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Abstract. Gradient-based shape optimization of an airfoil is performed with respect to the
location of the laminar-turbulent transition in the boundary layer. The shape gradients are
efficiently computed based on the solutions of the adjoint equations of the Euler, boundary-layer
and stability equations. Results show a reduction of the total amplification of a large number of
disturbances, which is assumed to represent a delay of the transition in the boundary layer. As
delay of the transition implies reduction of the viscous drag, the present method enables shape
optimization to perform viscous drag reduction.

1 Introduction

The reduction of both the pressure and viscous drag of high-speed vehicles is a challenging
task. The use of laminar flow control techniques aims at delaying the laminar-turbulent transi-
tion which is known to reduce the viscous drag coefficient (see [17] for an overview). CFD-based
design optimization has proved to be successful in reducing the pressure drag at transonic flow
regime (see for example [15]). However, optimal shape design aiming at total drag minimization
has relied on fixing the point of laminar-turbulent transition or on the assumption that the
flow is fully turbulent as in [21]. In [2], CFD calculation is complemented by an analysis of the
growth rate of disturbances superimposed on the laminar flow in the boundary layer, and, for
the first time, the shape sensitivities of the energy of disturbances are calculated by an adjoint
approach involving the Euler, boundary-layer and stability equations. With this approach, the
shape of an airfoil can be optimized with respect to the energy of disturbances for the purpose
of delaying laminar-turbulent transition.

1.1 Active control of transition and CFD-based optimization

Laminar-turbulent transition in the boundary layer on aircraft wings is usually caused by
breakdown of small disturbances that grow as they propagate downstream. The amplification
of these disturbances can be analyzed using linear stability theory, in which it is assumed that
disturbances with infinitesimal amplitude are superimposed on the laminar mean flow. The
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growth rate of the disturbances can then be used to predict the transition location using the so
called eV method, [32], [29], [4].

Linear stability analysis and the use of adjoint equations has allowed to efficiently search for
optimal (active) control of the transition, [25], [26].

In parallel to the use of adjoint equations in control optimization, research teams have devel-
oped adjoint codes for the design of aircrafts with lower drag, [3], [6] [8], [10], [11], [16], [20],
[27], [30], [31].

1.2 Optimal NLF design

The design of shapes such that the laminar portion is increased is denoted as Natural Laminar
Flow (NLF) design, [12], [19]. However, previous attempts have been limited to inverse design
approaches or non-gradient optimization, with a few parameters of design in the last case.

In the present contribution, CFD calculation is used to analyze the growth rate of disturbances
superimposed on the laminar flow in the boundary layer:

e The solution of the Euler equations provides a pressure distribution on the surface of the
geometry defined by the design parameters.

e The viscous mean flow is obtained by solving the boundary layer equations for compressible
flows over infinite swept wings, given the pressure distribution and the geometry.

e The linear stability equations are solved given the viscous mean flow and the geometry,
providing the amplitude and phase of a specific disturbance.

With this approach, the shape, here an airfoil, can be optimized with respect to the energy of
disturbances for the purpose of delaying laminar-turbulent transition.

The present work contributes to the field of optimal NLF design as the solutions of the adjoint
equations of the three states above are combined to obtain the shape derivative of the energy of
a disturbance, enabling to carry large scale optimization.

The presentation that follows gives a brief description of the state equation systems and of
the objective function. The systems of adjoint equations can be found in the references [24]
for the adjoint of the stability equations, [23] and [25] for the adjoint of the boundary layer
equations, and [1] for the discrete adjoint of the Euler equations.

The parameterization of the shape allows to define non trivial feasible sets by including
constraints (fixed parts of the wing, fixed volume) in a general manner. The approach is shortly
explained here.

The formulated optimization problem, applied on the airfoil RAE 2822, succeeds to simul-
taneously reduce the pressure drag and to reduce the total amplification of a large number of
disturbances at constant lift and pitch moment coefficients, and within the set of feasible designs
mentioned above.

