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a b s t r a c t

In the present study the linear feedback control of the unsteady cylinder wake is
numerically investigated at low Reynolds numbers. The classical small-gain or minimal
control energy (MCE) solution of the optimal control and estimation problems is used to
design a full-dimensional stabilising compensator of the linearised Navier–Stokes equa-
tions, thus bypassing the open-loop model reduction of the fluid plant. For such high-
dimensional system, both the feedback and the observer gains are efficiently computed
based on the knowledge of the unstable global modes only. The derived control technique
provides us with a theoretical analysis tool to investigate the best performance achievable
by a ‘perfect’ MCE compensator, i.e. a MCE compensator free from model-reduction errors,
on the actual flow field. In our setup, a single-input-single-output (SISO) configuration is
considered, the vortex-shedding being controlled by means of the unsteady angular
rotation of the cylinder surface with a single velocity sensor located in the wake for the
state estimation. For Re¼ 50 the MCE compensator is able to completely suppress the
cylinder vortex shedding, driving the flow from the natural limit cycle to the unstable
basic state, which is finally restored. The effects of sensor placement on the compensator
performance are then investigated and finally, as Re is increased, the upper bound on the
delay of the instability threshold is assessed.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The control of the vortex shedding occurring in the wake of a bluff body represents a great challenge for many
engineering applications. The inherent low frequency unsteadiness of the flow field which results in higher aerodynamic
loads, structural vibrations and acoustic noise, can indeed be significantly reduced by means of a suitable control action on
the flow. A large number of investigations have been dedicated to this subject and various strategies have been proposed, as
documented by the review of Choi et al. (2008). In particular, besides passive devices and open-loop techniques, active
feedback controls have gained an increasing attention due to their ability to adapt to the actual flow conditions.

So far the flow past a circular cylinder has been established as a model problem for the understanding of bluff-body flow
dynamics, thus becoming a classical topic in fluid mechanics. Several feedback control studies aimed at mitigating and
suppressing the cylinder vortex shedding have been described in the past literature. In his experiments Roussopoulos (1993) was
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able to delay the onset of the first instability of the cylinder wake up to Re� 58. His control setup was comprised of a single hot-
wire velocity sensor located in the wake, wall-mounted loudspeakers for the actuation and a phase shifter in the feedback
control loop. A simple proportional feedback control has been numerically investigated by Park et al. (1994): in their simulations
a single measurement of the flow vertical velocity on the symmetry line is used to drive a pair of synchronised blowing/suction
slots located on the cylinder surface with an ad-hoc tuned feedback gain: different streamwise sensor positions are tested,
achieving a complete suppression of the vortex shedding up to Re¼ 60 for selected sensor locations.

During the past decade a model-based approach to flow control has been established within the framework of linear
dynamical systems and optimal control theory (Kim and Bewely, 2007), with the fluid plant being derived from the
linearised description of growing/decaying instabilities around the given basic state (Barbagallo et al., 2009; Ahuja and
Rowley, 2010). Despite actual flow systems are highly nonlinear, for many flow configurations these linearised models are
able to capture and describe the essential dynamics of developing flow instabilities, at least at their onset. At the same time,
the linearised description allows for a systematic and rigorous approach to control design based on linear control theory,
thus further motivating its application to flow control. Within this framework, the classical Minimal Control Energy (MCE) or
small-gain solution of the Linear Quadratic Regulator (LQR) problem has been considered by Bewley et al. (2007) and more
recently by Amodei and Buchot (2012) in view of its application to large-scale models of globally unstable flows derived
from the numerical discretisation of the linearised Navier–Stokes equations. In particular, in both studies the MCE feedback
rule of the full-order linearised flow model is efficiently computed based on the knowledge of the unstable left or adjoint
eigenspace whose dimension is found to be small for typical fluid applications.

Until now only few authors have addressed the cylinder-wake stabilisation using linear optimal control theory. An
example is provided in the paper by Protas (2004) where a Linear Quadratic Gaussian (LQG) compensator is designed based
on a linearised Föppl-vortex model of the cylinder wake. More often optimal control theory has been exploited within a
fully nonlinear framework based either on the Navier–Stokes equations (He et al., 2000; Protas and Styczek, 2002) or on
nonlinear Reduced Order Models (ROMs) of the unsteady flow field (Bergmann et al., 2005), resulting in a feedforward
control law to be applied to the flow in both cases.

