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a b s t r a c t

The conditions under which rhegmatogenous retinal detachment occurs are poorly under-
stood, which hampers the success rates of surgery. Fluid dynamical effects play a major
role, and in this paper we analyse the tendency for the retina to detach further in both
the case of a free flap giant retinal tear (GRT) and in the case of a retinal hole (RH). For
this purpose we use amathematical model to investigate the interaction between the fluid
flow and the detached retina during saccadic eyemovements. The governing equations are
solved numerically using a code developed ad hoc. An idealised two-dimensional geometry
is used and realistic values of almost all governing parameters are taken from the literature.
For the cases of both GRT and a RH we investigate the tendency for the detachment to
progress, analysing two different saccadicmotions, different lengths of the detached retina,
different attachment angles and, in the case of a RH, different hole diameters. In both cases
we find that increasing the length of the detached retina increases the tendency for further
detachment, while in the RH case, changing its diameter has little or no effect. We also
find the existence of an attachment angle that maximises the tendency to detach, and the
model indicates that RHs are more prone to detach further than GRTs. In spite of the fact
that the model is highly idealised the results agree qualitatively well with the available
clinical evidence.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Rhegmatogenous retinal detachment (RRD) occurs in approximately 10: 100000 of the population (Mitry et al., 2009). It
is caused by the appearance of a retinal break or breaks in the peripheral retina, which are associated with the accumulation
of subretinal fluid, causing detachment of the neurosensory retina. Traction on the retina from separation of the posterior
vitreous is thought to create the retinal break. However, traction alone cannot explain the development of the retinal break
into full RRD. For this reason it has been postulated that saccadic eye movements create currents in the liquefied vitreous,
which cause the retina to lift away. This process is poorly understood and has not been extensively investigated from
the mechanical point of view. Unchecked retinal detachment results in blindness. Although surgical interventions lead to
successful reattachment in many cases, there is often uncertainty surrounding the mechanism of action of these surgical
methods, resulting in suboptimal success rates. It should be noted that both the typical clinical presentation and the rate of
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Table 1
Parameter values used for the simulations and corresponding references when available.

Quantity Value Reference

Properties of the retinal flap

Density ρ∗

S 1300 kg/m3

Length L∗ 1.5–2.5 mm
Thickness h∗ 70 µm Alamouti and Funk, 2003; Foster et al., 2010; Ethier et al., 2004; Bowd

et al., 2000; Wollensak and Eberhard, 2004; Dogramaci and
Williamson, 2013

Young’s modulus E∗ 1.21 · 103 N/m2 Jones et al., 1992; Wollensak and Eberhard, 2004; Reichenbach et al.,
1991; Sigal et al., 2005

Bending stiffness K ∗

b = E∗h∗3/12 3.46 · 10−11 Nm2

Properties of the fluid

Density ρ∗

F 1000 kg/m3 Foster et al., 2010
Dynamic viscosity µ∗ 1.065 · 10−3 kg/ms Foster et al., 2010

progress of a retinal detachment vary amongst different subjects. The risk of total retinal detachment is important as this
affects the anatomical and visual outcome (Williamson et al., 2013, 2014).

In the present study, we model the effects of fluid flow due to saccadic eye motion on a two-dimensional construct of
retinal detachment. Various parameters are examined to determine their effects on the elevation of the retina and improve
our understanding of what causes or increases the tendency of the retina to detach. As in similar works (Peskin, 2002;
Zhu and Peskin, 2002; Kim and Peskin, 2007; Natali et al., 2016), an immersed boundary (IB) method has been used to
model elastic bodies interacting with a viscous incompressible fluid. Such a method has been used in various applications,
such as cardiac valves (Kovacs et al., 2001) and animal locomotion (Fauci and Peskin, 1988), but this is the first time, to
the authors knowledge, it has been used in the context of retinal detachment modelling. Previous works regarding the
retina include calculating the shear stress on the retinal surface (Angunawela et al., 2011; Eames et al., 2010; Repetto et
al., 2010a; Meskauskas et al., 2012; Abouali et al., 2012; Modarreszadeh and Abouali, 2014), gas diffusion in the vitreous
cavity (Shunmugam et al., 2011), silicone oil usage (Dogramaci and Williamson, 2013; Isakova et al., 2014), retinal
tractions (Repetto et al., 2010b) and peeling of membranes from the retinal surface (Dogramaci and Williamson, 2013;
Bottega et al., 2013), just tomention a few. In order to study the tendency of the retina to further detach from the underlying
choroid, due to the combined actions of the forces and moment at the attachment point(s) arising from the interaction
between the detached retina and the surrounding fluid, we borrow a simple model from geotechnics of a structure on
an elastic foundation (Winkler, 1867). The model assumes that the foundation can be described as a system of identical,
mutually independent, closely spaced, discrete and linearly elastic springs. Themodel allows us to evaluate the displacement
of the foundation, which is then analysed as a function of the parameters of interest. We believe that this study, first of its
kind in that a fully coupled fluid–structure interactionmodel has been applied, despite the various approximations it is based
on, gives insight on how the tendency of RRD progress depends on parameters, such as amplitude of the saccade, length of
the detached retina, detachment angle, and hole diameter (in the case of a RH).

