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The two-dimensional stationary flow past a rotating cylinder is investigated for both
two- and three-dimensional perturbations. The instability mechanisms are analysed
using linear stability analysis and the complete neutral curve is presented. It is shown
that the first bifurcation in the case of the rotating cylinder occurs for stationary three-
dimensional perturbations, confirming recent experiments. Interestingly, the critical
Reynolds number at high rotation rates is lower than that for the stationary circular
cylinder. The spatial characteristics of the disturbance and a qualitative comparison
with the results obtained for linear flows suggest that the stationary unstable three-
dimensional mode could be of hyperbolic nature.
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1. Introduction
The flow past a circular cylinder often serves as a prototype to investigate the

vortex formation and wake dynamics behind bluff bodies. In the case of a stationary
cylinder the different bifurcations occurring when increasing the Reynolds number
are well known. Here the Reynolds number is based on the dimensional free-
stream velocity U?

∞, the cylinder diameter D? and the kinematic viscosity ν?. The
steady two-dimensional symmetric flow becomes unstable above a critical value
Re ≈ 47 (see Provansal, Mathis & Boyer 1987) via a Hopf bifurcation (see Noack
& Eckelmann 1994) giving rise to a self-sustained structure usually termed Kármán
vortex street. For values of Re above ≈190 the flow becomes unstable to three-
dimensional perturbations, (see, e.g., Barkley & Henderson 1996; Williamson 1996).
The rotating cylinder and corresponding bifurcations, on the other hand, have been
studied primarily in the two-dimensional framework (see Kang, Choi & Lee 1999;
Stojković, Breuer & Durst 2002; Mittal & Kumar 2003; Stojković et al. 2003;
Pralits, Brandt & Giannetti 2010). A complete neutral curve for two-dimensional
perturbations as a function of the rotation rate α and the Reynolds number is found
in both Stojković et al. (2003) and Pralits et al. (2010). The rotation rate is here
defined as α =ΩD?/(2U?

∞) with Ω representing the cylinder angular velocity. In both
investigations two different types of disturbances can be distinguished. The so-called
mode I is similar (equal when α = 0) to the classical von Kármán instability. Unstable
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solutions are found for Re > 47 and low rotation rates. As the Reynolds number is
increased the neutral curve of mode I is found for α(Re)→ 2. At higher rotation
rates a second instability, denoted mode II, exists and has a frequency one order of
magnitude lower than that of mode I. For a given Re it persists for a narrow range
of rotation rates and the critical Reynolds number is slightly below the value of 50.
In the vicinity of the upper neutral branch of mode II multiple stationary solutions
were found for a fixed Reynolds number (see Pralits et al. 2010). These solutions
were computed using arclength continuation and two turning points were found. Pralits
et al. (2010) also presented the bifurcation diagram of two-dimensional instabilities
for the multiple solutions. In particular, it was shown that the second turning point
determines the rotation rate at which an unstable solution is last observed. In fact, this
point defines the birth of a branch with stable steady-state solutions that continues at
larger α.

Pralits et al. (2010) conducted a structural sensitivity analysis using a combination
of direct and adjoint global modes in order to provide relevant knowledge about the
origin of the instability. In particular, the core region for the instability mechanism and
the sensitivity to steady variations of the underlying base flow were identified. The
structural sensitivity of mode II has its maximum close to the stagnation point while
the sensitivity with respect to the base flow was shown to have its maximum in the
low-rear part of the cylinder, in a region opposite to the stagnation point.

Experimental measurements of the flow past a rotating cylinder were performed
by Barnes (2000) at low rotation rates to determine the value at which shedding is
suppressed for Reynolds numbers between 50 and 65. The findings agrees with the
results of, e.g., Kang et al. (1999), Stojković et al. (2002) and Pralits et al. (2010)
who showed that the vortex shedding behind a rotating cylinder disappears when
α is increased above the value of 2. To the best of the authors’ knowledge only
the experimental work by Yildirim et al. (2008) reports a low-frequency shedding
at Re = 100 and α = 5.1. In an initial transient phase they observed a tilted vortex
structure in the wake of the cylinder and the measured frequency was similar to the
computations by, e.g., Stojković et al. (2003) and Pralits et al. (2010). However, the
vorticity core was located on the opposite side of the wake and their experiment
cannot be considered a verification of the existence of mode II.