In the present study the feedback control of the first instability of the cylinder wake is numerically investigated using linear
optimal control. Starting from the work of Bewley et al. (2007), the small gain solution of the optimal estimation problem is also
considered, leading to the design of a full-order LQG compensator in the so-called small-gain limit. This optimal control solution
corresponds to what has been referred to as the “best control strategy” by Barbagallo et al. (2009). In that study concerning the
feedback control of an open-cavity flow using balanced ROMs, the authors have shown that the performance of their reduced-
order, small-gain compensator rapidly converges to the small-gain solution of the original control problem when the number of
retained balanced modes is increased. From this point of view, the considered methodology provides us with a design tool to
investigate the best performance achievable by such a reduced-order compensator when applied to a flow oscillator (Huerre and
Rossi, 1998) and for a given plant configuration. In fact when a full-order approach is adopted, no approximations are introduced
on the open-loop linearised dynamics, thus avoiding the so-called spill-over effects due to the undesired excitation of those stable
dynamics which have not been retained in the open-loop ROM and which can affect the control action. With the same purpose, a
more general and computationally demanding full-dimensional approach to the LQG design has been recently investigated by
Semeraro et al. (2013) in the control of a two-dimensional boundary layer. In particular, the authors have shown that for such a
highly convective system, when sensors are located downstream of the actuators, only a full-order compensator can always
guarantees the stability of the closed-loop plant while varying the design parameters.

In our control setup of the cylinder wake, the control is performed by rotating the cylinder around its axis, with the
related unsteady angular velocity being prescribed by the feedback rule as a function of time. Both the MCE-LQR controller
and the MCE-LQG compensator are tested. In particular, when the compensator is employed, a single measurement of the
cross-stream velocity component along the wake centreline is used for the state estimation. This sensor placement is mainly
suggested by the symmetry-breaking nature of the flow instability with respect to the steady basic state. Furthermore in his
experiments Roussopoulos (1993) has shown that away from the centreline, the unsteadiness caused by the vortex shedding
is too weak to be used as a control signal. Finally, since only one unstable global mode exists for the considered flow, in
principle effective feedback control can be achieved based on a single-sensor measurement only (Choi et al., 2008). Direct
numerical simulations (DNS) are performed by applying the derived LQR and LQG control to the fully developed shedding
cycle in order to assess the control effectiveness on the actual flow and to investigate its performance at increasing Reynolds
number and for different streamwise locations of the sensor.

2. Problem definition and methodology

The two-dimensional flow past a circular cylinder is described using a Cartesian coordinate systemwith its origin located
on the cylinder centre and with the x-axis aligned to the flow direction, as depicted in Fig. 1. The fluid motion is governed by
the incompressible Navier–Stokes equations which are made dimensionless using the cylinder diameter ~D, the velocity of
the incoming uniform stream ~V1 and the constant density ~ρ:

∂V
∂t

þ V �∇ð ÞV ¼ �∇pþ 1
Re

∇2V ;

∇ � V ¼ 0;

8<
: ð1Þ



Fig. 1. Sketch of the computational domain Ωc employed for numerical simulations of the flow past the circular cylinder with the adopted control setup.
The localised cross-stream velocity measurement in the cylinder wake is fed back to the compensator R(s) which drives the cylinder rotation.
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where V denotes the velocity vector with components V ¼ ðU;VÞ, P is the reduced pressure and Re¼ ~V1 ~D= ~ν is the Reynolds
number ( ~ν being the kinematic viscosity of the fluid). In our control setup, the actuation is realised by means of unsteady
angular rotations of the cylinder surface Γc around its axis, with φðtÞ denoting the unsteady cylinder angular velocity which
is assumed positive in the counter-clockwise direction. Correspondingly, the boundary condition V ¼ 1=2φτ is enforced on
Γc, τ being the unit tangent vector of Γc. At the same time localised velocity measurements in the wake are used to close the
feedback loop.

The linear flow model for control design is derived almost straightforwardly from the linearisation of Eq. (1) around their
steady solution for φ¼0, i.e. the steady base flow. Once spatially discretised, the governing equations of the input–output
linearised flow dynamics can be recast in the so-called descriptor form:

E
dx
dt

¼ AxþBu; ð2aÞ

y¼ Cx; ð2bÞ
where x denotes the vector of velocity and pressure states, y is the vector of wake velocity measurements and u¼φ is the
control variable. In the above set of equations the operator Edð�Þ=dt�A corresponds to the discrete counterpart of the
linearised Navier–Stokes operator, with E¼ ET Z0. It is well known from hydrodynamic stability theory that beyond the
critical threshold of Recr � 47 the flow past a circular cylinder becomes linearly unstable through a pair of complex-
conjugate eigenmodes. The global modes ruling the flow stability properties and its open-loop dynamics are computed by
solving the discrete generalised eigenvalue problem Ax̂ ¼ λEx̂ and its left or adjoint formulation AHp̂ ¼ λnEHp̂, where λn

indicates the complex-conjugate of λ and ð�ÞH is employed here and in the following to denote the transpose-conjugate. The
spatial structure of the direct and adjoint unstable global modes has been described by several authors both for a fixed
cylinder (Giannetti and Luchini, 2007; Sipp and Lebedev, 2007; Marquet et al., 2008) and for a rotating cylinder at constant
angular velocity (Pralits et al., 2010, 2013). The same results obtained in the former case will be used herein in order to
design the stabilising small-gain LQG compensator of the considered flow.