The paper is organised as follows. Section 2 describes the geometry and mechanical properties of the retina and the
surrounding fluid as well as the saccadic eye motion. In Section 3 the governing equations for the fluid and the structure
are presented along with the elastic foundation model. The numerical results are presented in Section 4 and conclusions are
drawn in Section 5.

2. Geometry and mechanical properties

In this work we use simplified geometrical models to study the dynamics of detached retinal flaps induced by rotations
of the eye. Specifically, we consider the two different cases depicted in Fig. 1a,b, and we use mathematical models of
these simplified geometries to determine the effect of fluid flow on detachment progression. In particular, we use a two-
dimensional approximation of the geometry and of the fluid flow, neglecting three-dimensional effects. Within our two-
dimensional context the retinal flap is described as a slender, massive, inextensible, one-dimensional structure, with a fixed
bending stiffness. In reality a retinal flap with length L∗

= 2mm, which is the baseline value used in this work, has an aspect
ratio (thickness to length ratio) of approximately 1/30, justifying the slender-body assumption. Geometrical andmechanical
properties of the retinal flap are presented in Table 1. The bending stiffness of the retina K ∗

b is obtained from the value of
the Young’s modulus E∗, which has been computed by several authors (Jones et al., 1992; Wollensak and Eberhard, 2004;
Reichenbach et al., 1991; Sigal et al., 2005) and the thickness h∗, on the basis of the relationship: K ∗

b = E∗h∗3/12. Note that
here superscript ∗ denotes dimensional variables and parameters. The inextensibility of the retina is an approximation and
justified by the fact that no data regarding stretching of the detached retina can be found in the literature.

We model the retinal surface as a flat rigid wall, and neglect curvature effects. Moreover, we assume that the region
occupied by the liquefied vitreous extends to infinity in the direction orthogonal to the retinal plane. The above assumptions
are acceptable if the length of the flap is much smaller than the radii of curvature of the wall. In the present case the
radius r∗ of the vitreous chamber is approximately 12 mm, and the corresponding ratio L∗/r∗ is between 0.125 and 0.21,
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Fig. 1. Sketches of the domains considered: (a) free-flap giant retinal tear (GRT) which by definition has an aspect ratio length/circumferential extent ≪ 1
(the figure is not in scale), (b) retinal hole (RH). The top panel shows a plan viewwhere the dashed line denotes the attachment line, and the bottom shows
a cross-section through the retina in each case, which is used for the numerical model.

based on the values of L∗ used in this work. However, inclusion of wall curvature and finite size of the domain would
complicate considerably the numerical calculations and this is left aside in the context of this first exploratory work. A
similar assumption was done in previous models of retinal detachment (Foster et al., 2010; Foster, 2011)

The liquefied vitreous is modelled as a purely viscous fluid with the samemechanical properties as water and we assume
that fluid flow is generated by motion of the retinal surface (wall) along its plane. Specifically, we consider a single saccadic
eye rotation. The angular velocity of the eye globe is modelled employing the polynomial law proposed by Repetto et
al. (2005) which was also used by Abouali et al. (2012). The wall linear velocity from this angular velocity is obtained
by multiplying it by the radius of the vitreous chamber. We use saccadic rotations of 8 and 15 degrees, which have a
duration of 0.045 s and 0.062 s, respectively. The corresponding maximum linear wall velocities are 0.061 m/s and 0.082
m/s, respectively. An example of such a motion is presented in Fig. 2.

The first case we consider is a free flap giant retinal tear (GRT), consisting of a single detached flap with 90 degrees or
more of circumferential extent, see Fig. 1a. Note that a realistic aspect ratio (flap length to circumferential extent) is at least
1/40, which makes the two-dimensional model a reasonable approximation. The sketch in Fig. 1a has a much smaller aspect
ratio for practical reasons.

We also consider a retinal hole, in which case the cross-section consists of two retinal flaps, see Fig. 1b. In order to mimic
the three-dimensionality of the hole configuration we assume that the tips of the two flaps are connected to each other
by a virtual linear elastic spring that exerts a force when stretched but not when compressed. Its effect is thus to limit the
distance between the tips of the two flaps to that of the initial diameter, but they are free to get closer to each other. The idea
is to allow for deformations of the retinal surface and account for buckling of the detached retinal surface. For simplicity,
we assume that a generic buckling, causing a deformation in the third dimension, will make the two tips come closer to
each other. The value of the spring constant was chosen such that the relative difference between the maximum distance
between the filament tips, and the initial diameter, did not exceed 10−2. This was obtained by setting the value of the spring
constant equal to that of K ∗

b .
The initial configuration of each case (GRT and RH) are straight filaments clamped at a certain angle θ , see Fig. 3. This

is obviously an approximation since the real case would be a filament with continuous curvature, possibly tangent to the
underlying choroid. In this first exploratory work this helps, however, to clearly parametrise the tendency of the retinal
detachment on the initial detached state.

