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Abstract. An input/output framework is used to analyze the sensitivity of two-
and three dimensional disturbances in a compressible boundary layer for changes in
wall- and momentum forcing. The sensitivity is defined as the gradient of the kinetic
disturbance energy at a given downstream position with respect to the forcing.
The gradients are derived using the parabolized stability equations (PSE) and their
adjoint (APSE). The adjoint equations are derived in a consistent way for a quasi
two-dimensional compressible flow in an orthogonal curvilinear coordinate system.
The input/output framework provides a basis for optimal control studies. Analysis
of two-dimensional boundary layers for Mach numbers between 0 and 1.2 show that
wall- and momentum forcing close to branch I of the neutral stability curve give the
maximum magnitude of the gradient. Forcing at the wall gives the largest magnitude
using the wall normal velocity component. In case of incompressible flow, the two-
dimensional disturbances are the most sensitive ones to wall inhomogeneity. For
compressible flow, the three-dimensional disturbances are the most sensitive ones.
Further, it is shown that momentum forcing is most effectively done in the vicinity
of the critical layer.
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1. Introduction

Transition from laminar to turbulent flow can be triggered by unstable
disturbances inside the boundary layer. The growth of such distur-
bances are known to be sensitive to surface inhomogeneities, forcing
inside the boundary layer and external acoustic perturbations, see e.g.
Nishioka and Morkovin (1986), Saric (1993) and Corke, Bar-Sever and
Morkovin (1986). The studies devoted to the birth of disturbances
due to such forcing are called receptivity. The acoustic receptivity is
explained by Goldstein (1983) as a wavelength conversion mechanism.
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The long wave length of an acoustic wave can be converted to a shorter
wave length of an instability wave at the leading edge or where a geo-
metric inhomogeneity is present. Results of boundary layer receptivity
are documented by Crouch (1992a, 1992b) and Choudhari and Street
(1992) for two-dimensional disturbances in a Blasius boundary layer.
Other references may be found in Goldstein (1989) and in Saric (1993).

A disturbance inside the boundary layer may encounter an unsteady
wall inhomogeneity (forcing) which changes its growth. This problem
can also be viewed as a receptivity to wall perturbations. If the pertur-
bation is appropriate, it can be used to control the development of the
disturbance. This is the wave cancellation concept proposed by Thomas
(1983). Such study may be formulated as input/output problem where
the input is some forcing on the wall or in the boundary layer, and
the output is a measure of the disturbance in the domain. The sen-
sitivity can be defined as the gradient of the output with respect to
the input. A typical output measure is the disturbance energy at some
downstream position or in the whole domain. Such a formulation can
easily be extended to a control problem by using the gradient to update
the input i.e. control variables in order to minimize the output. This
analysis can be done with gradient based optimization techniques as
shown in Gunzburger (2000) and Bewley, Temam and Ziane (2000).

Here we investigate the sensitivity of disturbances to unsteady wall
conditions and source of momentum in a compressible boundary layer in
framework of the non-local stability theory. This analysis is formulated
as an input/output problem and provides information which is useful
for the control of disturbances. The state equations are the so called
Parabolized Stability Equations, PSE, and are written in an orthogonal
curvilinear coordinates system. For a detailed presentation of PSE see
e.g. Bertolotti, Herbert and Spalart (1992) and Simen (1992).

The main tool developed here is based on the adjoint equations.
The approach of adjoint equations has been used for sensitivity studies
in oceanography and atmospheric circulation models, e.g. Hall (1986).
This approach has also appeared in receptivity studies. Tumin (1996)
used it for confined flows. Hill (1995, 1997) applied the adjoint approach
for the local and nonlocal stability theories to study the receptiv-
ity of Tollmien-Schlichting waves in boundary layer flows. Receptivity
of Gortler vortices was studied by Luchini and Bottaro (1998) using
backward-in-time integration. The adjoint techniques has also been
used for identifying the optimal disturbances in boundary layer flows,
e.g. Andersson, Berggren and Henningson (1999) and Luchini (2000).

Sensitivity analysis may be performed by forward calculations. For
each parameter that is changed (inhomogeneous wall boundary condi-
tions, initial disturbance, momentum source) the forward problem has
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to be solved. The total time spent will be the product of the number
of input parameters and the time spent for each calculation.

The advantage of the adjoint approach is that the sensitivity of a
disturbance can be obtained by solving the state and adjoint equations
once. This means that the adjoint method can provide an optimal
distribution of suction to suppress the growth of disturbances with
a relatively low computational cost. Such a study was carried out by
Cathalifaud and Luchini (2000) for optimal disturbances in a Blasius
boundary layer.

The aim of the present work is to derive the adjoint of the parabo-
lized stability equations for a compressible flow in a consistent way. The
paper is organized as follows. In section 2 the problem is defined and
section 3 gives the adjoint formulation and the gradient expressions.
Validation and results of the sensitivity analysis are presented for a
two-dimensional compressible boundary layer with two and three di-
mensional disturbances in section 4. The conclusions appear in section
5. Details of the derivation of nonlocal stability equations and their
adjoint are given in the appendix.