2.1. The small-gain LQG compensator

Let us consider the stabilisable system dx=dt ¼ AxþBu where A has no pure imaginary eigenvalues. It is a classical result
of linear optimal control theory that when the small-gain limit is taken, the feedback rule u¼ Kx applied to the above
system will result in the reflection of the unstable eigenvalues of A across the imaginary axis, while leaving unchanged all
the remaining stable modes. For such control solution, the feedback gain matrix K can be computed by exploiting this
particular structure of the closed-loop spectrum, which is known a priori (Lauga and Bewley, 2003). In particular, by means
of projection of the state equations (2a) onto the unstable subspace (using adjoint modes) and transforming back to the
original variables, the following expression for the MCE gain matrix K is derived (Lauga and Bewley, 2003; Bewley et al.,
2007):

K ¼ �R�1BH
u F

�1PH
u E: ð3Þ

In the above formula, Pu is the matrix of the unstable left eigenvectors of the pencil (A,E), Bu ¼ PH
u B, and R¼ RH40 represents

the control weight matrix of the infinite-horizon LQR cost function. The matrix F in (3) is simply defined as
Fij ¼Mij=ðλu;iþλnu;jÞ where M¼ BuR

�1BH
u and λu;i is the ith unstable eigenvalue of the pencil (A,E). Therefore, only the

knowledge of the unstable adjoint global modes is required for the computation of K. Recently, this result has been extended
by Amodei and Buchot (2012) to the case of a pencil (A,E) which is not diagonalisable with E¼ ET 40.

In analogy with the regulator problem, the small-gain limit can be invoked also for the observer design within the
classical framework of the Kalman filtering (Lewis and Syrmos, 1995; Burl, 1998). The linear observer which governs the
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approximation o to the true state x in the presence of the state disturbance d and of the measurement noise r is defined as

E
do
dt

¼ AoþBu�L y�yo
� �

; ð4Þ

yo ¼ Co; ð5Þ

where L is the matrix of observer gains, also referred to as the Kalman gain matrix. In particular L can be equivalently
computed as the solution of the infinite-horizon LQR problem for the so-called dual system of (2):

ET
dp
dt

¼ ATpþCTn; ð6Þ

where n indicates the dual fictitious control variable. The related cost function to be minimised is given by

Je ¼ 1=2
Z 1

0
pTWddpþnTWrrn dt; ð7Þ

where the weight matrices Wdd and Wrr correspond to the covariance matrices of d and r, respectively, with both
disturbances being modelled as uncorrelated, zero mean, white Gaussian processes. Indeed this choice allows us to recover
the original stochastic meaning of the Kalman filter within the deterministic formulation of the dual control problem. In
particular, when the MCE or small-gain solution of the dual LQR control problem is considered, this corresponds to the
Kalman filter design in the limit of ℓ2-1 with ℓ2 ¼ JWrr J=JWdd J , i.e. in the limiting case of extremely noisy
measurements compared to modelling errors on the state dynamics. Therefore the dual MCE solution can be referred to
as the maximum measurement noise solution of the optimal estimation problem. The related gain matrix L can be computed
by duality, where in the dual control problem CH, Wrr, Xu and LH play the same role as B, R, Pu and K, respectively, with Xu

being used to denote the matrix of the unstable right (or direct) eigenvectors of the pencil (A,E). By substituting for the
corresponding terms in (3), we arrive at the expression

LH ¼ �W �1
rr CuG

�1XH
u E

H ; ð8Þ

and then to

L¼ �EXuG
�HCH

uW
�1
rr ; ð9Þ

where Cu¼CXu and the matrix G is defined as Gij ¼Nij=ðλnu;iþλu;jÞ with N¼ CH
uW

�1
rr Cu.

Once the small-gain limit is taken for both the control and the estimation problems, the small-gain LQG compensator is
so derived. For such a compensator any control and estimation effort is focused on stabilising and estimating only the
unstable modes of the uncontrolled system: this is emphasised by the right (left) multiplication by Pu

H
E (EXu) in the

definition of K (L). With reference to (3) and (8), the computation of both the feedback and the observer gain matrices
require the knowledge of the unstable direct and adjoint global modes only. For typical fluid oscillators, such as bluff-body
flows, the number of unstable modes is very small compared to the dimension of the discrete flow state, thus making the
design of the considered compensator computationally feasible even for large-scale systems.

