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Transition to turbulence at the bottom of a
solitary wave

Paolo Blondeaux†, Jan Pralits and Giovanna Vittori

Department of Civil, Environmental and Architectural Engineering, Genoa University, via Montallegro 1,
16145 Genova, Italy

(Received 29 November 2011; revised 18 April 2012; accepted 2 July 2012)

A linear stability analysis of the laminar flow in the boundary layer at the bottom
of a solitary wave is made to determine the conditions leading to transition and the
appearance of turbulence. The Reynolds number of the phenomenon is assumed to
be large and a ‘momentary’ criterion of instability is used. The results show that the
laminar regime becomes unstable during the decelerating phase, when the height of
the solitary wave exceeds a threshold value which depends on the ratio between the
boundary layer thickness and the local water depth. A comparison of the theoretical
results with the experimental measurements of Sumer et al. (J. Fluid Mech., vol. 646,
2010, pp. 207–231) supports the analysis.
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1. Introduction
To quantify sediment transport under sea waves, it is necessary to have a detailed

knowledge of the boundary layer generated close to the bottom by wave propagation
(Blondeaux & Vittori 1999). Hence, the appearance of turbulence and the turbulence
structure in wave boundary layers have been extensively studied both using direct
numerical simulations of continuity and Navier–Stokes equations (Verzicco & Vittori
1996; Vittori & Verzicco 1998) and by means of the Reynolds-averaged approach and
turbulence models (e.g. Blondeaux 1987; Fredsoe & Deigaard 1992 and references
therein). Indeed, coherent vortex structures and turbulent eddies play a crucial role
in the pick-up of sediments and in their transport (Costamagna, Vittori & Blondeaux
2003; Vittori 2003; Mazzuoli, Vittori & Blondeaux 2011). However, most of these
studies are restricted to linear waves and the results cannot be applied to the
nearshore region where the water depth is much smaller than the length of the
waves and wave asymmetry is significant. Recently, a few theoretical and experimental
investigations have been carried out of the boundary layer generated by cnoidal waves
and solitary waves (e.g. Tanaka, Sumer & Lodahl 1998; Sumer et al. 2010). In fact,
as sea waves move from deep water to the shallow water region, the cnoidal wave
and solitary wave theories are more appropriate to describe wave dynamics. Liu &
Orfilia (2004) introduced the Boussinesq approximation and derived depth-integrated
continuity and momentum equations for transient long waves. The resulting equations
are differential–integral equations, in terms of the depth-averaged horizontal velocity
and the free surface displacement, in which viscous effects are taken into account
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by convolution integrals. Liu, Park & Cowen (2007), using the solution of Liu &
Orfilia (2004), examined the boundary layer under a solitary wave and found that the
velocity inside the bottom boundary layer reverses its direction during the decelerating
phase, even though the free stream velocity always points in the direction of wave
propagation. Consequently, the bed shear stress as well as the sediment transport
rate change sign during the decelerating phase. However, the analysis considers the
laminar flow regime. The velocity field in the turbulent boundary layer under a
solitary wave was obtained by Vittori & Blondeaux (2008, 2011) by means of direct
numerical simulations. A local model was developed which assumes that turbulence
structure within the boundary layer is not affected by the slow spatial variations of
the external flow. The obtained results show that, for small wave heights, the flow
regime is laminar. Turbulence appears when the wave height becomes larger than a
critical value which depends on the ratio between the boundary layer thickness and
the water depth. Close to the critical conditions, turbulence is generated only during
the decelerating phase or, conversely, turbulence is present only behind the wave
crest. Only far from the critical conditions is turbulence generated also during the
accelerating phase (Blondeaux & Vittori 2012). As already pointed out, even though
the horizontal velocity component far from the bed always points in the direction of
wave propagation, both the fluid velocity near the bottom and the bed shear stress
reverse their direction when the irrotational velocity decelerates. The strength and
length of time of flow reversal turn out to be affected by the appearance of turbulence.
The numerical findings have been confirmed by the recent laboratory measurements
of Sumer et al. (2010). The experimental results show that three flow regimes take
place in the boundary layer generated by a solitary wave, depending on the value
of the Reynolds number Re defined by Sumer et al. (2010) as Re = 4H3/2/(

