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A weakly nonlinear approach is described to identify the couple of oblique waves capable
to optimally excite transition to turbulence in a plane shear flow. Optimal oblique wave
pairs are found to exist in a very narrow wavenumber range – demonstrating the strong
selectivity of the identified mechanism – and lead to rapid breakdown past a well defined
threshold value of the disturbance amplitude. Direct numerical simulations of the Navier-
Stokes equations corroborate the weakly nonlinear results.

1. Introduction

The breakdown of laminar shear flows is a central problem in fluid mechanics since
the early experiments by Reynolds (1883a,b) in pipe flow. Despite the simplicity of uni-
directional shear flows (plane Poiseuille and Hagen-Poiseuille, Couette, water-table flows
and combinations thereof), the physical processes by which environmental effects trig-
ger transition to turbulence are still largely unexplained; this is partly due to the fact
that such flows undergo transition at Reynolds numbers for which the linear hydrody-
namic stability equations predict a stable behavior, and to the non-normal nature of the
equations themselves. The transition phenomenon in such flows must thus be based on
nonlinear mechanisms, possibly exploiting transient disturbance energy amplification.

A recent approach to identify initial disturbances of finite amplitude capable to opti-
mally initiate the transition process relies on nonlinear optimization theory. A complete
review of the theory is given by Kerswell et al. (2014) and Luchini & Bottaro (2014).
Such a theory is very powerful, the main drawback being that it is virtually impossible
to explore the full parameter space, because of the computational cost of carrying out
many direct simulations in the adjoint looping procedure until convergence of the chosen
cost functional, for each set of parameters.

The need for an alternative optimization strategy is here coupled to the investigation
of a physical mechanism believed to be central to turbulence breakdown in parallel shear
flows: the growth and interaction of oblique waves.

In a recent paper, Pralits et al. (2015) have described a weakly non-linear approach
capable to identify disturbances growing optimally on top of a mean flow distorted by
the Reynolds stresses produced by the disturbances themselves. The results of that study
depart significantly from previous, linear, optimal perturbation analyses and point to very
receptive regions of wavespace which can support a self-sustaining cycle, as demonstrated
by companion numerical simulations. That analysis was however truncated too early (in
terms of the Fourier modes retained) to allow the determination of correct threshold
amplitudes of transition to turbulence. The goal which we set in the present paper is to
extend that work to identify the couple of obliquely travelling waves capable to optimally
trigger transition.
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The role and importance of oblique waves in the breakdown of shear flow is by-now well
established. The original work on the issue dates to the early nineties, when Schmid &
Henningson (1992) described a transition scenario in plane Poiseuille flow which occurred
on a much faster time scale than that based on the three-dimensional destabilization of
initially two-dimensional streamwise travelling waves. Interestingly, the oblique transition
scenario by Schmid & Henningson was sped up by an increase in initial amplitude and
wave angle; waves with a spanwise wavenumber β larger than the streamwise one (α)
experienced more rapid amplification and faster spreading of the spectral energy into
modes with high streamwise wavenumbers.

Here, the oblique transition scenario is optimized by focussing on the oblique waves
and on the ensuing streamwise streak/vortex mode; the initial (algebraic) growth of the
oblique waves in subcritical conditions is enhanced by the presence of a strong mean flow
distortion, in an interaction process which feeds onto itself. Somewhat suprisingly, the
transition threshold of the weakly nonlinear approach is robust, i.e. it is confirmed by
direct numerical simulations.