2 State equations and objective function
2.1 Inviscid flow

The Euler equations express the conservation of mass, the conservation of momentum, and
the conservation of energy, written here in integral form for an arbitrary fixed region V with
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boundary 9V,

2/de+/,ou-ﬁdS = 0, (1)
ot Jy oV

a/pudX+/puu-ﬁdS+/pﬁdS = 0, (2)
ot ov ov
—/EdX+/uE‘-ﬁdS+/pu-ﬁdS _ o, (3)
ot Jy oV ov

where fi is the unit outward-oriented normal on JV, F is the total energy per unit volume,
which for an ideal fluid is related to the temperature and the velocity. The law of perfect
gas closes the system by relating pressure, density and temperature. The program Edge [9]
solves equation 1, together with boundary conditions, using a node-centred and edge-based
finite-volume approximation. This type of discretization, based on a dual grid, can be found
in [5].

2.2 Viscous flow

The flow field considered here is the boundary layer on a swept wing with infinite span,
which is obtained by solving the mass, momentum, and energy conservation equations for a
viscous compressible fluid. The equations are written in an orthogonal curvilinear coordinate
system. A characterlstlc length of an element, assuming an infinite swept wing, is defined by
ds? = (h,dz? ) + (dz? ) + (dz? ) The total flow field, Q,,; is decomposed into a mean, @, and
a perturbation part, Q, as

Qtat(xla 12’ LE3, t) = Q(xla LE3) + Q(‘Tla 372’ ‘T37 t)

where @ is one of the mean variables [U,V,W, P, T, p] and @ is the corresponding disturbance
variable among [ﬁ, f/, W, 15, f, p]. The equations are derived for a quasi three-dimensional mean
flow with zero variation in the spanwise direction. The evolution of convectively unstable dis-
turbances is analyzed in the framework of the nonlocal stability theory. All flow and material
quantities are made dimensionless with the corresponding reference flow quantities at a fixed
streamwise position z,, except the pressure, which is made dimensionless with twice the cor-
responding dynamic pressure. The reference length scale is taken as [ = (yyz, /fao)%, and the
Reynolds and Mach number are defined as Re = lyu,/7, and M = 1,/ (R'ﬂ_“o)% respectively.

2.2.1 Mean-flow equations

The dimensionless boundary-layer equations modelling the steady viscous compressible mean
flow on a swept wing with infinite span written in primitive variable form are given as

1 9(pU) | 9(pW)

h, Ozl Fr 4)
prov . 90 _1dP. 1 8 ( OU (5)
hy ozt P 93 T h,dzt | Re o3 \/'913
pUOV oV 1 9 ([ oV
hy oct TP 53 T Reosd \Moa? (6)
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o or  _ oT 1 a(aT)
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— 4

hy dz' = Re
Under the boundary layer assumptions, the pressure is constant in the direction normal to the
boundary layer, i. e. P = P,(z'). The equation of state can then be expressed as YM?2P, = pT,
and the streamwise derivative of the pressure is given as

dP. _ _dU,
ot~ Pl

For a given pressure distribution given by the pressure coefficient

b—p
Cp = 1 —C;o
37 0q00

the values at the boundary layer edge are given as
et 2o (8)7 we ()
e Poo f)/MZ 7 e POO ? pe o ’

U, = +/Q2%— V2, and V, = sin, where

Pe 1 9 =9 1—Teépoo
=P 14 20,yM2 =14 o
Poo 2" @ (v —1)5M2

b

Here, we have used the assumptions that for an inviscid, steady, and adiabatic flow the total
enthalpy is constant along a streamline, and the isentropic relations are used to obtain the
relation between total and static quantities. A domain 2, is defined for equations (4)—(7)
such that ! € [Xg, X], 2% € [Z;, Z;] and z* € [0,00). The no-slip condition is used for the
velocity components and the adiabatic wall condition for the temperature. In the free stream,
the streamwise and spanwise velocity components, and the temperature takes the corresponding
values at the boundary layer edge. This can be written as