√
3δ2),

where H is the ratio between the wave height and the water depth h∗ and δ is the
ratio between the boundary layer thickness and h∗. For Reynolds numbers smaller than
2× 105, the measured values of the velocity and the bed shear stress do not show any
significant deviation from the laminar solution of Liu et al. (2007). As the value of Re
is increased, in the range (2× 105, 5× 105) and during the decelerating phase, the bed
shear stress shows a sudden decrease followed by a strong increase. These oscillations
are related to the appearance of quasi-two-dimensional vortex tubes clearly shown
by the movies which are available at http://dx.doi.org/10.1017/S0022112009992837,
in the supplementary material of the paper by Sumer et al. (2010). An increase of
the Reynolds number above 5 × 105 leads to the appearance of multiple irregular
spikes in the measured values of the bed shear stress, which are produced by the
appearance of turbulent spots, moving areas of irregular turbulent eddies. As pointed
out by Sumer et al. (2010), so far no study is available that investigate (from the
point of view of hydrodynamic stability theory) the stability of the laminar regime
in the boundary layer under a solitary wave. In the present work, we study the
stability of the laminar boundary layer generated by the propagation of a solitary
wave using a ‘momentary’ criterion for instability of the kind introduced by Shen
(1961) and applied by Blondeaux & Seminara (1979) to investigate the stability of
the Stokes boundary layer. We assume that transition takes place for large values of
the Reynolds number such that it is reasonable to consider the time development of
perturbations of the basic laminar flow, assuming that their growth takes place on a
time scale much faster than the time scale of the basic flow. Moreover, a normal mode
decomposition is applied and the investigation is carried out for the generic Fourier
component. Finally, because Conrad & Criminale (1965) showed that two-dimensional
perturbations are more unstable than three-dimensional perturbations even in unsteady

http://dx.doi.org/10.1017/S0022112009992837


Transition to turbulence at the bottom of a solitary wave 3

flows, the analysis considers only the former. Needless to say that the analysis can
explain the appearance of the vortex tubes observed by Sumer et al. (2010) and predict
their main characteristics (e.g. spacing), but it is unable to provide any information on
the turbulent spots which are irregular three-dimensional vortex structures that can be
investigated only by means of a fully nonlinear analysis.

The procedure used in the rest of the paper is as follows. In the next section we
formulate the hydrodynamic problem and we describe the basic flow, i.e. the solution
describing the velocity field induced by the propagation of a solitary wave. The
solution is given both in the region where the fluid behaves like an inviscid fluid and
close to the bottom where a viscous boundary layer develops. In § 3, we describe the
linear stability analysis of the basic flow in the bottom boundary layer. The results
are described in § 4 where a qualitative and quantitative comparison of the theoretical
predictions with the laboratory measurements of Sumer et al. (2010) is also made. The
conclusions are drawn in § 5.

2. Formulation of the problem and basic flow
A long two-dimensional solitary wave of height H∗ propagates on a constant water

depth h∗ along the X∗1 -direction (a star denotes a dimensional quantity), the Cartesian
coordinate system (X∗1 ,X∗2 ,X∗3), having the (X∗1 ,X∗3)-plane coincident with the bottom
and the X∗2 -axis pointing in the upward direction, is introduced. Assuming large values
of the Reynolds number of the phenomenon, the flow field can be split into three
regions: a core region, where the flow is irrotational and the fluid behaves like an
inviscid fluid, and two boundary layers, where the flow is rotational and viscous
effects are important. One boundary layer is located close the free surface and the
other close to the bottom. A fair description of the flow in the core region can be
obtained by assuming that the ratio H = H∗/h∗ between the height of the wave and
the local water depth is a small quantity of the same order of magnitude as µ2, where
µ = h∗/L∗ is the ratio between the water depth and a measure L∗ of the length of the
wave (Boussinesq approximation). Neglecting the damping of the wave, which takes
place on a spatial scale much longer than L∗, and neglecting terms of order H2, or
equivalently of order µ4, the free surface elevation η∗ with respect to the still water
level and the fluid velocity induced by the propagation of the wave can be evaluated
by means of

η∗(X∗1 , t∗)= H∗sech2

(√
3H

4
ζ

)
, V∗1 (X

∗
1 , t∗)= H

√
g∗h∗sech2

(√
3H

4
ζ

)
, (2.1)

V∗2 (X
∗
1 ,X∗2 , t∗)=−H3/2

√
3g∗h∗

(
X∗2
h∗

)
sech2

(√
3H

4
ζ

)
tanh

(√
3H

4
ζ

)
(2.2)

where ζ = (X∗1 −
√

g∗h∗t∗)/h∗ and V∗1 ,V∗2 are the horizontal and vertical velocity
components, respectively (Grimshaw 1971).