To the best of the authors’ knowledge, only few works have been concerned
with the three-dimensional stability characteristics of the rotating cylinder flow. The
investigation by ElAkoury et al. (2008) indicates that the cylinder rotation has a
stabilizing effect on three-dimensional perturbations thus increasing the Reynolds
number for two-dimensional/three-dimensional transition to values larger than that
observed for the flow past a non-rotating cylinder. In the recent work by Rao et al.
(2013) a detailed study regarding the transition from steady to unsteady flow is made
along with a mapping of the transition from two-dimensional to three-dimensional
flow. It is shown that vortex shedding is suppressed for α > 2.1 for all Reynolds
numbers and that transition to three-dimensional flow occurs for Reynolds number
slightly below the value of 200. However, these authors did not investigate values of
the rotation rate above 2.5.

It is known that when further increasing the rotation speed, the stagnation point
moves away from the surface of the cylinder, and closed streamlines form, separating
the flow internal and external to it. Within the internal flow, one can expect large
pressure differences and Mittal (2004), who investigated the flow at α = 5 and
Re = 200, argued that this will cause the appearance of three-dimensional centrifugal
instabilities, with spanwise scale λ≈ D.
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Further investigations are needed on the onset of a three-dimensional flow past
a rotating circular cylinder. In this work we therefore investigate the stability
characteristics of three-dimensional perturbations superimposed on the stationary two-
dimensional base flow using global stability analysis. Neutral curves, critical rotation
rates and critical Reynolds numbers are presented in order to determine the onset of
three-dimensional instabilities. The results are compared with the recent results in the
Doctoral thesis by Linh (2011) where experiments of the flow past a rotating cylinder
are presented, and a possible explanation is given for the difficulties of previous
experimental investigations (e.g. Yildirim et al. 2008) in detecting the low-frequency
vortex shedding at high rotation rates, the so-called mode II. A structural sensitivity
analysis is also conducted with the purpose of establishing the region responsible for
the generation of the instability. Finally, an indication regarding where to position a
passive control device is shown based on a structural sensitivity analysis with respect
to base-flow modifications.

In the following we will denote modes at rotation rates α < 2 as mode I and modes
for higher rotation rates, α > 2, as mode II. This is to be consistent with earlier
investigations in which a similar notation has been used.

2. Linear stability analysis and numerical method
The instability onset is studied using linear theory and a normal-mode analysis. The

flow quantities are decomposed in a steady part and a small unsteady perturbation as

U(x, y, t)= Ub(x, y)+ ε 1√
2π

∫ ∞

−∞
u(x, y, κ, t) exp(iκz) dκ, (2.1)

where the amplitude ε is assumed to be small and a Fourier transform is used to
express the spanwise dependence of a general three-dimensional perturbation. The
same decomposition is used for the pressure. The base flow Ub(x, y) satisfies the
steady Navier–Stokes equations for two-dimensional incompressible flow at a given
Reynolds number Re and rotation rate α. The rotation of the cylinder is imposed
as a boundary condition such that Ub · t = α and Ub · n = 0. Here t and n are
the tangential and normal versors to the cylinder surface. The dimensional free-
stream velocity U?

∞ and diameter D? are used as reference velocity and length
scales throughout the paper. Three-dimensional global modes are analysed assuming
u(x, y, κ, t) = û(x, y, κ) exp(σ t) and p(x, y, κ, t) = p̂(x, y, κ) exp(σ t). Introducing this
decomposition into the Navier–Stokes equations and collecting terms of order ε we
obtain the linearized unsteady Navier–Stokes equations

σ û+ Lκ{Ub,Re}û+∇κ p̂= 0, (2.2)

∇κ · û= 0. (2.3)

