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The first bifurcation and the instability mechanisms of shear-thinning and shear-
thickening fluids flowing past a circular cylinder are studied using linear theory
and numerical simulations. Structural sensitivity analysis based on the idea of a
‘wavemaker’ is performed to identify the core of the instability. The shear-dependent
viscosity is modelled by the Carreau model where the rheological parameters,
i.e. the power-index and the material time constant, are chosen in the range
0.4 6 n 6 1.75 and 0.1 6 λ 6 100. We show how shear-thinning/shear-thickening
effects destabilize/stabilize the flow dramatically when scaling the problem with the
reference zero-shear-rate viscosity. These variations are explained by modifications of
the steady base flow due to the shear-dependent viscosity; the instability mechanisms
are only slightly changed. The characteristics of the base flow, drag coefficient
and size of recirculation bubble are presented to assess shear-thinning effects. We
demonstrate that at critical conditions the local Reynolds number in the core of the
instability is around 50 as for Newtonian fluids. The perturbation kinetic energy budget
is also considered to examine the physical mechanism of the instability.
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1. Introduction
The aim of the present work is to study the effects of shear-dependent viscosity on

the appearance of the first instability for the flow past a circular cylinder. We consider
shear-thinning and shear-thickening fluids obeying the Carreau–Yasuda rheological law.
The flow past a circular cylinder is chosen as the classical example of bluff-body
flows. Although an idealized configuration, flows past circular cylinders are relevant to
many industrial applications. Some examples are tubular and pin-type heat exchangers,
filtration screens and membrane-based separation modules (see e.g. Panda & Chhabra
2010).

From a stability point of view, the cylinder flow displays intrinsic dynamics and
the spatial distribution of the disturbance synchronizes in space. The instability of the
cylinder flow has been extensively studied in the past for Newtonian fluids. Based
on these previous works, Mossaz, Jay & Magnin (2010), among many, describe the
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different regimes observed when varying the Reynolds number. The flow changes from
creeping flow with no separation to laminar flow with two symmetrical steady vortices
at Reynolds number ∼6. The length of the steady recirculation regions increases
linearly with the Reynolds number (e.g. Giannetti & Luchini 2007). The transition to
unsteady periodic flow (i.e. the Hopf bifurcation) of the two-dimensional flow is at
Reynolds number ∼47 (Provansal, Mathis & Boyer 1987). Finally a three-dimensional
wake appears when the Reynolds number is ∼190 (Barkley & Henderson 1996). In
this work, we focus on the first bifurcation to unsteady flow and use a sensitivity
analysis to understand the instability mechanisms.

1.1. Cylinder flow of non-Newtonian fluids
Recently several investigations have been conducted to understand the non-Newtonian
effects on the characteristics of the flow around a circular cylinder in different regimes.

As regards shear-thinning fluid flowing past a cylinder, Coelho & Pinho (2003a,b)
and Coelho & Pinho (2004) carried out experimental studies on the vortex-shedding
flow regimes of both Newtonian fluids and shear-thinning weakly elastic polymer
solutions. The Reynolds number was varied from 50 to 9000 including laminar
vortex shedding, transition and shear-layer transition regimes. It was shown that shear-
thinning gives rise to a reduction of the cylinder boundary-layer thickness and a
decrease of the diffusion length which increases the Strouhal number. Conversely, fluid
elasticity is responsible for an elongation of the formation region which results in a
decrease of the Strouhal number.

Only a few studies have considered shear-dependent viscosity. Sivakumar, Bharti
& Chhabra (2006) and Patnana, Bharti & Chhabra (2009) investigated lift and drag
coefficients as well as instantaneous streamlines and vortices for the flow past a
stationary and a rotating cylinder by means of numerical simulations. These authors
examined both shear-thinning and shear-thickening fluids, using the power law, in
the range of creeping flow up to Reynolds number equal to 140. In the case of
a stationary cylinder, the drag coefficient decreases with shear-thinning at a fixed
value of Reynolds number. For rotating cylinders, the viscosity variation influences the
drag and the lift coefficients of low-Reynolds-number flows more than those of high-
Reynolds-number flows. Nejat, Abdollahi & Vahidkhah (2011) simulate the power-law
flow past a series of tandem arrangement of two cylinders in a confined domain,
using a lattice Boltzmann algorithm. For a Reynolds number equal to 40, the drag on
the upstream cylinder is one order of magnitude larger than on the one downstream
for cylinder spacing up to two times the cylinder diameter. Mossaz et al. (2010)
simulate a Herschel–Bulkley viscoplastic fluid behind a circular cylinder in order to
obtain a criterion for the appearance of non-stationary regimes at subcritical Reynolds
numbers. The frequency of vortex shedding in the supercritical regime decreases with
the Oldroyd number and it is therefore concluded that viscoplastic effects stabilize the
flow.

As seen from the above discussion, several efforts have considered the flow of a
viscoelastic fluid past a cylinder, see among others Sarpkaya, Rainey & Kell (1973)
and Pipe & Monkewitz (2006). In a recent study, Richter, Iaccarino & Shaqfeh (2010)
investigate a dilute solution of polymers at Reynolds numbers of 100 and 300 via
numerical simulations of the FENE-P model. In particular at Reynolds number equal
to 100, an increase in polymer extensibility elongates the recirculating region behind
the cylinder and increases the average drag. At larger Reynolds number, polymer
elasticity suppresses the secondary three-dimensional mode which dominates the
structure of the near-wake for Newtonian fluids. Later, the same authors investigated
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the viscoelastic effects on the stability of the cylinder wake using linear theory
(Richter, Shaqfeh & Iaccarino 2011). They found that viscoelasticity modifies the
underlying base flow which results in a reduction of vorticity intensity and strain rate
in the wake and successively a decrease in the production of perturbation energy.

1.2. Instability in shear-thinning fluids
The pseudo-plastic fluids (shear-thinning fluids) can be classified as inelastic non-
Newtonian fluids in which the viscosity is decreasing with the shear rate. The two
most popular rheological laws for shear-dependent viscosity are the power-law model
and the Carreau–Yasuda model. Nouar & Frigaard (2009) note that the power-law
model can only be used for a limited range of shear rates, while the Carreau–Yasuda
model is more realistic and has the flexibility to fit a wide range of experimental data.
Coelho & Pinho (2004) experimentally showed that the Carreau model can be fitted
to a solution of dilute polymers with different degrees of shear-thinning for the flow
past a cylinder. Nouar, Bottaro & Brancher (2007) choose the Carreau model because
of its capability to model steady shear, complex viscosity, stress growth and the stress
relaxation function. In this work the Carreau law is chosen to model viscosity of
shear-thinning and shear-thickening fluid past a circular cylinder.