We finally assumed a flap density of ρ∗

S of 1300 kg/m3, which is probably slightly higher than the reality; however, owing
to limitations of the mathematical method employed we cannot consider cases in which the density of the solid is too close
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Fig. 2. Position Xp and normalised velocity up of the wall during a saccadic motion of duration D. In this investigation saccadic rotations of 8 and 15
degrees, which have a duration of 0.045 s and 0.062 s, respectively, are used. The corresponding maximum linear wall velocities are 0.061 m/s and 0.082
m/s, respectively.

Fig. 3. Schematics of the numerical model. Flaps Γ1,2 (in red, initial condition in cyan) are clamped at a fixed angle θ to an underlying plate Π that moves
with a prescribed saccadic motion Xp(t). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

to that of the fluid. Moreover, since little is known regarding the value of the density of the retina, and its variability, we do
not consider our choice a large limitation. In the results section we show that the numerical results are quite insensitive to
small variations of the value of ρ∗

S .

3. Governing equations

The governing equations for the fluid and the structure are similar to those found in Natali et al. (2016). We model
the detached retina as a one-dimensional inextensible elastic filament of length L∗, with density ρ∗

S and bending rigidity
K ∗

b , exposed to a viscous incompressible fluid of density ρ∗

F , kinematic viscosity ν∗ which is set into motion by a saccadic
movement of the wall with maximum velocity U∗. The governing equations for the fluid, here given on dimensionless form,
are

∂u
∂t

+ (u · ∇)u = −∇p +
1
Re

∇
2u + f, (1)

∇ · u = 0, (2)

where f(x, t) is an appropriate volume forcing to enforce the no-slip condition on the filament. The velocity field is denoted
by u(x, t), p(x, t) is the pressure field and Re = U∗L∗ρ∗

F /µ
∗ is the Reynolds number. Here x = (x, y) ∈ Ω are the Cartesian

coordinates, with x and y denoting the streamwise and wall-normal direction, respectively, see Fig. 3. The governing
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equations for a filament are written in a Lagrangian form. The equations of motion are

ρ1
∂2X
∂t2

=
∂

∂s

(
T

∂X
∂s

)
−

∂2

∂s2

(
γ

∂2X
∂s2

)
− F, (3)

where T is the tension force along the filament axis, γ = K ∗

b /(ρ∗

1U
∗2L∗2) is the dimensionless bending stiffness, ρ∗

1 =

(ρ∗

S − ρ∗

F )h
∗ is the difference between the filament- and fluid densities, h∗ is the filament thickness, and F is the Lagrangian

forcing exerted on the filament by the surrounding fluid. Further, s ∈ Γ denotes the Lagrangian curvilinear coordinate,
where Γ is the body surface. The inextensibility condition (see Huang et al., 2007) is expressed by

∂X
∂s

·
∂X
∂s

= 1. (4)

In the present study, as in other related investigations (e.g. Huang et al., 2007), the tension force T is determined by the
constraint of the inextensibility condition. Using Eqs. (3) and (4), the equation for T is derived as

∂X
∂s

·
∂2

∂s2

(
T

∂X
∂s

)
=

1
2

∂2

∂t2

(
∂X
∂s

·
∂X
∂s

)
−

∂2X
∂t∂s

·
∂2X
∂t∂s

−
∂X
∂s

·
∂

∂s
(Fb − F). (5)

On the right hand side of Eq. (3) the first two terms represent the tensional Fs and bending terms Fb. The last term represents
the Lagrangian forces exerted by the fluid on the structure, obtained by means of Eqs. (6)–(8)

F = (Fαβ · n)n + (Fαβ · τ)τ, (6)

where n and τ are the local normal and tangential unit vectors,

Fαβ (s, t) = α

∫ t

0

(
Uib −

∂X
∂t

)
dt + β

(
Uib −

∂X
∂t

)
, (7)

and

Uib(s, t) =

∫
Ω

u(x, t)δ(x − X(s, t))dΩ. (8)

Eq. (7) is Goldstein’s feedback law and according to (Goldstein et al., 1993), α and β are negative constants chosen to
enforce the no-slip condition up to arbitrary small value andUib is the interpolated velocity at the Lagrangian points location.
Eventually, in order to link the structural (Eqs. (3)–(5) with the fluid part (Eqs. (1)–(2)), the forcing f(x, t) is evaluated from
the Lagrangian forces by

f(x, t) = ρ

∫
Γ

F(s, t)δ(x − X(s, t))ds. (9)