2. Formulation of the weakly non-linear problem

The decomposition of the whole field starts by considering a pair of oblique waves of
wavevector (α,±β) and amplitude ε. First-generation interactions yield two ε2 terms:
one represents the mean flow correction, denoted with subscript 00, and the second,
which behaves like e2iβz, represents a streamwise-independent streak/vortex. Other first-
generation terms of wavevectors (2α, 0) and (2α,±2β) are not included on account of
the numerical results by Schmid & Henningson (1992) which show that such terms are
of smaller amplitude than the others. This aspect will be elaborated further on. The
decomposition reads:


U(y)

0
0

P (x)

 + ε


u1±1(y, t)
v1±1(y, t)
w1±1(y, t)
p1±1(y, t)

 ei(αx±βz) + ε2


u00(y, t)
v00(y, t)
w00(y, t)
p00(y, t)

 + ε2


u02(y, t)
v02(y, t)
w02(y, t)
p02(y, t)

 e2iβz + c.c., (2.1)

with both the base flow [U, 0, 0, P ]T and the mean flow distortion purely real fields; c.c.
indicates the complex conjugate of a complex vector, also indicated with the superscript
* next to the name of the variable. Replacing into the Navier-Stokes equations, collect-
ing like-order terms and invoking the technique of composite asymptotic approximations
(Cousteix & Mauss 2007), we find at order zero the (real) equation for the base flow:

dP

dx
=

1

Re

d2U

dy2
, (2.2)

with Re the Reynolds number. In the Couette flow case considered here Re is based on
the half-channel thickness, h, the modulus of the plates’ velocity, U , and the kinematic

viscosity, ν; thus
dP

dx
= 0 and U = y, with y ranging from -1 to +1. At order ε, two
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systems for modes (α, β) and (α,−β) are found. The system for mode (α, β) reads:

iαu11 + v11y + iβw11 = 0, (2.3)

u11t + iα(U + ε2 u00)u11 + v11(U + ε2 u00)y + iαp11 =
1

Re
∆u11, (2.4)

v11t + iα(U + ε2 u00)v11 + p11y =
1

Re
∆v11, (2.5)

w11t + iα(U + ε2 u00)w11 + iβp11 =
1

Re
∆w11, (2.6)

where ∆ = ∂2/∂y2−α2−β2. In equations (2.3-2.6) subscripts t and y denote partial differ-
entiation with respect to time and to the wall-normal coordinate. These equations are ac-
companied by no-slip conditions on both the upper and lower walls and by an initial con-
dition u11(y, t = 0) which we will optimize for (the notation uij = (uij , vij , wij) is used).
The system of equations which yields u1−1 is the same as (2.3-2.6) except for replacing
+iβ with −iβ everywhere, and symmetry yields (u1−1, v1−1, w1−1) = (u11, v11,−w11).
At O(ε2) two further systems describing, respectively, the streamwise-independent modes
(0,0) and (0,2β) are found. The first is the purely real system:

u00t −
1

Re
u00yy = Fu, v00 = w00 = 0, p00y = Fv, (2.7)

while the second is a complex system:

v02y + 2iβw02 = 0, (2.8)

u02t + v02(U + ε2 u00)y −
1

Re
(u02yy − 4β2u02) = fu, (2.9)

v02t + p02y −
1

Re
(v02yy − 4β2v02) = fv, (2.10)

w02t + v02(ε2 w00)y + 2iβp02 −
1

Re
(w02yy − 4β2w02) = fw, (2.11)

plus no-slip conditions at the walls for both set of modes. System (2.7) is ruled by a
normal operator and growth is uniquely related to the terms on the right hand sides of
the equations; conversely, the operator of the (0,2β) mode is nonnormal so that the mode
is susceptible to large transient amplification. The streamwise-independent modes are
forced in the momentum equations by the Reynolds stress vectors (Fu, Fv) and (fu, fv, fw)
which arise from primary interactions. All forcing terms are real, aside from fw which is
purely imaginary; they read:

Fu = −2v11u
∗
11y + 2iβw11u

∗
11 − ε2(v02u

∗
02y − 2iβw02u

∗
02) + c.c.,

Fv = −2iαu∗11v11 − 2v11v
∗
11y + 2iβw11v

∗
11 − ε2(v02v

∗
02y − 2iβw02v

∗
02) + c.c.,

and

fu = −v11u∗11y − iβw11u
∗
11 + c.c.,

fv = iαu11v
∗
11 − v11v∗11y − iβw11v

∗
11 + c.c.,

fw = −iαu11w∗
11 + v11w

∗
11y + iβw11w

∗
11 − c.c.

