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Abstract A gradient-based optimization method for minimization of the total drag
of an airfoil is presented. The viscous drag is minimized by delaying the laminar-
turbulent transition. The gradients are obtained solving the adojoint of the Eu-
ler, boundary-layer and stability equations. The optimization is subjected to con-
straints such as restrictions on geometry, lift and pitch moment. The geometry is
parametrised using radial basis functions.

1 Introduction

Drag reduction for high-speed vehicles is a challenging task. In the past, optimiza-
tion of airfoil mostly aimed at decreasing the pressure drag only neglecting the con-
tribution from viscous drag. However, recent requirements on significant reduction
of CO2 and NOx have resulted in increased interest in laminar airfoil design.

Since laminar-turbulent transition in the boundary-layer flows is usually caused
by breakdown of small unstable perturbations, the flow control methods for delay of
transition aim at reducing the growth rate of these perturbations. The amplification
of boundary-layer disturbances can be analyzed using linear stability theory. The
growth rate of the disturbances can then be used to predict the transition location
using the so-called eN method, see e.g. van Ingen [12]. Here, it is assumed that
transition occurs when the disturbance amplification exceeds an empirically defined
threshold. The most common approaches for transition control investigated for the
aeronautic applications are wall-suction and shape optimization. The latter is usually
denoted as Natural Laminar Flow (NLF) design.
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CFD-based design optimization has proved to be successful in reducing the pres-
sure drag at transonic flow regime, see e.g. Jameson [7]. However, attempts to mini-
mize the total drag by regular CFD-based design optimization have relied on a fixed
laminar-turbulent transition point or on the assumption that the flow is fully turbu-
lent as in Nemec & Zingg [9]. Linear stability analysis has been used in a number
of investigations for NLF design. In Green & Whitesides [5] , a target pressure is
found, based on a simplified relation between pressure and disturbance amplifica-
tion (N-factor), which is used to state an inverse problem in order to find a geometry
that may delay transition. Streit & Liersch [11] also used an inverse method to de-
sign a transonic wing with natural laminar flow. In Manning & Kroo [8] , a surface
panel method was coupled with an approximative boundary layer calculation and
linear stability analysis. Iuliano et al. [6] used a genetic algorithm for NLF design
of a supersonic transport jet wing-body. However, none of these investigations cal-
culated the sensitivities based on the linear stability analysis in order to formulate
optimality conditions.

The method for NLF design presented here is gradient-based and utilizes the
adjoints of the Euler, boundary-layer and stability equations to calculate the required
gradients. Here, CFD analyses are coupled to boundary-layer stability computations.
With this approach, the geometry, here an airfoil, can be optimized with respect to
the disturbance amplification in order to delay the laminar-turbulent transition.

2 Governing equations

The most common transition prediction methods are based on the amplification rate
of harmonic disturbances imposed to the boundary layer. Once the boundary-layer
profiles are given the convective instability of these disturbances can be obtained
with good accuracy using, for example, the nonlocal stability theory solving the
Parabolized Stability Equations (PSE), see e.g. Bertolotti et al. [4]. The amplifica-
tion rates of perturbations are known to be sensitive to accuracy of the computed
profiles. Usually, the required accuracy is not achieved through Navier-Stokes (NS)
computations due to the high resolution needed. Therefore, often the profiles are
obtaind as solutions of the boundary-layer equations performed using pressure dis-
tribution given by Euler or Navier-Stokes computations as input. This approach has
been used here. The governing equations in symbolic form can be written as

Le (w,Γ ) = 0 , (1)

Lble (Q,w,Γble) = 0 , (2)

Lpse (q,Q,Γpse) = 0 . (3)

Here, Le, Lble and Lpse represent operators corresponding to Euler, boundary-
layer and disturbance equations, respectively. Further, w denotes the inviscid flow
field, Q the viscous boundary-layer profiles and q the perturbation quantities. The
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whole geometry is notated by Γ while ,Γble and Γpse represent the part of geometry
considered for boundary-layer and stability computations, respectively.

The viscous-inviscid interaction is neglected here. In this way the Euler equations
Le only depend on the shape Γ at given flow conditions (angle of attach, Mach and
Reynolds numbers). The inviscid flow w on Γble provides the boundary conditions
for the boundary-layer equations (Lble). The flow in the laminar boundary layer Q
and geometry Γpse define the coefficients of the PSE, for given flow conditions and
for chosen disturbance parameters (frequency and wave number).