The stability of a variety of shear-thinning fluids has already been studied for
canonical parallel flows, e.g. circular Couette flow, channel flow, mixed plane Couette
and Poiseuille flow and gravity-driven flow over an inclined plane. Caton (2006)
presented linear stability results of a power-law fluid for circular Couette flow. For
small gaps between the two cylinders, the critical Reynolds number for the onset of
instability reduces with increasing shear-thinning. Nouar et al. (2007) used the Carreau
rheological law model to investigate modal and non-modal instability of channel flow.
Nouar & Frigaard (2009) analysed the instability of the mixed plane Couette and
Poiseuille flow for a shear-thinning fluid, also using the Carreau law. These authors
showed that the production of kinetic energy in the critical layer next to the fixed
wall controls the stability of the flow. Milleta, Rousset & Hadid (2009) showed the
stabilizing effects of shear-thinning on the flow of two layers of fluid with different
density over an inclined plane using linear theory.

Here we study how shear-thinning and shear-thickening effects vary the critical
Reynolds number for the cylinder flow. We present the first global stability analysis
for this two-dimensional configuration and shear-dependent inelastic fluids. Note that
recently Panda & Chhabra (2010) investigated by numerical simulations the critical
Reynolds number of the power-law cylinder flow for the range of 0.3 < n < 1.8. They
reported that the critical Reynolds number first increases with the power index, to
about n ≈ 0.6, and then decreases sharply. (In contrast, we show in this work, using
the Carreau law, that the critical Reynolds number is always decreasing on increasing
the shear-thinning.)

1.3. Structural sensitivity
Structural sensitivity analysis is used to determine the instability mechanism that
initiates the transition to an unsteady flow (Chomaz 2005). Giannetti & Luchini
(2007) analysed the instability mechanism of the flow past a stationary cylinder and
introduced the concept of structural sensitivity. The spatial structure of the modes
shows maximum amplitude of the perturbation downstream of the cylinder. However,
highest receptivity is found in the near wake (close to the cylinder). Structural
sensitivity identifies the core of instability: this is associated with the location in
space where a feedback provides the largest shift of the eigenvalues. The disturbance
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equation is forced by a local force–velocity feedback modelling the effect of a small
control device. Such a device has two distinct effects: in the quasi-static limit, it forces
the disturbance through a feedback like that studied by Giannetti & Luchini (2007).
Nevertheless, it would also modify the base flow. Marquet, Sipp & Jacquin (2008)
studied the sensitivity to base-flow modifications of the flow past a circular cylinder,
still related to the maximum variation of the eigenvalue. The authors identified the
region that most contributes to the onset of vortex shedding. The sensitivity to steady
forcing determines the regions which can stabilize the unstable global modes. This
approach is used in Marquet et al. (2009) to control separation in an S-shaped duct.
Pralits, Brandt & Giannetti (2010) used the same formulation as Giannetti & Luchini
(2007) to examine the first and second shedding modes of flow past a rotating cylinder.
These authors compared their results with the analysis of the perturbation kinetic
energy budget. They also suggested placing a small cylinder close to the main rotating
cylinder to control the instabilities based on the sensitivity maps originating from
the structural sensitivity analysis. Other investigations worth mentioning regarding
the effect of base-flow modifications are Bottaro, Corbett & Luchini (2003) for
plane Couette flow, Meliga, Sipp & Chomaz (2010a,b) who analyse compressible
axisymmetric wake flows and Alizard, Robinet & Rist (2010) concerning the flow
formed by the intersection of two perpendicular flat plates.

A recent review of linear approaches to sensitivity and control can be found in
Sipp et al. (2010). The authors describe the dynamics of instabilities and introduce
open-loop and closed-loop control strategies to suppress them. Sensitivity of globally
stable flows to transient disturbance growth is considered in Brandt et al. (2011).

The paper is organized as follows. The viscosity model and stability equations are
given in § 2. After introducing the numerical method in § 3, we present results for
shear-thinning and shear-thickening fluids in §§ 4 and 5. Section 6 reports a summary
of the main conclusions and a final discussion.

2. Problem formulation
2.1. Viscosity model

The Carreau–Yasuda model describes the behaviour of fluids with shear-dependent
viscosity, so called shear-thinning and shear-thickening fluids. The relation between
viscosity and deformation rate is given by

µ= µ̂∞
µ̂0
+
[

1− µ̂∞
µ̂0

]
[1+ (λγ̇ )a](n−1)/a

. (2.1)

In this expression, µ̂0 and µ̂∞ are the zero-shear-rate and infinite-shear-rate viscosities,
set to 1 and 0.001 in this work. µ is non-dimensional and normalized with respect to
µ̂0. The second invariant of the strain-rate tensor is denoted as γ̇ and is determined by
the dyadic product γ̇ = ((1/2)G : G)1/2, where G =∇u+ (∇u)T (see Bird et al. 1987).
The non-dimensional parameter a describes the transition between the zero-shear-rate
viscosity and the infinite-shear-rate viscosity (Bird et al. 1987). The Carreau–Yasuda
model can be fitted to the rheological behaviour of many polymeric solutions when
a = 2, also denoted the Carreau model. The power-law index n characterizes the
fluid behaviour: (i) shear-thinning when n < 1; (ii) Newtonian when n = 1; and (iii)
shear-thickening when n> 1. Here, λ is the material time constant. Newtonian fluid is



Instability of shear-thinning and shear-thickening fluids past a circular cylinder 5

10–3

10–2

10–1

100

10–2 104 106102100

FIGURE 1. Viscosity µ of Carreau-law model versus shear rate γ̇ for n= 0.5:©, λ= 0.1;
�, λ= 1;•, λ= 10; �, λ= 100.

also obtained setting λ = 0, and for large values of λ the Carreau model is reduced to
the power-law model

µ= K (γ̇ )n−1, (2.2)

where K is a consistency factor. A logarithmic plot of the viscosity versus the shear
rate for the Carreau-law model provides intuition on how the viscosity of a shear-
thinning fluid decreases when increasing the shear rate. In figure 1 the viscosity is
shown as a function of γ̇ for different λ and a fixed value n= 0.5 of the power index.
The shear-thinning effects become more evident on increasing λ and the viscosity
tends to the asymptotic value µ∞ for large shear rates.

2.2. Governing equation: base-flow and stability problem

The continuity and Navier–Stokes equations with shear-dependent viscosity govern the
flow past a stationary circular cylinder of an incompressible shear-thinning fluid. The
non-dimensional form of the governing equations is

∂ũ
∂t
+ ũ ·∇ũ=−∇p+ 1

Re
∇ · [µ(ũ)(∇ũ+∇ũT)], (2.3)

∇ · ũ= 0, (2.4)

where ũ = (ũ, ṽ, w̃) is a vector containing the non-dimensional velocity components,
p is the non-dimensional pressure and µ the viscosity defined by the Carreau model
introduced above. The Reynolds number is here defined by

Re= ρU∞D

µ̂0
, (2.5)

where µ̂0 is the viscosity at zero shear rate, U∞ is the free-stream velocity, D the
cylinder diameter and ρ the fluid density.

