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SUMMARY. In this paper we review the problem of the wake-flow stability for a thin airfoil by
using both a locally plane-wave analysis, based on a WKBJ approximation, and a global numerical
stability analysis. The core of the instability is further localized by performing a structural sensitivity
analysis of the linearized Navier-Stokes operator as outlined in [7]. In particular the sensitivity of
the eigenvalue to a spatially-localized feedback from velocity to force is evaluated by using the
product of the direct and adjoint global mode. It is shown, using a plane wave analysis, that the
flow at the trailing edge is absolutely unstable for any Reynolds number for values of the parameter
m corresponding to separation of the base flow. The analysis further shows that the base flow at
the trailing edge is not absolutely unstable as the value ofm tends to zero. The global eigenvalue
analysis shows that the frequency and growth rate are very similar to what is found with the local
plane wave analysis at the trailing edge. Finally, the structural sensitivity analysis indicates that the
wavemaker is situated just downstream of the trailing edge..

1 INTRODUCTION
The problem of wake-flow instability behind a flat plate or thin airfoils has been the subject

of many analytical and numerical studies. The first investigations of the stability of these flows
dealt with the flat plate geometry and the characteristics ofthe wake behind the trailing edge were
modeled with analytical profiles. An example is offered by the work of [1] who solved the temporal
and spatial linear instability problems, both numericallyfor order-one growth rates and analytically
for the small- and large-wavenumbers. Their results are in good agreement with the experimental
results of [2]. In this and other experiments the focus was onconvective-type instabilities which were
forced by loudspeaker excitation of the flow. Self-excited oscillations in the wake of a thin airfoil
were successively examined by [3] and [4] who used the theoryof absolute instability, as discussed
by [5], to investigate the global stability characteristics of the flow. By numerically integrating the
boundary layer equations on a thin airfoil they showed that the flow at the trailing edge can be well
modeled by a double Falkner-Skan profile with an adverse pressure gradient. Their analysis shows
that in a given range of parameters the wake becomes globallyunstable, promoting the development
of a Karman vortex shedding. The frequency of the global oscillation was determined, in [3], at
leading order using a multiple-scales-type WKBJ analysis,assuming the flow to be slowly varying
in the streamwise direction. More recently [6] repeated theanalysis on the thin airfoil wake in order
to investigate the nonlinear development of the perturbation and locate the front of the nonlinear
global mode.

In this paper we review the problem of the wake-flow stabilityfor a thin airfoil by using both
a locally plane-wave analysis, based on a WKBJ approximation, and a global numerical stability
analysis and compare our results with those by [3]. The core of the instability is further localized
by performing a structural sensitivity analysis of the linearized Navier-Stokes operator as outlined
in [7]. In particular the sensitivity of the eigenvalue to a spatially-localized feedback from velocity
to force is evaluated by using the product of the direct and adjoint global mode. In such way, the
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Figure 1: Computational domain whereLp is the length of the final part of the airfoil before the
trailing edge.

position of the "wavemaker" of the asymptotic theory can be determined by inspecting where in
space the sensitivity reaches its maximum level.

2 PROBLEM FORMULATION
The aim of this study is to investigate the stability characteristics of the wake-flow behind an

airfoil. It is assumed that the airfoil is thin and symmetricsuch that the flow at the trailing edge
can be well approximated by the Falkner-Skan similarity solution, as discussed by [3]. In both [3]
and [4], performing a local stability analysis, it was foundthat for certain values of the Reynolds
number and pressure gradient the flow is absolutely unstableat the trailing edge. In order to avoid
an absolutely unstable flow at the inlet of the computationaldomain we have added a flat plate of
infinitesimal thickness upstream of the trailing edge in order to model the downstream part of the
airfoil. The computational domain is given in figure 1 showing the Cartesian coordinate system
with its origin at the trailing edge. The domain is characterized by three different lengths: the
downstream part of the airfoil denotedLp, the length of the computational domain downstream of
the trailing edgeLx and the domain heightLy.