2. Problem formulation

2.1. DEFINITION OF THE SENSITIVITY

5(73

Figure 1. Computational domain

The sensitivity of two- and three dimensional disturbances in a com-
pressible boundary layer for changes in wall- and momentum forcing is
investigated. This analysis is formulated as an input/output problem
and will be discussed below considering the domain given in figure
1. Here, z',z? and 23 are the streamwise, spanwise and wall normal
coordinates, respectively, and U, the freestream velocity. The compu-
tational domain is defined such that z' € [Xo, X1], 22 € [Zo, Z1] and
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23 € [0,00[. An initial disturbance is superimposed to the boundary
layer base flow at an upstream position Xj.

In optimal control theory, sensitivity is defined as the derivative
of the state variables (output) with respect to the control variables
(input). It is related to the gradient of a functional J (called cost or
objective functional) which includes both a measure of a state E and
a measure of the control E,.. The measures are weighted together with
a positive factor €, so called the regularization parameter, as J = F +
€F.. The regularization parameter serves the purpose of limiting the
size of the control. The optimal input can then be obtained via an
optimality condition using gradient based optimization techniques as
e.g. steepest descent or conjugate gradient, see e.g. Bewley et al. (2000)
and Gunzburger (2000).

Here, the input is defined as the inhomogeneities of velocity uy, and
temperature T}, on the wall 3 = 0 and a source S in the boundary
layer. The output is a function of disturbance variables, here written
as the disturbance energy norm

1 VAl [ _
By [ dtMrhaha da® aa, (1)
2 Jz, Jo
or alternatively
1 X1 pZ1 ptoo | N
E=_ / / d"M¢ hihahs dz' da? da?, (2)
2)xy Jzy Jo
where ¢ = (p, 4,9, w,T)T with p denoting the density perturbation,

u,v,w the streamwise, spanwise and normal velocity perturbations,
respectively, and T the temperature perturbation. The superscript #
denotes the transpose complex conjugate, the subscript ; refers to
values at £ = X; and h; the scale factors of the coordinate sys-
tem. The positive diagonal matrix M defines the measure of ’size’
of disturbances. In this paper M = Diag(0,1,1,1,0) such that dis-
turbances are measured by the modulus of their velocity components.
An example of another measure is given in Hanifi et al. (1994) where
M = Diag(T/pyM?, p, p, p,p/y(y — 1)TM?) with T being the mean
temperature, p the mean density, v the ratio of the specific heat coef-
ficients and M the Mach number of the flow. We define the sensitivity
as the gradient of F with respect to Uy, 1w and S. Here we consider
the case with no penalty, i.e € = 0, therefore can the output be written
J=E.

In the present paper the amplitude of the control parameters are
assumed to be so small that the nonlinear interaction with the mean
flow can be neglected. However, the procedure presented here can be

ftc.tex; 16/02/2001; 15:27; p.4



5

extended to account for the modification of the mean flow, see Pralits
et al. (2000).

2.2. STATE EQUATIONS

The governing equations are the non-local stability equations formu-
lated using PSE technique for quasi-three dimensional viscous, com-
pressible flow formulated in primitive variables and general, orthogonal
curvilinear coordinates. Here, we consider a general case where the
boundary layer is subjected to sources of mass, momenta and energy
S, and inhomogeneous boundary conditions on the wall @1, and Ty,. The
notation, the reference quantities, the assumptions and the derivation
of the PSE are given in appendix A. The equations in symbolic form
are written as

L =8 in Q
¢ = do on z! = X
= ay(zh), T = Ty(zh) on z3=0 (3)
a—0 T =0 as o3 — 0o
OOOqBH% hohsdz® = 0 v ozl

The disturbance (ﬁ, the source S and the inhomogeneous boundary
conditions have been divided into an amplitude function and a wave
function

¢z’ t) = §(z',2%)0, S(a',1) = S(a',a?)0, (4)

where

zl

O(zt,z?) =exp i (/ alz)de' + Bz — wt). (5)
Xo

Here, « is the complex streamwise wavenumber, § the real spanwise

wavenumber and w the real angular frequency of the perturbations. The

integral expression in equation (3), the so called auxiliary condition, is

used to remove the ambiguity from the streamwise dependence that

remains between the wave and the amplitude functions.

In accordance to the derivation of the nonlocal stability equations,
the input parameters ({iy, Ty and ) are assumed to be weak functions
of the streamwise coordinate, i.e. 8/dz' ~ O(R'). Note that ¢, and
S have the same 22, t and main z! dependence as the disturbances.