In the above expression ∇κ ≡ (∂x, ∂y, iκ) is the modified gradient operator and Lκ
denotes the modified three-dimensional linearized Navier–Stokes operator. On the
cylinder surface a no-slip boundary condition is imposed while in the far field
appropriate radiative boundary conditions are used. For further details and notation
see Giannetti & Luchini (2007). The system (2.2)–(2.3) gives rise to a generalized
eigenvalue problem for the complex eigenvalue σ . For Re(σ ) < 0 the flow is stable
while for Re(σ ) > 0 the mode is unstable and grows exponentially in time.
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2.1. Numerical method
The results presented here are obtained with the numerical code described in Giannetti
& Luchini (2007). A second-order finite-difference approach is used to compute spatial
derivatives of the governing partial differential equations together with an immersed-
boundary technique to represent the cylinder surface on a Cartesian mesh. The
computational domain is rectangular. The steady nonlinear Navier–Stokes equations
are solved by Newton iteration in order to compute the base flow used for the
linear stability analysis. Arc-length continuation is adopted for rotation rates above
the onset of the second mode where multiple steady state solutions exist. Further,
the stability of the flow is investigated through the eigenvalue problem defined by
the linearized perturbation equations (2.2)–(2.3), where an implicitly restarted Arnoldi
algorithm is implemented to compute the least stable eigenvalue and eigenmode. The
main results are obtained with a computational domain of length Lx = 50, Ly = 30 in
the streamwise x- and cross-stream y-direction, respectively. The cylinder is located
symmetrically between the upper and lower boundaries, 15 diameters downstream of
the inflow. The Cartesian coordinate system has its origin in the centre of the cylinder
(xc = 0, yc = 0). The computational mesh is non-uniform, see e.g. Giannetti & Luchini
(2007), with a resolution of 400× 300 points in the x and y directions, respectively. A
square domain measuring 2 × 2 diameters, with its centre coinciding with that of the
cylinder, has a uniform mesh containing 100 grid points in each direction. The results
have been validated by varying both resolution and domain size.

3. Stability characteristics
The onset of three-dimensional instabilities is investigated by solving the linear

stability problem outlined in § 2 for different values of the Reynolds number, rotation
rate and spanwise wavenumber. The growth rate σr and Strouhal number St = σi/(2π)
of the least stable modes pertaining to the stationary base flows at Re = 100 and two
different rotation rates α = 4.75 and 5 are presented in figure 1 as a function of the
spanwise wavenumber κ . In particular we focus on the two least stable modes and the
reason will be discussed in this section.

When the spanwise wavenumber is small, the perturbation Strouhal number is
non-zero and the corresponding maximum growth rate is found for κ = 0, the so-
called unsteady mode II. For increasing values of the spanwise wavenumber the least
stable solution is stationary. This is a novelty compared with previous investigations
conducted in a two-dimensional framework. At α = 5 the maximum growth rate of
the stationary mode is about three times that of the unsteady mode. Moreover, the
unstable stationary perturbation remains unstable for values of α where the unsteady
one is already stable (here α = 4.75). Finally, for intermediate values of κ there
exists a range of values of α where the unsteady and stationary modes are unstable
simultaneously (here α = 5 and κ ≈ 0.3). The results presented in figure 1 are
exploited more in detail in figure 2 where the growth rate (σr > 0) of the least stable
mode is presented as a function of α and κ at four different values of the Reynolds
number. One can first of all note that in all figures that the mode α = 0, κ = 0
is the classical von Kármán instability (appearing when Re > 47). Shedding mode
I is reported for Re = 50, 60, 100 when α < 2. For this unsteady instability the
largest growth rate is always obtained for κ = 0. Further, the range of κ for which
unstable solutions exist increases with increasing Reynolds number. The corresponding
frequencies of mode I are similar to the values obtained when κ = 0 as shown by, e.g.,
Pralits et al. (2010).
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FIGURE 1. (Colour online) Growth rate σr (a) and Strouhal number St = σi/(2π) (b) for
Re = 100 as a function of the rotation rate α and spanwise wavenumber κ . The stationary
modes are indicated by the solid lines while the unsteady modes by the dashed lines.

1

2

3

4

5

1

2

3

4

5

0

1

2

3

4

5

6

0

1

2

3

4

5

6

–6 –4 –2 0 2 4 6 –6 –4 –2 0 2 4 6

–4 –2 0 2 4 –4 –2 0 2 4

0

6

0

6

–6 6 –6 6

(a) (b)

(c) (d)

FIGURE 2. (Colour online) Growth rate σr > 0 in the plane (α, κ): (a) Re= 40; (b) Re= 50;
(c) Re= 60; and (d) Re= 100. The contour spacing is 0.02 in all figures.