The key point of the analysis is the fact of retaining the x-component of the velocity at
O(ε2) in equations (2.4-2.6) to allow a distortion of the mean state above which oblique
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waves, denoted by subscript 11, are superposed (note also that we have anticipated the
fact that v00 = w00 = 0 in writing equations 2.4-2.6).

System (2.3–2.6) plus equations (2.7) and (2.8–2.11) are solved by maximizing the
total energy of the unsteady perturbation

e(t) = e11(t) + e1−1(t) + e02(t), (2.12)

evaluated at a given final time t = T . The different contributions are defined by

e11(t) =
ε2

2

∫ 1

−1

u∗
11(y, t) · u11(y, t) dy, e02(t) =

ε4

2

∫ 1

−1

u∗
02(y, t) · u02(y, t) dy.

and e1−1(t) = e11(t), by definition. The choice of the optimization functional is not
unique, but it is expected that just about any objective functional which takes on height-
ened values at the target time T is suitable and leads to similar optimal solutions (Ker-
swell et al. 2014). This is also borne out by a comparison between the NLOP† in plane
Couette flow of Monokrousos et al. (2011) (objective was the total viscous dissipation,
integrated from t = 0 to t = T ) and those by Rabin et al. (2012) (objective was the total
kinetic energy at the final time, t = T ).

For assigned ε the present weakly nonlinear problem is solved iteratively as follows:
(a) Maximise the energy e(T ), constrained by equations (2.3)-(2.6), over a given time

span T , to find u11, v11, w11. The optimization procedure is performed via adjoint looping;
in the first iteration u00 is set equal to 0 ∀y, t.

(b) Compute the Reynolds stress components (fu, fv, fw) and then solve the linear
convection-diffusions equations (2.8–2.11) for the vortex/streak u02, with zero initial
conditions for the velocity components.

(c) Evaluate the right hand side Fu of equation (2.7) for the u00 component, including
the seemingly negligible terms of O(ε2), and solve for u00(y, t) under the initial condition
u00(y, 0) = 0; equation (2.7) is a heat equation with the Reynolds stress term acting as
source. Then, go back to (a).

(d) Stop the procedure when the relative difference in final wave energy, e(T ), is lower
than 10−8. The normalization employed is e(0) = 2ε2.

2.1. Numerical procedures

The problem outlined at step (a) in the solution procedure is a constrained maximization
problem which can be solved using Lagrange multipliers. The governing equations are
written in primitive variable form and the resulting adjoint equations are derived using
a discrete approach (see Luchini & Bottaro 2014). The spatial derivatives are discretized
using second order finite differences and a semi-implicit second-order scheme is used to
advance in time. A uniform grid is used in the y-direction and 300 discrete points are
sufficient to obtain a converged solution. The code has been tested on several cases found
in the literature for ε→ 0 (when the mean flow is not distorted); in particular, the value
of the optimal gain e11(T )/e11(0) = 0.00118Re2 and the corresponding time at which it
is achieved, T = 0.117Re, with α = 35/Re and β = 1.60, are recovered to within 0.1%
(Schmid & Henningson 2001).