— o = 0T
|:U’V7W7 %] (551,0) — [0,0,0,0] Vl’l € [XS,XI],
lim [U,V,T](s'2% = [0,,V,,T,] (z*) Vz' € [Xg, X;].

z3—+00

Equations (4)—(7) are integrated in the downstream direction normal to the leading edge with an
initial condition given by the solution at the stagnation line. In the following sections we denote
the solution of the boundary layer state Q = (U, V,W,T) in order to simplify the presentation.
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2.2.2 Disturbance equations

The disturbances analyzed here are assumed to be time- and spanwise periodic waves as

Q(z',2%, 4% 1) = Q(z',2°)0(z!, 2%, 1), (8)

where .

T
O(z!,22,t) = expe (/ a(z') dz' + pz? — wt> .
XO

Disturbances are superimposed on the mean flow at a streamwise position denoted X,. We
assume a scale separation Re~! between the weak variation in the z!-direction and the strong
variation in the z3-direction. Further, it is assumed that 8/0z' ~ O(Re™!) and W ~ O(Re™1).
Introducing the ansatz (8) and the assumptions above in the linearized governing equations,
keeping terms up to order O(Re™!), yields a set of nearly parabolic partial differential equations,
see Bertolotti et al. [7], Malik & Balakumar [18], Simen [28] and Herbert [14]. The system of
equations, called Parabolized Stability Equations (PSE), are lengthy and therefore written here
as

Q 1 0Q

0Q
D2 _

AQ+Ba—+C(a3)

~ ~ ~ N A1T
where ) = [ﬁ, U,v, W,T] . The coefficients of the 5 x 5 matrices A, B,C and D are found in

Pralits et al. [24]. A domain ,, for equation (9) is defined such that z! € [X,, X;], 2% € [Z,, Z,]
and z® € [0,00). The boundary conditions corresponding to equation (9) are given as

[UVWT] (z',0) = [0,0,0, 0] V' € [Xy, X,

lim [U, v, WT] (z},2%) = [0,0,0,0] Vz' € [Xy, X,],
z3—+o00

To remove the ambiguity of having z'-dependence of both the amplitude and wave function in

the ansatz, and to maintain a slow streamwise variation of the amplitude function Q, a so called

’auxiliary condition’ is introduced

Tl Q 0. (10)
0
Equation (9) is integrated in the downstream direction normal to the leading edge with an
initial condition given by local stability theory. At each z!'-position the streamwise wavenumber
« is iterated such that the condition given by equation (10) is satisfied. After a converged
streamwise wavenumber has been obtained, the growth rate based on the disturbance kinetic
energy is calculated from the relation

o=— 81(111\/]5),

8
where

~ +m ~ ~ ~
= / 5 (U + V2 + [W2) de®
0

5
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The growth rate can then be used to predict the transition location using the so called e”-
method, see van Ingen [32], Smith & Gamberoni [29] and Arnal [4]. The N-factor based on the
disturbance kinetic energy of a single disturbance is given as

X
NE:/ odxt.
X

nl

A complete description of equation (9) is found in Pralits et al. [24], and the numerical schemes
used here are given in Hanifi et al. [13].

2.3 Formulation of a problem of NLF design

The measure of the kinetic energy, as the streamwise integral over a defined domain, of
several different disturbances, with respective maximum growth rate at different positions, has
been successfully applied in an optimal control problem using mean flow suction as control
variable, see Pralits & Hanifi [25]. The size of K disturbances superimposed on the mean flow
at an upstream position X, is measured by their total kinetic energy as

1 K Xme Z1 +oo ~
Eyx == Z/ / QIMQy hy da* dz? da. (11)
2 z, Jo
k=17 Ams 7 Zo
Here X,,, and X,,, are the first and last streamwise positions between which the disturbance

kinetic energy is integrated, and adds the possibility to evaluate Ej in a streamwise domain
within [X, X;].
The designed objective function Jo should simultaneously delay the transition, reduce the

pressure drag, and, in addition, penalize changes in the coefficients of lift, and pitch-moment:
Jo = A\vE1 + M\pChp
1 1 (12)
+ 32 (Cr — )’ + s (Cur — c)?,

where the drag, lift and pitch moment coefficients are calculated from the inviscid flow only as