For higher rotation rates, roughly between 3 and 6, unstable solutions are found
for all Reynolds numbers presented but we have to make a distinction between what
we will denote unsteady mode II and stationary mode II. The unsteady mode II is
characterized by small values of κ and it is essentially the same mode presented by,
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FIGURE 3. (Colour online) Neutral stability curve (Re(σ ) = 0) in the Re–α plane showing
the regions delimited by mode I and II, respectively. The curve denoted by 3D is the upper
and lower branch over all spanwise wavenumbers (κ). The curve denoted 2D is the neutral
curve for two-dimensional (κ = 0) modes Pralits et al. (see, e.g., 2010). The dashed curve in
the vicinity of Re = 200, α = 0 is taken from Rao et al. (2013) and represents the bifurcation
to three-dimensional instabilities.

e.g., Pralits et al. (2010) and Stojković et al. (2003). The maximum growth rate is
found for κ = 0 and the critical Reynolds number is just below the value of 50.

The stationary mode II on the other hand, reaches the largest growth rate for
spanwise wavenumbers from ∼0.5 to 6 and rotation rates roughly between 3 and 6,
depending on the Reynolds number. For relatively large Reynolds numbers, Re = 100,
the rotation rate ranges between 3.7 and 5.3 while the wavenumber ranges between
0.5 and 6. As the Reynolds number is decreased both the range in rotation rate and
spanwise wavenumber decrease. It is interesting to note that the stationary mode II
is still unstable for Reynolds numbers below the value of 47. The first bifurcation
for the flow around a rotating cylinder, when α > 2, is therefore to a stationary
three-dimensional flow.

A summary of the stability analysis is presented in figure 3 by the neutral curve
(σr = 0) as a function of the Reynolds number and the rotation rate. The results
for α < 2 are in agreement with the numerical results by Pralits et al. (2010) and
Stojković et al. (2003) since the most amplified mode I is two-dimensional. The
neutral curve for α > 2 is given by the minimum and maximum values of α for
which neutral solutions are found, as a function of the spanwise wavenumber, at each
Reynolds number. This curve is denoted by 3D in the figure. For completeness we
report also the neutral curve for two-dimensional mode II as was presented by Pralits
et al. (2010). It is shown that the range of α corresponding to three-dimensional
perturbations is 2–3 times larger than that obtained for two-dimensional perturbations
at each Re. Note that a neutral curve taking into account only three-dimensional
unsteady perturbations would be contained within the neutral curve denoted by 2D.
This can be understood by looking at figure 2 which shows the growth rate σr > 0.
The critical values of Re and α in figure 3 are 33 and 5.8, respectively.

4. Comparison with experiments
In this section results from the linear stability analysis are compared with the recent

experimental measurements by Linh (2011). This author performed an experimental
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FIGURE 4. (Colour online) Experiments by Linh (2011) for Re = 206 showing the spanwise
vorticity in the x–z plane at a distance 0.56D in the y direction on the side of the
stagnation point. From these data Linh (2011) estimated the spanwise wavelength of the
three-dimensional structures to be between λ ≈ 1D–1.5D. The corresponding spanwise
wavenumbers are κ = 2π/λ≈ 6.3–4.2.

investigation of the flow past a rotating cylinder in a closed loop channel. The
turbulence intensity was ∼1 %, and the cylinder length to diameter ratio was 25
for Re < 500. The latter ensures that the flow remains strictly two-dimensional for
low Reynolds numbers. Dye and particle tracing flow visualization (PTFV) were used
to visualize the flow while a hot-film anemometer and particle image velocimetry
(PIV) were employed to obtain flow field measurements. In particular, a Litron laser
system and a Dantec PIV2100 processor system were used for the PIV where the
flow was seeded with glass particles which had a diameter of 10 µm. Measurements
were made in both the streamwise (x–y) plane and the spanwise (x–z) plane for
Re = 206, 334, 541, 1067 with α ranging from 0 to 5. No evidence of the unsteady
mode II earlier shown in numerical investigations by, e.g., Stojković et al. (2003) and
Pralits et al. (2010) could be found in the experiments.