The system of equations (3), which is nonlinear in (a,gﬁ), is inte-
grated in the downstream direction using a marching procedure, with
the initial condition at ' = X{ given by the local stability theory. At
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each streamwise position, the value of « is iterated such the auxiliary
condition is satisfied.
3. Adjoint equations and gradients

The gradient of the output given by (1), is defined through the direc-
tional derivative as

X1 7% }
0J = Real {/ / (VﬁwJH(Sle + VTWJHéTW) hihs dz? dxi+
X, 47

X1 Z1 o -
/ / / VI "8 hihohs dz® dz? dxl} , (6)
Xo Zo 0
where
VeJ 8¢ = lim J(& + s0¢) — J(f)’
s—0 S

and 6y, 07, and 0S are the variations of the input parameters. The
gradient expressions, i.e. the sensitivities, are derived in appendix B,
using a perturbation technique together with integration by parts in
space. It yields

Vi = éDg(u*) on 8 =0

Vo = éDg(v*) on z% =0

Vo = pg on 23 =0 (7)
Vi d = —é;rRD3(T*) on z3 =0

VeJ = % in Q

where the overbar denotes the complex conjugate, u, k, R and Pr are
the dynamic viscosity, the heat conductivity, the Reynolds and Prandtl
numbers, respectively, and

‘ Q

D; =

i’

jo5)

1
h;
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The co-state variables ¢* = (p*, u*, v*, w*, T*) and r* satisfy the adjoint
equations

LF¢* = S* in

uw =0 T" =0 on z3 =0
uw =0, T =0 as o3 — 0o (8)
o* = ¢, =1} on zl = X,
o [T 0L,
— =} hyhohg dz® = f* v ozt
ozl J, ¢ O ¢ hohs do / o
where . . X
8 == [1"Dud) = Di(r*d) = (mar +ma)r b ], (9)
+00 A K o
ff=i / ¢*HS hihohg dz? + 1hiho [——Dg(T*)T
0 PrR (10)

+(p7")ib + £ Da(@)it + £y (7))

1‘3:0‘

and
1 Oh;

Mij = ————.

Y hih]’ orJ
The co-state equations (8) are integrated in the upstream direction
with the initial condition at ! = X as :

¢ = 101D M —aDd, ri=l0ia (11)

where c¢; is given in the appendix and Z is the identity matrix. Equa-
tions (8) are solved iteratively to find r* such that the integral expres-
sion is satisfied.

Now, the gradients of J can be obtained in following steps. First,
the state variable ¢ is calculated by integrating equations (3) from
z' = Xj to X;. Then the co-state equations (8) are integrated backward
in the streamwise direction from z' = X; to X, to obtain the co-state
variables ¢*. Finally, equations (7) give the gradients with respect to
each control parameter.

It is worth mentioning that the expression for S* depends on the
choice of the auxiliary condition while the adjoint operator L£* will
remain unchanged for other choices of this condition. If the output is
defined as in (2) the adjoint system will be

L ¢ = S*+ MHPOZ  in Q

u 0 on ms 0 (12)
u*, T - 0 as x°> — 00
* =1 =0 on z' =X,
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Table I. Spanwise wavenumber g with corresponding wave
angle ¢ at R = 160 for different Mach numbers M. F = 10™*

B 0 0.02 0.04

M =0, o= 0° 22.3° 41.2°

M=07 ¢= 0° 23.5° 42.5°

M=12 ¢= 0° 25.9° 45.2°
o [t oL -

+o0,_ R
—  ¢*"== p hihohsdz® + |@|7 HTM¢ hihohs dzd = f*Vaz!
81‘1 0 8@ 0
Note that in this case both ¢* and r* are subjected to homogeneous
initial conditions.

4. Results

The results presented here are obtained by numerically integrating
the discretized state and co-state equations. The z!'-derivatives are
approximated by a first-order accurate backward Euler scheme and
the z3-derivatives by a fourth-order accurate compact finite-difference
scheme. For details the reader is referred to Hanifi et al. (1994).

The calculations are performed for two- and three dimensional dis-
turbances in a two-dimensional compressible boundary layer on an
adiabatic flat plate. The gradients express the sensitivity of distur-
bances to small unsteady inhomgeneities in the steady boundary layer
flow. The stagnation temperature is 300 K and the Prandtl number is
held constant to Pr = 0.72. The dynamic viscosity is calculated using
Sutherland law and the coeflicient of the specific heat ¢, is assumed to
be constant. The ratio of the coefficients of second and dynamic viscos-
ity is given by the Stoke’s hypothesis, i.e. A\/u = —2/3. In all figures
the reduced frequency, defined as F = 2r f*v5/UX?, is equal to 107
Here f* is the dimensional physical frequency and the subscript . refers
to values at the edge of the boundary layer. The output is measured at
R = \/Urz™ /¥ = 760. The calculations have been performed for three
values of spanwise wavenumbers 3 at different Mach numbers. Values of
the wave angle ¢ given at 2" = X, for the cases studied here are given
in table L. In all calculations, the metric coefficients hy = ho = hg = 1.
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4.1. ACCURACY OF THE GRADIENT, VALIDATION

In order to verify the correctness of the gradient, we compare the
adjoint based gradients to those obtained using the finite-difference
approach. In the latter, the derivative of the output variable with
respect to each input parameter is approximated by a second-order
accurate central finite-difference scheme.