To perform a linear stability analysis, we introduce small perturbations in the flow
and study their spatial and temporal evolution. The flow variables are decomposed into
a two-dimensional steady base flow and a small unsteady perturbation, in general three-
dimensional. For shear-thinning and -thickening fluids the decomposition includes not
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only the velocity and the pressure but also the viscosity µ:

ũ(x, y, z, t)= Ub(x, y)+ u′(x, y, z, t), (2.6a)
p(x, y, z, t)= Pb(x, y)+ p′(x, y, z, t), (2.6b)
µ(x, y, z, t)= µb(x, y)+ µ′(x, y, z, t). (2.6c)

The base-flow variables Ub, Pb and µb are time independent and satisfy the steady
Navier–Stokes equation

Ub ·∇Ub =−∇Pb + 1
Re
∇ · [µb(Ub)(∇Ub +∇UT

b )], (2.7)

∇ ·Ub = 0. (2.8)

To derive the linearized stability equations, we first define the viscosity fluctuations
by the linear term of the Taylor expansion of the viscosity function µ(γ̇ ):

µ′ = γ̇ij(u′)
∂µ

∂γ̇ij
(Ub), (2.9)

where µ′ is a scalar quantity that can be expressed as the inner product of a vector
B and the velocity perturbation. For the sake of clarity, we present here the derivation
only for two-dimensional perturbations which are found to be the first to become
unstable; in this case the viscosity fluctuation can be written

µ′ = B (Ub)
T
·u′ = [X1 X2] ·

[
u′

v′

]
, (2.10)

with X1 and X2 defined as

X1= 2
∂µ

∂γ̇11
(Ub)

∂

∂x
+ 2

∂µ

∂γ̇12
(Ub)

∂

∂y
, (2.11a)

X2= 2
∂µ

∂γ̇12
(Ub)

∂

∂x
+ 2

∂µ

∂γ̇22
(Ub)

∂

∂y
. (2.11b)

Introducing the decomposition (2.6a), (2.6b) and (2.6c) into (2.3) and (2.4) and
neglecting higher-order terms, we can write the linearized stability equations

∂u′

∂t
+ L(Ub,Re)u′ +∇p′ = 0, (2.12)

∇ ·u′ = 0, (2.13)

where the operator L is

L(Ub,Re)u′ = u′ ·∇Ub + Ub ·∇u′ − 1
Re
∇ · [µ(Ub)(∇u′

+ (∇u′)T)+ (B(Ub) ·u
′)(∇Ub +∇UT

b )]. (2.14)

Perturbations are assumed to decay far from the cylinder and vanish at the cylinder
surface. Solutions of the stability problem are sought in the form

u′(x, y, z, t)= û(x, y) exp(σ t + iβz), p′(x, y, z, t)= p̂(x, y) exp(σ t + iβz), (2.15)

where β is the spanwise wavenumber introduced to exploit the homogeneity in the
spanwise direction z.
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Finally the stability problem reduces to the following eigenvalue problem:

σ û+ L(Ub,Re)û+∇p̂= 0, (2.16)
∇ · û= 0. (2.17)

The complex number σ is the eigenvalue of our stability problem and the complex
field q̂ = (û, p̂) the corresponding eigenmode. The real and imaginary parts of σ
represent the growth rate and circular frequency of the perturbation.

2.3. Structural sensitivity and energy budget

Structural sensitivity analysis based on the idea of a ‘wavemaker’ was introduced in
Giannetti & Luchini (2007) to identify the location of the core of a global instability.
The wavemaker is the region in the flow where variations in the structure of the
problem provide the largest drift of the eigenvalues. This will be considered in
parallel with production of perturbation kinetic energy. In this section, we follow the
derivation of the structural sensitivity as presented in Pralits et al. (2010) and include
viscosity perturbation in the formulation. We start with the perturbed eigenvalue
problem

σ ′û′ + L(Ub,Re)û′ +∇p̂′ = δH(û′, p̂′), (2.18)

∇ · û′ = 0, (2.19)

where δH is the generalized structural perturbation. It is assumed to be a momentum
force localized in space and proportional to the local velocity perturbation defined by a
(2× 2) coupling matrix δM0 and the delta function

δH(û′, p̂′)= δM(x, y) · û′ = δ(x− x0, y− y0)δM0 · û′. (2.20)

Neglecting the higher-order terms, variations of the eigenvalue δσ and of the
corresponding eigenfunction (δû, δp̂) satisfy the following expression:

σδû+ L(Ub,Re)δû+∇δp̂=−δσ û+ δM · û, (2.21)
∇ · δû= 0. (2.22)

We introduce the Lagrange identity as a function of the differentiable direct field
q= (u, p) and its adjoint field g+ = (f +,m+):

[(σ û+ L(Ub,Re)û+∇p̂) · ˆf + + (∇ · û) ·m+]
+ [û · (−σ ˆf + + L+(Ub,Re)+∇m+)+ p̂∇ · f̂ +] =∇ · J(q̂, ĝ+), (2.23)

where J is the bilinear concomitant

J(q̂, ĝ+)= Ub(û · f̂ +)+ 1
Re

[
µ(Ub)(∇f̂ + + (∇f̂ +)T) · û− µ(Ub)(∇û+∇ûT) · f̂ +

− (B(Ub) · û)(∇Ub +∇UT
b ) · f̂

+
]
+ m+û+ p̂f̂ +. (2.24)

Using (2.23), the equation for the adjoint field ĝ+(x, y)= (f̂ +, m̂+) is

−σ ˆf + + L+(Ub,Re)+∇m+ = 0, (2.25)

∇ · f̂ + = 0, (2.26)
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where L+ is the adjoint operator of the linearized Navier–Stokes equation

L+(Ub,Re)f̂ + = Ub ·∇f̂ + −∇Ub · f̂ + + 1
Re

[
µ(Ub)(1f̂ +

+ (1f̂ +)
T
)+ (∇Ub +∇UT

b ) ·∇f̂
+B(Ub)

]
. (2.27)

Considering (2.21), (2.22), (2.23), (2.25) and (2.26), taking the integral over the
whole domain D, we obtain the following:

− δσ
∫

D
f̂ + · û dA+

∫
D
f̂ + · δM · û dA=

∫
∂D

J(q̂, ĝ+) ·n dl. (2.28)

Note that the boundary conditions are set in such a way that the right-hand side of
(2.28) becomes zero. Introducing the sensitivity tensor

S(x0, y0)= f +(x0, y0)û(x0, y0)∫
D
f̂ + · û dA

, (2.29)

the expression for the eigenvalue drift is

δσ (x0, y0)=

∫
D
f̂ + · δM · û dA∫
D
f̂ + · û dA

= f̂ + · δM0 · û∫
D
f̂ · û dA

= S : δM0 = SijδM0ij. (2.30)

The core of instability can be identified by different norms of the tensor S. Here we
will show the spectral norm, the largest singular value of the tensor S.