Direct numerical simulations of the full nonlinear equations are also conducted, starting
from the optimal initial conditions of the weakly nonlinear analysis, to confirm the weakly
nonlinear results in the initial phases, before the amplification of harmonics which cannot
be accounted for in the weakly nonlinear analysis. The code employed is the same used

† Non Linear Optimal Perturbations, as by the terminology introduced by Pringle & Kerswell
(2010).
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by Pralits et al. (2015); the computational domain has length 2π/α along the streamwise
direction and 2π/β along the span. The domain is discretized using a staggered grid
and the Navier-Stokes equations are solved by a fractional-step method which is second-
order accurate in space and time (Verzicco & Orlandi 1996). For each of the considered
domains a different (uniform) discretization grid has been used, to keep the cell size
approximately constant (∆x ≈ ∆z ≈ 0.1, ∆y ≈ 0.02). A constant time step ∆t = 0.05
has been chosen, ensuring the stability of the time discretization scheme (CFL < 1).
The numerical convergence of the results has been checked by halving the cell size in
the three space directions (and adjusting the time step consequently) and comparing the
evolution of the energy in time.

3. Weakly non-linear results

The weakly nonlinear results for a representative case (Re = 400) are displayed in
figure 1 for three values of ε and the final time fixed at T = 80. The choice of the time
horizon T stems from the considerations which follow. First, for numerical convergence
reasons, we want to ensure that the functional values attained at the final state are well
separated from those of the laminar fixed point, and for this to occur the final time needs
to be sufficiently large. Second, given that it takes some time to reach a (fully nonlinear)
turbulent state starting from a slightly perturbed laminar flow, the choice of a short time
horizon would produce initial conditions which optimize events such as transient bursts
(Cherubini & De Palma 2013), not yielding states capable to self sustain for long times.
This is also consistent with the known fact that the amplification of oblique waves occurs
over a time scale which is intermediate between the short scale which characterizes the
Orr-related amplification and the long time scale of the lift-up effect. Third, a recent
study on (linear) localized optimal disturbances in a turbulent boundary layer, modelled
by the Reynolds-Tiederman turbulent mean profile, shows that elongated streaks within
the buffer layer of spanwise wavelength equal to about 100 wall units grow optimally over
a time interval of about 80 viscous time units, for a large range of Reynolds numbers
(Kim et al. 2016). Such a time scale is the eddy turnover time in the near-wall region
of wall-bounded turbulent shear flows, and this result confirms that obtained earlier
by Butler & Farrell (1992) on the mechanisms underlying the formation of turbulent
streaks. Since t+ = t in the present Couette flow case, given that the friction velocity
is simply uτ =

√
ν U/h, it is appropriate to take T = 80 as optimization interval. We

have furthermore verified that setting another value of the target time in the interval
50 < T < 100 does not yield substantial differences in the results.

Figure 1 summarizes the important results of the present study. When the disturbance
amplitude is sufficiently low (ε < 0.00450) the system behaves essentially in a linear
fashion, with a peak in wave energy for α → 0 and β = 1.54. This initial condition has
been called QLOP (Quasi Linear Optimal Perturbation) by Pringle & Kerswell (2010).
Nevertheless, a second, very weak, energy peak (2e11(T )/e11(0) ≈ 20) begins to emerge
for (α, β) = (0.291, 1.039) (not visible in frame a of the figure because of the spacing
chosen for the isolines). As ε increases (frame b) the energy gain associated to this second
relative maximum becomes stronger, peaking at (α, β) = (0.27, 1.07). A further, very
mild, increase in perturbation amplitude yields an explosive growth of the disturbance
energy in a very narrow wavenumber range close to the second peak, with the appear-
ance of a third energy peak. Frame c in figure 1 displays only a zoom of what goes
on in the wavenumber neighborhood of the second and third peaks, the region around
the first (quasi-linear) local maximum not showing any feature of note. The result to
be highlighted is the strong selectivity of waves with (α, β) in a narrow range around
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Figure 1. Iso-contours of the energy 2e11(T )/e11(0) in the α − β plane for the case of a)
ε = 0.00450 with maximum value equal to 382 at (α, β)=(0.001,1.540); b) ε = 0.00500 with
maximum value equal to 395 at (α, β)=(0.001,1.540) (the second peak in the frame has a max-
imum value of 77 at (α, β)=(0.270,1.070)); c) close-up around the second peak of frame b when
ε = 0.00518. A third peak with energy gain equal to 327 emerges at (α, β)=(0.303,1.020). The
contour spacing is 20 in all frames.

