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Abstract.

In the present work a linear feedback control strategy isl tigecontrol and suppress the cylinder vortex-
shedding at low Reynolds numbers. The classioalimal control energyor small gainsolution of the
optimal control and estimation problems is exploited inesribh design a full-dimensional stabilizing com-
pensator of the linearized Navier—Stokes equations. Bmtldack and observer gains are efficiently com-
puted based solely on the knowledge of the unstable adjothtaect global modes, respectively. In our
control setup, actuation is realized by means of angulalatsens of the cylinder surface while a single
velocity sensor is employed for the state estimate. The@@gompensator is shown to be able to drive the
flow from the natural limit cycle to the unstable steady staltéch is finally restored. Then the sensitivity
of the control performance to sensor placement and Reymnalaber is investigated.
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1 Introduction

The control of the vortex shedding occurring in the wake didfbody represents a great
challenge in many engineering applications. The inherantffequency unsteadiness
of the flow field is indeed source of noise, structural vilmas and resonance, and can
be reduced or even suppressed by a suitable control actidint & works have been
dedicated to this subject and several strategies have bepoged as documented by the
review of Choi et al. [6]. In particular, besides passiveidesy and open-loop techniques,
active feedback controls have attracted an increasingtettedue to their ability to adapt
to the actual flow conditions.

During the past decade a model-based approach to flow cdmsobeen established
within the framework of linear dynamical systems and optiotatrol theory [11] with
the fluid plant being derived from the linearized descriptad growing/decaying insta-
bilities around the given base flow [2, 1]. Within this franmW, the classicaminimal
control energy(MCE) (or small gain solution of the optimal control problem has been
recently reviewed by Lauga and Bewley [12] and Bewley et4jlirj view of its appli-
cation to large scale models of globally unstable flows. Irtipalar the latter authors
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have proposed an efficient technique to compute the relate# Medback rule based
solely on the knowledge of the unstalal@joint eigenspace whose dimension is found to
be small for typical fluid applications.

In the present work this latter approach is adopted in omleesign a full-dimensional
stabilizing compensator of the flow past a circular cylind8tarting from the work of
Bewley et al. [4], the MCE solution of the linear optimal @sétion problem is also con-
sidered, leading to the design of a Linear Quadratic Gangk@G) compensator in the
limiting case of minimal control effort and extremely noisyeasures (Burl, 1999). For
such a compensator any exerted control and estimatiort efiacentrates on stabilizing
and estimating only the unstable modes of the uncontrollstem. Then the MCE con-
trol strategy is applied to the suppression of the first initg of the cylinder wake [9].
This flow is indeed prototypical of bluff-body wakes as wedl@i fluid oscillatorsfrom
global stability viewpoint. Several control studies ainil@duppress or mitigate the cylin-
der vortex shedding have been described in the past literftQ, 16, 10, 18, 3] but only
few works have addressed this problem within the lineamogiicontrol framework: an
example is provided by the work of Protas [17]. In the prestudy control actuation is
realized by means of angular oscillations of the cylindefame while a single velocity
sensor is used for the state estimate. A similar controlpsetis been employed by Fuiji-
sawa and Nakabayashi [8] in their experiments at higher 8dgmumbers achieving a
maximum16% of drag reduction at Re- 20000. Nevertheless the proposed MCE strat-
egy is not limited to the particular control configuratioropted herein. Direct numerical
simulations (DNS) of the controlled nonlinear flow are peried to assess the effective-
ness of the MCE strategy. Variations of the control perfarogawith respect to sensor
placement as well as its dependence on Reynolds numbewvastigated.