2.3.1. Structural sensitivity to base-flow modifications
To clarify the role of the base flow in the instability and gain information about

the effect of passive control devices, we investigate the structural sensitivity due to
base-flow modifications. Here, we briefly outline the formulation presented in Pralits
et al. (2010). The expression for the eigenvalue drift is derived in two steps: first
we consider the sensitivity to an arbitrary variation of the base flow and, second, we
assume that such a variation is induced by a steady structural forcing to the steady
Navier–Stokes equations, where the structural perturbation is of the same form as that
discussed above (proportional to the local velocity). An arbitrary variation of the base
flow gives the following perturbed eigenvalue problem:

σδû+ L(Ub,Re)δû+∇δp̂=−[δσ û+ δUb ·∇û+ û ·∇δUb], (2.31)
∇ · δû= 0, (2.32)

which can be subject to the same analysis as in the previous section to obtain
an expression for the sensitivity. A base-flow variation due to a small structural
perturbation can be written as a solution of the steady linearized equations

L(Ub,Re)δUb +∇δPb = δM ·Ub, (2.33)
∇ · δUb = 0. (2.34)

Following the derivation in Pralits et al. (2010), the Lagrange identity is built
upon the base flow δQb(x, y)= {δUb, δPb} and on its adjoint field G+b (x, y)= {f +b ,m+b },
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so that the eigenvalue drift can be expressed as

δσ (x0, y0)=

∫
D
f +b · δM · Ûb dA∫

D
f̂ + · û dA

= f +b (x0, y0) · δM0 ·Ub(x0, y0)∫
D
f̂ + · û dA

= Sb(x0, y0) : δM0, (2.35)

where

Sb(x0, y0)= f +b (x0, y0)Ub(x0, y0)∫
D
f̂ + · û dA

. (2.36)

Hence different norms of the tensor Sb represent the structural sensitivity to a small
local force proportional to the local base-flow velocity.

2.3.2. Perturbation kinetic energy budget
Analysis of perturbation kinetic energy is a classical approach to examine instability

mechanisms. The velocity fluctuations are complex functions (see (2.15)), and thus
the evolution equation for perturbation kinetic energy is obtained by multiplying
the linearized stability equations (2.12) and (2.13) by the complex conjugate of the
velocity fluctuation u′∗i (in the following ∗ denotes the complex conjugate). The kinetic
energy budget reads

d(E)
dt
= ∂

∂xj

[
−1

2
Uju

′
iu
′∗
i −

1
2
(u′∗j p′ + u′jp

′∗)+ 1
Re
µb(u

′∗
i eij + u′ie

∗
ij)

+ 1
Re

Eij(u
′∗
i µ
′ + u′iµ

′∗)
]
− 1

2
(u′∗i u′j + u′iu

′∗
j )
∂Ui

∂xj
− 2

Re
µb(eije

∗
ij)

− 1
Re
(µ′e∗ijEij + µ′∗eijEij), (2.37)

where Eij and eij are the shear-rate tensors corresponding to the base flow and
perturbations and E = (1/2)(u′iu′∗i ) is the pertubation kinetic energy. The first term on
the right-hand side of the (2.37) is the divergence of four transport terms that do not
contribute to the energy amplification once integrated across the domain (perturbations
are assumed to decay to zero far away from the cylinder). The second and the
third terms are the classic production and viscous dissipation. The last term is an
additional term due to the non-Newtonian effects. Using the Carreau model (2.1) and
the expression for the viscosity fluctuation (2.9), we obtain

µb = µ̂∞
µ̂0
+
[

1− µ̂∞
µ̂0

]
[1+ 2λ2E2

ij](n−1)/2
, (2.38)

µ′ = eij
∂µb

∂Eij
= AeijEij, (2.39)

where the coefficient

A= λ2

[
1− µ̂∞

µ̂0

] [
n− 1

2

] [
1+ λ

2

2
E2

ij

](n−3)/2

. (2.40)



10 I. Lashgari, J. O. Pralits, F. Giannetti and L. Brandt

The last term on the right-hand side of (2.37) therefore becomes

− 2
Re

A(eijEij) (eijEij)
∗ =− 2

Re
A|eijEij |2 . (2.41)

For shear-thinning fluids, n< 1, the coefficient A is negative and the last term in (2.37)
is always positive; it can be seen as an additional production term in the perturbation
kinetic energy budget. The opposite is true for shear-thickening fluids.

3. Numerical method and validation
The numerical code used for the stability calculations presented here is a modified

version of the code employed by Giannetti & Luchini (2007) and Pralits et al. (2010).
As a first step, we solve the nonlinear steady Navier–Stokes equations via Newton
iterations and compute the base flow. Eigenvalues and eigenmodes of the linearized
stability problem are computed via the Arnoldi algorithm with a shift and invert
strategy. The solutions of the linear systems involved in the computations of both
the base flow and the linear stability are determined by the use of a nonsymmetric
multiFrontal sparse LU decomposition (UMFPACK package). The adjoint modes are
computed as left eigenvectors of the discrete systems derived from the discretization of
the linearized equations. In this way, the sensitivity function can then be computed by
the product of the direct and the adjoint fields.

We use a second-order finite-difference code where the Navier–Stokes equations are
solved on a staggered Cartesian mesh without considering body-fitted coordinates for
the cylinder. The equations are discretized starting from their conservative form. An
immersed boundary technique is implemented to impose zero velocity on the cylinder
surface: velocities at the grid points near the cylinder surface are forced to those
values needed to fulfil the zero velocity condition on the surface by interpolation
(see Giannetti & Luchini 2007, for more details). To obtain more accurate results,
stretching is implemented to cluster grid cells near the cylinder. Discretization of the
viscous terms involving γ̇ requires special attention: compared to the Newtonian case,
a larger stencil is needed to obtain second-order accuracy. Generally, increasing the
width of the discretization stencil is not a problem, although the resulting scheme
may be more time and memory demanding. However, when an immersed boundary
technique is used to impose the boundary conditions on the wall of the cylinder,
care must be taken in order to coordinate the interpolation points with those of
the discretization so that the solutions inside and outside the cylinder do not affect
each other. This is achieved by discretizing the γ̇ term by one-sided higher-order
formulae (second or third order) with stencils having at maximum one point inside the
cylinder, exactly as in the interpolation scheme used for the immersed boundary. Tests
performed on different geometries confirmed the second-order global accuracy of the
adopted scheme.