2.1 Governing equations
The wake flow is described by the two-dimensional unsteady incompressible Navier-Stokes

equations

∂U

∂t
+ U · ∇U = −∇P +

1

Re
∆U, (1)

∇ · U = 0, (2)

whereU is the velocity vector with componentsU = (U, V ) andP is the reduced pressure. Equa-
tions (1)–(2) are given the following boundary conditions.Two Falkner Skan similiarity solutions
are used as an inlet condition atx = −Lp and the non-slip condition is used on both sides of the
flat plate. In the far field the flow approaches the incoming uniform stream, that isU → (U∞, 0) as
y → ±∞. The Falkner-Skan solution is a function of the pressure gradient which is expressed by
the power-law parameterm. The characteristic length scale is taken to be the displacement thickness
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δ⋆ of the inlet profile. The two parameters which define the present configuration are the Reynolds
numberRe =

U⋆

∞
δ⋆

ν⋆
and power-law parameterm.

3 LOCAL STABILITY ANALYSIS
The analysis in this section is made considering steady parallel flow in the x direction. In the

first part we analyse the stability characteristics of the base flow at the trailing edge (x = 0) where
the steady flow is taken as the Falkner Skan similarity solution. In a next step we perform a local
stability analysis of the steady base flow obtained as the solution of the steady version of equation
(1)-(2).

The stability problem for a strictly parallel, viscous two-dimensional flow is described by the Orr-
Sommerfeld equation, which is written in terms of the unsteady velocity perturbationv(x, y, t) =
v̂(y) exp(−iωt + iαx) in the form

[

(iαUb − iω)

(

∂2

∂y2
− α2

)

− iαU ′′

b

]

v̂ =
1

Re

(

∂2

∂y2
− α2

)2

v̂, (3)

whereω andα are the angular frequency and streamwise wave number, respectively,Ub is the steady
base flow and the superscript prime denotes the derivative inthey direction. In the free stream we
impose asymptotic boundary conditions derived from (3) by considering a constant base flow. At
y = 0 the base flow is discontinuous in the derivatives. It is therefore necessary to impose boundary
conditions for the perturbations which take into account ofthis discontinuity. Two possible solutions
are found; symmetric and antisymmetric modes. The boundaryconditions for these two solutions
are given as

v̂(0) = v̂′′(0) = 0, (4)

v̂′(0) = v̂′′′(0) + iαReU ′

b(0)v̂(0) = 0, (5)

respectively.

3.1 Absolute instability
It has already been found in previous investigations, for example [3] and [4], that no absolute

instability is obtained for the symmetric modes. This has been confirmed with our own computations
and we therefore only investigate the antisymmetric case (5) here. The absolute instability, as defined
by [8] in plasma physics when studying the causal response toimpulsive forcing, arises when two
(or more) spatial modes originating in opposite half planespinch together as the temporal contour
is lowered towards the real axis. This pinch corresponds to an unstable mode with zero group
velocity, and hence to disturbances which grow in time at a fixed point in space and potentially lead
to nonlinear behavior. We can define the absolute instability ω0 as

ω0 = ω(α0) with
∂ω

∂α
(α0) = 0. (6)

3.2 Numerical results
Equation (3) together with boundary conditions (5) are discretized using second order finite dif-

ferences on a uniform grid. The eigenvalueω for a givenα and Reynolds number is computed using
an inverse iteration procedure. The absolute instability is calculated using a Newton procedure in
order to find the streamwise wavenumberα which satisfies (6).
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Figure 2: Growth rate of instability of type 1 at saddles as a function of the the parameterm for
different Reynolds numbers computed atx = 0.

The results shown here have been obtained using the same values for the Reynolds number and
power-law parameterm as in [4] for comparison. In figure 2 the growth rate of the least stable
mode is shown for different Reynolds numbers and values ofm between zero and -0.09. Note that
-0.09 is close to value which corresponds to separation of the base flow. In all cases the condition
(6) is satisfied and the growth rate is positive. For values ofm close to separation the value of the
growth rate is independent of the Reynolds number. Further,for large Reynolds numbers the growth
rate tends to zero as value ofm approaches that of the Blasius boundary layer (m = 0). However,
for lower Reynolds numbers is seems to exist a value form above which the growth rate increases
implying that the Blasius boundary layer is absolutely unstable.

This is however not true, as also shown by [4], since another saddle point exists at which the
mode satisfying condition (6) is unstable and both solutions must be considered in order to have the
correct causal response to impulsive forcing. We denote, asin [4], the solution shown in figure 2
type I saddles. The second solution, denoted type II saddles, is shown in figure 3 for different values
of m andRe. It is found that this solution is stable for base flows close to separation and for values
of m close to zero. Moreover, for certain values ofm andRe both solutions are unstable.

