate the relative growth of the component of vk in the

direction s1 from one timestep to the next. Since the

EE method is conditionally stable9, it is actually the

most stable eigenvalue, λn, that typically limits how

large a timestep h can be taken in this march while

not encountering the “numerical instability” caused by

|1 + hλn| approaching and exceeding 1.

To find a basis for the first m > 1 eigenvectors and

Schur vectors, rather than propagating a single direc-

tion v as in (31a), we instead simply propagate a set of

directions assembled as the columns of a matrix V ,

V ← V + hAV. (31b)

At the end of each iteration in the subspace iteration

algorithm, we orthogonalize and normalize the columns

of V via the QR decomposition using a Modified Gram-

Schmidt method performed in place10 [8], thus assuring

that the m directions so generated are orthogonal:

V = QR, V ← Q, Σ ← RΣR−1, (32)

where the columns of the updated V are orthogonalized

and both R and the updated Σ are upper triangular.

An alternative motivation for (31b) is a bit more al-

gebraic: for sufficiently small h, the largest (in modulus)

eigenvalues of the shifted matrix (I+hA) are (1+hλ1)

through (1 +hλm), and the corresponding eigenvectors

are, again, s1 through sm. Thus, the difference equation

(31b), as it evolves, preferentially amplifies the compo-

nents of V in the directions s1 through sm as compared

9 Recall that the EE method is stable when all eigenvalues
λ, scaled by h, are contained in a unit disk centered at −1 in
the complex plane of hλ.
10 That is, in a manner immediately replacing V with Q.

with the other components of V . For sufficiently small

h, the next largest eigenvalue of (I+hA) is (1+hλm+1),

and the rates at which the components of V in the (re-

solved) directions s1 through sm emerge over the com-

ponents in the (unresolved) direction sm+1 are∣∣∣∣ 1 + hλ1
1 + hλm+1

∣∣∣∣ through

∣∣∣∣ 1 + hλm
1 + hλm+1

∣∣∣∣ , (33a)

whereas the rate at which the components of V in the

direction sm+1 are amplified over the components in

the direction sn is∣∣∣∣1 + hλm+1

1 + hλn

∣∣∣∣ . (33b)

We desire to select h as large as possible, in order to

make the ratios in (33a) large, without making h so

large that the ratio in (33b) exceeds 1. As the λi are

typically unknown, optimizing the value of h for a given

problem in this manner often takes a modest amount

of trial and error11.

Another key step of a subspace iteration algorithm is

to extract the eigenvalues corresponding to the emerg-

ing eigenvector subspace. There are a few different op-

tions for this. In the case that m = 1 and A is sym-

metric, we may simply use the Rayleigh quotient (see

[8], p. 408): normalizing v at the end of each iteration

such that vHv = 1 and denoting our estimate of the

eigenvalue corresponding to emerging eigenvector in v

as σ, this may be written

σ = vH Av. (34a)

As v converges towards a (normalized) eigenvector, the

value of σ computed in this manner converges quickly

towards the corresponding eigenvalue.

In order to approximate the eigenvalues of the emerg-

ing subspace in the more interesting case that A is non-

symmetric and/or m > 1, we may follow a similar ap-

proach: orthogonalizing V at the end of each iteration

such that V HV = I, we impose

Σ = V H AV. (34b)

11 Various approaches are available to “stretch” the eigen-
value spectrum of A in order to mitigate this timestep restric-
tion. For example, one may replace the matrix A to which the
iteration is applied with an appropriately-designed low-order
polynomial (of order p) in A; such a polynomial has the same
eigenvectors as A. This approach helps to increase the gap
between λm and λm+1 [see (33a)] while decreasing the inter-
val between λm+1 and λn [see (33b)], both of which facilitate
faster convergence. However, this approach also increases the
number of function evaluations Av that must be calculated
per iteration by a factor of p, and is thus generally not worth-
while unless the range of the eigenvalue spectrum of A is, a
priori, known fairly accurately.