Although the control design is tackled directly at the discrete level, it is worthwhile to note that in the continuous setting
and for a single control input, the linear feedback operator Kð�ÞALðL2ðΩÞ;RÞ, which corresponds to the feedback gain matrix
K (Curtain et al., 2007; Amodei and Buchot, 2012), can be expressed as

φðtÞ ¼KðvÞ ¼
Z
Ωc

kðx; yÞ � vðx; y; tÞ dΩc; ð10Þ

where vðx; y; tÞ denotes the continuous linearised velocity field and kðx; yÞ is a two-dimensional vector field of feedback
gains. The knowledge of kðx; yÞ provides a spatial representation of the feedback gains. Once the matrix K has been
computed, a numerical approximation of kðx; yÞ can be obtained by means of a suitable discretisation of the above integral,
according to the adopted discretisation of the flow equations, with

Kx¼ ∑
Nw

i ¼ 1
vðxi; yiÞkðxi; yiÞwi �

Z
Ωc

kðx; yÞ � vðx; y; tÞ dΩc; ð11Þ

where wi denotes the quadrature weight associated with the ith quadrature node ðxi; yiÞ. Similarly, for the estimation
problem using a single scalar measurement of the flow state, a continuous vector field lðx; yÞ can be introduced to describe
the spatial distribution of the observer gains with

Lðy�yoÞ � lðx; yÞðy�yoÞ: ð12Þ

In this case the discrete approximation of lðx; yÞ follows straightforwardly from the adopted numerical discretisation of the
flow equations, as for the direct global modes.



M. Carini et al. / Journal of Fluids and Structures 53 (2015) 15–25 19
2.2. Numerical methods

The incompressible Navier–Stokes equations (1) and their linearised version are solved on the rectangular domainΩc which is
illustrated in Fig. 1. In both cases the flow equations are discretised in conservative form on Cartesian smoothly varying staggered
grids using standard second-order finite difference schemes. At the outlet boundary Γout the fully nonlinear equations are
supplemented with the boundary conditions �Pþ2Re�1∂U=∂x¼ 0 and ∂V=∂x¼ 0. Both at the inletΓin and at the side boundaries
Γtop andΓbottom, the vorticity is set to zero and the flow perturbation produced by the cylinder on the incoming uniform stream V1
is assumed to decay to zero as the leading term in the potential flow around it. For the linearised flow equations the above
boundary conditions are applied with homogeneous data. An immersed boundary technique is employed to impose V ¼ 1=2φτ on
Γc (see Giannetti and Luchini, 2007, for details) while a bilinear interpolation is used to sample the velocity field at the selected
sensor positions. Thus the non-zero entries of B and C are defined accordingly. Classical Newton iterations are used to compute the
steady base flow while the leading global modes are extracted by means of the Implicitly Restarted Arnoldi method (Lehoucq et al.,
1998). Time integration of the semi-discretised linear and nonlinear equations is performed making use of the hybrid Adams–
Bashforth/Crank–Nicolson scheme: the diffusive terms and the pressure field are treated implicitly and at each time step a Stokes-
like operator is numerically inverted using the sparse LU solver provided with the free software package UMFPACK (Davis, 2004).
The same linear solver is employed to handle all other required matrix inversions in our computational setup. In the time
integration of the closed-loop dynamics, both the control term BuðtÞ and the forcing term LyðtÞ are treated explicitly, thus resulting
in a ‘segregated’ approach where the semi-discrete flow equations and the compensator are advanced in time separately, with a
computational cost of �2 times the one associated with the uncontrolled flow simulation.

All the present results have been computed on a domain Ωc of length Lx¼75 in the streamwise direction and Ly¼50 in
the cross-stream direction. With reference to Fig. 1, the inlet, the outlet and the lateral boundaries are located at a distance
from the origin equal to Lin ¼ 25, Lout ¼ 50 and Ls ¼ 25, respectively. The whole computational domain is discretised using
450�300 nodes with the grid points being clustered near the cylinder surface. More precisely, a uniform mesh with the
finest grid spacing of Δx¼Δy¼ 0:02 is adopted within the small rectangular subdomain ½�1;1� � ½�1;1� enclosing the
cylinder surface. Such grid will be referred to as M0. In addition a finer mesh MF with a similar structure was setup for
convergence studies, consisting of 650�450 points with a minimum grid spacing of Δx¼Δy¼ 0:01. Finally for time
integration, a non-dimensional step of Δt ¼ 0:01 is employed, which is reduced to Δt ¼ 0:005 when using the MF grid. In
order to validate the adopted spatio-temporal discretisation, computed DNS and stability results on both M0 and MF are
reported in Table 1 along with the results obtained by different authors.

