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Abstract In this paper we study the structural sensitivity of the nonlinear periodic
oscillation arising in the wake of a circular cylinder for Re47. The sensibility of
the periodic state to a spatially localised feedback from velocity to force is anal-
ysed by performing a structural stability analysis of the problem. The sensitivity of
the vortex shedding frequency is analysed by evaluating the adjoint eigenvectors of
the Floquet transition operator. The product of the resulting neutral mode with the
nonlinear periodic state is then used to localise the instability core. The results ob-
tained with this new approach are then compared with those derived by Giannetti &
Luchini [8]. An excellent agreement is found comparing the present results with the
experimental data of Strykowski & Sreenivasan [7].

Keywords Fluid mechanics � Nonlinear global modes � Structural sensitivity �
Adjoint

1 Introduction

Spatially developing flows such as mixing layers, wakes and jets, may sustain in
specific parameter ranges synchronised periodic oscillations over extended regions
of the flow field, displaying there an intrinsic dynamics characterised by a sharp fre-
quency selection. Under these conditions the whole flow field behaves like a global
oscillator and the structure underlying the spatial distribution of the fluctuations
is usually termed “global mode”. The spatio-temporal evolution of such flows has
been clarified considerably only in recent years: progress was made through model
equations, experiments, stability analysis and direct numerical simulations. A the-
oretical approach to this class of problems was formulated by Chomaz et al. [1],
Monkewitz et al. [6] and Le Dizés et al. [4] in the context of flows with properties
slowly varying in space. Relying only on a local analysis, they were able to show
that such flows may exhibit internal resonance when a region of absolute instability
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of sufficient size develops. The resonance is self-excited and is characterised by a
well defined frequency. The important link between the global and local instability
properties, both in the linear and fully nonlinear regime, is obtained via a WKBJ
approach: the theory identifies a specific spatial position in the absolutely unstable
region which acts as a wavemaker, providing a precise frequency selection criterion
and revealing some important insights pertaining to the forcing of these modes. In
particular, in a linear setting, the complex global frequency !g is obtained by the
saddle-point condition

!g D !0.Xs/ with
@!0

@X
.Xs/ D 0 (1)

based on the analytic continuation of the local absolute frequency curve !0.X/ in
the complex X-plane, with X denoting here the slow streamwise variable. Although
this asymptotic theory yields accurate predictions for slowly evolving flows, in many
real configurations the assumptions underlying the WKBJ approach are not met
very closely. This is the case of bluff-body wakes, where strong non-parallel effects
prevent us from using asymptotic theory. In such cases a numerical modal analysis
must be used to determine the characteristics of the instability and to find its critical
Reynolds number. One of the most common examples is given by the flow around
an infinitely long circular cylinder. In order to study the global properties of such
flow, Giannetti & Luchini [8] performed a 2D stability and receptivity analysis of the
steady base flow using the properties of the adjoint eigenfunctions. The asymptotic
theory developed by Chomaz et al. [1], Monkewitz et al. [6] and Le Dizés et al. [4]
in the context of slowly evolving quasi-parallel flows endows the region around the
saddle point with the fundamental role of wavemaker in the excitation of the global
mode. In the context of a two-dimensional modal analysis a concept similar to that
of wavemaker can be introduced by investigating where in space a modification in
the structure of the problem is able to produce the greatest drift of the eigenvalue.
Using this approach Giannetti and Luchini (2007) determined the regions where the
feedback from velocity to force is maximum and consequently identified the regions
were the instability acts. Qualitative agreement was obtained with the numerical and
experimental data of Strykowski and Sreenivasan [7]. From a theoretical point of
view a similar approach, being based on the properties of the steady base flow, is
only valid in a neighbourhood of the neutral point. When Re > Rec � 47 the flow
becomes unsteady and a Karman vortex street develops.

In this paper we extend the approach developed by Giannetti and Luchini (2007)
to study finite-amplitude vortex shedding, in order to assess how unsteadiness and
saturation can modify the previous results.