At the leading order of approximation, the surface boundary layer can be neglected
since it is much weaker than that located close to the bottom. To determine the flow
close to the bottom, let us estimate the order of magnitude of the thickness δ∗ of the
bottom boundary layer, where viscous effects should balance the local inertial effects.
The time development of V∗1 suggests that ∂/∂t∗ ∼√g∗h∗/h∗ while ν∗∂2/∂x∗22 ∼ ν∗/δ∗2 ,
where ν∗ is the kinematic viscosity of the sea water (hereinafter the scaling introduced
by Grimshaw (1971) is used since it avoids the appearance of the parameter µ
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into the problem). It follows that δ∗ ∼
√
ν∗h∗/

√
g∗h∗ which, for actual waves, is

much smaller than h∗. Therefore, introducing the boundary layer approximation, the
continuity equation suggests that the vertical velocity component is negligible, the
momentum equation in the vertical direction forces the pressure to be independent of
the vertical coordinate and the horizontal velocity component v∗b1 in the boundary layer,
which depends only parametrically on the coordinate X∗1 , can be obtained by solving

∂v∗b1

∂t∗
= ∂V∗1

∂t∗

∣∣∣∣
X2=0

+ ν∗ ∂
2v∗b1

∂X∗22

(2.3)

where the streamwise pressure gradient term is replaced by ∂V∗1/∂t∗|X∗2=0. Of course,
the flow field described by (2.3) should match the irrotational flow outside the
boundary layer and satisfy the no-slip condition at the bottom. The solution of (2.3)
can be found following the procedure described by Mei (1989, p. 564–569) and reads

v∗b1(X
∗
1 ,X∗2 , t∗)= V∗1 (X

∗
1 , t∗) (2.4)

−H
√

g∗h∗
2√
π

∫ ∞
0

sech2

[√
3H

4

(
X∗22

2δ∗2ξ 2
+ X∗1 −

√
g∗h∗t∗

h∗

)]
e−ξ

2
dξ (2.5)

where δ∗ is defined by

δ∗ =
√

2ν∗h∗√
g∗h∗

. (2.6)

3. The stability analysis
As already pointed out in the introduction, the analysis is aimed at analysing the

stability of the basic flow in the bottom boundary layer. Indeed, the experimental
visualizations of Sumer et al. (2010) suggest that, when the wave height is sufficiently
large, the laminar regime in the boundary layer is unstable and two-dimensional
perturbations appear. Hence, since we are focusing our attention close to the bottom,
let us introduce the dimensionless variables

(x1, x2, x3)= (X
∗
1 ,X∗2 ,X∗3)
δ∗

, t = t∗
√

g∗h∗

h∗
. (3.1)

Moreover, let us denote with (v1, v2, v3) and p the dimensionless velocity components
and the pressure field, respectively, defined by

(v1, v2, v3)= (v
∗
1 , v

∗
2 , v

∗
3)

H
√

g∗h∗
, p= p∗

ρ∗Hg∗δ∗
(3.2)

where ρ∗ is the density of the sea water. Let us consider a two-dimensional
perturbation of the flow field described by (2.4), such that

(v1, v2, p)= (vb1, 0, pb)+ ε(vp1, vp2, pp) (3.3)

where the dimensionless velocity vb1 = v∗b1/(H
√

g∗h∗) can be easily obtained from
(2.4). A linear analysis of the time development of the perturbation can be performed,
if the amplitude ε of the perturbation is assumed to be much smaller than one.
Assuming that ε � 1 and neglecting term of order ε2, continuity and momentum
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equations read

∂vp1

∂x1
+ ∂vp2

∂x2
= 0 (3.4)