The geometry and computational domain used are shown in figure 2, where the
boundary conditions at the outer boundary are also reported. The cylinder is located
symmetrically between the upper and the lower boundaries of the domain and its
diameter D is set equal to one. The Cartesian coordinate system has its origin at
the centre of the cylinder. In most of the cases, the domain size is chosen to be
Lx = 50 (x ∈ [−15, 35]) and Ly = 30 (y ∈ [−15, 15]). The domain is large enough to
satisfy the assumption of unconfined flow. The number of grid points along the x- and
y-directions is nx = 260 and ny = 180 respectively. The coordinates (xi, yj) of the grid
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FIGURE 2. Mesh used for the present simulations; only one out of eight lines passing
through the pressure nodes are drawn for clarity. The boundary conditions pertaining the
outer boundary are also reported for the base flow and perturbation. Zero velocity is imposed
at the surface of the cylinder. ωz, vorticity.

point nodes in the domain are specified as in Giannetti & Luchini (2007),

xi = xc

{
1+ sinh[τx(i/nx − Bx)]

sinh(τxBx)

}
(3.1)

and similarly for yj. In the expression above, Bx is defined as

Bx = 1
2τx

[
1+ (exp(τx)− 1)(xc/Lx)

1+ (exp(−τx)− 1)(xc/Lx)

]
(3.2)

where xc (and analogously yc for the discretization in the cross-stream direction) is the
coordinate of the cylinder centre (xc = 0, yc = 0). τx is the stretching parameter and
can range from zero for equi-spaced grid points to large values when clustering of the
grid cells near the cylinder is desirable. Typically we use 60 stretched grid points in
x ∈ [−15,−1], 60 equi-spaced grid points in x ∈ [−1, 1] and 140 stretched grid cells
in x ∈ [1, 35] along the streamwise x-direction. In the y-direction, we use 60 stretched
grid points in both y ∈ [−15,−1] and y ∈ [1, 15] and 60 equi-spaced grid points in
y ∈ [−1, 1].

Boundary conditions are specified as in Giannetti & Luchini (2007) and are listed in
figure 2, where Ub,Vb and Pb refer to the base-flow quantities and u, v and p to the
velocity perturbation. Zero velocity is imposed at the cylinder surface.

3.1. Validation
The code is initially validated against the results by Nouar et al. (2007), who
ibvestigated the instability of a shear-thinning fluid in channel flow. The results from
our code are in perfect agreement with the results of Nouar et al. (2007) for the
base flow and instability of a parallel flow. As discussed below, stability analysis of
the cylinder flow is also validated against nonlinear simulations performed with the
spectral-element method.

A parameter study for resolution and domain size is carried out to determine the
best grid in terms of accuracy and computational costs. We examine the difference in
eigenvalues and critical Reynolds number when increasing resolution from 260 × 180
to 390×270 grid points in the x–y plane at fixed domain size, and when increasing the
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FIGURE 3. (a) Neutral curves for Re, and (b) frequencies σi from linear instability analysis
versus power index for various λ values: − · − · −·, λ = 0.1; ......, λ = 1; —–, λ = 10 and
− − −, λ = 100. Symbols indicate results from direct numerical simulations: ×, unstable
cases; and +, stable cases.

domain from Lx = 50,Ly = 30 to Lx = 75,Ly = 45 with fixed resolution. The difference
is below 1 % for all cases and this motivates the choice of the grid whose details have
been given above.

3.1.1. Direct numerical simulation
To further validate our results we perform direct numerical simulation of the

nonlinear equations using the code Nek5000 (Fischer & Rønquist 1994). This is
adapted for the simulation of complex fluids by adding explicit terms that account
for the shear-thinning and -thickening. Nek5000 is based on the spectral-element
method (SEM) (Patera 1984). This method has similarities with both finite-element
methods (FEM) and spectral methods. The computational domain is sub-divided into
a number of elements, where the governing equation is discretized and cast into
variational formulation. The solution is approximated by the Galerkin method as
an expansion in a finite set of Legendre basis functions, which together with the
corresponding Gauss–Lobatto grid enable exact Gaussian quadrature for the evaluation
of the element-wise integrals. For the results presented here we used a grid with
(56 × 26) elements and sixth polynomial order and the same computational domain
used for linear instability calculation (see figure 2).

4. Results for pseudo-plastic fluids
We investigate shear-thinning and shear-thickening effects on the instability of the

cylinder flow. The shear-dependent viscosity is defined by the Carreau model where
the shear-thinning effect is more pronounced for low values of power index n and
large values of material time constant λ. The power index and the time constant are
chosen here in the range 0.4 6 n 6 1.75 and 0.1 6 λ 6 100. In this section we will
consider only shear-thinning fluids (n< 1) whereas shear-thickening fluids (n> 1) will
be considered in the next section. It is relevant to note here that values of n< 1 can be
shown to match most of experimental observations for polymer solutions (Bird et al.
1987).

First we report the critical Reynolds number, the Reynolds number at which the flow
first becomes unstable. Stability calculations have been carried out for several values
of the spanwise wavenumber β and the first mode to become unstable is found to
be a two-dimensional mode, as for a Newtonian fluid, for all cases considered here.
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We display the critical values obtained with the Carreau law in figure 3(a), where
the neutral curves are displayed versus power index n for four different values of the
time constant λ = 0.1, 1, 10 and 100. The shear-thinning effect induces a monotonic
decrease of the critical Reynolds number. For the strongest shear-thinning examined,
n= 0.4 and λ= 100, the critical Reynolds number decreases from 47 for a Newtonian
fluid to ∼3. Figure 3(b) displays the frequency (imaginary part of the eigenvalue) of
the unstable solutions just above the neutral curves. The frequency increases when
increasing the shear-thinning from 0.735 for the Newtonian case to 1.04 for λ = 10
and n= 0.2.

The results of the finite-difference stability code have been validated by direct
numerical simulation (DNS) using Nek5000. As shown in figure 3(a), unstable
(time-periodic) and stable solutions are obtained just above and below the neutral
curves computed from linear stability for several test cases. In figure 3(b) we report
the frequency of the periodic limit cycle obtained via DNS. The frequency of the
oscillations is also in agreement with the results obtained with the linearized equations
and a different spatial discretization. Indeed, close to the neutral point we expect linear
stability to predict accurately the frequency of the limit cycle: this is no longer the
case further away from the neutral conditions.