Eqs. (8) and (9) link Lagrangian and Eulerian quantities through a convolution with a discretised version of Dirac delta
function δ (see Peskin, 2002). Among a wide choice of synthetic delta functions, we make use of the one proposed by Roma
et al. (1999). Note that the density difference in the dimensional version of Eqs. (1)–(3) (ρ∗

F and ρ∗

1 , respectively) is taken
into account in Eq. (9) through the ratio ρ = ρ∗

1/(ρ
∗

F L
∗) (see Huang et al., 2007).

3.1. Boundary conditions

Boundary conditions for the fluid are given as follows; periodicity between ∂Ωl and ∂Ωr and {u ·n = 0, ∂(u · τ )/∂n = 0}
at ∂Ωtop and ∂Ωbottom (imposed symmetry), where n and τ are respectively the normal and tangential directions to the
boundary. Since the computational grid for the flow is staggered, no boundary conditions for the pressure are needed (see
Natali et al., 2016). Hydrodynamical forces acting on the filaments are calculated by means of Goldstein’s feedback law (see
Goldstein et al., 1993), which enforces the no-slip condition up to an arbitrary small value. Since the filament is clamped
to a moving plate with a given angle θ (see Fig. 3), Eq. (3) needs to be solved with proper boundary conditions, both at the
clamped and at the free edge:

X|s=0 = Xp(t),
∂X
∂s

⏐⏐⏐⏐
s=0

= (cos θ, sin θ ),
∂2X
∂s2

⏐⏐⏐⏐
s=L

= 0,
∂3X
∂s3

⏐⏐⏐⏐
s=L

= 0. (10)

The first and second conditions enforce the filament to follow the underlying moving plate and to be clamped with a given
angle θ , while the third and fourth conditions state that the bendingmoment and shear at the free edge is zero, respectively.
The latter condition is true in both the tear and hole case. The two cases are, however, different in that for the tear case no
further forces other than the hydrodynamical ones are applied at the free edge, while in the hole case the free edges are
subject to an additional force ±kΣ (X1 − X2)|s=L (depending on the filament) modelling the tip-connecting spring. Eq. (5) is
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Fig. 4. Semi-infinite foundation (in grey) subject to a punctual force F∗
c,n and moment M∗

c at the finite end (white), and supported by elastic spring of
stiffness k∗

T (in red). The foundation reaction r∗(s∗) (in blue) is proportional to the foundation displacement v∗(s∗). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

solved together with two conditions. The first, which is valid both for the GRT and the RH case, derives from Eq. (3) and is
given as

∂

∂s

(
T

∂X
∂s

)⏐⏐⏐⏐
s=0

= F + Fb + AP , (11)

where AP is the plate acceleration. The second describes the tension at the filament end (s = L). In the GRT case the tension
is zero, T |s=0 = 0, while in the hole case T |s=0 = Σ(X1 − X2). The latter condition is an approximation of the real case
since, numerically, the filament tip in the RH case is hinged to the tip-connecting spring. However, we have verified that the
filament and the spring remain nearly tangent during the simulations so this should not introduce a significant error.

The main observables of this work are the forces and moments at the clamped edge of the filaments, defined as:

Fc = (Tτ + Sn)|s=0 , Mc = kγ |s=0 (12)

where S is the shear force, n and τ are the local normal and tangential unit vectors while k is the curvature of the filament
at the clamped edge. In this way, the computed force Fc and momentMc are those exerted by the filament on the plate.

3.2. Modelling the tendency to detach

The numerical model presented in Section 3 allows us to compute the dynamics of the fluid and filaments during the
motion of the wall, including the fluid velocity, pressure, and the displacement of the filament in time. Themain observables
of the analysis are the clamping forces Fc andmomentMc exerted by the filament on thewall as these are the possible causes
of further retinal detachment. In order to study the tendency of the filament(s) to further detach from the wall due to the
combined actions of the wall-normal component of the clamping force, Fc,n, and torque, Mc , at the clamping point(s), we
borrow from geotechnics the simple model of a structure on an elastic foundation (see Winkler, 1867). The model assumes
that the substrate can bedescribed as a systemof identical,mutually independent, closely spaced, discrete and linearly elastic
springs (see Fig. 4). In this way the substrate reaction r∗(s∗) N/m2 is proportional to the foundation displacement v∗(s∗)
through the spring stiffness constant k∗