2 Problem definition

The two-dimensional flow around a circular cylinder is déssl herein by means of a
Cartesian coordinate system whose origin is coincidetthi cylinder centre and whose
z-axis is aligned to the flow direction. The fluid motion is gowed by the incompressible
Navier—Stokes equations which are made dimensionlesg tiséncylinder diameteb*,
the velocity of the incoming streami; and the constant density:

ov 1
4 (V-V)V =-VP+ —V2V
ot + ) +Rev ’

(1)
V.-V =0,

where V' denotes the velocity vector with componeMs= (U,V), P is the reduced
pressure and Re- VX D*/v is the Reynolds number (being the kinematic viscosity
of the fluid). The above equations are solved on the rectangldmain?. which is
illustrated in Figure 1 where the control setup is also dkedc Ons2. the equations (1)
are supplemented by a zero normal stress condition at thet batindaryl,,; while at the
inlet I;,, the vorticity is set to zero and a uniform streamwise velopibfile is assigned
(U = 1). Similarly, on the upper and lower boundariEg, and I .., respectively,
both the normal velocity component and the vorticity areias=d to vanish. As already
mentioned, for the considered flow configuration the conteslable is represented by
the angular velocity(t) of the cylinder rotating around its axis in the counter-gloise
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Figure 1: Sketch of the computational doma& employed for the numerical simulation of the
flow past the circular cylinder with the adopted control petlihe local velocity sensor is repre-
sented by the green “dot” located at the streamwise stati@iong thex-axis while R(s) is used
to indicate the related SISO compensator.

direction. This corresponds to impo$& = 1/2¢7 on the cylinder surfacé’., T being
the unit tangent vector.
The definition of the Linear Time Invariant (LTI) fluid planbif control design is easily
derived by linearizing the Navier—Stokes equations ardhedase flonQ, = {V, B, }
which is solution of the steady version of (1) for= 0. The governing equations for the
evolution of the perturbation field = {v, p} are given by:

ov

RN R pum
BT + L{V,,Re}v + Vp =0, @

V-v =0,

whereL{V,, Re} stands for théinearized Navier-Stokes operator
1
L{V,,Re}v = (V;,-V)v+ (v-V)V}, — R—eVQ'v. (3)

The same boundary conditions imposedas®. for V' will hold for v in homogeneous
form except on/. where the control actuation is realized. Once spatiallgréiszed,
equations (2) can be recast in the so-catledcriptorform:
d

Ed_:: = Ax + Bu, 4)
wherex and A correspond to the discrete counterpargaind £{V;,, Re}, respectively,
while £ denotes the singulanassmatrix andu = ¢(t). When control is turned off,
i.e. forp = 0, equations (2) describe the natural evolution of linear fimsurbations
which corresponds to the open-loop dynamics from the cbwieavpoint. The inherent
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global spectrum and the related global modes are compugeiti@icommon assumption
of exponential time-dependence:

q(v,y,t) = G(x,y) exp(At). (5)

The above ansatz leads to a generalized eigenvalue probtexrahd for the non trivial
complex valued fieldj(z, y) that, in discrete form, reads

A = \E3. (6)

For the flow past a circular cylinder, it is well known that arpaf complex-conjugate
eigenvalues becomes unstable above the critical threstidRe ~ 47 and the related
directandadjointglobal modes have been described by several authors [9Th&]same
results will be used herein in order to design the stabtjyZAMMCE compensator of the
cylinder wake.

2.1 The MCE compensator

It is a classical result in linear optimal control theoryttihdnen the MCE limit is taken,
the feedback rule = Kz leads to the reflection of the unstable eigenvalued atross
the imaginary axis, while leaving unchanged all the renmgjrstable modes. For such a
solution, the feedback gain matrix can be exactly computed by exploiting the particular
structure of the closed-loop spectrum, i.e. the spectrum &f BK, which is knowna
priori. An analytical formula forK bypassing the solution of the Riccati equation has
been derived by Lauga and Bewley [12]:

K=-R'BYF'PE, (7)

where P, denotes the unstable left eigenvectorsiof.e. P?A = A, PPE, B, = PEB
andR > 0 corresponds to the control weight matrix within the costchion definition:

J= % /O N (2" Qz + u" Ru) dt. (8)

The matrixF’ in equation (7) is simply defined as
Fyj = My/(Xi+;), with M =B,R'B,. 9)