2 Problem Formulation

We investigate the stability characteristics of the two-dimensional flow arising
around an infinitely long circular cylinder invested by a uniform stream. A Cartesian
coordinate system has its origin in the cylinder’s centre, with the x axis pointing in
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the flow direction. For Re < Rec;2 � 180 the fluid motion can be described by the
two-dimensional unsteady incompressible Navier–Stokes equations

@u

@t
C u � ru D �rp C 1

Re
	u (2a)

r � u D 0 (2b)

where u is the velocity vector and p is the reduced pressure. Equations (2a,b) are
made dimensionless using the cylinder diameter D� as the characteristic length
scale, the velocity of the incoming uniform stream u�1 as the reference velocity
and ��u�21 as the reference pressure. Thus

Re D u�1D�

�� (3)

is the Reynolds number based on the cylinder diameter.
Equations (2a,b) must be supplemented by appropriate boundary conditions. In

particular, on the surface of the cylinder �c the no-slip and no-penetration condi-
tions require both velocity components to vanish, while in the far field the flow
approaches asymptotically the incoming uniform stream. For Re > Rec the steady
symmetric flows becomes unstable and a Karman vortex street develops. In such
conditions, after an initial transient, the flow becomes periodic:

u.t C T / D u.t/ ; p.t C T / D p.t/ (4)

with period T , Strouhal number St D 1=T and angular pulsation ! D 2�=T .
In order to locate the wavemaker of the instability, Giannetti and Luchini (2007)

determined the space distribution of the sensitivity of the eigenvalue to a structural
perturbation of the problem. The analogous quantity for the nonlinear periodic os-
cillation is the space distribution of the sensitivity of its frequency to a structural
perturbation of the problem. This is the objective of the present paper.

Suppose now we give a structural perturbation to this problem, in the form of
a body force depending on the local velocity h.u/. If the perturbation is small the
new solution will remain periodic but with a different period (in contrast with the
corresponding linear problem whose frequency will in general become complex and
bring about either amplification or damping). In order to be able to treat the problem
perturbatively and avoid secular effects, it is convenient to scale the time variable
on the period of the solution itself. Thus introducing the scaled time


 D t

T
(5)

the equations can be rewritten as

1

T

@u

@

C u � ru D �rp C 1

Re
�u (6a)

r � u D 0 (6b)
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where T is an additional unknown and the period in the variable 
 is constant and
equal to 1.

Writing the perturbed solution as

fu0.
/C u.
/; p0.
/C p.
/g;
where fu0; p0g denote the unperturbed periodic flow and fu; pg have become the
small perturbations induced by the added forcing, and inserting it into the equations
together with the small external forcing h D Cu0 we obtain

1

T C ıT

@.u0 C u/

@

C .u0 C u/ � r.u0 C u/C r.p0 C p/ D 1

Re
�.u0 C u/C h

(7a)

r � .u0 C u/ D 0 (7b)

If the effect of the structural perturbation is small, we can linearize these equations
and obtain an equation for the perturbation

1

T

@u

@

C u0 � ru C u � ru0 C rp � 1

Re
�u D ıT

T 2
@u0

@

C h (8a)

r � u D 0 (8b)

This linear problem can be studied through Floquet analysis, and as is well known
the resulting perturbation will in general not be periodic, but modified by the Floquet
exponent. The condition, implicit in the definition of 
 , that a constant period equal
to 1 be maintained, constitutes a compatibility condition determining ıT , which is
exactly the variation of period induced by the structural perturbation h D Cu0.