3 Optimization problem

As mentioned above the laminar flow control problem and the aerodynamic shape
optimization can be defined as an optimization problem which mathematically can
be formulated as:

min
a∈Rnd

J (q,w,Γ ) subject to





f j (q,w,Γ ) ≤ 0 ,1 ≤ j ≤ m ,
Le (w,Γ ) = 0 ,

Lble (Q,w,Γble) = 0 ,
Lpse (q,Q,Γpse) = 0 ,

S (Γ ,a) = 0 ,

(4)

where J is a cost function, f j are the constraints. The cost function J and the con-
straints f j are explicit functionals of one or several of the variables {q,w,Γ }. Fur-
ther, S denotes the parameterization of the geometry which defines the geometry
Γ for given control variables a.

Since we aim to minimize the pressure drag as well as the friction drag the
considered objective function should include measures of both of them. The fric-
tion drag is thought to be minimized by delaying the laminar-turbulent transition.
This is addressed by reducing the amplification of boundary-layer perturbations as
much as possible through variation of geometry (pressure gradient). Usually, differ-
ent types of disturbances (e.g. cross-flow vortices and Tollmien-Schlichting waves)
are present in the boundary layer simultaneously. These disturbances react differ-
ently to changes in pressure distribution. Further, perturbations of the same type are
dominating at different streamwise positions. Therefore, the measure of disturbance
amplitude should include contribution of different perturbations.

The measure of disturbances used here is based on the kinetic energy of a number
of perturbations integrated over a defined domain

E =
1
2

K

∑
k=1

∫

Ωpse

qH
kMqk dΩ , (5)

where M is a weighting matrix. This measure has successfully been used in opti-
mization of wall-suction distribution for transition control, see Pralits & Hanifi[10] .
Then, the objective function J is defined as
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Fig. 1 Schematic of optimization procedure.

J = λU E +λDCD, (6)

where CD is the inviscid pressure drag. Here, λU and λD are weight parameters.
The optimizations can also be constrained by requirements on values of lift and
pitch moment. Constraints are further imposed on the geometry features as constant
cross-sectional area, fixed trailing edge, and a fixed region of the airfoil around the
leading edge. These constraints can be treated as equality or inequality constraints
like minimum thickness and minimum lift. As mentioned before the optimization al-
ghorithms used here are gradient-based. The gradients are efficiently obtained solv-
ing adjoints of the Euler, boundary-layer and disturbance equations. The gradient of
the disturbance energy is computed using the chain rule

∂E
∂a

=
∂E
∂Q

× ∂Q
∂w

× ∂w
∂a

. (7)

The gradients in the right hand side of the expression above represent solutions
of the adjoint equations. This expression is equivalent to the following chain of
computations

APSE → ABLE︸ ︷︷ ︸
cont.

→ adjoint Euler.︸ ︷︷ ︸
discr.

Adjoint of the stability equations (APSE) and boundary-layer equations (ABLE) are
derived in contineous form and then discretised while adjoint of the Euler equations
are derived directly from the discretised ones. Details of derivation and implemen-
tation of these equations can be found in references [3, 2]. The schematic of the
optimization procedure is given in Fig. 1.

4 Results

Here, results of the optimization of two-dimensional airfoils are presented. The aim
is to demonsterate the behavior of our method. The geometries correspond to the
tip and root sections of a low speed aircraft at a free-stream Mach number of M∞ =
0.374. The initial geometry is a NASA TP 1786 airfoil with 17% thickness. The
optimization problem is formulated as:
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Fig. 2 NLF airfoil optimization at M∞ = 0.374 and Re = 7×106 corresponding to the tip section.
Right: Pressure coefficients −Cp and unscaled geometry. Left: NE -factor curves. The dashed lines
denote initial design and the solid lines the final design. Symbols denotethe target disturbane.

min
Γ

log(E)+0.1
CD

CD
0 subject to CL ≥CL

0, Cm ≥Cm
0, t ≥ tmin (8)

where the superscript 0 indicates values at the initial design (baseline), t the airfoil
thickness and superscript min refers to the minimum avalue allowed. Further, as
the value of the disturbance energy E varies a lot in the course of optimization the
log(E) is used instead. Here, the Radial Basis Functions (RBF) have been used to
parametrize the geometry. The details of its implementation can be found in refer-
ence [1].