Thus the solely knowledge of the unstable eigenvaliigsand of the left (or adjoint)
eigenvectors’, is required for the computation df. Similarly to the control case, the
above MCE approach can be employed for the observer desigmhe common frame-
work of Kalman filtering[14, 5]. For the linear optimal estimation problem, plantiag
tions are re-written in the form:

dx

E— =A B
o T + Bu +d, (10)
y =Cx+r,

where the output relation for the available plant measyréss been introduced along
with the measurement noigseand the state disturbanee According to the Kalman
filtering theory, a stochastic description of batlandr is assumed, witldl andr being
modeled as uncorrelated, zero mean, white Gaussian pescesth known covariance
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matricesiW,y; = £{dd"} andW,, = E{rr"}, respectively. The linear observer which
governs the approximatiamto the true state: is defined as

do
E— =Ao+Bu-L(y-y,), (11)
Yo = CO’

where the matrix, of observer gains is referred to as tkalman gain matrixand it is
optimally designed in order to minimize the expected ‘epiefd e’’e} of the estimation
errore = x —o. Atthis pointitis worthwhile to note that can be equivalently computed
as the solution of the optimal control problem on the so daligal system of (4)

Ed—p = Ap+ O, (12)
dt
with the cost function
1 o0
Jo=7 / (B Waap + W, ) dt. (13)
0

When the MCE solution of the dual control problem is consdethis corresponds to the
classical Kalman filter design in the limiting case of extetymoisy measures compared
to modeling errors on the state dynamics. In this case thexnatan be easily obtained
by applying the MCE formula (7) to the dual control problem:

L=—-EX,GHcHw ! (14)

Tr o)

where X, denotes the unstable right (direct) eigenvectors of4, i.e. AX, = X, A,,
C, = CX, and the matrixG is defined as

Gij = Nij/(\f+2)), with N =MW 'C,. (15)

Once the MCE solution of both the control and the estimati@blems is considered, the
MCE formulation of the LQG compensator is obtained [5]. Faclsa particular LQG
compensator any control and estimation effort will be f@zlien stabilizing and estimat-
ing only the unstable modes of the uncontrolled system. Byjoiting the above results,
the related gain matrice& and L are computed based solely on the knowledge of the
unstable eigenspace df For typical fluid applications aimed to suppress globakihs-
ities, the number of unstable modes is very small comparé¢detstate dimension, thus
making the design of the MCE-LQG compensator computatipfedsible and efficient
even for those large scale systems originating from the nigalediscretization of the
Navier—Stokes equations.

2.2 Numerical methods

The two-dimensional Navier-Stokes equations (1) and tive@arized version (2) are
discretized in conservative form on Cartesian smoothlyingr staggered grids using
standard second-order finite difference schemes. An ineddosundary technique is
employed to impose the considered boundary conditions.deee 9, for details] and a
bilinear interpolation is used to sample the velocity fidldhee selected sensor position.

e{.} is employed herein to denote the expectation operator
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Figure 2: MCE gain fields atkRe = 50: continuous representation as two-dimensional vectaidie{a)
Streamwise component of the controller gain figld(x, y). (b) Streamwise component of the observer
gain fieldZ,,(z, y) with reference to a single cross-stream velocity sensatéatat(z,y) = (1.0,0.0).

Thus the non-zero entries @ and C' are defined accordingly to the above interpola-
tion procedures. Classical Newton iterations are used mapcite the steady base flow
Q, while the generalized eigenvalue problem (6) is solved bymeof thelmplicitly
RestartedArnoldi method, implemented in the ARPACK library [13]. Temntegration

of the semi-discretized linear and nonlinear equationsifopmed making use of the
Adams-Bashforth/Crank-Nicolson scheme: the diffusiventeand the pressure field are
treated implicitly and at each time step a Stokes-like dpeia numerically inverted us-
ing the sparse LU solver provided with the free software pgekUMFPACK [7]. The
same linear solver is employed to handle all other requirattirinversions in our com-
putational setup. Both the terfK « for the controlled system and the teriy for the
compensator dynamics are integrated explicitly thus amgithe storage and factoriza-
tion of the huge matrix associated with the closed-loop dyina.