3. Results

It is well known that when the Reynolds number is increased beyond the critical value of Recr � 47, the steady base flow
around a circular cylinder becomes linearly unstable with a pair of complex-conjugate global modes. The computed
unstable eigenvalues λu along with the base flow drag coefficient CðBFÞ

D are reported in Table 2 for Re¼ 50;70 and 90. For
these values of Re the two-dimensional vector gain-field kðx; yÞ corresponding to the computed gain matrix K is illustrated
in Fig. 2 (left column). In agreement with the prior results of Bewley et al. (2007), the modulus of kðx; yÞ is sharply localised
close to the cylinder surface and its spatial pattern is found very similar to that of the unstable adjoint global mode of the
cylinder wake (Giannetti and Luchini, 2007; Marquet et al., 2008), although the gain field does not exactly correspond to the
adjoint field. Indeed it can be shown from Eq. (3) that, in the present case, K results from a linear combination of the real and
imaginary part of the unstable left eigenvector p̂u:

K ¼ γrRðp̂uÞþγiIðp̂uÞ; ð13Þ
with γr and γi being two real valued coefficients. High values of the feedback gain field are located in the regions of
maximum amplitude of the unstable adjoint mode where, by definition, the corresponding direct mode can be easily
Table 1
Comparison of DNS and linear global stability results for the flow past a rotating and a fixed cylinder, respectively, with the corresponding values obtained
by different authors. Results computed on both the standard grid M0 (450�300) and the refined grid MF (650�450) are reported. With reference to DNS
results, St is the Strouhal number while CL and CD are the lift and drag coefficients, respectively. The symbol 〈 � 〉 denotes time averaged quantities while the
prime indicates the amplitude of the fluctuations around the mean value. For the global stability analysis, both the critical Reynolds number Recr and the
critical frequency ωcr associated with the marginally stable global mode are reported.

Refs. DNS at Re¼ 100, jφj ¼ 2 Global stability

〈CD〉 j〈CL〉j CD
0 CL

0 St Recr ωcr=ð2πÞ

M0 (Present) 1.1052 2.4957 0.101 0.3554 0.1656 46.53 0.1165
MF (Present) 1.1021 2.4996 0.102 0.3575 0.1656 46.64 0.1165
Kang et al. (1999) 1.1040 2.4881 0.0993 0.3631 0.1655 – –

Stojković et al. (2002) 1.1080 2.504 0.0986 0.3616 0.1658 – –

Giannetti and Luchini (2007) – – – – – 46.7 0.118
Meliga and Chomaz (2011) – – – – – 46.7 0.116



Table 2
Steady base flow past a fixed circular cylinder: computed unstable eigen-

values λu and drag coefficient CðBFÞ
D for three different values of Re.

Data Re¼ 50 Re¼ 70 Re¼ 90

λu 0.013970.736i 0.073770.744i 0.11070.734i

CðBFÞ
D

1.3808 1.2142 1.1058

Fig. 2. Computed feedback and observer gain fields for various Reynolds numbers: Jkðx; yÞJ (left column) and J lðx; yÞJ associated with a single cross-
stream velocity sensor located at ðx; yÞ ¼ ð1:0;0:0Þ (right column). (a,b) Re¼ 50. (c,d) Re¼ 70. (e,f) Re¼ 90.
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excited. At increasing Reynolds number these regions gradually shrink as shown by Giannetti and Luchini (2007) for the
maxima of the adjoint global mode field.

Similar considerations also hold for the Kalman gain matrix L that has been computed with reference to a single sensor of
the cross-stream velocity component located at ðxs; ysÞ ¼ ð1;0Þ. The spatial distribution of the observer gains is illustrated in
Fig. 2 (right column) by showing the modulus of the associated vector field lðx; yÞ. In a dual manner with respect to k, the
pattern of l is found very similar to that of the direct unstable global mode, with L resulting from the linear combination of
the real and imaginary part of the unstable right eigenvector x̂u. Correspondingly, gain maxima are located in the far wake
region, along the symmetry line, where the global mode is most easily observable, and gradually move upstream as the Re is
increased. With reference to Eqs. (3) and (8), it can be noticed that in the considered SISO case, the numerical values of R and
Wrr do not affect the gain values, therefore both R and Wrr are assumed equal to 1. The computed solutions for K and L have
been validated on the linearised flow system by evaluating both the growth-rate and the frequency of the least stable modes
of AþBK and AþLC, respectively, which indeed correspond to the reflected unstable eigenvalues of A in both cases.