T , r
∗(s∗) = −k∗

T v∗(∗s), since a negative displacement causes an upwards foundation
reaction. In our specific case the foundation, representing the attached retina, will be considered as a semi-infinite beam,
and the external loads F∗

c,n and M∗
c from the filament are applied at its end. In this case the displacement v∗(∗s) is found in

closed form as

v∗(s∗) =
e−α∗s∗

2α∗3B∗
(α∗M∗

c [cos(α
∗s∗) − sin(α∗s∗)] + F∗

c,ncos(α
∗s∗)), (13)

where B∗ is the beam bending stiffness and α∗ is the characteristic wave number defined as

α∗4
=

k∗

T l
∗

4B∗
, (14)

where l∗ is the width of the model beam. Moreover, B∗
= E∗ I∗, where I∗ = h∗3 l∗/12 is the area moment of inertia of the

filament cross section (here taken to be rectangular). In order to find a reasonable value of k∗

T we can write

r∗(s∗) = −E∗

T ϵ = −E∗

T
v∗(s∗)
h∗
c

,

where ϵ is the deformation of the compressible layer and h∗
c is its undeformed height. By definition we then get that

k∗

T = E∗

T /h
∗
c and we can write

α∗4
=

k∗

T l
∗

4B∗
=

E∗ l∗

4h∗
c E∗ I∗

=
l∗

4h∗
c h∗3 l∗/12

=
3

h∗
c h∗3 ,
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Table 2
Values of dimensionless parameters used in the simulations.

L∗ [mm] γ Re ρ

8 degrees saccade

1.50 0.197 85.92 0.014
1.75 0.145 100.23 0.012
2.00 0.111 114.55 0.011
2.25 0.088 128.87 0.009
2.50 0.071 143.19 0.008

15 degrees saccade

1.50 0.108 116.06 0.014
1.75 0.079 135.40 0.012
2.00 0.061 154.74 0.011
2.25 0.048 174.08 0.009
2.50 0.039 193.43 0.008

Fig. 5. Maximumtendency to detach dmax over time in the case of GRTduring a 8 degrees saccade, for different values of the retina densityρ∗
s and θ = 33.56◦ .

The value used from here on is ρ∗
s = 1300 [kg/m3].

where we have simply substituted E∗

T with E∗. If we further assume that h∗
c = h∗ then α∗4

= 3/h∗4. In the simulations
presented here h = h∗/L∗

= 1/30 which gives α = α∗L∗
≃ 40. However, the conclusions drawn in this paper are quite

insensitive to the value of α. We now define, on dimensional form, as tendency to detach the upward displacement d∗ of the
finite end (s∗ = 0), thus

d∗(t∗) = max(v∗
⏐⏐
s∗=0, 0) = max

(
α∗M∗

c (t
∗) + F∗

c,n(t
∗)

2α∗3B∗
, 0

)
. (15)

Note that d∗ is a function of time andmust be evaluated during the whole platemotion in order to find the overall maximum
value and the corresponding instant atwhich it occurs, here denoted d∗

max and t∗max, respectively. The force F
∗
c,n(t

∗) is evaluated
from the tension T ∗(s∗, t∗) and shear force S∗(s∗, t∗) at the clamping point according to

F∗

c,n(t
∗) = T ∗

c (t
∗) sin θ + S∗

c (t
∗) cos θ. (16)

3.3. Solution procedure

At each time step the numerical algorithm can be summarised as follows:

1. evaluation of hydrodynamical forces F on the filament (Eqs. (6)–(8)) to enforce the no-slip condition up to a given
value (see Section 3.4);

2. spreading of the force F from Lagrangian points on the Eulerian grid (Eq. (9));
3. solution of fluid flow (Eqs. (1) and (2));
4. solution of filament motion (Eqs. (3) and (5)).

3.4. Numerical discretisation

The computational domain is 5L × 2.5L (horizontal × wall-normal direction) in the GRT case, while it is 6L × 2.5L in
the case of RHs. In our simulations the 2D mesh for the fluid is uniform along the plate with grid spacing 1/60, while in the



252 D. Natali et al. / Journal of Fluids and Structures 82 (2018) 245–257

Fig. 6. Configurations attained at different times by the retinal flap with L∗
= 2 mm, θ = 33.56◦ . The wall moves from left to right. The duration of the

simulation is 5D, with D duration of the saccadic movement. The times at which the flap configuration are shown are: t∗/D∗
= 0.25, 0.6, 0.75, 1, 2, 3.

Solid black lines represent streamlines, locally tangential to the flow field, while colours represent the pressure field (red = 0.5, blue = −0.5). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

normal direction it is uniform in the region [0, 1.5] with grid spacing 1/40 and stretched outside with a constant stretching
ratio equal to 1.1. On the other hand, the 1D filament mesh is made of 120 points uniformly distributed along the curvilinear
coordinate of the filament. In order to reach a trade-off between CFL number for numerical stability (∼ 10−2) and non-slip
enforcement (∼ 10−2), the Goldstein’s feedback law coefficients has been set to β1 = −10 and β2 = −102. To solve the
incompressible Navier–Stokes equations wemake use of the fractional stepmethod (Natali et al., 2016; Chorin, 1968; Perot,
1993; Temam, 1968).