4.1. Base-flow characteristics
In this section we examine the effect of shear-thinning on the steady base-flow
solutions. First, we analyse the shear-thinning effect on the size of the recirculating
bubble behind the cylinder. We plot the streamline associated with separation in
figure 4(a) and, in white, the region delimited by zero velocity for a fixed value of
the Reynolds number Re = 40, λ = 10 and different values of n. The recirculation
region elongates considerably as shear-thinning becomes stronger: it extends from ∼3
diameters behind the cylinder for the Newtonian case (n = 1) to ∼10 diameters for
n = 0.4. Figure 4(b) displays the streamlines and zero-velocity curve for λ = 10 along
the neutral curve; the recirculation bubble is seen to approach a similar length at
critical conditions.

To quantify this effect we report the dimensions of the recirculation bubble versus
the Reynolds number for a fixed value of λ = 10 and different values of n in figure 5.
The length of the steady recirculation bubble for Newtonian fluid increases linearly
with Reynolds number (Giannetti & Luchini 2007); we show in figure 5(a) that this is
true also for the values of the power index examined here. In figure 5(b), we instead
report the width of the recirculation region. The recirculating bubble widens with
shear-thinning in all the cases.

The drag coefficient for shear-thinning Carreau cylinder flow with λ = 10 and
several n is displayed in figure 6. In the Newtonian case, the drag coefficient reduces
from ∼2.7 to 1.5 when the Reynolds number increases from 10 to 40, as already
known (see e.g. Kunde & Cohen 1990). Shear-thinning decreases the drag coefficients
significantly for all Reynolds numbers between 10 and 40. For a fixed Reynolds
number equal to 10 the drag coefficient reduces from 2.7 for the Newtonian case
to 1.24 when n = 0.4. This observation is in agreement with the results by Patnana
et al. (2009) at subcritical conditions, who show that for a fixed value of the Reynolds
number the drag coefficient of power-law fluids increases with increasing value of
power index (n).

Coelho & Pinho (2004) indicate that the reduction in the turbulent shear stresses
in the wake of the cylinder is responsible for elongating the recirculation bubble. A
similar reduction in drag and elongation of the recirculation bubble is observed here
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FIGURE 4. Visualization of the recirculation bubble behind the cylinder for different values
of the exponent n. (a) Re = 40 and λ = 10, (b) critical values of the Reynolds number for
fixed λ= 10.

for laminar flows. This can be explained by considering the reduction in shear stress,
associated with shear-thinning, occurring on the sides of the recirculation region where
the largest shear is found. This causes an increase of the pressure behind the cylinder
to keep the balance of forces within the recirculation bubble. As shown in figure 4(a),
separation does indeed move closer to the top/bottom of the cylinder when decreasing
the value of n, which also explains the increase in wake width. The reduction of the
shear stress also causes a decrease of the entrainment by the shear layers of fluid from
the region behind the cylinder during the transient to the steady state. This elongates
the recirculating bubble.
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4.2. Global modes and sensitivity
The direct and adjoint modes indicate the location of maximum amplitude of the
perturbation and the region of highest receptivity respectively. As shown among others
by Giannetti & Luchini (2007) for Newtonian fluids, the maximum of the direct modes
is reached far downstream of the cylinder surface, while the peak of the adjoint
modes is located in the near wake. The characteristics of the direct global modes for
shear-thinning fluids are displayed in figure 7 where we show the spatial distribution
of the velocity perturbation magnitude at critical Reynolds numbers for λ = 10 and
four different values of n. The largest fluctuations are located far downstream of
the cylinder for Newtonian flow, at a distance of ∼20 diameters. These peaks move
gradually upstream when increasing shear-thinning and are located only 5 diameters
downstream of the cylinder for n = 0.4: the region where significant fluctuations can
be observed also shrinks significantly. As a consequence of this more pronounced
localization, the normalized values of the maxima of û and v̂ increase from 0.008 and
0.013 for n= 1–0.022 and 0.02 for n= 0.4 (not shown here).
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The regions most receptive to momentum forcing are visualized in figure 8 by the
spatial distribution of the adjoint modes at critical Reynolds number, again for λ = 10
and for four different values of the shear-thinning exponent n. In all cases, the region
of maximum receptivity is localized in the near wake of the cylinder, symmetrically
on the upper and lower sides of the cylinder surface. Unlike the direct modes, the
adjoint modes decay quickly both upstream and downstream of the cylinder, x < −2
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FIGURE 9. Sensitivity map for a fixed λ= 10 and four values of n along the neutral curve.

and x > 4. These characteristics of the adjoint field remain almost constant over the
range of values of the rheological parameters examined in this work, although one
can notice an increased localization of the peak of the adjoint velocity field when
increasing shear-thinning (deceasing n). The differences in the spatial localization of
the maxima of the direct and adjoint modes results from the convective non-normality
of the Navier–Stokes equations (Chomaz 2005; Sipp et al. 2010).

The instability mechanism, however, cannot be deduced from the study of either
eigenfunction separately. The onset of instability is generated by a self-exciting
mechanism in the region of flow with the role of wavemaker. This wavemaker
region can be identified by structural sensitivity analysis of the unstable modes
introduced above. The spatial map of the spectral norm of the sensitivity tensor S
(see § 2.3, (2.29) and (2.30)) is shown in figure 9 for λ = 10, again at the critical
Reynolds number pertaining to different values of n. Results for different values of the
parameter λ would show a similar trend. In all cases, the core of instability consists
of two lobes placed symmetrically downstream of the cylinder. Although the spatial
separation between the maxima of the direct and adjoint modes decreases with shear-
thinning, the main characteristics of the sensitivity field do not change considerably.
This finding may be explained by the fact that the size of the recirculation bubble,
clearly associated with the instability generation by the sensitivity map in figure 9,
is not substantially varying at critical conditions as shown in figure 4(b). The most
noticeable effect associated with shear-thinning is that the area of maximum sensitivity
shrinks when decreasing n while the peak value of the sensitivity function increases
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λ = 10 and four values of n. The contour lines represent the regions of largest structural
sensitivity.

(note that the sensitivity is obtained at lower nominal Reynolds number for lower
values of n).

The viscosity of a shear-thinning fluid varies with the local shear rate (µlocal(γ̇local)).
Therefore, a local Reynolds number can be defined as

Reµ = ρU∞D

µlocal
, (4.1)

to gain further understanding of the instability mechanism. The spatial distribution of
the local Reynolds number Reµ is depicted in figure 10 for the same parameters
considered above. The colour map is fixed for each plot to be in the range
between 0 and 60 (Re = 47 being the critical value for Newtonian flow). The local
Reynolds number appears to be approximately equal to or slightly larger than 47
in the region of largest sensitivity in all cases although the local Reynolds number
can significantly decrease just outside the regions of highest shear. The data in
the figure therefore confirm that the same physical mechanisms is at work: shear-
thinning effects act through significant modification of the base flow at given Reynolds
number whereas the instability seems to appear when similar characteristics of the
wake are occurring, both in terms of local viscosity and size of the recirculation
bubble.
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Index n 1.75 1.5 1.25 1 0.8 0.6 0.4

λ= 1 47.17 47.16 46.85 47 48 48.6 50.32
λ= 10 48.72 47.84 47.39 47 46.98 46.96 48.63
λ= 100 48.7 47.62 47.15 47 47.76 47.5 49.375

TABLE 1. Stability Reynolds number Re along the neutral curves (note that
shear-thickening results are also reported here).