A periodic stationary pattern was instead observed in the spanwise plane for certain
values of the rotation rate. The spanwise distribution of vorticity from the PIV
measurements, which has its axis in the y direction, is shown in figure 4 for Re= 206
and α = 4. Here the x–z plane is situated 0.56D away from the cylinder centre in
the y direction on the side of the stagnation point. From this image we can estimate
the spanwise wavelength of the three-dimensional modes to be between λ ≈ 1D–1.5D
(values reported in the thesis). These values correspond to spanwise wavenumbers
κ = 2π/λ ≈ 6.3–4.2. In order to compare with the experimental results we performed
a linear stability analysis for the same parameters (Re, α, κ) and determined the least-
stable modes. Their growth rate is presented in figure 5 as a function of the spanwise
wavenumber. The linear stability analysis gives the maximum growth rate for the
spanwise wavenumber κ ≈ 6 which is within the range of κ’s evaluated from the
measurements by Linh (2011), here indicated by the grey area in the figure. Spanwise
structures, similar to those presented in figure 4, were also found in the experiment
by Linh for Re = 206 and α = 3, but not for α = 1, 2, 5. This is also consistent with
the neutral stability curve presented in figure 3. The comparison shows that the linear



12 J. O. Pralits, F. Giannetti and L. Brandt

–0.05

0

0.05

0.10

0.15

0.20

0.25

2 4 6 8 100 12
–0.10

0.30

FIGURE 5. (Colour online) Growth rate σr obtained from the linear stability analysis as a
function of κ at Re = 206. The values of κ corresponding to the wavelength’s obtained from
figure 4 are given by the grey area.
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FIGURE 6. (Colour online) Modulus of the perturbation vorticity |ω(x, y)| at Re = 100 and
α = 5; κ = 0 (a) and κ = 1 (b). The black curve shows the streamlines passing through the
stagnation point. The contour spacing is 0.02.

stability analysis performed here captures the main characteristics of the wake at high
rotation rates and strengthens the results presented in figure 3.

5. The global modes
In this section we visualize the spatial structure of the modes corresponding to

the unstable solutions shown in the previous section. In figure 6 the modulus of
the vorticity field of mode II is presented for the case in which Re = 100 and
α = 5. The three-dimensional stationary mode II, with κ = 1, is compared with
the unsteady two-dimensional counterpart (κ = 0). Both modes are unstable and the
wavenumber for the stationary mode was chosen to maximize the growth rate (cf.
figure 1). At this Reynolds number and rotation rate the streamlines crossing the
stagnation point forms a closed loop around the cylinder. The spatial structures of
the unsteady and stationary unstable modes are similar but the stationary mode has
the maximum value of the vorticity modulus aligned with the direction of maximum
strain of the base flow. Implications of this alignment is discussed later in this section.
Figure 7 shows the spatial structure of the perturbation velocity for the stationary
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FIGURE 7. (Colour online) Spatial structure of the perturbation velocity at Re = 100, α = 5
and κ = 1: (a) modulus; (b) horizontal component u; (c) vertical component v; (d) spanwise
component w. The mode has been normalized such that the maximum of the modulus is 1.
The contour spacing is 0.05 and continuous lines are positive values while dashed lines are
negative values.

mode II at Re = 100, α = 5 and κ = 1. Here both the modulus and the three velocity
components are displayed: as can be easily noticed the mode grows in the region
around the hyperbolic point, mainly inside the closed loop delimited by the streamlines
crossing the stagnation point. A deeper knowledge of the instability characteristics can
be gained using the concept of a wave-maker that is related to the region in space
where a modification in the structure of the problem produces the largest drift of the
eigenvalue. This is done by determining the region where feedback from velocity to
force is most effective. This concept was introduced for the first time in Giannetti &
Luchini (2007) in the context of a linear stability analysis on a steady base flow and
later generalized in Luchini, Giannetti & Pralits (2008) to time-periodic flows. The
sensitivity tensor Sp derived by Giannetti & Luchini (2007) is given by