∂vp1

∂t
+ H

δ

[
vb1
∂vp1

∂x1
+ vp2

∂vb1

∂x2

]
=−∂pp

∂x1
+ 1

2

[
∂2vp1

∂x2
1

+ ∂
2vp1

∂x2
2

]
(3.5)

∂vp2

∂t
+ H

δ

[
vb1
∂vp2

∂x1

]
=−∂pp

∂x2
+ 1

2

[
∂2vp2

∂x2
1

+ ∂
2vp2

∂x2
2

]
(3.6)

where the dimensionless parameter δ is defined by

δ = δ
∗

h∗
. (3.7)

The continuity equation can be satisfied by introducing a stream function ψ such that

(vp1, vp2)=
(
∂ψ

∂x2
,−∂ψ
∂x1

)
. (3.8)

By eliminating the pressure field from (3.5) and (3.6), the linearized vorticity equation
is obtained

∂3ψ

∂t∂x2
1

+ ∂3ψ

∂t∂x2
2

+ H

δ

[
vb1

(
∂3ψ

∂x3
1

+ ∂3ψ

∂x2
2∂x1

)
− ∂

2vb1

∂x2
2

∂ψ

∂x1

]
= 1

2

(
∂4ψ

∂x4
1

+ 2
∂4ψ

∂x2
1∂x2

2

+ ∂
4ψ

∂x4
2

)
. (3.9)

The linearity of (3.9) allows a normal mode analysis to be made and a generic spatial
component along the x1-axis to be considered. Since the height H∗ of a solitary wave
is usually much larger than the thickness δ∗ of the viscous boundary layer, the value
of the ratio H/δ turns out to be much larger than one. Simple algebra shows that the
ratio H/δ is equal to the ratio between the characteristic temporal scale of the wave
motion h∗/

√
g∗h∗ (see (3.1)) and the convective temporal scale characteristic of the

time development of the perturbation δ∗/(H
√

g∗h∗) (the latter is assumed to be equal
to the ratio between the thickness of the bottom boundary layer and the scale of the
fluid velocity; see (3.2)). Hence, the amplitude of the perturbation can be supposed to
grow on a time scale much faster than that which characterizes the time development
of the basic flow and a ‘momentary’ criterion for instability of the kind introduced by
Shen (1961) and discussed by Blondeaux & Seminara (1979) can be used. Therefore,
the function ψ can be written in the form

ψ(x1, x2, t)= Re
{

f (x2, t) exp
[

iα
(

x1 − H

δ

∫
c(τ ) dτ

)]}
+ h.o.t. (3.10)

where α indicates the streamwise wavenumber of the generic Fourier component of
the perturbation, the real part (cr) of c is its wave speed and the imaginary part (ci)
controls its growth/decay. Moreover, h.o.t. indicates higher order terms. Substitution of
(3.10) into (3.9) leads to the following homogeneous differential equation

[vb1(x2, t)− c(t)]N2f (x2, t)− ∂
2vb1(x2, t)

∂x2
2

f (x2, t)= 1
2iα(H/δ)

N4f (x2, t) (3.11)

where the operator N2 is defined by N2 = (∂2/∂x2
2)− α2.
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Moreover, the boundary conditions force the vanishing of the velocity at the wall
and far from the bottom. Let us point out that the viscous term, which is of order
1/(H/δ), is retained in (3.11), since it turns out to be significant, at the leading
order of approximation, within a viscous layer close to the wall and within possible
critical layers. A more formal approach would require, first, the solution of the inviscid
version of (3.11). Then, the inviscid solution should be matched with the solution in
the viscous and critical layers. Such a procedure would involve a lot of tedious and
heavy algebra and the direct solution of the (3.11) has thus been preferred. In a similar
context, Blondeaux & Vittori (1994) showed that the solution of (3.11) coincides, to
the required order of approximation, with the solution obtained on the basis of the
rigorous matched asymptotic approach previously outlined. We also note that the time
variable t∗ and the spatial variable X∗1 appear into the problem only in the combination
ζ = X1 − t, which can be considered as a parameter of the problem and (3.11) can
be solved for different values of ζ which correspond to different locations and/or
to different phases within the wave cycle. In the following we consider the location
characterized by X1 = 0, such that a vanishing value of ζ corresponds to the passage
of the wave crest at the considered location.