10 Thomas Bewley et al.

To motivate this form, consider what happens when we

upper triangularize the (m×m) matrix Σ at each step

of the subspace iteration algorithm via the computation

of an ordered Schur decomposition ([8], p. 313)

Σ = U T U
H
, (35a)

where T = Tm×m is upper triangular, with its diagonal

elements arranged in order of decreasing real part, and

U = Um×m is unitary. [In the case that A is real, a real

Schur decomposition ([8], p. 341) should be used instead

at this step; rather than generating a complex upper-

triangular matrix T , the real Schur decomposition gen-

erates a real matrix T which is block upper triangular,

with 1 × 1 blocks (corresponding to the real eigenval-

ues) and 2 × 2 blocks (corresponding to the complex-

conjugate eigenvalue pairs) on the main diagonal.] Tak-

ing (34b) together with (35a) then gives

U T U
H

= V H AV ⇒ T = (V U)H A (V U). (35b)

Note that updating

V ← (V U) and Σ ← T (35c)

changes neither the subspace spanned by the columns

of V , nor the fact that V is unitary, nor the eigenvalues

of Σ, which in this triangularized form appear on the

main diagonal (or, in the real Schur case, may be de-

rived from the blocks on the main diagonal). Further,

as V converges towards the first m Schur vectors of A

via this process, Σ converges towards the m×m leading

principal submatrix of T in the full Schur decomposi-

tion A = UTUH .

For small n, overall convergence is not significantly

affected if the Schur decomposition of Σ is deferred un-

til after the end of the main loop; in this case, Σ is

left in a full form as the iteration proceeds, and V con-

verges toward an essentially arbitrary basis of the first

m Schur vectors.

Note in (33a) that leading Schur vectors tend to

converge faster than do subsequent Schur vectors. It is

generally wise to include the Schur decomposition step

(35a)-(35c), which triangularizes Σ and “unscrambles”

the emerging Schur vectors in V , within the main iter-

ation loop of the subspace iteration algorithm for large

problems (though perhaps not at every single iteration

step), as this step helps to separate the convergence of

each of the Schur vectors being computed. This sepa-

ration is useful for two reasons. The first is that it is

sometimes necessary to terminate the subspace itera-

tion algorithm before the last few Schur vectors being

computed fully converge. The second is that, as the first

few Schur vectors begin to converge, the problem being

worked on may be successively deflated (that is, the con-

verged Schur vectors may be removed from V), as these

converged vectors do not need to be worked on further

by the subspace iteration algorithm as it proceeds12.

As a significant refinement, we may apply a small

shift of −(hV Σ) to (31b), thus marching

V ← V + h (AV − V Σ). (36)

This shifted form has the same essential effect as march-

ing (31b) (that is, preferential focusing of the columns

of V in the direction of the leading Schur vectors of A),

with the benefit of ensuring that the update to V it-

self approaches zero as V approaches a basis of a set of

Schur vectors, and thus (AV − V Σ) approaches zero.

This is clearly seen in the m = 1 case, where this shift

makes the amplification of s1 at each iteration unity,

and (for sufficiently small h) the amplification of all

other directions smaller. In the m > 1 case, the effect

of this small shift (hV Σ) can be thought of in terms

its effect on the convergence of the individual columns

of V : the shift in the first column makes the amplifi-

cation of s1 at each iteration unity as in the m = 1

case, the shift in the second column makes the amplifi-

cation of s2 at each iteration unity, etc. Geometrically,

considering the convergence of the i’th column of V ,

we may draw a circle in the complex plane correspond-

ing to the amplification of si due to the iteration; for

sufficiently small h, the radius of this circle is close to

unity, and the amplification of all remaining directions

si+1 through sn are inside this circle. The small shift

(hV Σ) simply adjusts the radius of this circle to be

exactly unity. Note that, though this refinement is not

necessary in the standard subspace iteration approach,

it is useful when we extend this approach in §4.2.