Sp(x0, y0, κ)= û?(x0, y0, κ) û(x0, y0, κ)∫
D

û? · û dS
, (5.1)

where û? is the adjoint perturbation velocity, and û? û indicates the dyadic product
between the direct and adjoint modes. Different norms of the tensor Sp can be used to
build a spatial map of the sensitivity. In figure 8 the spectral norm of the sensitivity
tensor Sp is presented for the same parameters used in figure 6. The maximum value is
found in the vicinity of the stagnation point both for unsteady and stationary mode II,
moreover, aligned with the direction of compression. The sensitivity of the stationary
mode, however, is smaller in magnitude and its spatial structure presents a second
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FIGURE 8. (Colour online) Structural sensitivity Sp for Re= 100, α = 5: (a) κ = 0; (b) κ = 1.
The contour spacing is (a) 0.16, (b) 0.5.

peak in a region very close to the hyperbolic stagnation point. This fact suggests some
considerations on the nature of the stationary mode II.

It is well known that in an inertial frame any inviscid incompressible flow with
a stagnation point is unstable to short wavelength perturbations, no matter which
type of flow surrounds it (see Friedlander & Vishik 1991; Lifschitz & Hameiri
1991). Various growth mechanisms have been presented to explain the development
of such instabilities, depending on the elliptic or hyperbolic nature of the stagnation
point. In the hyperbolic case the instability can be understood physically in terms
of the stretching of the vorticity perturbations and the tilting of the velocity by the
two-dimensional background flow. Such mechanism is an example of the so-called
‘Orr mechanism’ and leads transiently to elevated growth. Asymptotically this inviscid
mechanism leads to exponentially growing modes with a velocity vector which aligns
with the principal direction of compression of the base flow while the vorticity
ultimately approaches a direction perpendicular to it (see Leblanc & Godeferd 1999;
Caulfield & Kerswell 2000).

For idealized flows such as those characterized by a quadratic streamfunction, in
fact, the maximum growth rate is attained by the so-called ‘pressureless modes’
which have a velocity perturbation that is purely two-dimensional (w = 0). Moreover,
provided that the magnitude of the spanwise wavenumber is sufficiently large, the
perturbation is predicted to grow even in a viscous flow, since the stabilizing effect of
the fluid viscosity is dominated by the growth of the perturbation. As already noted,
the flow around the rotating cylinder is characterized by the existence of a hyperbolic
stagnation point whose position depends on the values of the Reynolds number Re
and of the rotation rate α. In its proximity, the velocity perturbation vector is aligned
with the direction of compression and has a spanwise component significantly smaller
than the streamwise and vertical components. This can be clearly seen in figure 9(a) in
which three different lines are drawn. The white one is the streamline of the base flow
passing through the stagnation point, while the other two are obtained by integration
of the differential equations dx/dt = f (x) where the vector field f is taken to be the
mode velocity (black line) and the mode vorticity (dashed line). The computations
are performed in three dimensions, both forward and backward in time, with the
initial seeds taken along the stagnation line. Since the corresponding global mode is
stationary, these lines are parallel in each point to the corresponding vector fields used
to generate them. The black lines in particular are therefore the streamlines of the
unstable mode and can be used to better visualize its spatial structure in proximity to
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FIGURE 9. (Colour online) (a) Streamlines at Re = 100, α = 5, κ = 1, passing through the
hyperbolic point; base flow (white); mode (black). The dashed curve passes the stagnation
point parallel to the perturbation vorticity. The colour map shows the spanwise component
in an x–y plane where it reaches its maximum. The mode is normalized such that ‖u‖ = 1.
(b) Three-dimensional view of the mode streamlines passing through the stagnation line. The
colour map represents the modulus of the perturbation velocity in a plane where the spanwise
component vanishes. The white line is the streamline of the base flow passing through the
hyperbolic point.

the hyperbolic point. The colour map in the background corresponds to the spanwise
component of the perturbation velocity on a plane where it reaches its maximum.