In order to find a non-vanishing solution of the homogeneous differential problem
posed by (3.11) and its boundary conditions, it is necessary to force an eigenrelation
which provides the value of c as function of α and the other parameters of the
problem. To find the largest eigenvalue c and the corresponding eigenfunction f ,
a numerical approach is used. Equation (3.11) and its boundary conditions are
discretized by a fourth-order compact finite difference approach along the x2-direction.
The outer boundary is set at x2 = 30, where the standard asymptotic conditions
of inviscid outer behaviour are forced. The least stable eigenvalue is obtained by
inverse iteration. To check the numerical solution, (3.11) is solved also by a spectral
collocation procedure. Any desirable precision can be obtained choosing a sufficient
number of grid nodes in the finite difference approach and Chebyshev collocation
points in the spectral one.

4. Discussion of the results
The eigenvalue problem formulated in the previous section depends on the ratio

H/δ, the dimensionless wave height H, which appears in the basic flow described by
(2.4), and the parameter ζ . In the following, the eigenrelation and the eigensolution
are determined for fixed values of δ and H and by varying the phase within the wave
cycle, since the value of the coordinate X∗1 is considered fixed and equal to zero.

Figure 1(a) shows the temporal dependence of the growth rate ci of the harmonic
component characterized by α = 0.20, for H = 0.12 and δ = 5.0 × 10−4, which
are the values of the parameters of the experiment of Sumer et al. (2010)
characterized by a maximum value of the free stream velocity U∗0m = 50.9 cm s−1

and T∗ = 4πh∗/
√

3g∗H∗ = 9.3 s (Re= 3.8× 105). The value α = 0.20 has been chosen
because it is the critical wavenumber, i.e. it corresponds to the Fourier component
which is first destabilized. During the accelerating phase, i.e. for negative values of
ζ , the value of ci turns out to be smaller than zero and the perturbation component
tends to decay. The value of ci remains negative during the early decelerating phases
showing that the mode is stable also after the passage of the wave crest. However, as
soon as ζ becomes larger than about ζ = 1.0, the value of ci becomes positive and the
mode characterized by a wavenumber equal to 0.20 tends to grow. Figure 1(b) shows
the value of cr, which is related to the migration speed of the perturbation component.
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FIGURE 1. Growth rate ci (a) and phase velocity cr (b) plotted versus ζ for
α = 0.20,H = 0.12 and δ = 5.0× 10−4.

Up to about ζ = 4.4, the value cr is positive, thus indicating that the perturbation
component migrates in the direction of wave propagation. Only for values of ζ larger
than 4.4 does cr become negative showing that the perturbation component reverses
its velocity at the late decelerating phase because of flow reversal within the boundary
layer.

Similar results are found for different values of α and an exhaustive picture of
the phenomenon is provided by figure 2, which shows the value of ci as a function
of ζ and α for the same values of H and δ as those considered in figure 1. A
region in the plane (ζ, α) is present, which is characterized by positive values of
ci. If the fastest growing mode is assumed to prevail on the other modes, the
stability analysis predicts the appearance of a periodic pattern characterized by a
wavelength `∗ such that 2πδ∗/`∗ equals the value α̂ of α which gives rise to
the maximum growth rate for a given value of ζ . Moreover, a periodic pattern is
predicted to appear for ζ > ζc, i.e. as soon as ci becomes positive. Owing to the slow
temporal variation of the basic flow, the dimensionless wavelength `∗/δ∗ of the most
unstable harmonic component depends on the phase within the wave cycle. Hence,
the periodic pattern, the appearance of which is predicted by the analysis, would
be characterized by a wavelength which depends on time. However, the perturbation
wavelength cannot change in a continuous way but only through the appearance of
defects (e.g. dislocations) and their growth. The dynamics of these defects cannot be
investigated by means of a linear analysis and, in the following, it is assumed that
the wavelength of the periodic pattern which is expected to appear is coincident with
that predicted at ζ = ζc. This qualitative conclusion is supported by an analysis of
the experiments made by Sumer et al. (2010), the movies of which are available
at http://dx.doi.org/10.1017/S0022112009992837 in the supplementary material of that
paper. Indeed, the movies do not show any significant change of the distance between
adjacent vortex tubes during their time development. The results of figure 2 show
that ζc is equal to ∼1.0 and α̂ evaluated at ζ = ζc, which is denoted by αc, is equal
to ∼0.20. To ascertain the reliability of the analysis, the theoretical findings have
been compared with the experimental measurements of Sumer et al. (2010). Indeed,
the flow visualizations of Sumer et al. (2010) allow an estimate of the wavelength
of the most unstable perturbation component to be obtained, if the growth of the
latter is assumed to give rise to the vortex tubes observed in the experiments. For
U∗0m = 50.9 cm s−1 and T∗ = 9.3 s, the average distance between the axes of adjacent
vortex tubes visualized by Sumer et al. (2010) is ∼2.3 cm, a value which corresponds