To compare the gradients given by the adjoint and finite-difference
approaches let us consider the example of a wall normal velocity per-
turbation dib,, at 23 = 0. The variation of a functional J with respect
to this wall perturbation is :

oJ oJ
The subscripts , and ; denote the real and imaginary parts of a com-
plex number. In the finite-difference approach, the derivatives of J are
obtained by imposing the inhomogeneous boundary condition wy = +¢
at ' = z). Here, ¢ is a small number and index n refers to n-th stream-
wise position. Then, the derivatives are calculated using a second-order
accurate finite-difference scheme.

3

fd, AR = 10 b) —  AR=10
. adj, AR =10 S| -—- AR=20

___ fd, AR =20
2 . adj, AR=120 ]
fd, AR = 50 107

adj, AR = 50

0 . . . .
200 400 600 800 200 400 600 800

R

Figure 2. Comparison between adjoint (adj) and central difference (fd) calcu-
lations for different AR. Mach number M = 0.7, 8 = 0. a) lines denote
[|(0J) 0w, 0J]0w;)/Ar|| and symbols |V, Jr|. b) relative error.

The expression for §J in the adjoint approach, for a flat plate ge-
ometry, is in discretized form given as
7y N—1

5J - ZO Z %(vﬁ)w]’r[jéan + C.C.)An de’ (14)

where A, = (2}, — z,,_;)/2 and c.c. is the complex conjugate. In
the following, the quantity Vi, J, is compared to those of the finite-
difference approach. The streamwise domain used here is R € [250, 750].
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In figure 2a the modulus ||(0.J/d@,,0.J/0w;)/An||, as a function of z.,
is compared to |Vy, Jy,| for different resolution of the streamwise step
AR. A good agreement is found between the approaches for a given AR,
and both values converge as AR is decreased. The relative error given
in figure 2b is below one percent for all cases and decreases slightly as
AR is decreased.

The phase ® of the gradients obtained by adjoint equations and
central differences is compared in figure 3a for a given streamwise step,
AR = 10. The absolute error of the phase shown in figure 3b is less
than 0.1 degrees except close to the outlet of the domain.

180

a)l

Figure 3. Comparison between adjoint and central difference calculations of the
phase @ in degrees for M = 0.7, 3 = 0. a) AR = 10. + denotes central difference,
and o denotes adjoint calculations. b) absolute error in degrees.

4.2. SENSITIVITY TO WALL DISTURBANCES.

In figures 4, 5 and 6 the modulus of the gradient for inhomogeneous
wall boundary conditions are shown for three different Mach numbers
M and spanwise wavenumbers (3. As can be seen in there, the maximum
value of the gradient is achieved if forcing is situated close to branch
I of the neutral stability curve. This is in agreement with receptivity
studies of e.g. Hill (1995), Airiau, Walther and Bottaro (2001) and
Airiau (2000). In Airiau et al. the wall gradients were interpreted as
wall Green’s functions. One should note that the distance between the
maximum value of the gradient and Branch I of the neutral stability
curve depends on the Mach number and the input parameter. Branch I
and branch IT are marked on each curve in the figures with + signs. For
low Mach numbers, the two-dimensional waves, 8 = 0, give the largest
value of the gradient for wall-disturbance components 4,9, %w and 7'
This can be seen for M = 0 and M = 0.7 in figures 4 and 5, respectively.
As is shown in figure 6, where M = 1.2, it is clear that for higher Mach
numbers the two-dimensional waves do not have the largest gradient.
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Figure 4. Modulus of the gradients due to 2D and 3D wall disturbances as a function
of the Reynolds number for a Mach number M = 0. a) |Vg,J|, streamwise veloc-
ity component; b) |Vs,.J| spanwise velocity component; ¢) |V, J| normal velocity
component; d) |Vz J| temperature component.

This observation follows the fact that in compressible boundary layers
the three-dimensional disturbances are the most unstable ones (see e.g.
Mack 1984).

The magnitude of the gradient is quite different comparing u, v, w
and T in figures 4, 5 and 6. It was noted that the normal velocity
component gave the largest gradient for various spanwise wavenum-
ber at Mach numbers between 0 and 1.2. The response to the wall
normal velocity component was one order of magnitude larger than
the streamwise and spanwise velocity components. In cases studied
here, the normal component is about 15 times that of the streamwise
component. This implies that blowing and suction at the wall is the
most efficient mean of controlling the instability waves. However, as
is shown in the figures, the maximum response to a wall disturbance
decreases as the Mach number increases. This means that the efficiency
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Figure 5. Modulus of the gradients due to 2D and 3D wall disturbances as a function
of the Reynolds number for a Mach number M = 0.7. a) | Vg, J|, streamwise veloc-
ity component; b) | Vs, J| spanwise velocity component; c) |Vi,J| normal velocity
component; d) |V J| temperature component.

of blowing and suction for control of disturbance growth decreases at
higher Mach numbers.