(0.303, 1.020); these numbers correspond to an optimal wave angle tan−1(β/α) of about
73o, and this value is consistent with the conclusions reported by Schmid & Henningson
(1992).

It is important at this point to analyse more in detail the disturbance wave energy
as ε varies, shown in figure 2. The left frame demonstrates that the word ”explosive”
in defining the growth when ε exceeds 0.005 was not a misnomer, as the sudden rise
of the red line in the figure clearly demonstrates, so that one can expect the triggering
of a rapid transition to turbulence. The optimal wavenumbers for oblique transition are
shown by red crosses in the right frame of the figure for the five cases computed with ε
starting from 0.00518.

The significant conclusion is that a plane shear flow, such as Couette flow, is very
receptive to oblique wave disturbances in a very narrow wavenumber range. Such dis-
turbances have a well defined amplitude threshold above which large amplification takes
place and are thus believed to facilitate the triggering of transition to turbulence. Direct
Numerical Simulations (DNS) will next sustantiate these statements.
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Figure 2. Values of a) the energy 2e11(T )/e11(0), and b) the corresponding wave numbers,
at three different peaks as a function of ε. The black line corresponds to the case α ≈ 0 (for
numerical reasons α cannot be set identically equal to zero, the value α = 0.001 has thus been
used to focus on quasi-streamwise-independent flow structures). The blue and red lines (and the
markers) correspond to a second and third peak, respectively.

4. DNS results

Figure 3 shows a comparison between DNS and weakly nonlinear results for two dif-
ferent initial amplitudes, ε = 0.00450 and ε = 0.00518. For the smaller value of the
amplitude the initial optimal solution is chosen to lie on the second energy peak (blue
lines of figure 2), since an optimal solution on the first energy peak will lead to a direct
relaminarization of the flow. For the larger amplitude case we have chosen to initiate
the DNS from the optimal solution on the third energy peak. In particular, we select
(α, β) = (0.291, 1.039) for ε = 0.00450 and (α, β) = (0.303, 1.020) for ε = 0.00518. For
the two amplitudes, the initial growth of the weakly nonlinear model is very similar: in
both cases the energy curve displays an inflection point at t ≈ 45 followed by a relative
maximum of the energy at t ≈ 70. The local maximum of the disturbance energy e(t)
when ε = 0.00518 is over twice as large that corresponding to an initial amplitude of
0.00450. The nonlinear simulations, for the same initial conditions, follow closely the
weakly nonlinear curves up to t ≈ 20 and depart from them when higher harmonics (dis-
played in figure 3, bottom frame) acquire importance. At t = 20 the flow structures which
are set up by the weakly nonlinear model approach closely those which emerge from the
fully nonlinear simulations. The subsequent evolution of the flow is that which one could
forecast on the basis of the weakly nonlinear model, i.e. the lower amplitude flow remains
for a while in the proximity of unstable saddles before escaping along the stable manifold
towards the laminar fixed point. As the amplitude exceeds the ε = 0.00518 threshold, the
flow’s trajectory remains chaotic for a long time (this has been verified running the DNS
up to t = 1000). We cannot exclude that, for even longer times, the trajectory of this lat-
ter case could relaminarize, an event which can in principle be postponed ”indefinitely”
by choosing a computational box sufficiently large.