4. Numerical results

We solved the mathematical model numerically, using the parameters presented in Table 1 for two different saccadic
motions, 8 and 15 degrees. The corresponding dimensionless parameters γ , Re and ρ are presented in Table 2. Moreover, in
all calculations the effect of gravity was neglected and the plate motion was from left to right. The considered wall motion
is the worst-case scenario in terms of the reacting force in the wall-normal direction, as well as the moment. An opposite
motion is likely to create larger shear forces at the attachment point that, for the current definition of detachment, is of less
interest. Simulations were performed by varying the clamping angle θ , the length of the detached retina L∗, and the inter-tip
distance ∆∗ (in the case of RHs) in order to understand which cases are more prone to further detachment. A convergence
study of the spatial and temporal resolutions has been performed for all results shown here (see Natali et al., 2016). In Fig. 5
we show that the tendency to detach dmax = d∗

max/L
∗, which is the main observable of the analysis, is quite insensitive to

changes of density for the filament studied here.

4.1. The case of GRT

Results from the simulations regarding the giant retinal tear are presented in this section and snapshots showing the
dynamics of the free flap are shown in Fig. 6, which also indicates the streamlines of the flow and the fluid pressure. In this
case the flap has the length L∗

= 2 mm. At the initial time, just before the wall is set into motion, the GRT flap is a straight
line forming an angle θ with the wall, and we assume θ = 33.56◦. During the accelerating phase of the wall (motion of the
wall is from left to right) the flap is deflected to the left by fluid flow. Initially the deflection is larger in the region close to
the wall and progressively interests all the length of the flap as the motion continues. The wall motion stops at t∗/D∗

= 1
and the flap motion thereafter continues for a while due to inertial effects. The evolution of the force and moment that
are generated at the clamping point as a function of time are presented in Fig. 7 in comparison with d = d∗/L∗. The terms
regarding the force andmoment are normalised by 2α∗3B∗L∗, according to Eq. (15), in order to facilitate a direct comparison.
The clampingmoment grows until approximately the instant of maximum velocity (t∗/D∗

≈ 0.5). Owing to inertia, the fluid
that is set in motion by the saccade continues to move after the plate has come to rest. This results in a change of sign of the
force and moment at some instant, which could be either before or after the plate comes to a halt. The signs of the terms
F∗
c,n/2α

∗3B∗L∗ and α∗M∗
c /2α

∗3B∗L∗ are not necessarily the same at each instant in time and this is reflected in the value taken
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Fig. 7. The three terms; tendency to detach, force andmoment, fromEq. (15), normalised for direct comparison andmade dimensionless using the reference
length L∗ , all as a function of the dimensionless time t∗/D∗ . In this case L∗

= 2 mm and θ = 33.56◦ .

Fig. 8. Maximum tendency to detach over time, for the GRT case (a) d0,max comparing different values of the flap length L∗ , with θ = 33.56◦ in all cases, (b)
dmax for different values of the clamping angle θ , and L∗

= 2mm in all cases. In both figures red and blue refer to the 8 and 15 degrees saccades, respectively.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

by the tendency to detach d. In this particular case, the term proportional toM∗
c is dominant in the expression for d, and this

can be appreciated in Fig. 7, where the time evolution of α∗M∗
c /2α

∗3B∗L∗ and d are similar, especially during the saccadic
motion. The instant of maximum d approximately coincides with that of α∗M∗

c /2α
∗3B∗L∗ (t∗/D∗

≈ 0.5).

4.1.1. The effect of changing the flap length
The length L∗ of the detached retina can vary and here we investigate the effect of the length on the tendency to detach.

Note that in this case the results are shown in terms of d0 = d∗/L∗

0, where L∗

0 = 2 mm. In Fig. 8a, we show the maximum
value: d0,max = d∗

max/L
∗

0 over time, for different flap lengths, using a fixed angle θ = 33.56◦. The results show that d0,max
increases with increasing L∗, indicating that longer detached retinal flaps are more prone to detach further than shorter
ones. In the same figure, results are shown for two different saccadic amplitudes, 8 and 15 degrees, respectively. As the
amplitude of the saccadic motion increases, so does the value of d0,max.