http://dx.doi.org/10.1017/S0022112009992837
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FIGURE 2. (a) Growth rate ci (continuous line, ci > 0; continuous thick line, ci = 0;
1ci = 0.005) and (b) phase velocity cr (continuous lines, cr > 0; broken lines cr < 0,
continuous thick line cr = 0; 1cr = 0.02) plotted versus ζ and α for H = 0.12 and
δ = 5.0× 10−4.

Movie U∗0m (cm s−1) T∗ (s)

1 50.9 9.3
2 43.9 9.2
3 93.9 7.8
4 36.2 9

TABLE 1. Values of U∗0 and T∗ characterizing the movies of the experiments made by
Sumer et al. (2010).

to αc equal to ∼0.24. Moreover, a periodic pattern can be identified 1.53 s after the
free stream velocity attains its maximum, i.e. at ζ = 3.18. A fair agreement between
the theoretical predictions and the experimental measurements is found as far as the
wavelength of the most unstable mode is considered. On the other hand, the value of
ζ at which the periodic patterns are observed in the experiments is significantly larger
than that predicted by the stability analysis. This can be explained considering that the
perturbation, which starts to grow, takes some time to attain an amplitude large enough
to be detected visually. The theoretical predictions are compared with all of the flow
visualizations which are available at http://dx.doi.org/10.1017/S0022112009992837 and
with a further movie which has been made available by the experimentalists. The
values of the experimental parameters are given in table 1.

The agreement between the predicted and observed wavenumbers is satisfactory,
even though the predictions (αc equal to 0.20, 0.20, 0.21 and 0.205 for movies
1–4, respectively) slightly underestimate observed values which fall in the ranges
(0.21, 0.30), (0.23, 0.30), (0.23, 0.27) and (0.19, 0.26), respectively. On the other
hand, as already pointed out, the predicted values of ζc, which are equal to
1.01, 1.16, 0.53 and 1.39 are significantly smaller than the observed values which
are 3.18, 4.77, 2.23 and 4.81.

The direct numerical simulations of Vittori & Blondeaux (2008, 2011) show that
turbulence appearance is observed when the parameter H is larger than a critical
value Hc, which increases as δ is increased. This behaviour of Hc(δ) was observed
also in the experiments of Sumer et al. (2010), who defined the Reynolds number

http://dx.doi.org/10.1017/S0022112009992837
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FIGURE 3. Growth rate ci (continuous line, ci > 0; continuous thick line ci = 0; 1ci = 0.01)
plotted versus ζ and: α for δ = 1.2 × 10−3 and: (a) H = 0.025; (b) H = 0.2; (c) H = 0.4;
(d) H = 0.6.