4.3. SENSITIVITY TO MOMENTUM SOURCES.

In figure 7 the modulus of the gradients for the streamwise and nor-
mal momentum forcing are plotted. The Mach number and spanwise
wavenumber are both zero in this case. However, the qualitative behav-
ior does not change for higher Mach numbers up to 1.2, and spanwise
wavenumbers of 0, 0.02 and 0.04 which were studied here. A first ob-
servation is that the gradient for the streamwise component of a source
of momentum |Vg J| is about 10 times that of the normal component.
Further, the maximum value of |Vg J| is located near branch I of the
neutral stability curve. It was noted by e.g. Hill (1995) that forcing
most effectively is done in the vicinity of the critical layer, i.e. where
the streamwise velocity U(z,y) = w/Real{a}. This was also found in
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Figure 6. Modulus of the gradients due to 2D and 3D wall disturbances as a function
of the Reynolds number for a Mach number M = 1.2. a) |Vg,.J|, streamwise veloc-
ity component; b) | Vs, J| spanwise velocity component; c) |Vi,J| normal velocity
component; d) |V J| temperature component.

our analysis. The location of the critical layer is marked with a line in
figure 7a.

5. Conclusions

The Adjoint Parabolized Stability Equations (APSE) have been derived
for quasi three-dimensional compressible flow using an input/output
framework. The equations are given for an orthogonal curvilinear coor-
dinate system. The adjoint field gives the sensitivity of disturbances to
changes in boundary conditions and momentum forcing. These equa-
tions provide a basis for optimal control of disturbance growth using
unsteady wall perturbation or unsteady momentum forcing.

In the present formulation, the sensitivity of the objective func-
tion (output) to all control parameters (input) is found by solving the
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200 300 400 500 600 700 U200 300 400 500 600 700

R R
Figure 7. Contour plot of the gradients for momentum forcing. o denotes the
boundary-layer thickness at streamwise position ' = Xo. F = 1074, M = 0.7,
B = 0. The line in a) shows the position of the critical layer. a) |Vs J|, streamwise
component with maximum = 1.8. Branch locations: I at R = 400, IT at R =~ 680. b)
|Vs, J|, normal component with maximum = 0.16. Branch locations: I at R ~ 360,
IT at R = 680.

state equations and their adjoint once. This will drastically reduce the
computational costs in an optimal design procedure.

The accuracy of the gradients have been verified by comparing the
gradients derived by the adjoint equations with a finite-difference ap-
proach. It was shown that as the streamwise resolution is increased the
differences between these two methods decrease and the solution of the
gradient converges.

Analysis of two-dimensional boundary layers shows that a given
disturbance is most sensitive to wall- and momentum forcing close
to branch T of the neutral stability curve. The streamwise distance
between the maximum of sensitivity and Branch I depends on the input
component. This was found to be true for 0 < M < 1.2 studied here. We
also found that the response to the inhomogeneities of normal velocity
at the wall is at least one order of magnitude larger than those of other
the velocity components and temperature. This is in agreement with
Hill (1995) for incompressible flow.

For incompressible flows, it has been shown that the two-dimensional
disturbances are the most sensitive ones to wall inhomogeneity. How-
ever, for compressible flows, the three-dimensional disturbances are the
most sensitive ones. Further, it has been observed that momentum
forcing is most effectively done in the vicinity of the critical layer, which
has earlier been shown by Hill for incompressible boundary layer.

The results shown here are obtained with an objective function solely
defined by the terminal energy. If instead the disturbance energy over
the entire domain is used then the peak of the gradient would probably
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move another streamwise position. Further, if the cost of the control
energy is added to the objective function as J = E+€FE, then the results
will most certainly change. One point that has to be made clear when
adding the control energy is that the goal is not just to find the gradient
for the disturbance energy but also for the control energy used. In the
simple case shown in this article it turns out that the gradient appear
to be similar to well known stability results, however what will happen
in the other cases described above is left for future investigations.
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Appendix
A. The non-local stability equations

A.1. GOVERNING EQUATIONS AND ASSUMPTIONS

A model of convectively unstable waves with curved or divergent wave-
rays in a non-uniform flow is described here. The equations are derived
from the equations of conservation of mass, momentum and energy and
the equation of state governing the flow of a viscous, compressible, ideal
gas expressed in primitive variables and curvilinear coordinates. The
non-dimensional conservation equations in vector notation are given by

) [g_‘tl +(u-V)u] = —Vp+ %V[A(V-u)] + %V- [1(Vu+VuT)], (15)
dp

g TV (o) =0, (16)

(17)

”yMQp — pT, (18)

with viscous dissipation given as
2 1 12

& =X\V-u) +§M[Vu+Vu I
Here t represents time, p, p, T stand for density, pressure and tempera-
ture, u is the velocity vector. The quantities A, ;4 stand for the second
and dynamic viscosity coefficient, y is the ratio of specific heats, x the
heat conductivity, ¢, the specific heat at constant pressure. All flow
quantities are made non-dimensional by corresponding reference flow
quantities at a fixed streamwise position «f, except the pressure which
is referred to twice the corresponding dynamic pressure. The reference
length scale is fixed and taken as
R
us -

I =

The Mach number, M, Prandtl number, Pr and Reynolds number, R
are defined as

’ r * %
VIV Ko Yy

Us MG . Uk
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where R is the specific heat constant and superscript * refers to dimen-
sional quantities.