4.1.2. The effect of changing the clamping angle
The clamping angle θ can also vary in reality and a graph of dmax over time, as a function of θ is shown in Fig. 8b. The results

show that, for a saccadic motion of 8 degrees, flaps at an angle of around θ ≈ 25◦ have the highest tendency to detach,
with the tendency decreasing away from this value. For a saccadic motion of 15 degrees, instead, the behaviour is quite
different. The value of dmax increases as the angle is decreased, at least for the values of angles analysed here. In both saccadic
motions the moment prevails on the normal force when evaluating dmax. However, in the case of 15 degrees amplitude, the
moment remains fairly constant (not shown here) while the normal force gets increasingly negative. In the case of 8 degrees,
instead, themoment increaseswith increasing clamping angle. Themoment is proportional to the curvature. Thismeans that
when the saccadic amplitude is large, which results in a larger plate velocity, the curvature at the clamping point is almost
independent of the clamping angle, and the plate velocity prevails on the initial configuration of the filament.
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Fig. 9. Dynamics of the RH case during eye movement. For parameter values see Fig. 6. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

4.2. The case of RH

When the wall is set into motion the retinal flaps deform under both fluid and elastic forces also in the case of a retinal
hole, but the resulting shape is quite different compared to the GRT case. This can be seen in Fig. 9 where snapshots of the
dynamics are presented, for a given case, in terms of streamlines of the flow and pressure distribution. In the case presented,
the flap length is L∗

= 2 mm, the clamping angle θ = 33.56◦ and the inter-tip distance ∆∗
= 0.17 mm. In the acceleration

phase (t∗/D∗ < 0.5) the left flap is pushed back by the fluid and the pressure in the detachment region builds up. In the
decelerating phase (0.5 < t∗/D∗ < 1) the fluid continues tomove towards the right due to inertial effects, inflating the right
filament and producing a smaller pressure rise. In what follows we present results of the tendency to detach d by varying L∗,
θ and∆∗. For all cases investigated here we found that themaximum value of d of the left flap was always larger than that of
the right flap, independently of the saccadic amplitude. In the following we, therefore, only show results from the left flap.

4.2.1. The effect of changing the length of the detached retina
The effect of changing the length L∗ of the detached retina is here investigated for the case of RH. We use, as in the case

of GRT, as baseline value L∗

0 = 2 mm. The clamping angle, on both sides, is held constant with a value of θ = 33.56◦ and
the inter-tip distance is set to ∆∗

= 0.17 mm. The instant at which the peak value of d0 = d∗/L∗

0 is found changes with
the value of L∗; the longer is L∗ the later the peak value of d occurs. The maximum values of d0, for each case are reported
in Fig. 10a as function of L∗ and saccadic amplitude. A clear increase in the maximum value of d is found as the value of L∗

is increased indicating that longer detached retinal flaps, meaning that wider and deeper hole cavities are more prone to
detach compared to smaller ones. This is enhanced as the saccadic amplitude is increased.

4.2.2. The effect of changing the inter-tip distances
Changing the inter-tip distance ∆∗, while keeping L∗

= 2 mm and θ = 33.56◦ constant in the numerical model,
corresponds to different diameters of a RH. Fig. 10b shows that the maximum value of d over time, does not depend
significantly on ∆∗, suggesting that the overall size of a hole is of relatively little importance regarding its tendency to
detach. One could argue that this might not be the case for shorter filaments, i.e. for increasing values of ∆∗/L∗. To test this
we also made simulations using L∗

= 1.5mm, and θ = 33.56◦. The results are reported in Fig. 10b and it is shown that, even
in this case, the value of ∆∗ has a week influence on d.

4.2.3. The effect of changing the clamping angles
The effect of changing the clamping angles is shown in Fig. 10c, with L∗

= 2mm and∆∗
= 0.17mm fixed. In all cases the

values of θ are the same for the left and right flaps. In this case a maximum value of d is found, for both saccadic amplitudes,
and the corresponding clamping angle is θ ≈ 35◦.
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Fig. 10. Maximum values of the tendency to detach for the hole case (left flap) for (a) d0,max for different lengths L∗ while keeping ∆∗
= 0.17 mm and

θ = 33.56◦ constant (red curve: 8 deg. saccade, blue curve: 15 deg. saccade), (b) dmax for different inter-tip distance ∆∗ with θ = 33.56◦ and L∗
= 2 mm

(red curve: 8 deg. saccade, blue curve: 15 deg. saccade), L∗
= 1.5mm (green curve: 15 deg. saccade), (c) dmax for different clamping angles θ with L∗

= 2mm
and ∆∗

= 0.17 mm constant (red curve: 8 deg. saccade, blue curve: 15 deg. saccade). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 11. Ratio of the maximum tendency to detach between the RH and GRT cases for different flap lengths L∗ keeping θ = 33.56◦ and ∆∗
= 0.17 mm

constant. Here, red and blue curves refer to the 8 and 15 degrees saccade, respectively. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