as Re = 4H3/2/(
√

3δ2) and proposed a critical value equal to 2 × 105, to discriminate
between the stable laminar regime and a transitional flow, i.e. a flow characterized by
the presence of ‘regular’ two-dimensional vortex tubes. Even though the qualitative
behaviour of the results of the present stability analysis agrees with that found
by Vittori & Blondeaux (2008) and Sumer et al. (2010), significant quantitative
differences are found. Indeed, the present stability analysis indicates instability of
the laminar regime for values of H smaller than those predicted numerically and/or
observed experimentally. For example, for δ = 1.2 × 10−3, the theoretical results show
that Hc falls around 0.025 (see figure 3), a value which is much smaller than that
proposed by Sumer et al. (2010) and observed by Vittori & Blondeaux (2008). This
finding can be understood looking at figure 4, which shows results obtained by means
of direct numerical simulations made with the same code used by Vittori & Blondeaux
(2008). In particular, figure 4 shows the dimensionless kinetic energy per unit area
K of the flow perturbations plotted versus the phase ζ within the wave cycle for
δ = 1.2 × 10−3 and different values of H. For H = 0.025 the value of K is negligible
during the whole wave cycle as predicted by the present linear stability analysis (see
figure 3a). If H is slightly increased, K grows during the late decelerating phase as
predicted by the present linear stability analysis. However, up to H = 0.4, the growth
of K is weak and does not lead to the appearance of detectable perturbations of the
velocity field which is practically coincident with that predicted by (2.4). Only when
H is equal to 0.5 or larger, the strength attained by the perturbations is significant
and the flow deviates from the laminar flow. Of course, the process is continuous and
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FIGURE 4. Dimensionless kinetic energy K of flow perturbations plotted versus ζ for
δ = 1.2× 10−3 and different values of H.

there is some arbitrariness in defining the value of H which gives rise to significant
perturbations. Indeed both Vittori & Blondeaux (2008, 2011) introduced an arbitrary
threshold value of K to discriminate between the laminar and the turbulent regimes.
The results plotted in figure 4 explain also the differences between the values of ζc

predicted by the present stability analysis and those at which Sumer et al. (2010)
observed vortex tubes. Indeed, figure 4 shows that there is a significant time delay
between the beginning of the growth of the perturbations and the phase at which
they attain a significant level. When comparing the present theoretical results with the
numerical finding of Vittori & Blondeaux (2008) and the experimental measurements
of Sumer et al. (2010), the reader should consider that for small values of H the
stability analysis is not expected to provide accurate quantitative results because the
ratio H/δ is not large enough in order to reliably apply a ‘momentary’ criterion for
instability. An important issue which needs to be ascertained is whether the instability
predicted by the present analysis is convective or absolute. Since the characteristic
horizontal length scale of a solitary wave is much larger than the thickness of the
viscous boundary layer, the basic flow can be assumed to be slowly varying in the
streamwise direction. Hence, the approach proposed by Huerre & Monkewitz (1990)
can be used to investigate the absolute/convective character of the predicted instability.
A perturbation characterized by a complex wavenumber which leads to a vanishing
group velocity has been searched by means of an iterative procedure by varying the
phase within the wave cycle and considering different values of the parameters of
the problem. Huerre & Monkewitz (1990) suggest that the instability is absolute if
the growth rate of such perturbation is positive. On the other hand, the instability
is convective if the growth rate is negative. In the range of the parameters presently
investigated no absolute instability is found and no global instability can exist. This
finding differs from that of Bogucki & Redekopp (1999) who considered an internal
solitary wave and showed that the separated region which appears in the boundary
layer under the wave might be globally unstable.

5. Conclusions
The stability analysis described in § 3 and the results discussed in § 4 show that the

laminar boundary layer at the bottom of a solitary wave, propagating over a constant
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water depth, is unstable if the height of the wave exceeds a threshold value which
depends on the thickness of the boundary layer. For example, figure 3 shows that,
for δ = 1.2 × 10−3, the threshold value of H is close to 0.025, since for smaller
values of H the growth rate ci turns out to be negative for any value of α and
ζ . In the range of the parameters presently investigated, the instability takes place
during the decelerating phase of the wave cycle. The wavelength of the fastest growing
mode, at the critical conditions, is found to be similar to the distance between the
adjacent vortex tubes observed experimentally by Sumer et al. (2010). A comparison
of the theoretical results with the numerical findings of Vittori & Blondeaux (2008)
and the experimental visualizations of Sumer et al. (2010) seems to indicate that the
stability analysis underpredicts the threshold value of the wave height triggering the
instability of the laminar regime. However, a careful analysis of the results shows
that the discrepancy between the predictions of the linear stability analysis and the
numerical/experimental results can be explained by considering the unsteady character
of the basic flow which does not allow a significant growth of the perturbation to be
attained during the early stages of the instability.
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