To corroborate this observation, we define an average viscosity using the square of
the sensitivity function as weight

µ=

∫
D
µ(x, y)S (x, y)2 dA∫

D
S (x, y)2 dA

, (4.2)

where D is the computational domain, S is the sensitivity defined above. An instability
Reynolds number can thus be defined as

Re= ρU∞D

µ
. (4.3)

Table 1 shows the value of this stability Reynolds number along the neutral curves:
a value close to 47 is found for all cases (this applies also to shear-thickening fluids
discussed in the next section).

Sensitivity analysis of base-flow modification provides information about the effect
of base flow on the instabilities and the role of passive control devices. The spatial
distribution of the structural sensitivity due to base-flow modifications is presented
in figure 11, for λ = 10 at four critical Reynolds numbers (see § 2.3.1). For all the
cases, the sensitivity to base-flow modifications is considerably stronger than that to
structural perturbations, as shown by Giannetti & Luchini (2007) for a Newtonian
fluid. For example, for a value n = 0.4 of the power index and λ = 10, the maximum
value of the sensitivity to base-flow modification is ∼4 while it is ∼0.5 for time-
dependent structural perturbations. The area of maximum sensitivity is localized close
to the cylinder surface, on the upper and lower sides. As for the wavemaker in
figure 9, shear-thinning effects do not change the main features of the sensitivity map:
the area of maximum sensitivity becomes thinner while the magnitude increases when
decreasing n.

4.3. Energy analysis
The instability mechanism is now examined by considering the perturbation kinetic
energy budget. Figure 12 shows the contribution from the different terms in the energy
budget (2.37) integrated over the computational domain. The data pertain to fixed
Reynolds number Re = 20 and λ = 10. The magnitude of the production and viscous
dissipation terms decreases with the power index n, whereas the additional positive
contribution related to shear-thinning effects becomes significant only for n. 0.5. The
sum of the two production terms and of viscous dissipation, normalized with the total
kinetic energy of the mode, yields the temporal growth rate (solid line in the figure);
it crosses the value of zero for n ≈ 0.6, the value of the critical Reynolds number
presented above.
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The spatial distribution of the total kinetic energy production of the perturbation
is reported in figure 13. Here, one can distinguish regions of positive and negative
production. We notice that the positive production becomes more and more localized
with increasing shear-thinning and the magnitude of the peak production increases.
The region of large sensitivity is also reported in the figure and related to that
of largest energy production: for Newtonian flow and the largest values of n,
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the wavemaker is clearly located upstream of the region of largest production of
fluctuation energy. Only for the lowest value of n examined do the two regions
partially overlap. As discussed e.g. in Pralits et al. (2010), structural sensitivity and
kinetic energy budget provide different information about the instability process. The
former identifies the region where the unstable perturbation is created (the pocket of
absolute instability in a weakly non-parallel context) while the latter identifies where
the largest amplification is attained (a region of strong convective instability in a
weakly non-parallel flow).

As introduced in § 2.3.2, an additional production term, strictly positive, appears in
the case of shear-thinning fluids, −(2/Re)A|eijEij |2. Its spatial distribution is displayed
in figure 14 for the same fluid considered in figure 13. This extra production term is
zero everywhere in the domain for n = 1 and gradually increases with the magnitude
of the shear-thinning effects. The location and extent of the density of the additional
production are very similar to those of the total production displayed in figure 13.
The total production of kinetic energy is largest downstream of the region of largest
structural sensitivity. The perturbations originate inside the wavemaker and propagate
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as waves downstream. They are most amplified further downstream where the largest
production is found.

4.4. Viscosity fluctuation
Nouar et al. (2007) note that to assess whether there is stabilization and by how much
in the presence of shear-dependent viscosity, it is important to account for a viscosity
fluctuation in the perturbation equations; failure to do so can yield qualitatively and
quantitatively incorrect conclusions. This is demonstrated by these authors, at least
for the case of plane channel flow where the critical Reynolds numbers are about
a factor 2 larger when the viscosity perturbation is not taken into account. In this
section we therefore investigate in further detail the effect of viscosity fluctuation
(µ′) on the instability mechanism for the flow past a circular cylinder. The results of
stability calculations performed excluding a viscosity disturbance in the perturbation
equations are reported in figure 15, where both the critical Reynolds number and the
frequency of the least-stable mode are displayed. The flow is slightly stabilized only
at the smallest small values of the power exponent n when excluding µ′ from the
equations. We can therefore conclude that the viscosity fluctuation has no effect on the
first bifurcation for the flow past a cylinder of a shear-thinning fluid.

5. Dilatant fluids
In this section we examine the instability of dilatant or shear-thickening fluids

flowing past a circular cylinder. In contrast with the shear-thinning fluid, the viscosity
of the shear-thickening fluids increases with the shear rate of the flow. This behaviour
is described by the Carreau model when the power index n> 1.

The critical Reynolds number versus the exponent n for a shear-thickening fluid is
shown in figure 16(a), where we display data for four different values of the time
constant λ = 0.1, 1, 10 and 100. The shear-thickening effect stabilizes the cylinder
flow dramatically when considering the Reynolds number based on the zero-shear-rate
viscosity. For n = 1.4 and λ = 10, the critical Reynolds number increases from 47 for
a Newtonian fluid to ∼102. The symbols in the figure represent results obtained by
DNS of the full nonlinear Navier–Stokes equations and validate the linear stability
analysis. The results are consistent with those obtained for shear-thinning fluids; in
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this case the increase of the local viscosity prevents the formation of a sufficiently
long recirculation bubble and thus delays the onset of the unsteady flow. Figure 16(b)
displays the frequencies of the solutions just above the neutral curve. The frequency of
the unstable modes decreases from 0.735 for the Newtonian case to 0.65 for λ = 10
and n= 1.4.