In order to better understand these different saddle pointswe analyse in detail two different points
in them-Re plane. The values are(Re, m) = (1000,−0.02) and(Re, m) = (1000,−0.06). The
Reynolds number has been chosen small enough such that the growth rate form = −0.02 is clearly
larger with respect to the large Reynolds number limit for the type I saddle. For both cases the
growth rate has been computed for different values of the complex streamwise wave numberα. The
results are shown in figures 4 and 5 where dashed and solid contours show negative and positive
growth rate respectively. It can be seen that the two saddle points with positive growth rate shown in
figures 2 and 3 have been captured for each case.

It turns out that the type I saddles change from pinching to non-pinching above a certain value of
m for eachRe and therefore do not lead to an absolute instability, and this is due to their interaction
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Figure 3: Growth rate of instability of type 2 at saddles as a function of the the parameterm for
different Reynolds numbers computed atx = 0.

with type II saddles which are always pinching. Note that “pinch” defines modes coalescing from
opposite spatial half planes while non-pinching means thatthe two modes coalesce from the upper
half plane. In both cases the long time behavior is determined by the pinching saddle with the largest
growth rate. For them = −0.06 case both saddles are pinching and the type I mode has the largest
growth rate. In them = −0.02 case only the type II mode is pinching and therefore determines the
long time behavior. This analysis has been made for different m andRe it can be concluded that non
absolute instability exists asm tends to zero.

The streamwise evolution of the absolute instability in theairfoil wake has also been computed.
This was made by first solving the steady version of equations(1)-(2) in order to obtain the steady
base flow. The absolute instability was then computed for at each streamwise position in order to
obtain its streamwise evolution. An example is given in figure 6 forRe = 2000, m = −0.09 and
Lx = 120. It can be seen that the maximum growth rate is found at the trailing edge and that the
mode becomes stable atx ≈ 95.

3.3 Global instability
The complex global frequencyωg is obtained by the saddle-point condition

ωg = ω0(xs) where
∂ω0

∂x
(xs) = 0

based on the analytic continuation of the local absolute frequency curveω0(x) in the complex x-
plane, withxs denoting the slow streamwise variable at the saddle point.

4 GLOBAL STABILITY ANALYSIS
In order to validate the results based on the asymptotic theory, a fully numerical global stability

analysis of the thin-airfoil wake is performed. The instability onset is studied using linear theory and
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Figure 4: Contours of growth rateωi: negative (dashed) and positive (solid), forRe = 1000 and
m = −0.06.
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Figure 5: Contours of growth rateωi: negative (dashed) and positive (solid), forRe = 1000 and
m = −0.02.
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Figure 6: Growth rate the of absolute instabilityω0 as a function of the streamwise coordinatex for
the case whenRe = 2000 andm = −0.09.

a normal-mode analysis. The flow quantities are decomposed in a steady part and a small unsteady
perturbation asU(x, y, t) = Ub(x, y) + ǫu(x, y, t) andP (x, y, t) = Pb(x, y) + ǫp(x, y, t), where
the amplitudeǫ is assumed to be small. Since we are interested in two-dimensional global modes an
ansatz is used such thatu(x, y, t) = û(x, y) exp(σt) andp(x, y, t) = p̂(x, y) exp(σt). Introducing
the flow decomposition and the ansatz into equations (1)-(2)and linearising we obtain the linearised
unsteady Navier-Stokes equations

σû + L{Ub, Re}û + ∇p̂ = 0, (7)

∇ · û = 0, (8)

where the base flow is the solution of the steady version of (1)–(2) and

L{Ub, Re}û = Ub · ∇û + û · ∇Ub −
1

Re
∆û. (9)

On both sides of the plate,−Lp < x < 0 andy = 0, a no-slip boundary condition is imposed while
in the far field appropriate radiative boundary conditions are used, see [7]. At the outflow a zero
normal stress condition is imposed. At the upstream boundary, the vorticity is set to zero while the
streamwise velocity component is required to vanish. Similarly, on the upper and lower boundary,
the normal velocity componentv is assumed to decay and the vorticity is set to zero. The system
(7)–(8) gives rise to a generalised eigenvalue problem for the complex eigenvalueσ. For Re(σ) < 0
the flow is stable while for Re(σ) > 0 the mode is unstable and grows exponentially in time.