We decompose the flow and material quantities into a mean flow part
Q and a disturbance § as Qo (2%, t) = Q(°) +§(z*,t) where ', x? and
x> are the normal, spanwise and streamwise components respectively.
Here Q € [U,V,W,p,T,p] and § € [a,0,w,p, T, p], where U, V,W are
the streamwise, spanwise and normal components of the mean velocity
vector, respectively. u, v, w are those of the perturbation velocity vector.
The domain considered is defined as z! € [Xy, X1], 22 € [Zo, Z1] and
z3 € [0,00[. To simplify the analysis the mean flow is considered to be
independent of the spanwise coordinate z2. Two assumptions are made
to derive the non-local stability equations. The first is of WKB type
where the disturbance § is divided into an amplitude function and a
wave function

xl
g(z',t) = §(z*,2%)0, O =exp i (/ afz)de’ + Bz — wt).
Xo

Here « is a complex wavenumber, 3 the real spanwise wavenumber and
w the real angular wave frequency. The second assumption is a scale
separation 1/R between the weak variation in the z! direction and the
strong variation in the z3 direction analogous to the multiple scales
method. We assume

9
ox!

Furthermore, it is assumed that the metrics are of order O(R™1).

~OR™", V~ORM

A.2. THE LINEAR NON-LOCAL STABILITY EQUATIONS

The non-local stability equations are derived using Parabolized Stabil-
ity Equation approach (PSE). We consider a general case where the
boundary layer is subjected to sources of mass, momenta and energy,
S, and inhomogeneous boundary conditions on the wall. The linearized
disturbance equations are obtained by introducing the variable de-
composition into the governing equations (15)-(18), subtracting the
equations for the mean flow and removing the products of disturbances.
We proceed with the derivation of the stability equations by introduc-
ing the scaling relations given in section A.1. Finally, collecting terms
up to order O(R ') gives a set of nearly parabolic partial differential
equations. A note on the parabolic nature of PSE can be found in e.g.
Li and Malik (1996), and Andersson, Henningson and Hanifi (1998).
The equation can now be written

Lz, %) = Sz, z%) (19)
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where the vector of the amplitude functions is ¢ = (p, i, 0,1, T)" . The
boundary conditions are

a(zh,0) = ay(zh), T(a:l,(]) = Tw(xl),

Jim a=0 and Jim T = (20)
The operator L is defined as
L =A+BD;3+CD33 + DD, (21)
where s e
P o P oy

Here, h; is the scale factor such that a length element is defined as
ds® = (hydz!)® + (hod2?)® + (hadz®)®. The coefficients of the 5 x 5
matrices A, B, C and D can be found in appendix C. Furthermore,
as both the amplitude function and the wave function depend on the
z! coordinate, this ambiguity is removed by specifying an auxiliary

condition .
/ </3H8—¢1 hohsdz® = 0, (22)
0 ox

where, superscript ” denotes the transpose complex conjugate. This
condition also guarantees that z!-variation of the disturbance ampli-
tude function remains small such that second streamwise derivatives
are negligible.

B. Derivation of the gradient

The gradients are derived using the adjoint equations of the Parabolized
Stability Equations. A discrete or a continuous formulation may be
used. It was concluded by Hogberg et al. (2000) that a continuous
formulation is a good enough approximation if control is performed
on a problem with a dominating instability. This type of analysis can
be done with the PSE therefore a continuous approach is used in this

paper.
B.1. INNER PRODUCT

For a compact notation of the adjoint equations, we will use the formal
adjoint L* of the differential operator £ defined by the relation

(L*U*, @) = (¥, L®) + boundary terms,
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where the inner product (-,-) is defined as

+00
— / / / U hyhohs do® da? dat, (23)
0

for C"-valued functions ® and W*. Here, the superscript * stands for
adjoint quantities.