In summary, the iterative explicit subspace iteration

algorithm, defined by (31b) or (36) [we use the latter],

(32), (34b), (35a), and (35c), and implemented in an

efficient order in Algorithm 2, converges (if h is suf-

ficiently small) toward the leading components of the

Schur decomposition

AV = V Σ, (37)

determining a unitary V = Vn×m and upper-triangular

Σ = Σm×m, with λ1 through λm on the main diagonal

of Σ. The residual r(i) = norm(AV − V Σ) measures

the degree to which (37) is not yet satisfied. Note that

it is trivial to now compute the corresponding compo-

nents of the eigen decomposition of A via the eigen

12 Note, however, that those vectors still being worked on in
V still need to be orthogonalized at every iteration against
the converged Schur vectors that have been removed from the
iteration [10].

Methods for solution of large optimal control problems that bypass open-loop model reduction 11

decomposition (if it exists) of Σ:

Σ = S Λ S
−1 ⇒ AS = SΛ,

where S = Sn×m = V S and Λ = Λm×m is diagonal.

4.1.2 Computational efficiency

Note finally that the orthogonalization and Schur de-

composition steps in the main loop of Algorithm 2 may

be made a bit more efficient by, instead of computing

the QR decomposition of V , computing the Cholesky

decomposition

Z = GGH of the (m×m) matrix Z = V H V, (38a)

noting that, by construction,G is lower triangular. Also,

V = QR ⇔ Q = V R−1, (38b)

and thus

V HV = RHQHQ R = RHR ⇒ R = GH . (38c)

As the solution of (37) is approached, it follows that

A(V G−H) = (V G−H) (GH ΣG−H). (38d)

We may now compute the Schur decomposition [cf. (35a)]

(GH ΣG−H) = U T U
H
, (38e)

then update appropriately [cf. (35c)]

V ← V (G−HU) and Σ ← T . (38f)

After the computation of (AV), the computational cost

of which varies from problem to problem, the compu-

tational cost per iteration (when n � m � 1) follow-

ing the QR-based approach, as shown in Algorithm 2,

is ∼ 8nm2 flops. In contrast, the Cholesky-based ap-

proach replaces the following two expensive steps:

• computation of the V = QR decomp. {∼ 2nm2 flops},
• computation of V U {∼ 2nm2 flops},
with the following two expensive steps:

• computation of V HV {∼ nm2 flops},
• computation of V (G−HU) {∼ 2nm2 flops}.
Thus, neglecting the computational cost of the com-

putation of (AV), which is identical in the two ap-

proaches, the Cholesky-based approach is 12.5% cheaper

(∼ 7nm2 versus ∼ 8nm2).

4.1.3 Subspace iteration via IE discretization of (30)

Due to the restrictions on h inherent to the EE-based

approach applied to stiff systems, we are also motivated

to consider marching (30) with an Implicit Euler (IE)

numerical discretization [cf. (31a)],

(I − hA)vk+1 = vk, (39a)

written again in a form that propagates a set of direc-

tions assembled as the columns of a matrix V [cf. (31b)],

(I − hA)V k+1 = V k, (39b)

which at each k may be solved for V k+1. As the IE

method is L stable [9], h may be made large without

encountering numerical instability in this form of the

march, which significantly improves the convergence of

this IE-based form with k as compared with the EE-

based form discussed previously. Note, however, that

increasing h will also generally slow the convergence

of an iterative solver used to solve (39b) for any given

k, as it reduces the diagonal dominance of the matrix

(I − hA). Increasing h also has a diminishing effect

on the convergence of the Schur vectors with k as h

becomes large.

One (again, of many) options of approximating Σ at

each step in this case is given by premultiplying (39b)

by (V k)H , applying (V k)HV k = I, and setting AV k+1

equal to V k+1Σk+1 [cf. (34b)], leading to:

Σk+1 = {I − [(V k)HV k+1]−1}/h. (39c)

As a refinement, we may apply a small shift (hV Σ) to

(39b) at each iteration [cf. (36)], thus marching

V k+1 − hAV k+1 = V k − hV kΣ. (39d)

This has the same essential effect as marching (39b),

with the benefit of ensuring that the update to V itself

approaches zero as V approaches a basis of a set of

Schur vectors, and thus (AV − V Σ) approaches zero.