All the presented results have been computed on a domaof length L, = 75 in the
streamwise direction antl, = 50 in the cross-stream direction. With reference to Figure
1, the inlet, the outlet and the lateral boundaries are éatat a distance from the origin
equal toL;, = 25, L, = 50 andL, = 25 respectively. The whole computational domain
is discretized using50 x 300 nodes with grid points clustered near the cylinder surface.
More precisely, a uniform mesh with the finest grid spacinglof = Ay = 0.02 is
adopted within the small rectangular subdomai, 1] x [—1, 1] enclosing the cylinder.
Finally for time integration, a non-dimensional steptf = 0.01 is employed.

3 Results

The MCE control strategy is now applied to the cylinder flonRat= 50. As already
mentioned, when the Reynolds number is increased beyoraditival value of Re~ 47,
the steady base flow becomes linearly unstable with a paomptex-conjugate modes.
In particular at Re= 50 we found\, = 0.013940.736:. The computed MCE gain matrix
K isillustrated in Figure 2a as a continuous two-dimensi@rator field by means of its
streamwise componeft, (z, y). In agreement with the prior results of Bewley et al. [4],
the gain spatial distribution is sharply localized closé¢h® cylinder surface and appears
very similar to that of the unstable adjoint global mode @& tiylinder wake [9, 15]. This
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Figure 3:MCE control of the flow past a circular cylinder at Re50: time traces of the drag coefficient
Cp (a)-(b), of the lift coefficient, (c) and of the cylinder angular velocity(¢) (d). In the above plots, the
nondimensional timeSt is employed withSt being the Strouhal number associated with the uncontrolled
shedding cycle. Control starts on the fully developed licyitle (black line). The performance of the MCE
compensator using a single cross-wise velocity sensotdde(zs, ys) = (1.0,0) (red line) is compared
with that of the full-information controller (blue line).he gray line in Figure (a) denotes the valuets
associated with the steady base flow

can be better understood by observing from equation (7) khaan be re-written as a
linear combination of the real and imaginary part of the abl& left eigenvectaop,,:

where~, and~; are two real valued coefficients. Similar considerationkl tadso for
the Kalman gain matrix that has been computed with referémeesingle cross-stream
velocity sensor located &t;,, ys) = (1,0). The field continuous representationfoby
means of its streamwise componéhf(z, y) is illustrated in Figure 2b. Not surprisingly
the spatial distribution of the observer gain field is fouedysimilar to that of the direct
unstable global mode. Indeed from equation (14)esults from a linear combination
of the real and imaginary part of the unstable right eigetoreg, in a dual manner to
equation (16). In addition with reference to the expressiai and (14), it can be easily
shown that in the (presengjngle input single outpufSISO) case the numerical values
of R andW,,. do not affect the resulting feedback and observer gainsefiie in the
following we will simply assumekR = W, = 1. The obtained solutions fak and L
have been validated on the linear plant by evaluating balgtbwth-rate and frequency
of the least stable modes of the closed-loop systémsB K andA + LC which should
correspond to the reflected unstable eigenvalues of

Then the effectiveness of the proposed MCE compensatosesssd on the fully non-
linear cylinder flow. Starting from the fully developed sdedy cycle, both the full-
information feedback controller and the derived SISO camspéor are shown to be able
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Figure 4:MCE control of the flow past a circular cylinder at Re50 using a single measure of the cross-
stream velocity component along thexis. Time traces of the drag coeffici€ry for different streamwise
locationz, of the sensor.