4.3. Comparison between the GRT and RH

It has been clinically observed that the tendency to further detach is larger in the case of a RH than a GRT. The fovea off
rate for rhegmatogenous retinal detachment excluding GRT is 56% (Williamson et al., 2014) whereas the fovea off rate for
GRT has been reported as 45.2% (Ang et al., 2010). Therefore, it is possible that, despite the much larger size of the GRT,
its tendency to extend to the central retina is less than for other types of breaks. This is investigated here by keeping all
parameters equal in both cases. The only additional parameter used in the hole case is the inter-tip distance, which was
fixed at ∆∗

= 0.17 mm. This should, however, not influence the results since it has already been shown in Section 4.2.2 that
the value of ∆∗ does not affect much the results. The comparison of the maximum tendency to detach between the RH and
the GRT cases are presented in Fig. 11 for different values of L∗, and two different saccadic amplitudes. In the investigated
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range of flap lengths, the RH configuration has a tendency to detach between 2 and 3.5 times that of the GRT case, for 8
degrees saccades, and 2–5.5 times that of GRT for 15 degrees saccades (for increasing values of the detached retinal length
L∗), which somewhat explains clinical observations.

5. Conclusions

Recognising the patterns of the development of a condition is essential for its efficient management. This is especially
true for retinal detachment for which disorder little is understood about progression mechanisms. Testing features of the
retinal detachment as we have done in the numerical investigations presented in this paper can help prioritise surgery and
chose surgical methodology. The surgeon on examination of the retina can make judgements on the contours and extent
of the detachment, and the angle of attachment of the retina to the underlying structures. Some detachments have shallow
retinal elevation of the retina and others have bullous elevations, some are small in area and others large, retinas may be
stiff or mobile and RHs small or large. The surgeon cannot effectively interpret the findings of the examination of the eye
without modelling these parameters for their effect on the behaviour of the retina.

In this paper we considered two particular cases: a free flap giant retinal tear (GRT) consisting of a single detached flap
with a large circumferential extent, and a retinal hole (RH). In our idealised model we consider a cross section of the real
detachment resulting in a two-dimensional model. In this context the retinal flap is described as a one-dimensional massive
object, with a given bending stiffness, attached at a certain angle at one end on the retinal wall. The flap is 30% heavier
than the surrounding fluid, the length is 1.5–2.5 mm and the thickness 70 µm. Other relevant parameters are taken from
the literature in order to model as close as possible realistic situations. The curvature of the vitreous chamber is neglected,
so the retinal wall is assumed to be flat and rigid. Moreover, we assume the case of a liquefied vitreous with a domain
extending to infinity in the wall-normal direction. The liquified vitreous is assumed to be a purely viscous fluid, with the
same properties as water, and the fluid flow is generated by a saccadic eye rotation of the retinal wall (see Repetto et al.,
2005). Three-dimensional effects in the case of a retinal free flap are expected to be weak, but in the case of a RH we model
the three dimensionality in a highly simplified way, by limiting the maximum distance between the two free flap tips. This
simplified model is supposed to mimic the effect of the hole: the tips can get closer to each other (closing the hole) but
not separate (opening the hole) too much. In all simulations we monitor the forces and moment exerted by the flap on the
retinal wall at the clamping point(s). In particular, the normal component of the force together with the moment are used
to evaluate the tendency to detach using Winkler’s theory, i.e. considering the pigment epithelium as an elastic foundation
on which the retina is attached. This model gives an expression for displacement of the elastic foundation as a function of
the distance from the clamping point and we define the tendency to detach as the displacement at the clamping point.

We analysed the tendency to detach for both the free flap and the hole case for different values of the detached retinal
length, clamping angle and inter-tip distance (in the case of a RH), and two different saccadic amplitudes. The general
conclusions can be summarised as follows:

• The tendency to detach increases as the retinal flap length increases, both for the RH and the GRT.
• The worst-case angle that gives rise to the greatest tendency to detach is found to be around 25◦for GRT, when a 8

degrees saccade is imposed, and around 35◦for a RH, independently of the saccadic amplitude.
• The effect of changing the inter-tip distance (related to the size of the retinal hole) on the tendency to detach is weak,

also when decreasing the filament length L∗.
• The tendency to detach of a RH, compared to a GRT, is 2–3.5 times larger for retinal flaps of 1.5–2.5 mm, and the ratio

increases for longer flap lengths. This ratio increases as the saccadic amplitude is increased.

This work is based on a highly simplified description of the real case and further work is certainly needed to make the
model more realistic. For instance, the simplified displacement-type evaluation used to determine the tendency to detach
could be improved considering a model that accounts for detachment progression. In this case a force/stress-type criterion
would be more appropriate. However, in spite of its simplicity, the model accounts for ingredients that were disregarded in
previous attempts to model the mechanics of RRD and that we believe are essential to capture some of the physics involved.
In particular for the first time, the dynamics of a detached retina is studied as a fluid–structure interaction problem. We
believe that this model advances our understanding on the mechanics of RRD an represents a useful step towards more
refined and geometrically accurate models.
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