The other steps in the IE-based approach are anal-

ogous to those in the EE-based approach, and are im-

plemented in Algorithm 3; note that imax and ε define

the stopping criterion of both algorithms. Note that an

approximate form for the residual r(i) = norm(AV −
V Σ) is implemented in this case in order to avoid an

(expensive) computation of AV ; strictly speaking, the

approximate form implemented is valid only if h is suf-

ficiently small that IE acts like EE, but this form is

found to be adequate even for larger h, as it is only

used to check convergence.

12 Thomas Bewley et al.

Algorithm 2 Prototype explicit subspace iteration al-

gorithm to find the m least-stable eigenvalues (on the

main diagonal of Σ), the corresponding Schur vectors

(in V), and the corresponding eigenvectors (in S) of an

n× n matrix A for n� m� 1.
determine [n, n] = size(A)
set m as the number of eigenvalues to compute
set V = randn(n,m), orthogonalize V
for i = 1 to imax do

set L = AV{flops: problem dependent}
set Σ = V HL .{∼ 2nm2 flops}
set L← L− V Σ .{∼ 2nm2 flops}
set r(i) = norm(L)
set V ← V + hL
compute V = QR decomposition, {∼ 2nm2 flops}

set V ← Q, Σ ← RΣR−1

compute Σ = U T U
H

(Schur/real Schur) decomp.,
set Σ ← T , V ← V U {∼ 2nm2 flops}

if r(i) < ε then break end if
end for
{optional: compute eigenvectors S of Σ; set S = V S}

4.2 Prototype OSSI algorithms

Our primary interest in subspace iteration methods in

this paper is on how to extend such methods, as illus-

trated above in simplified prototype form, to find the

central eigenvalues of a very large [e.g., n ≥ O(106)]

Hamiltonian matrix

Z =

[
A −BR−1BH

−Q −AH

]
. (40a)

Such matrices arise, e.g., in optimal control problems

[see (5a)], and have an eigenvalue structure that is sym-

metric across the imaginary axis.

The key idea is to determine the least-stable LHP

Schur vectors V (i.e., the Schur vectors of Z correspond-

ing to eigenvalues with negative real part that are clos-

est to the imaginary axis), to partition these closed-loop

Schur vectors into their state and adjoint components

V =

[
X

P

]
, (40b)

then to approximate, leveraging the Moore-Penrose pseu-

doinverse X+ of the matrix X, the resulting feedback

gain matrix [cf. (5f) and (6e)]:

K = −R−1BH(PX+). (40c)

The motivation for this idea is that, if the (neglected)

closed-loop Schur vectors of Z are well damped, they

likely play a reduced role in the full computation of

K. Note that this idea was recently explored by [1,2]

and found to be promising. Use of this closed-loop re-

duction technique might in practice, for n � 1, prove

to be superior to the use of open-loop model reduction

Algorithm 3 Prototype implicit subspace iteration al-

gorithm [cf. Algorithm 2].

determine [n, n] = size(A)
set m as the number of eigenvalues to compute
set V = randn(n,m), orthogonalize V
for i = 1 to imax do

solve (I − hA)L = V for L {flops: problem dependent}
set Σ = [I − (V HL)−1]/h{∼ 2nm2 flops}
set L← L− hLΣ .{∼ 2nm2 flops}
set r(i) = norm(L− V)/h . .{note: approximate form}
compute L = QR decomposition, {∼ 2nm2 flops}

set L← Q, Σ ← RΣR−1

compute Σ = U T U
H

(Schur/real Schur) decomp.,
set Σ ← T , V ← LU{∼ 2nm2 flops}

if r(i) < ε then break end if
end for
{optional: compute eigenvectors S of Σ; set S = V S}

strategies, which typically fail to account for the control

objective in the model reduction process.