Figure 9(b) shows a three-dimensional view of the mode streamlines passing
through the stagnation point and shows that in its proximity the perturbation velocity
is contained in the plane tangent to the stagnation line (in white). The colour map
at the base of the figure shows the modulus of the perturbation velocity in a plane
where the w component vanishes. Note that the mode maximum is located close to
the hyperbolic point. Thus, at least locally, there is a qualitative resemblance with
the ‘pressureless’ perturbations described by Leblanc & Godeferd (1999) and Caulfield
& Kerswell (2000). Note also that for the rotating cylinder the maximum growth
rate is reached for values of the wavenumber κ = O(1): this fact prevents us from a
more quantitative comparison with the asymptotic theory, which is only valid in the
large wavenumber limit. Furthermore, as we move away from the stagnation point,
the flow quickly differs from a linear flow, so that the final growth rate is certainly
influenced by the non-local characteristics of the base flow. This is also confirmed by
the structural sensitivity analysis (figure 8) which shows that the instability mechanism
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FIGURE 10. (Colour online) Structural sensitivity Sb for Re = 100, α = 5: (a) κ = 0;
(b) κ = 1. The black curve shows the streamlines passing through the stagnation point. The
contour spacing is (a) 3, (b) 24.

is localized inside the area delimited by the streamline passing through the stagnation
point, in a region close to the hyperbolic point, but not exactly centred on it.

In theory, it is possible that other instability mechanisms act and cooperate to
generate the unstable mode. For example, the region of the flow delimited externally
by the stagnation streamline and internally by the cylinder is characterized by the
presence of closed streamlines and can be prone to a centrifugal instability. This
inviscid mechanism is due to the disruption of the balance between the centrifugal
force and the radial pressure gradient and usually gives rise to modes which
are localized along particular streamlines, with a transverse spatial structure which
generally decays exponentially fast. Although viscosity and small wavenumbers effects
can modify the structure of these modes considerably, the distinguishing characteristics
of a centrifugal instability are not visible in the results presented in this study, at least
in the range of parameters investigated. Thus, even if a more detailed investigation
(which is outside the scope of this paper) is necessary to clarify the nature of the
stationary instability, the main characteristics of the mode and the sensitivity analysis
presented here strongly suggest that the stationary mode II is of hyperbolic nature.

In this last part we show the sensitivity tensor Sb due to base flow modifications.
The importance of analysing this quantity was discussed in detail in the work by
Pralits et al. (2010) and is related to modifications of the basic flow induced by small
objects such as e.g. a control cylinder whose purpose is to act as a passive control
device. The expression of the sensitivity tensor can be written

Sb(x0, y0, κ)= Ub
?(x0, y0)Ub(x0, y0)∫

D

û? · û dS
, (5.2)

where Ub
? is the solution of the adjoint base flow equations (see Pralits et al. 2010,

for a complete derivation). In figure 10 the spectral norm is shown for the same
parameters used in figures 6 and 8. The maximum sensitivity of the stationary three-
dimensional mode II is approximately ten times that of the unsteady two-dimensional
mode II. Further, the largest sensitivity of the stationary mode is located inside the
closed streamlines on the lee-ward side of the stagnation point, while the unsteady
mode has its maximum outside the closed streamlines. The results imply that different
regions in space are important when it concerns control of the wake flow.
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6. Conclusions
In this paper we have presented a linear stability analysis of the flow past a

rotating cylinder and investigate the onset two-dimensional and three-dimensional
bifurcations. We find a reasonable explanation for the discrepancies between numerical
and experimental findings existing so far at large rotation rates. In this regime, all
conditions being equal, if an unstable two-dimensional unsteady solution exists then
a three-dimensional stationary unstable solution also exists but with a larger growth
rate. As a consequence, the unsteady shedding mode II cannot be observed in
laboratory experiments. Further, the stationary three-dimensional solution is unstable
for Reynolds numbers below the critical value of two-dimensional instabilities. We
report for the first time the complete neutral curve as a function of the Reynolds
number and rotation rate and identify the absolute critical value of (Re, α) = (33, 5.8).
Recent experimental investigations by Linh (2011) confirm the onset of stationary
three-dimensional structures at high rotation values with a spanwise periodicity in
agreement with our prediction. The structure and the characteristics of the resulting
mode, if compared with results obtained using asymptotic theory on inviscid linear
flows, suggest that the stationary unstable three-dimensional mode could be the result
of a hyperbolic instability.
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