The structural sensitivity and the local Reynolds number Reµ are reported in
figure 17 for different values of the exponent n. As for the case of shear-thinning
fluids, the region of largest sensitivity, the wavemaker, does not vary with the
magnitude of the non-Newtonian effects. One can just note an increase of the area of
maximum sensitivity for increasing n. The local viscosity can decrease to yield a local
value Reµ ≈ 50 at the core of the instability although it may be lower (higher Reµ) in
the region further downstream. Indeed, as reported in table 1, the stability Reynolds
number Re obtained by averaging the local Reµ with the structural sensitivity is ∼47
also for shear-thickening fluids. The sensitivity of shear-thickening fluids to base-flow
modifications presents the same characteristics as that of shear-thinning fluids. Further,
as noted here for the wavemaker, the area of maximum sensitivity increases while the
magnitude of the sensitivity decreases on increasing the power index n. In summary,
the physical mechanisms associated with the reduction of the critical Reynolds number
discussed for shear-thinning fluids can be applied, in the opposite direction, to the
behaviour of shear-thickening fluids.

6. Discussion and conclusions
We have investigated the onset of the first instability for the flow past a circular

cylinder of shear-thinning and shear-thickening fluids. The shear-dependent viscosity
is modelled by the Carreau law where the rheological parameters, i.e. the power
index and the material time constant, are chosen in the range 0.4 6 n 6 1.75 and
0.1 6 λ 6 100. Structural sensitivity analysis based on the idea of a wavemaker
is used to identify the core of the instability. Sensitivity analysis to base-flow
modifications is employed to investigate the effect of a local steady forcing on
the instability. Perturbation kinetic energy budget is also considered to examine the
physical mechanisms responsible for the production of the instability. This work
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FIGURE 17. Spatial distribution of the local Reynolds number along the neutral curve for
λ = 10 and values of n listed on each plot. The contour lines represent the regions of largest
structural sensitivity.

presents the first global linear stability analysis of non-Newtonian fluids for the
configuration examined. The main conclusions can be summarized as follow.

It is observed that the first bifurcation occurs in all cases considered for two-
dimensional modes, as for the Newtonian case. Floquet analysis of the instability of
the limit cycle at higher Reynolds numbers is therefore a relevant extension of the
present study. The shear-thinning effect destabilizes the cylinder flow dramatically
when defining the Reynolds number with the zero-shear-rate viscosity. For the
strongest shear-thinning effect, n = 0.4 and λ = 100, the critical Reynolds number
decrease from 47 for a Newtonian fluid to ∼3. The frequency of the unsteady
solutions computed via DNS just above the neutral curves increases with shear-
thinning from 0.735 for the Newtonian case to 1.04. In the case of shear-thickening
fluids, the critical Reynolds number increases with the time constant λ and the
exponent n. For n = 1.75 and λ = 10, the critical Reynolds number increases from
47 for Newtonian fluids to ∼193. The corresponding frequencies of the solutions just
above the neutral curve decreases from 0.735 to 0.65. The numerical simulation of the
full nonlinear equations also provides a validation for the results presented.

The direct and adjoint modes indicate the location of maximum amplitude of the
perturbation and the region of highest receptivity in the flow field. The maxima of
the direct global modes are located far downstream of the cylinder for Newtonian
flow and move gradually upstream with shear-thinning when considering the flow
just above critical conditions. In all the cases, the regions of maximum receptivity
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are localized in the near wake, close to the upper and lower sides of the cylinder
surface. The wavemaker, the core of the instability, is found to be in the two
lobes placed symmetrically downstream of the cylinder, similarly to what is found
in the Newtonian case (Giannetti & Luchini 2007; Marquet et al. 2008). The area of
maximum sensitivity becomes more and more localized when increasing shear-thinning
effects, while it becomes more diffuse for shear-thickening fluids. The region of
maximum sensitivity to base-flow modifications is found close to the cylinder surface
in the upper and lower sides for all the cases examined.

The total production of perturbation kinetic energy is largest downstream of
the region of the wavemaker. The perturbations originate from the region of the
wavemaker and are most amplified further downstream where the largest production
is observed, possibly due to strong shear rate. We further examine the effect of the
viscosity fluctuation (µ′) on the instability of the flow past a cylinder, and analysis
of the perturbation kinetic energy budget reveals that an additional production term is
originated in the presence of shear-dependent viscosity. This term is strictly positive
for shear-thinning fluids and negative for shear-thickening fluids. We demonstrate
that µ′ does not affect the neutral curves nor the core of instability. However it is
responsible for increased amplification of the disturbance kinetic energy downstream
of the region of the wavemaker in the case of shear-thinning fluids, while the opposite
applies to dilatant fluids.

As the instability mechanism is not changed significantly by shear-thinning and
shear-thickening, we explain the difference in critical Reynolds number by the effect
that the non-Newtonian character of the fluid has on the steady base flow. We show
that the drag coefficient decreases significantly with shear-thinning for Reynolds
numbers between 10 and 40. The recirculating bubble behind the body elongates
considerably with the shear-thinning effect, while it shortens for shear-thickening
fluids. As an example, at Re = 40, the bubble extends from ∼3 diameters for the
Newtonian case to 10 diameters for n = 0.4 and λ = 10. The shear-thinning effects
also intensifies the magnitude of vorticity in the region close to the cylinder surface.
These effects can be explained by considering the reduction in shear stress, associated
with shear-thinning, occurring in the regions of largest shear on the sides of the
recirculation region.

Most importantly, we show that at critical conditions the recirculation region
approaches the same size for all cases considered here. Thus, there appears to
be a critical configuration of the wake for the onset of the instability, which is
then mainly of inviscid type. These critical conditions are determined by the local
viscosity creating the separation region. We displayed the spatial distribution of a local
Reynolds number based on the local value of the viscosity. Along the neutral curves,
we did indeed find that the same region around the cylinder represents Reynolds
number equal to or around 47 for both pseudo-plastic and dilatant fluids. This region
where the local Reµ ≈ 50 overlaps significantly with the area of largest structural
sensitivity.

Nouar et al. (2007) discuss the importance of the choice of the viscosity used to
define the Reynolds number; the conclusions when comparing results for fluids with
different rheological properties, including Newtonian fluids, can indeed depend on
the choice of the viscosity scale. They argue that the tangent viscosity evaluated at
the wall is a more relevant choice than the average effective viscosity for the case
of plane channel flow. The extension to an open configuration like that considered
here is not straightforward: an effective viscosity averaged over all the domain is
certainly not useful as the core of the instability is localized in the near wake. In the
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same spirit, the shear stress at the wall may not be that relevant for separating flows
where pressure gradient effects are more relevant. Therefore here we decided to define
a stability Reynolds number obtained as a weighted average of the local Reynolds
number over the whole domain where the weight function is the norm of the structural
sensitivity. In this way we obtain a value of the critical Reynolds number of ∼47 for
all cases considered.

This study represents a first theoretical analysis of the instability mechanisms in
the wake past a solid bluff body for inelastic non-Newtonian fluids. The work can
therefore be extended to consider a confined object (Camarri & Giannetti 2007, 2010),
as well as an array of objects (Nejat et al. 2011).
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