Note again that, to date, all implementations of sub-

space iteration methods and their variants that we are

aware of converge to extremal eigenvalues. Convergence

to the central eigenvalues of Z (that is, those eigenval-

ues near the imaginary axis), using existing algorithms,

requires a code that computes Z−1v (or, via the Matrix

Inversion Lemma, several calculations of A−1x), which

is typically prohibitively slow. We thus seek a method

to calculate the central Schur vectors of Z without ac-

cess to the computation of either Z−1v or A−1x. We

have discovered a remarkably simple modification to Al-

gorithms 2 and 3 which accomplishes this. To explain

this modification, consider first what happens when, as

in the MCE case, one of the off-diagonal terms of Z is

zero. In this case, Algorithm 2 or 3 may be applied to

compute

(a) the least-stable eigenvalues of A, and

(b) the least-stable eigenvalues of −AH .

For the control of a system with a few unstable eigen-

values and many stable eigenvalues extending into the

LHP, we need to know (a), which are the eigenvalues of

A near the imaginary axis, but, rather than calculating

(b), we instead need to find the most-stable eigenvalues

of −AH (that is, the eigenvalues of −AH near the imag-

inary axis). It is a straightforward matter to find these

eigenvalues simply by changing the sign of the related

march of P (that is, in the march related to −AH).

The eigenvalues of Z vary continuously as its ele-

ments are varied. If both Q and BR−1BH are nonzero

but the norm of their product is small (that is, a mod-

est generalization from the MCE limit), application of a

slightly modified form of Algorithm 2 or 3 to Z, as mo-

tivated above, returns those eigenvalues of Z near the

least stable eigenvalues of A together with those eigen-

Methods for solution of large optimal control problems that bypass open-loop model reduction 13

Algorithm 4 Prototype explicit oppositely-shifted

subspace iteration (OSSI) algorithm for computing the

least-stable of the LHP eigenvalues and the correspond-

ing Schur vectors of a Hamiltonian matrix Z.

determine [n, n] = size(A)
set m as the number of eigenvalues of Z to compute
set X = randn(n,m), P = randn(n,m)
orthogonalize X
for i = 1 to imax do

set X1 = AX − (BR−1BH)P , P1 = −QX −AHP
set Σ = XHX1

set X1 ← X1 −XΣ, P1 ← P1 − PΣ

set r(i) = norm
([
X1

P1

])
set X ← X +++ hX1, P ← P −−− hP1 {opposite shift!}
compute X = QR decomposition,

set X ← Q, P ← P R−1, Σ ← RΣR−1

compute Σ = U T U
H

(Schur/real Schur) decomp.,
set Σ ← T , X ← X U , P ← P U

if r(i) < ε then break end if
end for

values of Z near the most stable eigenvalues of −AH ,

which are precisely the eigenvalues we seek.

4.2.1 OSSI via an EE discretization

The idea laid out above is implemented in Algorithm 4,

which is essentially just Algorithm 2 applied to a matrix

Z with the block structure given in (40a), with the sign

modification on the shift discussed above and carefully-

chosen formula implemented for the computation of Σ,

discussed below. In principle, the update to X and P

may be split into two parts, with a positive sign in the

shift of X, and a negative sign in the shift of P :

X ← X+++hX1, P ← P −−−hP1 (41a)

where

X1 = AX − (BR−1BH)P, P1 = −QX −AHP. (41b)

To make such an iteration consistent, we may, in a man-

ner analogous to that introduced in (36), apply small

shifts to (41a) by marching

X ← X + h(X1−XΣ), P ← P − h(P1−PΣ). (41c)

This approach is referred to as opposite shifting.

As convergence is approached, {X,P} approach a

basis of the desired Schur vectors, and thus

ZV ≈ V Σ ⇔
[
A −BR−1BH

−Q −AH

] [
X

P

]
≈
[
X

P

]
Σ. (42)

As before, there are various options for computing Σ.