The energy content of individual Fourier modes is displayed in figure 3 (bottom frame)
for ε = 0.00518 for the first 100 units of time. The only modes which enjoy an appreciable
growth in the time window examined are those displayed: the couple of oblique waves
(α,±β) excites primarily modes (0, 0) and (0, 2β). The two-dimensional streamwise trav-
elling wave (2α, 0) also grows rapidly initially but, for t > 40 remains consistently below
the two main streamwise invariant modes. Whereas mode (2α, 0) could have been easily
included in the weakly nonlinear model, its effect is not major and the modes included
in the decomposition (2.1) are sufficient to represent the shape of the optimal oblique
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Figure 3. Top frame: e(t)/e11(0) for ε = 0.00450 (−−) and ε = 0.00518 (−). Weakly nonlinear
results (red lines) stop at t = 80. Bottom frame: eij(t)/e11(0) of different modes obtained from
the DNS when ε = 0.00518.

waves. We should stress once more that the key point of the whole weakly nonlinear
analysis is the fact of having studied the growth of oblique waves sitting on top of a
mean flow distorted by the (0, 0) mode. It is clear that the long time behavior of the
flow cannot be captured by the truncated model. Snapshots of such a behavior for super-
critical conditions are presented in figures 4. The figure must be looked at as a cartoon,
accompanying movies are also provided to enhance understanding. It is significant that
the minimal seed† identified by Cherubini et al. (2011, 2012) via nonlinear optimizations
re-appears also in the present case from primary waves interactions. It can be observed
in figure 4 at t = 40; a similar flow structure is present also when ε = 0.00450 but it is
not of sufficient amplitude to trigger transition. This supports the hypothesis that the
minimal seed is the smallest building block of transition to turbulence in parallel and
quasi-parallel shear flows: the minimal seed evolves initially through tilting and amplifi-
cation (Orr mechanism), and later through nonlinear interactions which lie at the heart
of the turbulence regeneration cycle (cf., in particular, figure 4 of Cherubini et al. (2012)).

† The minimal seed is here defined as that coherent flow structure which is observed in the
initial phases of transition. It is recurrent in that the same topology – albeit conveniently resized
– is observed in different phases of the transition process. Conversely, Kerswell et al. (2014) use
the definition of minimal seed to denote that destabilizing disturbance of smallest energy which
sits near the laminar-turbulent boundary.
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Figure 4. Streamwise velocity (positive blue, negative yellow) and streamwise vorticity (positive
black, negative white) for the case in which ε = 0.00518 and six different times (0, 40, 80, 120,
200, 300). Top left is t = 0 and bottom right is t = 300. The top right frame (t = 40) displays
the typical shape of the minimal seed for Couette flow. The corresponding movie is available
online, together with a movie for the case ε = 0.00450 which relaminarizes.

5. Conclusions

A weakly nonlinear model has been developed to capture the couple of oppositely prop-
agating waves capable to optimally induce transition in a simple shear flow; the model,
which is simple and computationally inexpensive, contains the essential ingredients of the
so-called oblique transition scenario. It is found that a (α,±β) wavenumber pair exists
for which a very large growth of the perturbation energy ensues over a given time span.
Such optimal wavevectors are very confined in wavespace and thus highly selective; they
correspond to a wave angle of 73◦. Whereas a monochromatic initial condition which
deviates, even mildly, from the optimal wave pair would result in limited disturbance
growth, initial conditions characterised by a white spectrum of wavelengths would in-
evitably filter the perturbation and yield, at large enough time, a signal with a strong
mean flow distortion. The key of the whole weakly nonlinear approach is precisely that
of considering perturbations which overlap onto a distorted mean flow. The surprising
result is that a very large growth of the disturbance energy is suddenly found past a
threshold amplitude of the initial oblique waves; this very same threshold is found to
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separate a flow which relaminarizes from one which sustains turbulence in full numer-
ical simulations initiated from the optimal oblique waves. The DNS further show that
transition is mediated by a flow structure which has been christened the minimal seed
by Cherubini et al. (2011, 2012), and which was earlier identified through (very costly)
fully nonlinear optimizations. The weakly nonlinear model described here constitutes a
convenient reduced-order model for a complete parametric inquiry of oblique transition
in shear flows, allowing to select the few cases which might deserve additional insight
through direct numerical simulations.
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