The effectiveness of the proposed control strategy is now assessed on the nonlinear flow at Re¼ 50. Starting from the
fully developed shedding cycle, both the full-information controller and the SISO compensator are shown to be able to drive
the flow towards the unstable basic state which is finally restored. This is clearly illustrated in Fig. 3 by means of the time
traces of the aerodynamic force coefficients: both CD and CL converge to the constant values which characterise the base-
flow solution with CD¼1.3808 and CL¼0. The corresponding control signal, i.e. the cylinder angular velocity φðtÞ is
also illustrated in Fig. 3(d), where φðtÞ asymptotically goes to zero. In these pictures as well as in the following ones, the



M. Carini et al. / Journal of Fluids and Structures 53 (2015) 15–25 21
non-dimensional time t has been rescaled on the Strouhal number St of the uncontrolled periodic flow, thus providing a
measure of the time required to suppress the vortex shedding in terms of the equivalent number of natural shedding cycles.
For both the full-information controller and the compensator, the control forcing is activated at the same time instant
Fig. 3. Control of the flow past a circular cylinder at Re¼ 50: full-information control (blue line) and SISO compensator fed by a single cross-wise velocity
sensor located at ðxs; ysÞ ¼ ð1:0;0Þ (red line). Control is applied to the fully developed limit cycle (black line) starting from t � St� 12:36. (a) Drag coefficient
CD(t). (b) Detailed view of CD(t) when control is activated. (c) Lift coefficient CL(t). (d) Cylinder angular velocity φðtÞ. The horizontal dashed line in (a,b)
denotes the value of CðBFÞ

D . (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

Fig. 4. Control of the flow past a circular cylinder at Re¼ 55 (left panels) and at Re¼ 59 (right panels): full-information controller (blue line) and the SISO
compensator (red line), the sensor being located at ðxs ; ysÞ ¼ ð2:0;0Þ. Control is applied to the fully developed limit cycle (black line) starting at t � St� 13
and t � St� 27 for Re¼ 55 and Re¼ 59, respectively. (a,b) Drag coefficient CD(t); the horizontal dashed line indicates the value of CðBFÞ

D for the considered
Reynolds number. (c,d) Lift coefficient CL(t). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of
this article.)
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ðts � St� 12:36Þ and smoothly applied to the cylinder by means of a blended step function Hb(t), i.e. φðtÞHbðt�tsÞ where

Hb tð Þ ¼
1
2

1� cos πt=Δtc
� �� �

; for toΔtc

1; for tZΔtc;

8<
: ð14Þ

with Δtc indicating the time-window size of the blended step which has been fixed to Δts ¼ 10 in all our simulations. As
expected, the full-information controller performs better than the compensator by achieving flow stabilisation over a
shorter time window (�40 cycles) compared to the second (�100 cycles). Indeed for the compensator a certain amount of
time is spent for state estimation and only once a suitable linear estimate of the flow has been obtained, the control
becomes effective. By increasing the Reynolds number, the amount of time needed by the compensator to stabilise the flow
also increases. This is well illustrated in Fig. 4 by comparing the performance of the compensator with respect to that of full-
information controller for Re¼ 55 and Re¼ 59, the velocity sensor being located at ðxs; ysÞ ¼ ð2:0;0:0Þ in both cases. For
Re¼ 59 the MCE compensator takes �300 shedding cycles to completely suppress the vortex shedding while the
performance of the full-information control results substantially unchanged. As will be shown in the following section,
for Re459 the MCE compensator is not able to stabilise the flow anymore.

3.1. Sensitivity to sensor placement and Reynolds number

The sensitivity of the compensator performance to different streamwise locations xs of the sensor has been investigated,
similar to what was done by Roussopoulos (1993) and Park et al. (1994). Some of these results obtained at Re¼ 50 are
illustrated in Fig. 5(a) with reference to the CD time trace. When the sensor is moved downstream, the compensator
becomes slower and the amount of time required for the complete suppression of the vortex shedding gradually increases.
Moreover for a sensor placement in the far-wake region with xsZ19, the flow stabilisation cannot be achieved anymore and
the controlled flow converges to a different limit cycle which is however characterised by a lower mean value of the drag
coefficient. For practical purpose a measure Ts of the time required to suppress the vortex shedding can be introduced based
on the residual amplitude of the drag coefficient fluctuations with respect to the base-flow value, i.e. jCDðtÞ�CðBFÞ

D jrϵ. In
Fig. 5(b) the value of Ts computed for ϵ¼ 10�5 is plotted as a function of xs: the stabilisation time shows a weak dependence
on xs up to xs � 10 after which it rapidly increases. The same analysis has been performed by evaluating the total control
Fig. 5. Control of the flow past a circular cylinder at Re¼ 50: performance of the SISO compensator for different positions xs of the cross-stream velocity
sensor along the symmetry line. (a) Time trace of the drag coefficient. Stabilisation time Ts (b) and total control energy Ec (c) as a function of xs.