B.2. DERIVATION OF ADJOINT EQUATIONS

At first, the equations (1), (19), (20) and (22) has to be differentiated

with respect to the input variables Gy, TW,S and the state variables «
and ¢

Z1 o N R
= Real {/ / |01 24T Mp1hohs dz? da? +
Zy JO

(24)
Z1 o0 R . X1
/ / |01 2pi My i / dadz’ hohs dz? da:Q}
Zo Jo Xo
L6408+ %504 = 0 n 0
Oa
(5(,250 =0 on .CCl = X(]
sa(z',0) = dtg(z') on 22=0
oun —- 0 as o3 — 00 (25)
6T(z1,0) = 6Ty(z!) on z3=0
ST — 0 as o3 — 0o
/ ((5(,{)1{ a¢ +¢Ha(5¢) hohsdz® = 0 v 2!
0

Note here that the variation of a disturbance ¢ results in the variation
of both the amplitude function ¢ and the streamwise wave-number a. A
complex co-state vector ¢* = (p*,u*,v*, w*,T*)" and complex function
r*(z!) are introduced. The adjoint equations are derived by taking the
inner product of vector ¢* with the differentiated state equations, and
r* with the differentiated auxiliary condition according to the inner
product (23). The complex conjugate of each term in the equation is
added. Then, derivatives are removed from the differentiated variables
in equation (26) using integration by parts. After integrations, it yields
(without complex conjugate for clarity)

N - oL .
(¢p*, L P — S+ —da ¢) +
Oa
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X1 Al +oo R R R
/ / 7* / [0 D1 ($) + $"D1(6)] hihohsdz® dz? da' =
0

Xo Zo
(L*9",60) — (¢,68) —

X1 VAl 400 a Il
/ / / — *H— qs hihghs) dada’ da® da? dz' +
Xo JZy JoO 351? Xo

1 oo EA x! a5 .

— hoh dad. dx° d

/Z /0 o 8a 3/X0 « I}Xo r° dx”® +

|
/ZZ1 /0+OO[ "D od h2h3}2 dz® dz? +
/Zol/XlH ( — (m13 +mo3 —mg3) C — Dg(C)) 6(]3 N

Xo
Ds3(6*) C 66 + & C D3(5) }hlhgdx dx] +

0
/.// (D16 — Dy () -
(may + mgl)F*gZ)H) 34 hihahsda® do? dz' +
Zr  p+oo A Xy
/ / [h2h3f*¢Ha¢] da® dz? = 0 (26)
Zo Jo Xo

where

oL om
Y hihj 811,'7”

Terms of da have also been integrated in equation (26) in order to
identify from §J the boundary terms at X;. Collecting terms of d¢
leads to the adjoint equations

L = =|[F'Di(d) = Di(r*d) = (mar +mz) *d]  (20)

In order to remove the terms of (% in the equation (26) as 3 — oo,

the following homogeneous boundary conditions are chosen

u*(z!,0) = 0 and T*(z',0) = 0,
lim u* = 0 and lim T% = 0, (28)

r3—00 r3—00

where u* = (u*,v*,w*)!. Using the operator matrices of the forward
problem, the adjoint operator £* can be identified

= A+ BDs. + CDs3. + DDy. (29)
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where ./i, 5’, C and D are

A = A" — D3(B") — (my3+ma3) B + Ds3(CH)
+ 2 (m13 + maz — mag) D3(C")

= Dy(D¥) — (ma1 +msz) D

B = —B" + 2 D3(C") + 2 (my3 +ma3 —ma3) C*

C =c"

D = D"

7

The system of equations (27) with corresponding boundary conditions
(28) is parabolic in the streamwise direction and must be integrated
upstream, from X7 to Xj. The initial condition at X is found by iden-
tifying §.J, equation (24), with the terms defined at X in equation (26).
Matching terms of (5¢A>, and da gives the following system of equations
to solve for the initial condition for ¢* and r*

o0 R . +OO R .

|®1\2/ P MO¢1hohs da’ =/ (¢*" D + 7 ¢™) 8¢ hohsda® .
0 0

(30)

Z|®1|2/ ¢fM¢1h2h3 dz® = / ¢*H— ¢ hihsohs dz?

1

Solving the above equations gives the initial condition for the adjoint
equations at X, as

¢5 = 01D (M — 1 T) b, i =1041% ¢y,
© . oL » . s
/ (hipi M D+H6—a¢1 —ipT M) hohg da? (31)
- 0

a= 00 A )
- oL -~
/ DT =y hyhohs dz®
0 oo

where DT = (D) 1. Since by definition ¢ = 0 at X, the remaining
terms of equation (26) together with equation (24) can be written

8.J = Real { / / ¢*Ha£ hihohs dz® dz? dot+

1

X1 +o0 g =
/ / / v *H_ (15 h1h2h3)/ dadz’ dz? dz? dz'+
Xo or X0 52)

Z1 1
/Z /X {¢*H [B — (mi3 +mo3 —mg33) C — D3(C)] 5(;_’_

CL‘3:0}

~D3(¢*) C 3§ + ¢*HCDs(aq3)} hihy dz? da!
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The gradient should be identified from the variation of ¢ and of S.
However in equation (32) the variation of the momentum source and
wall boundary condition is expressed in terms of (ﬁ and S. The total
variation of ¢ and S is written

z! x!