A simple option which we have found to be effective is

determined by multiplying the first block row of (42)

Algorithm 5 Prototype implicit oppositely-shifted

subspace iteration (OSSI) algorithm [cf. Algorithm 4].

determine [n, n] = size(A)
set m as the number of eigenvalues of Z to compute
set X = randn(n,m), P = randn(n,m), Σ =
zeros(m,m)
orthogonalize X
for i = 1 to imax do

solve (I−hA)X1 = X+++h[−XΣ−(BR−1BH)P] for X1,
(I − hAH)P1 = P −−−h[−PΣ −QX] for P1

. {note opposite shift!}
set Σ ← Σ +XH

1 (X1 −X)/h

set r(i) = norm
([
X1

P1

]
−

[
X
P

])
/h

compute X1 = QR decomposition,

set X1 ← Q, P1 ← P1R−1, Σ ← RΣR−1

compute Σ = U T U
H

(Schur/real Schur) decomp.,
set Σ ← T , X ← X1 U , P ← P1 U

if r(i) < ε then break end if
end for

times XH and solving for Σ [that is, ignoring com-

pletely the second block row of (42)], resulting in

Σ = (XHX)−1(XHX1). (43)

This option is thus analogous to (34b); note that the

normalization factor (XHX)−1 may be skipped if X,

rather than V , is orthogonalized via QR decomposi-

tion. This option is found in practice (see §5) to con-

verge to the eigenvalues of Z just to the left of the imag-

inary axis, which are exactly those sought for the pur-

pose of feedback control design [see (40)]. This method

is implemented in Algorithm 4.

4.2.2 OSSI via an IE discretization

It is also straightforward to develop an implicit form

of the OSSI algorithm described above, in an analo-

gous manner to the development of the implicit form of

the standard subspace iteration algorithm described in

§4.1. In order to not invert Z and to leverage existing

solvers for A, we actually only take the diagonal blocks

of Z implicitly, and account for the off-diagonal blocks

of Z explicitly. The update to Σ that we have chosen in

this case is based on the relationship dV/dt = ZV dis-

cretized via IE with a shift; setting ZVn+1 = Vn+1Σn+1,

this results in

Vn+1 − Vn
h

= J(ZVn+1−Vn+1Σn︸ ︷︷ ︸
shift

) = JVn+1(Σn+1−Σn)

where J =
[
I 0; 0 −I

]
. Looking at only the first block

row of this result and premultiplying by XH
n+1 gives

Σn+1 = Σn + (XH
n+1Xn+1)−1XH

n+1(Xn+1 −Xn)/h.

14 Thomas Bewley et al.

Again, the normalization factor (XHX)−1 may be skipped

if X is orthogonalized at each iteration via QR decom-

position. This method is implemented in Algorithm 5.

5 Test on a representative LQR problem

A “representative” randomly-generated infinite-horizon

LQR problem [see §1.1] may be created with A, Q > 0,

R = I and B̄ = BR−1BH ≥ 0 defined via

A1 = randn(n, n); A = −A1A
H
1 + randn(n, n);

Q1 = randn(n, n); Q = αQ1Q
H
1 ;

B̄1 = randn(n,m); B̄ = β B̄1 B̄
H
1 ,

where randn(n,m) denotes a random n × m matrix

whose elements have zero mean and a Gaussian distri-

bution with unit variance. The system matrix so created

has both real and complex conjugate pairs of eigenval-

ues extending into the LHP, and usually has only a few

unstable eigenvalues, which is typical in many prob-

lems of interest derived from well-posed PDEs. Sev-

eral realizations of such randomly-generated LQR prob-

lems were studied when testing the methods described

herein. All of the algorithms converge to the expected

results when the parameters are selected appropriately

(sufficiently small h, etc.). For a typical example, taking

n = 10, m = 4, α = 0.1, and β = 0.01, and approx-

imately the optimal h in each case (found by a minor

amount of trial and error), the convergence of Algo-

rithms 2, 3, 4, & 5 are depicted in Figures 1 & 2.