to drive the flow towards the unstable st&¢ which is finally restored. This is clearly
illustrated in Figure 3 by means of the time traces of the dgramic force coefficients
and the control variable = ¢(t). In Figure 3 as well as in the following representations,
the nondimensional timeis rescaled using the Strouhal numisgrassociated with the
uncontrolled vortex shedding, thus providing a measuréegguivalent number of vor-
tex shedding cycles required to stabilize the flow. For b#full-information controller
(blue line) and the compensator (red line), control is tdroe at the same time instant and
smoothly applied to the flow system by means of a blended stegtibn. As expected,
results in Figure 3 indicate that the full-information calier performs better than the
compensator by achieving flow stabilization over a shoiteetwindow (~ 40 cycles)
compared to the seconé (100 cycles). Indeed it is quite obvious that for the compen-
sator a certain amount of time is spent for state estimatidroaly once the ‘linear’ flow
state has been adequately reconstructed, the control lesceffective.

3.1 Sensitivity to sensor placement & Reynolds number

In the present control setup only a single measure of thes«tveam velocity component
along ther-axis has been used for state estimate. This sensor corfgyuisamainly sug-
gested by the symmetry-breaking nature of the flow instgwith respect to the steady
state. The same sensor configuration has been adopted ycHiéling a complete sup-
pression of the cylinder vortex shedding upite = 60. Furthermore in his experiments
Roussopoulos [19] has shown that away from the centerlngeyhsteadiness caused by
vortex shedding is too weak to be used as a control signal.

Different streamwise location, of the sensor have been tested and some of these results
are illustrated in Figure 4 with reference to thg time trace. When the sensor is moved
downstream, the stabilization process becomes slowercandequently, the amount of
time required for the complete suppression of the vortexidimg increases. Moreover
for a sensor placement in the far-wake region, i.e> 19, vortex shedding suppression
cannot be achieved any more and the controlled flow conveogaslifferent limit cycle
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Figure 5:MCE control of the flow past a circular cylinder at Re50 using a single measure of the cross-
stream velocity component along theaxis. (a) Stabilization tim&’; as a function ofrs. (b) Total control

energyE, = fOTS p2dt as a function of:.

which is however characterized by a lower mean value of thg doefficient. For practi-
cal purpose the time required to suppress the cylinderxsteddingl; can be evaluated
based on the amplitude of the drag coefficient fluctuationib véispect to the base flow
value, i.e.||Cp(t) — C\P™)|| < e. In Figure 5a the value df, (with ¢ = 10-5) is plotted

as a function ofr,: the time spent to stabilize the flow is shown to be weakly ddpat
onz, up tox, ~ 10 after whichT, rapidly increases. In Figure 5b the total control energy
E. = fOTS ©2dt spent to stabilize the flow is also plotted as a function of These latter
results indicate that the value @&f. is approximately reduced to a minimum when the
sensor is located at, ~ 11 — 14.

In view of more realistic control setups, the velocity sensan be moved close to the
cylinder surface. For such purpose we also consider sefacempent at a fixed radial
distance ofAr = 0.1 from the cylinder surface while varying the angular posittb
For each sensor configuration at a differérdgtation, the radial velocity component is
measured and the related MCE control performance is sholxigure 6. The comparison
with the results obtained fa@r = 0, i.e. along ther-axis measuring the component of
the velocity, indicates that no substantial improvemerdghitained when the sensor is
located at different from zero.

Finally the effectiveness of the MCE control at increasirgyiolds numbers is investi-
gated up to Re= 80. At each considered value of Re and for both the full-infatiora
feedback controller and the SISO compensator, the ach&veor not of the vortex
shedding suppression is reported in Table 1. It is intarggt note that while the full-
information controller is able to stabilize the flow up to Re70, the compensator already
fails at Re= 60 even when the sensor is located very close to cylinder surfae. at

xs = 0.6. In particular at Re= 70 the control action of the MCE compensator drives the
flow to a limit cycle characterized by higher mean value anctélation amplitude of the
Cp. Thisis illustrated in Figure 7b while in Figure 7a for Re65 the MCE compensator
action still results in a small beneficial effect over the amtcolled flow.