Fig. 6. Control of the flow past a circular cylinder using the SISO compensator. For each considered sensor position xs and Reynolds number, the round
marker indicates that complete flow stabilisation is achieved and the base-flow solution is restored, while the square marker indicates that the control is
not able to completely suppress the vortex shedding, although it can reduce it.
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energy Ec ¼
R Ts

0 φ2dt spent to stabilise the flow which is plotted in Fig. 5(c). These latter results indicate that the value of Ec is
reduced to a minimum when the sensor is approximately located within the range of 11rxsr14.

When increasing the Reynolds number up to Re¼ 59, the range of effective sensor placements rapidly shrinks, both
downstream and upstream. This is illustrated in Fig. 6 for Re¼ 55;57 and 59, indicating whether flow stabilisation is
achieved or not for different locations of the sensor within 10 diameters from the cylinder centre. At Re¼ 59 the cylinder
vortex shedding is completely suppressed only when the sensor is located within the narrow interval of 2rxsr2:5 and in
the neighbourhood of xs � 5. When ineffective sensor placements are considered, different behaviours can be observed: two
examples are illustrated in Fig. 7. For a sensor location very close to cylinder surface, namely at xs¼0.6, the control action
results in a weakened shedding cycle that is characterised by a lower value of 〈CD〉, a reduced amplitude of the aerodynamic
force fluctuations and approximately the same shedding frequency of the uncontrolled case with Stc ¼ 0:137 compared to
Fig. 7. Control of the flow past a circular cylinder at Re¼ 59 using the SISO compensator: for both xs¼0.6 and xs¼3 the control action results in a different
limit cycle ðSt¼ 0:1343Þ compared to uncontrolled case (black line) with Stc ¼ 0:1366 for xs¼0.6 and Stc ¼ 0:1434 for xs¼3.

Fig. 8. MCE control of the flow past a circular cylinder at Re¼ 50: performance of the MCE compensator using two velocity sensors located in the region of
maximum structural sensitivity of the cylinder wake. The sensor positions ðxs ; ysÞ and ðxs; �ysÞ with xs¼2.406 and ys¼0.52 are indicated by the two round
markers superposed to the wavemaker contour levels. Two different configurations are considered: the continuous line corresponds to the case where the
signals Uðxs; ysÞ and Uðxs; �ysÞ are used for state estimation while the dashed line corresponds to the case where the signals �Vðxs; ysÞ and Vðxs; �ysÞ are
employed instead.

Fig. 9. Control of the flow past a circular cylinder: performance of the full-information feedback control above Re¼ 72. (a) Re¼ 73: St¼ 0:147, Stc ¼ 0:162.
(b) Re¼ 75: St¼ 0:150, Stc ¼ 0:174. (c) Re¼ 80: St¼ 0:153, Stc ¼ 0:186. For each case, both the uncontrolled (black line) and the controlled shedding cycle
(blue line) are shown. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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the value of St¼ 0:134 that characterises the natural vortex shedding for the considered Reynolds number. By moving the
sensor at xs¼3 only the lift coefficient amplitude is reduced while both the mean drag coefficient and the shedding
frequency are increased with Stc ¼ 0:143. For Re¼ 60 the complete vortex-shedding suppression cannot be obtained for any
streamwise position of the sensor, similar to what observed experimentally by Roussopoulos (1993) for Re458.

Sensor placement away from the symmetry line has also been tested. In their work, Chen and Rowley (2011) have shown
that the region of maximum structural sensitivity, i.e. the so-called wavemaker (see Giannetti and Luchini, 2007) provides a
good estimate for the optimal placement of actuators and sensors in a LQG-controlled system. Based on that result, two
velocity sensors have been symmetrically placed within the wavemaker regionwhere structural-sensitivity peaks are found,
as shown in Fig. 8. More precisely two different configurations have been tested by probing at those spatial locations the U
component of the velocity field in one case and the V component with opposite sign in the other case. Obtained results are
illustrated in Fig. 8 by means of the time series of the drag coefficient. For both cases no substantial improvements are
observed compared to the performance of the SISO compensator using a single V-sensor located along the x-axis.