5p=0600+¢i [ bads, 68§=080+Si| Odads (33)
Xo Xo

From equation (33), §¢ and 68 are substituted into equation (32). The
variation of the functional 6. with respect to the total variation of ¢
and S is now written

X1 Al +oo 1 N
§J = Real { / / / —¢*168 hihohg do? dz? dz'+
Xo 0 ©

K . (pp")
hh T)6T S
// 12 @PrR() T vt

e e ~1 g2 g1
@R_Dg( )5u+®RD3( )51)] dz* dz

z°=0

X1 71 +ooa 2!
/ / *H— ¢ hihahs) | dadz’ da® da? dm1+34
Xo JZo Xo ( )

1

0
X1 Al x
/ / ¢*H$ hihohsg i dada' da? da? dzt +

Xo Zo Xo
X1 Z1
hh D5 (T*T D
/XO /ZO 1 2 PrR 3(T7) +(PP)U)+R s(u”)a+

p @
Ll —x\ | - ! 2 1
RDs(v )v} i . dades’ dx” dx z30}

In equation (34) the expression for the wall boundary terms have been
expanded to clarify the dependence between each state variable and
the adjoint quantities. In the derivation of the adjoint equations the co-
state variable *(z) has been used in order to incorporate the auxiliary
condition. However, equation (27) gives a system with five equations
and six co-state variables. Therefore, an additional equation is needed
to close the system. Collecting the terms of d« in equation (34) provides
an additional equation which must be satisfied for each position in z'

+oo 9 oo R
/ (¢*H— ¢ h1h2h3) dl‘ =1 ¢*HS h1h2h3 d$3+
0

ol 0 (35)
] K S e, T )%
t hihg {*ﬁDS(T )T+ (pp*)w + %D3(u )i+ %D?’(v )v] 23=0
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It is denoted ’adjoint auxiliary condition’ and is solved with an iterative
process for r* in a similar manner that equation (22) is solved for the
streamwise wavenumber «. The gradient of the functional V.J, with
respect to the momentum forcing and wall disturbances can now be
identified from the remaining terms of equation (34) as

Vi = éDg(u*) on 3 =0
Vi = éDg(v*) on z3 =0
Vi = p(:/; on z3=0
Vil = —=———Dy(T*)  on 2*=0
W T T @PrR° N
Vel = %% in

C. Operator matrices

(36)

The non-zero components of matrices A, B,C and D in equation (21)

are

= U(may +ma1) + D3(W) + Dy (U) + i

p(icg + ma3y +ma1) + Dy (p)
iBop

= p(mi3 + ma3) + D3(p)

1
W(Dl(T) +iagT) + Dy (U)U + D3(U)W — mg V2

p(D1(U) +i€) + 5 (adls + )

—2pmao1 V + %aoﬁoll

10 dp
D — ——Dx(T
p(mi3U + D3 (U)) R aT 3(T)

1 1, du

W(DNP) +ipag) + E(—ﬁDs?,(U) -

Dy() SH D)
U(maV + Dy (V) + Ds(V)W + o

7M2T
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p(maV+Di(V)) + anﬁoh

p(maU + i) + %(5012 + af)

plmasV + Dy(V)) — D0 Iy o)

R dT
MQ p+ E(_ﬁD%(V) - D?’(V)dTQ D3(T))

l
——D3(T) — m13U* — ma3V?* + —N—Q(ﬂoDs( V) +

M2 Rp

apD3(U)) .
901, P i) + —Difp )%
260 d’uD (T) 4 8V (p) /LBU

—2pm23V — fl

(_Dg(W) + ’ITL31U + Zf) +

D33( ) Nl
R
#Ds(m + %j—;z( BoDs(V) — Ds(U)a)

(v—1)
v

—2pm3U — NZZ

1
Eﬂ(ﬂo + o) +

(UD:(T) + WD3(T) + iT¢€) +

¢p(—W D3(T) — UDy(T))
(y = 1)M*D1(p) — pcpDy(T)

(= DM [Dap) + Z (3aDa(V) + Da(U)ao)| - pey Da()

p {%(ng(n _UD\(T)) +i [(7; D _ c,,] g} 4

@(UD (p) + WDs(p)) +

0L pg2 (D)2 + (D3] +

1 |ds d’k 2 2 2
RPr [d—TD?,?)(T) + ﬁ(DS(T)) + k(=B — )
w
P

1 dp
——=—D
pW — 2= Ds(T)
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i
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1 dp

_°-D hulad
R 3(V)dT

1 T iulg

ly . Ds(p) dp
W+ 2(2 - e

PW + (20 ) o
1
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(y—1)
v

2(y = )M ZDs(U)

20y = DM Dy(V)
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1
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RPr
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= U
—1
O =D yp
v
-1
_pU[(”y )_Cp]
g 1 0? «a 16
D= 7 _“ -2 -2
oz’ " hihj 0x*0xI ’ 0 hy’ Po hy' +

&= (U + BV — w).
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