Note that we have kept n small in the numerical

tests reported here, as we have thus far only devel-

oped what we have referred to as “prototype” imple-

mentations of our new algorithms. Various standard

acceleration techniques (deflating, implicit restarting,

etc.) must be applied to the prototype subspace itera-

tion algorithms reported here, in an analogous manner

to how they have been applied to standard eigenvalue

problems, before these new algorithms will be ready for

application to control problems with large n (see, e.g.,

[15], and its numerical implementation in ARPACK).

6 Conclusions

This paper considers four methods for the efficient so-

lution of optimal control problems for high-dimensional

systems which bypass the intermediate and sometimes

problematical step of open-loop model reduction. Chan-

drasekhar’s method, reviewed in §1.2, is classical. The

other three methods presented (MCE, ADA, OSSI) have

been developed much more recently by our team.

0 10 20 30 40 50 60

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Fig. 1 Convergence of (dashed) the explicit form given in
Algorithm 2, and (solid) the implicit form given in Algorithm
3, of the subspace iteration algorithm for the leading Schur
vectors of the state matrix A. The dotted lines indicate the
convergence of individual modes.

0 50 100 150 200 250 300 350 400 450

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Fig. 2 Convergence of (dashed) the explicit form given in
Algorithm 4, and (solid) the implicit form given in Algorithm
5, of the subspace iteration algorithm for the least-unstable
LHP Schur vectors of the Hamiltonian matrix Z. The dotted
lines indicate the convergence of individual modes.

The fact that the continuous-time stabilizing LQR

controller in the Minimum Control Energy (MCE) limit

simply reflects the unstable eigenvalues into the LHP is

also classical. However, the algorithm reviewed in §2 to

efficiently solve the LQR problem in the MCE limit

in large-scale systems was apparently first identified

only recently, in [14], and hasn’t been widely recognized

since. This algorithm requires only the eigenvalues and

left eigenvectors of the unstable modes of the system

matrix A, which may be determined via a subspace it-

eration method, such as those discussed in §4.1.

Methods for solution of large optimal control problems that bypass open-loop model reduction 15

When the system of interest has open-loop eigenval-

ues that are near the imaginary axis, the performance

of the controlled system in the MCE limit is sometimes

inadequate, and a more aggressive control solution is

desired. The remaining two approximate methods dis-

cussed in this paper provide attractive distinct alterna-

tives to Chandrasekhar’s method for the numerically-

tractable approximate solution of high-dimensional op-

timal control problems outside of the MCE limit while

bypassing open-loop model reduction.

The Adjoint of the Direct-Adjoint (ADA) algorithm

of §3 was first introduced in [18]. It was also tested

in [21] and [7]. Note also that the ADA method is a

finite-horizon formulation (though the horizon selected

may be taken as large), whereas MCE and OSSI are

infinite-horizon formulations.

As mentioned previously, the utility of using the

several least-stable of the stable Schur vectors of the

Hamiltonian Z of the LQR problem in order to approx-

imate the feedback gain K of the LQR problem was

explored in some depth in [1,2]. The discovery of the

efficient Oppositely-Shifted Subspace Iteration (OSSI)

method of §4.2 to actually find these Schur vectors

in high-dimensional systems is introduced for the first

time in the present paper, and is motivated by the ideas

behind the MCE and ADA methods.

The performance of explicit and implicit prototype

OSSI algorithms on a model low-order control prob-

lem (see §5) is encouraging; their performance on high-

dimensional discretizations of PDE control problems

will be considered in future work.

As a matter of philosophy, the present work is the

result of an integration of the perspectives of

(a) the motivating fluid-mechanical applications, which

are characterized by significant eigenvector nonor-

thogonality and are thus not readily amenable to

accurate model reduction for the purpose of feed-

back control design simply by retaining select con-

trollable and observable eigenmodes,

(b) the optimization, control, and model reduction prob-

lems, and how they are related, and

(c) the advanced numerical methods required to ap-

proximate solutions to the problems in (b) for large

n, and how they may be combined and extended.