Finally the effectiveness of the full-information regulator is investigated up to Re¼ 80. Differently from the compensator,
the LQR control is able to stabilise the flow up to Re¼ 72. For Re¼ 73 the flow cannot be stabilised but the control action still
results in a mitigation of the vortex shedding by reducing both the lift fluctuations and the drag mean value, as shown in
Fig. 9(a). Further increasing the Reynolds numbers, Fig. 9(b) and 9(c), these beneficial effects are lost. Moreover the shedding
frequency is substantially increased in the controlled case with Stc ¼ 0:186 compared to St¼ 0:153 for Re¼ 80.

4. Discussion and conclusions

In this paper a linear feedback control of the cylinder wake is numerically investigated at low Reynolds numbers. The
control actuation is performed by means of unsteady angular rotations of the cylinder surface and a single velocity sensor is
used for the state estimation. A full-dimensional, MCE-LQG compensator of the linearised flow equations is designed and
tested. Both feedback and observer gains have been efficiently computed by exploiting and further extending to the
estimation problem the analytical results of Lauga and Bewley (2003). Thanks to this full-order approach, the control
implementation results free from spill-over errors and can be used to investigate the best performance achievable on the
actual flow by a reduced-order version of the considered compensator. However it is worthwhile to note that the considered
MCE solution of the optimal control problem makes sense only for linearly unstable flows, such as fluid oscillators. In the
case of flows of noise amplifier type, a similar analysis can be performed using the technique described by Semeraro et al.
(2013), with reference to the general solution of the optimal control problem.

When the MCE-LQG compensator is applied to the unsteady flow past a circular cylinder at Re¼ 50 using located at
xso19, the vortex shedding is completely suppressed and the unstable steady base flow is finally restored. In particular, as
the sensor position is varied from the near-wake to the far-wake region, two different behaviours are observed. On one
hand, the time required to stabilise the flow gradually increases up to a limit where flow stabilisation is definitively lost. This
behaviour can be ascribed to the nonlinear evolution of the vortex wake while moving downstream which may result in a
phase-lag exceeding the maximum phase-margin of the closed-loop control within the linearised description. The
stabilisation loss associated with a far-wake sensor placement was also described by Roussopoulos (1993): in his
experiments a critical threshold of approximately 9 diameters from the cylinder centre was found when using a short-
span cylinder model and for Re¼ 65. On the other hand, as the sensor is moved along the flow centreline, the amount of
control energy spent to stabilise the flow is characterised by a small, lower plateau for 11rxsr14. These streamwise
stations roughly correspond to the region where the highest values in the amplitude of the unstable mode are attained for
Re¼ 50 (Giannetti and Luchini, 2007). Therefore it is worthwhile to note that the optimal placement for the “cheapest
control”, i.e. for the minimum value of the control energy, does not correspond to the “fastest” stabilising control
configuration for which the sensor has to be placed in the near wake. As the Reynolds number is increased up to Re¼ 59 the
range of effective sensor locations rapidly reduces to the narrow interval of 2rxsr2:5 except for the additional position
xs � 5 for which the vortex shedding is also completely suppressed. Similar results were obtained by Park et al. (1994)
showing that for Re¼ 60 complete vortex-shedding suppression can be achieved only for a sensor position within the
interval of 2:25oxso2:75. This agreement seems to indicate that the effective sensor placement is rather independent from
the adopted control strategy and actuation technique. However, differently from the previously cited works, in the present
case no ad-hoc tuning of the control gain is required. Finally a further increase of the critical Reynolds number up to Re¼ 72
is achieved only when the full-information controller is used.

The relevant difference in terms of the critical Reynolds number between the MCE compensator ðRe� 59Þ and the full-
information controller ðRe� 72Þ suggests that a substantial increase of the control performance on the actual nonlinear flow
can be expected by introducing a nonlinear estimator in place of the linear optimal observer. Indeed the LQR control can be
interpreted as the result of an ideal nonlinear compensator where the LQR design is combined with a perfect and infinitely
fast nonlinear observer which is able to provide the exact flow state. A further increase of the control performance will
therefore require to devise a fully nonlinear control strategy.

Obviously, the obtained results are limited to the considered flow configuration. Nonetheless, based on these results, it
would be interesting to perform a similar analysis on a fully three-dimensional bluff-body flow in order to assess the
potential of the linear optimal control on a more challenging and a more realistic flow configuration. In this latter case
several different unstable modes are usually present and a multiple-input-multiple-output plant configuration has to be
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considered. However in our approach no restriction has been introduced on the number of unstable modes as well as on the
number of control inputs/outputs, thus making its application to three-dimensional cases almost straightforward. Such an
analysis will be considered in a forthcoming work.
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