2.1 Adjoint Equations

Just as in the corresponding linear stability problem, if we just wanted to deter-
mine the variation of period for a specific form of structural perturbation we could
solve the problem as stated above; but we can obtain a much more powerful result,
i.e. the sensitivity of the period to an arbitrary structural perturbation with the aid
of adjoint equations. Key to this approach is the observation that the unperturbed
equations (6a,b) have a non-unique solution, insofar as if u0.
/ is a periodic solu-
tion, u0.
 C ı
/ is as well. Linearizing with respect to ı
 we find that @u0=@
 is
a solution of the linearized equations (8) in homogeneous form (e.g., with h D 0).
Since Equations (8a,b) with periodic boundary conditions have a nontrivial solution
with zero forcing and zero ıT , the original inhomogeneous linear problem only has
a solution if a compatibility condition is satisfied. This compatibility condition can
be derived through adjoint equations.
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The adjoint of the linearized Navier–Stokes operator (8) is defined, as usual, by
multiplying both sides of the equation by suitably differentiable fields ff C; mCg,
integrating over all space and a period in time, and then using integration by parts to
shift differentiation operators from the direct to the adjoint fields. We thus obtain:

Z
f C �

�
ıT

T 2
@u0

@

C h

�
d3x dt

D
Z 


f C �
�
1

T

@u

@

C u0 � ru C u � ru0 C rp � 1

Re
�u

�
CmCr � u

�
d3x dt

D
Z 


u �
�

� 1

T

@f C

@

� r � .u0f

C/C ru0 � fC � rmC � 1

Re
�f C

�
C

� pr � f C
�
d3x dt (9)

where periodicity eliminates finite terms in time, and spatial boundary conditions
for the adjoint are assumed to eliminate finite terms in space that are not already
eliminated by boundary conditions for the direct problem. Equation (9) consti-
tutes a generalized Green’s identity (Morse and Feshbach [9]) for the LNSE. It is
self-evident that if ff C; mCg are chosen to nullify the r.h.s. of Equation (9) inde-
pendently of u and p, i.e. to satisfy the adjoint equations, the l.h.s. must be zero as
well. Recalling that h D Cu0, we thus obtain the compatibility condition

N
ıT

T
D �

Z
f C � Cu0 d3x dt where N D

Z
f C � 1

T

@u0

@

d3x dt (10)

Since ı!=! D �ıT=T , we have obtained the structural sensitivity S of the
oscillation frequency ! to the structural perturbation C.x/:

S D ı!

ıC
D !

N

Z
u0f

C dt (11)

Notice that C is a tensor quantity, relating a force to a velocity, and so is S. The
notation u0f

C must be read as a dyadic product.

3 Numerical Approach

The time dependent flow around the cylinder is solved by discretizing the equations
with finite differences on a staggered Cartesian grid. The advancement in time is
obtained by the classical Runge-Kutta Crank-Nicholson scheme of Rai and Moin.

The presence of the cylinder is represented by an immersed-boundary technique
similar to that used by Fadlun et al. [2]. Thus, the entire domain is covered by
computational cells and there is no need for body-fitted coordinates. The boundary
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conditions on the surface of the cylinder 
c are imposed through a linear interpo-
lation. Several interpolation procedures have been proposed in the past: in Fadlun
et al. [2] the velocity at the first grid point external to the body is obtained by lin-
early interpolating the velocity at the second grid point (which is instead obtained by
directly solving the Navier–Stokes equations) and the velocity at the body surface:
in their numerical algorithm this condition is approximately enforced by applying
momentum forcing inside the flow field. The interpolation direction is either the
streamwise or the transverse direction, but the choice between them is not specified.
Mohd-Yusof [5] used a more complex interpolation scheme which involved forcing
the Navier–Stokes equations both inside and on the surface of the body. In particu-
lar the no-slip conditions were imposed at the point of the boundary touched by the
wall-normal line passing through the closest internal point, using bilinear interpo-
lations for this purpose. Finally, Kim et al. [3] introduced a mass injection forcing
to satisfy the continuity equation for the cells containing the immersed boundary.
A slightly different and easier approach has been used by Giannetti and Luchini
(2007) to study the structural sensibility of the first instability of the cylinder wake.
In this paper we follow this last approach: the interpolation is performed using the
point closest to the body surface (which can be either an internal or an external
point) and the following point on the exterior of the cylinder. The interpolation is
performed either in the streamwise or transverse direction according to which one
is closest to the local normal.