The algorithms presented in this article for the feed-

back control of complex systems with n ≥ O(106) pro-

vide an attractive alternative to the two-step approach

typically used, as described in the introduction. These

algorithms arise, and may be further refined, only via an

integration of three distinct and often unrelated tradi-

tional disciplines: system modeling, control theory, and

numerical methods.

Conflict of Interest: The authors declare that they have

no financial conflict of interest related to this research.

References

1. Amodei, L, & Buchot, J.-M. (2010) An invariant sub-
space method for large-scale algebraic Riccati equation.
Applied Numerical Mathematics 60, 1067-1082.

2. Amodei, L, & Buchot, J.-M. (2011) A stabilization algo-
rithm of the Navier-Stokes equations based on algebraic
Bernoulli equation Numer. Linear Algebra Appl..

3. Anderson, BDO, & Moore JB (1971) Linear Optimal
Control. Prentice Hall.

4. Bewley, TR (2001) Flow control: new challenges for a new
Renaissance, Progress in Aerospace Sciences 37, 21-58.

5. Bryson, AE, & Ho, Y-C (1969) Applied optimal control.
Hemisphere.

6. Butler, KM, & Farrell, BF (1992) Three-dimensional op-
timal perturbations in viscous shear flow, Phys. Fluids A
4, 1637-1650.

7. Carini, M, Pralits JO, Luchini, P (2015) Feedback con-
trol of vortex shedding using a full-order optimal com-
pensator J. Fluids Struct. 53, 15-25.

8. Golub, GH, & Van Loan, CF (1996) Matrix Computa-
tions. Johns Hopkins.

9. Hairer, E, & Wanner, G (1996) Solving Ordinary Dif-
ferential Equations II, Stiff and Differential-Algebraic
Problems, 2nd edition, Springer-Verlag, Berlin.

10. Jennings, A, & Stewart, WJ (1981) A simultaneous iter-
ation algorithm for real matrices, ACM Trans. of Math.
Software 7, 184-198.

11. Kailath, T (1973) Some New Algorithms for Recursive
Estimation in Constant Linear Systems, IEEE Trans. In-
formation Theory 19, 750-760.

12. Kailath, T (1980) Linear Systems. Prentice-Hall.
13. Kim, J, & Bewley, TR (2007) A linear systems approach

to flow control. Annual Review of Fluid Mechanics 39,
383-417.

14. Lauga E, & Bewley, TR (2003) The decay of stabilizabil-
ity with Reynolds number in a linear model of spatially
developing flows. Proc. R. Soc. Lond. A 459, 2077-2095.

15. Lehoucq, RB & Sorensen DC (1996) Deflation Techniques
for an Implicitly Restarted Arnoldi Iteration, SIAM J.
Matrix Anal. & Appl. 17, 789-821.

16. Moore, BC (1981) Principal component analysis in linear
systems: controllability, observability, and model reduc-
tion. IEEE Trans. Autom. Control AC-26, 1732.

17. Parlett, BN (1980) The Symmetric Eigenvalue Problem.
Prentice Hall.

18. Pralits, JO, & Luchini, P (2009) Riccati-less optimal
control of bluff-body wakes. Proceedings of the Seventh
IUTAM Symposium on Laminar-Turbulent Transition,
Stockholm, p. 325-330.

19. Rowley, CW (2005) Model reduction for fluids using bal-
anced proper orthogonal decomposition. International
Journal of Bifurcation and Chaos 15 (3), 9971013.

20. Saad, Y (1992) Numerical Methods for Large Eigenvalue
Problems. Halstead Press, New York.

21. Semeraro, O, Pralits, JO, Rowley, CW, Henningson, DH
(2013) Riccati-less approach for optimal control and esti-
mation: An application in 2D Boundary Layers J. Fluid
Mech 731, 394-417.

22. Wilkinson, JH (1965) The Algebraic Eigenvalue Problem.
Oxford.