Cp = E pin; -dp

1 )
) §poovc2>o Sref

i € V(0
in; -d

CL = Z —lz;\zIQ ; f’ (13)
i € V(08,) 270 e

ou= Y P (i ~ Opef) X mi
. %poovgosrefLref
i € V(0Qy)

were dp is a unit vector in the direction of the farfield velocity, dp = —Veo/|VZ|, dz, is a unit

vector orthogonal to dp and, djs is a unit vector orthogonal to dp and d.
Constraints are further imposed on the feasible designs in order to produce smooth shapes
and to enforce geometric constraints. These are constant cross-sectional area, fixed trailing edge



Olivier G. Amoignon, Jan O. Pralits, Ardeshir Hanifi, Martin Berggren, Dan S. Henningson

and a fixed region of the airfoil around the leading edge. The last is applied to a region between
0 of the chord length and X, (0.043) and is meant to eliminate variations in the location of
the stagnation point, which, in the current state of development of our codes, could not be
accounted for in the sensitivity of the propagation of the disturbances.

2.4 Gradient calculation

It is shown in [2] that the adjoint approach enables an efficient computation of the gradient
of the energy Ex (11) with respect to the shape. Observing that we avoided any real coupling
between the equations, which would occur if we accounted for the boundary layer displacements
on the inviscid flow, the adjoint equations are also solved sequentially (first the adjoint PSE,
then the adjoint BLE, and finally the adjoint Euler). However, the adjoint of the BLE and Euler
equations, respectively, have forcing terms that depend on the solution of the adjoint PSE and
BLE equations, respectively. The adjoint of the PSE equations is, as it is usual, forced by a
partial derivative of the energy of the disturbance. The final expression of the shape gradient
also depends explicitly on the solutions of the three adjoint equations.

The gradient of Jo (12) is a linear combination of the gradients of Ey, Cp, Cr and Cy;. We
refer to Amoignon [1] for the calculation of the gradients of the drag, lift and pitch moment
coefficients using the discrete adjoint of the Euler equations.

The solution of the adjoint equations and additional post-processing, involving for example
the mesh movement algorithm, gives the gradient of J with respect to the normal displacements
of the nodes on the airfoil (see next section) V.J,.

3 Parameterization

The position of the nodes that discretize the shape is determined here given normal displace-
ments of all nodes on the airfoil with respect to the initial discretization (mesh) y € R*. A
parameterization of the displacements (y) enables to define feasible designs, that is to impose
geometric constraints as well as some smoothness of the shape.

Smooth shapes are obtained, together with (linear) geometric constraints, by forcing the
vectors of displacements y to be solution of a quadratic programming problem (QP), see
Amoignon [1], of the form

1

I T
y = arg vern 2" Asv—v Msa, , (14)
Cl'v=>o

where A; is the stiffness matrix associated with the Laplace operator on I' (the surface of
the airfoil), M; is a mass matrix, C € R"*™ is a matrix whose columns are the gradients of
constraints (m) imposed on the displacements and b is the vector of values imposed to the
constraints (in R™). In the case without geometric constraints (m = 0 in (14)) the solution to
(14) is solution of the discretized Poisson problem defined by

A,y = M,a. (15)
Adding constraints (m > 1 in (14)) means that the solution of (14) fulfils exactly the relations
CTy =b, (16)
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N-factor

Figure 1: N-factor values for 165 modes (dots) at initial design with dimensional frequency f = [5,20]
kHz (Af = 1 kHz), spanwise wavenumber § = [0,2500] 1/m (A8 = 2501/m). The mode used in the
optimization (solid) is the one having the largest maximum value. The envelope of envelopes (EoE)
(dash) gives a picture of the growth of all studied modes.

and, according to some norm y is the closest to the solution of the discretized Poisson problem.
It is a known result of optimization theory [22] that the solution y of the QP (14) is obtained
by solving the Karush-Kuhn-Tucker (KKT) system

(o o) (3)=(%): )

where A € R™ is a vector of Lagrange multipliers. The system (17) is the first order optimality
conditions for the problem (14).