In Fig. 2 results of optimization of the airfoil corresponding to the tip section
of the wing are presented. Here, the minimum thickness is tmin/C = 12% and the
Reynolds number based on the chord length C is Re = 7× 106 and C0

L = 0.3. The
optimization aimed at reducing the disturbance growth on the upper side of the air-
foil only. The targeted disturbance is a two-dimensional Tollmien-Schlichting (TS)
wave at 5 kHz (marked with symbols). The NE -factor curves plotted in Fig. 2 are
defined as

NE(x) = 0.5 · ln
(

Ê(x)

Ê(x0)

)
, (9)

where Ê is the kinetik energy of disturbances and x0 refers to the location the dis-
turbance energy first starts to grow. Here, the critical value of NE -factor is assumed
to be around 10. As can be seen in Fig. 2, the disturbance amplification is reduced
significantly and its value is well below the citical one every where. The boundary
layer computations stop around x/C ≈ 0.55. The final geometry has a an accelerat-
ing flow in a large area of the upper side. This is known to have a damoing effect
on the growth of TS-waves. Plots in Fig. 3 show the history of the computations
corresponding to the results presented in Fig. 2.

In Fig. 4 results of optimization of an airfoil corresponding to the root section
of the wing are presented. Here, the minimum thickness is tmin/C = 16% and the
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Fig. 3 Optimization history corresponding to the results of Fig. 2.

Reynolds number based on the chord length Re = 12.1×106 and C0
L = 0.4. As for

the tip section, the energy of a two-dimensional TS wave at 5 kHz on the upper sur-
face of the wing is to be reduced. Besides the results for final geometry, results for
an intermediate one are also plotted there. The pressure distribution on both sides
are similar to that on the optimized tip section. However, here the pressure gradi-
ent on the upper side is stronger resulting in a more pronounced stabilisation of
disturbances. As mentioned above, the optimization is based on the inviscid com-
putations. In order to analyse the correct behaviour of the optimized airfoil, RANS
computations with prescribed transition point were performed. The location of tran-
sition was predicted as the streamwise position where the envelope of the N-factor
curves reached a value of 10. Results of these computations, in terms of CL and
CD, are given in Fig. 5. Here, CD includes both the pressure and viscous drag. As
can be observed there, for low and moderate lift coefficients the performance of the
optimized airfoil is better than the initial geometry. However, the optimized airfoil
loses lift at higher angle of attack. This is due to the fact that at these angle of at-
tacks boundary-layer separation occurs earlier on the optimized airfoil than on the
initial one. This clearly shows the need for inclusion of the viscous effects in the
optimization procedure.

In the previous examples only the upper side of the airfoil has been considered
for laminar flow optimization. The resulted lower surface pressure distributions have
stronger adverse gradients than that from the original geometries, resulting in earlier
transition on the lower side of the optimized geometries than on the original ones.
Therefore, we examined the possibility to extend the laminar flow on both side of the
airfoil. Results of the computations are given in Fig. 6. Here, the objective function
includes the contributions from disturbances on both side of the airfoil. As can be
seen there, the disturbances are highly damped on both upper and lower surfaces of
the optimized airfoil.
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Fig. 4 NLF airfoil optimization at M∞ = 0.374 and Re = 12.1× 106 corresponding to the root
section. Upper side optimized for NLF. Right: Pressure coefficients −Cp and unscaled geometry.
Left: NE -factor curves. The dashed lines denote initial design and the solid lines the intermediate
and final design (thick line). Symbols denote the target disturbane
.
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Fig. 5 Lift and drag coeeficients for airfoil given in Fig. 6. RANS computations with transition
point given by stability analyses.

5 Conclusions

Utilizing the adjoint equations, the gradients of amplification of the boundary-
layer disturbances with respect to geometry variations have been efficiently com-
puted. The method couples the Euler, boundary-layer and stability equations as
well as their adjoints to compute the gradients. The results of optimization of two-
dimensional airfoils have been presented indicating that the method is able to pro-
duce NLF airfoils. Further, RANS computations on the optimized geometries with
prescribed transition location showed that inclusion of viscous effects in optimiza-
tion procedure may be necessary in order to account for the effects of flow separa-
tion.
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Fig. 6 NLF airfoil optimization at M∞ = 0.374 and Re = 12.1× 106 corresponding to the root
section. Both upper and lower side are optimized for NLF. Right: Pressure coefficients −Cp and
unscaled geometry. Middle: NE -factors curves on the upper side. Left: NE -factor curves on the
lower side. The dashed lines denote initial design and the solid lines the final design. Symbols
denote the target mode.
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