4 Conclusions

In this paper the feedback control of the cylinder wake is ercally investigated at low
Reynolds numbers. Actuation is realized by means of cytiadgular oscillations while
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Figure 6:MCE control of the flow past a circular cylinder at Re50 using a single sensor of the radial
velocity component located at a fixed distante = 0.1 from the cylinder surface. Time traces of the drag
coefficientCp for different angular positiod of the sensor. A8 = 0 thev component of the velocity is
employed.
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Figure 7: MCE control of the flow past a circular cylinder using a singtess-stream velocity sensor
located atr, = 0.6. (a) Re= 65. (b) Re= 70. The performance of the MCE compensator (red line)
is compared to that of the full-information controller (blline) in terms of the time trace of the drag
coefficient. Control starts on the fully developed limit y¢black line). The gray line denotes the value of
Cp associated with the steady base flow.
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Re Au Full-information Compensator Ts
55 0.0318 +£0.741¢ Stabilized Stabilized 1.0
60 0.0476 + 0.744¢ Stabilized Not stabilized 0.6
65 0.0614 +0.745i Stabilized Not stabilized 0.6
70 0.0737 +£0.745; Stabilized Not stabilized 0.6
75 0.0846 + 0.743; Not stabilized Not stabilized 0.6
80 0.0943 +0.741i Not stabilized Not stabilized 0.6

Table 1: MCE control of the cylinder flow at increasing Reynolds numsbecomparison between the
full-information controller and the SISO compensator parfance with respect to the achievement of flow
stabilization i.e. the complete vortex shedding supposssi

a single velocity sensor is employed for the state estimatdull-dimensional MCE-
LQG compensator of the linearized flow equations is desigmettested. Both feedback
and observer gains are efficiently computed by exploitirgahalytical result of Lauga
and Bewley [12], thus requiring the solely knowledge of timstable direct and adjoint
eigenmodes. At Re= 50 when the single cross-stream velocity sensor is locatetalo
the x-axis in the near-wake, the cylinder vortex shedding is detefy suppressed and
the unstable base flow is finally restored. When the sensomigddownstream the
time required to stabilize the flow starts to gradually iase up tor, > 10 when it
rapidly grows up until the control effectiveness is defilyitlost for x, > 19 (Figures
4-5). Besides the nonlinear evolution of the vortex stitbét,behavior can be physically
interpreted based on the phase lag associated with theatow@eature of the flow, which
becomes more relevant as the sensor is moved far away froaylihder surface where
the control is actuated. The stabilization loss associattita far-wake sensor placement
was described also by Roussopoulos [19] in his control eéxyts at Re= 65: in
that case a critical threshold of approximatelgiameters from the cylinder was found.
For the considered streamwise sensor placement the amboobhtol energy spent to
stabilize the flow is characterized by a small lower plate&emthe sensor is located at
x, ~ 11 — 14. This sensor location roughly corresponds to the regiorravtiee maxima
of the unstable direct global mode are found at-Re0 [9]. It is worthwhile to note
that the optimal placement for the cheapest control, i.e. afoninimum value ofE.,
does not correspond also to the fastest stabilizing cofdrolvhich the sensor should
be moved close to cylinder surface (Figure 5a). The MCE obpirformance with a
sensor placement very close to the cylinder surface andri@iugaangular positions has
been investigated. For such configurations the radial itglcomponent is measured.
However obtained results at the different angular posstbmnot show any improvement
with respect to those obtained using-@omponent sensor placed along thaxis and
at the same distance from the cylinder surface; moreovdralgrerformance is slightly
reduced. Finally the dependence of the MCE control perfagedrom the Reynolds
number have been addressed. AtR&0 the MCE compensator is not able to stabilize
the flow and at Re= 70 its control action results in a worsening of the flow instipil
with respect to the uncontrolled case, leading to an inereathe mean drag and of the
aerodynamic load fluctuations. At the same time the fulinfation control is shown to
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be able to completely suppress the vortex shedding up te- R, thus suggesting that
the limited compensator performance is due to a poor lingtnate of the flow state.
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