Such a parameterization implies that the controls are the vector a, right side of equation (15),
and the vector b, right side of the constraints relations (16). From the gradient with respect
to the displacements V.J, the gradient with respect to {a,b}, the variables of design in our
method, is obtained by solving an adjoint problem, see Amoignon [1], of the form

(4 9)(F)-(%).

VJ,=Ml'y* and VJ,=-)\*. (19)

from which it holds that

4 Results

The RAE-2822 airfoil is optimized at transonic flow conditions, M, = 0.734, o = 2.1875
(CY = 0.84), Re,, = 6.5 x 105 (9600 meters ASL) by minimizing Jo (12). The optimization
algorithm concists of a quasi-Newton method (BFGS) with a cubic line search, [22].

A stability analysis of a large number of modes with different frequencies f, and spanwise
wave numbers 3 corresponding to different wave angles, is performed prior to the optimization,
on the original design. The wave angle is defined as the angle between the wave number vector
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Objective function

Norm of gradient of objective function

0.2E 10t
0.16
0.12
‘]c %
o
0.08 -
0.04
0
0 5 10 20 0 5 10 15 20
iteration iteration
0 Disturbance kinetic energy Wave drag Lift and pitch moment
10 l30|: 0.9
N AAaﬁAAAAAAAAAAAA
0.8
d 120
B 0.7
10 110
£ 0.6
ui” <« 100
= 05
10° %
0.4
G%,c \Sacaci ©
80 03
70 0.2
0 5 10 15 20 0 10 15 20 0 5 10 15 20
iteration iteration iteration
Pressure coefficients Airfoils 6 Envelope of envelope of N-factor curves
0.08, .
/
0.04
2 o
—-0.04
-1.5 -0.08!
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5
xlc xlc slc

Figure 2: Top left: Objective function, top right: norm of gradient. Centre left: disturbance kinetic
energy, centre centre: wave drag, centre right: lift (triangle-solid) and pitch moment (circle-solid) co-
efficients, initial design (solid). Bottom left: pressure coefficient, bottom centre: shape, bottom right:
envelope of envelopes of N-factor curves. Comparison between initial (solid) and final design (dash).
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k and the inviscid streamline. The corresponding N-factors are calculated from these results,
and the optimization uses the mode which has the largest N-factor value with respect to all
other modes, see fig. 1. The reason of this particular choice is that it has been shown in previous
studies on optimal control, see Pralits et al. [26] and Pralits & Hanifi [25], that a control that
successfully decreases the amplification of the above disturbance also have a damping effect on
other instability waves of the same type. It is common in transition prediction, to compute
the envelope or envelopes (EoE) of the N-factor curves (i. e. envelope over both frequency and
spanwise wave number). Transition is then assumed to occur at the position where the EoE
curve first attains an empirically determined value. This curve also serves as a measure of the
efficiency of a control or design, computed by minimizing a single disturbance, on a large number
of disturbances. The choice of spanwise wave number corresponds to wave angles between zero
and 85 degrees. Results are presented in fig. 2. The wave drag experiences an increase during
one optimization step while the deviation of lift and pitch moment coefficients are forced closer
to their respective initial values. The position at which the maximum value of the EoE curve
occurs for the final design is placed downstream of the initial one.

5 Conclusions

The present results show that gradient-based Natural Laminar Flow (NLF) design can effi-
ciently be performed combining the solutions of the adjoint equations of the Euler, boundary
layer and stability equations.

The work presented here is an ongoing project and current efforts are made to include addi-
tional physical modelling, for example to account for the occurence of separated flows.

As no iterative coupling exist between the pressure distribution and the thickness of the
boundary layer, this constitutes an approximation. This can be overcomed replacing the inviscid
flow analysis with a RANS analysis. This development should include the adjoint of the RANS
equations.
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