The linear system of algebraic equations deriving form the discretization of the
nonlinear equations, along with their boundary conditions is solved at each substep
through a sparse LU decomposition. Both the nonlinear equations and the adjoint
equations are marched in time until a time-periodic state is reached.

4 Numerical Results

Figure 1 shows our typical result: a space distribution of the structural sensitivity S
defined by Equation (11), in this case at a Reynolds number slightly above threshold.
Since S is a tensor, various representative quantities may be chosen to be plotted. In
Fig. 1 the choice is the spectral radius, which represents the sensitivity to a force of
the worst possible direction. Other choices can be the Frobenius norm (sum of the
squares of all four components) or the absolute value of the trace (sensitivity to a
force locally aligned with velocity, i.e. a pure resistance).

Similar data for Re = 80 and 100 are shown in Figs. 2 and 3. All three figures
agree remarkably well with the experimental data of Strykowski and Sreenivasan
[7], who introduced a small perturbing cylinder in the wake of a larger one and
reported the variation in critical Reynolds number as a function of position of the
perturbing cylinder (Fig. 4).
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Fig. 1 Structural sensitivity of the periodic wake at Re D 50
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Fig. 2 Structural sensitivity of the periodic wake at Re D 80

4.1 Comparison with the Linear Results

In fact, it is a surprise that the structural sensitivity of the saturated periodic
oscillation, even at the relatively low Reynolds number of 50, does not agree as
satisfactorily with the structural sensitivity of the linear eigenmode as calculated
by Giannetti and Luchini (2007) (Fig. 5). Actually, if attention is paid to the colour
scale, it will be seen that the two are quite different in amplitude and not just in
shape.
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Fig. 3 Structural sensitivity of the periodic wake at Re D 100

Fig. 4 Experiment of Strykowski and Sreenivasan [7]

This was a puzzle until we realized that the frequency of the nonlinear oscillation
can be influenced in two different ways: by a structural perturbation force deter-
mined by the fluctuating velocity alone (as implicitly assumed in our linear results),
or by a force that responds both to the mean and to the fluctuating velocity. Neither
is wrong: they serve different purposes. The structural perturbation depending on
the fluctuation only was the appropriate tool to study the position of the wavemaker,



Structural Sensitivity of Periodic Vortex Shedding 159

0

0.05

0.1

0.15

0.2

0.25

x

y
Re=50

12 14 16 18 20 22
12

13

14

15

16

17

18

Fig. 5 Structural sensitivity of the linear instability mode at Re D 50
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Fig. 6 Structural sensitivity of the linear instability mode at Re D 50 with the base-flow modifi-
cation included

but the perturbation depending on the full velocity field is the one that was implic-
itly assumed in the present nonlinear results, and of course is the one that occurs
in the experiments. Once this difference is identified, it is not difficult to extend the
linear eigenmode calculation to account for the frequency variation induced by a
perturbation influencing the mean flow. On so doing Fig. 5 becomes Fig. 6 and, all
of a sudden, a more satisfactory agreement is recovered with both experiments and
nonlinear sensitivity results.
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5 Conclusion

The structural sensitivity map of the frequency of a periodically oscillating wake
to a perturbing force locally proportional to velocity has been determined for two-
dimensional flow past a cylinder at various Reynolds numbers. The results, meant
as an extension of the eigenmode structural sensitivity of Giannetti and Luchini
(2007) have actually uncovered a dominant effect of the frequency variation induced
by a modification of the base flow over the frequency variation induced by the di-
rect structural perturbation of the eigenmode, thus clarifying that the former effect
was also dominant in the experiments of Strykowski and Sreenivasan [7]. When the
nonlinear results are epurated of the contribution of the mean flow, or vice versa
this effect is included in the eigenmode calculation, agreement for near-threshold
Reynolds number is actually recovered.
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