4.1 Numerical method
The results presented here are obtained with the numerical code described in [7]. A second-order

finite-difference approach is used to compute spatial derivatives of the governing partial differen-
tial equations together with an immersed-boundary technique to represent the cylinder surface on
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a Cartesian mesh. The computational domain is rectangular.With the spatial discretisation and
boundary conditions described above two different problems are addressed. First, the steady non-
linear Navier-Stokes equations (1)–(2) are solved by Newton iteration in order to compute the base
flow used for the linear stability analysis. Second, the stability of the flow is investigated through
the eigenvalue problem defined by the linearised perturbation equations (7)–(8), where an inverse
iteration algorithm is implemented to compute the least stable eigenvalue and eigenmode, see [7] for
further details on the numerical approach.

5 SENSITIVITY ANALYSIS
The sensitivity of the unstable shedding mode is used to identify the core of the instability. In

weakly non-parallel flows the WKBJ approach enables to identify a specific spatial position in the
absolutely unstable region which acts as a wave-maker, determining e.g. the oscillation frequency by
the saddle point criterion [10, 11, 9]. For more complex configurations strong non-parallel effects
prevent us from using the asymptotic theory and a global analysis is necessary. In this context, a
concept similar to that of wave-maker can be introduced by investigating where in space a modifi-
cation in the structure of the problem produces the largest drift of the eigenvalue: this is done by
determining the region where feedback from velocity to force is most effective. The derivation is
briefly outlined here for continuous operators and further details can be found in [7].

We consider the perturbed eigenvalue problem satisfying the equations

σ′û′ + L{Ub, Re}û′ + ∇p̂′ = δM(x, y) · u′, (10)

∇ · û′ = 0, (11)

where the right hand side of (10) is a structural perturbation localised in space in the form of a local
force proportional to a local velocity and

δM(x, y) = δ(x − x0, y − y0) δM0,

whereδM0 is a 2 by 2 matrix of the coupling coefficients expressing the particular form of the
localised structural perturbation andδ(x − x0, y − y0) stands for the Kronecker delta function. The
eigenvalue driftδσ and corresponding variation of the eigenfunctions with respect to the unperturbed
problem can be derived using the expansionû′ = û + δû and p̂′ = p̂ + δp̂. Introducing the
perturbation decomposition into (10)-(11) and further theLagrange identity, as in [7], we can express
the eigenvalue drift due to the local feedback as

δσ(x0, y0) =

∫

Ω

ˆf+ · δM · û dS

∫

Ω

ˆf+ · û dS

=
ˆf+ · δM0 · û
∫

Ω

ˆf+ · û dS

= S : δM0 =
∑

ij

Sij δM0ij , (12)

where

S(x0, y0) =
ˆf+(x0, y0) û(x0, y0)

∫

Ω

ˆf+ · û dS

. (13)

Hereg+ ≡ {f+, m+} satisfy the adjoint equations given in [7]. In the above expression the notation
ˆf+ û indicates the dyadic product between the direct and adjointmodes. Different norms of the

tensorS can be used to build a spatial map of the sensitivity. The spectral norm is chosen here to
study the worst possible case.
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Figure 7: Real part of the vorticity of the least stable global mode forRe = 2000 andm = −0.09.

5.1 Numerical results
The results presented here have been computed forRe = 2000 andm = −0.09. The dimensions

of the domain used areLp = 28, Lx = 120 andLy = 50. In figure 7 the real part of the vorticity is
shown and the usual Karman vortex pattern can be observed in the downstream part of the domain.
The global frequency and growth rate are0.163 and0.0193, respectively, which are quite similar to
the values of the absolute instability at the trailing edge for the same parameters, namely0.161 and
0.012. In figure 8 the structural sensitivity is plotted. It can clearly be seen that the maximum is
localised in the vicinity, just downstream, of the trailingedge.

6 Conclusions
In this paper we have reviewed the problem of the wake-flow stability for a thin airfoil by using

both a locally plane-wave analysis, based on a WKBJ approximation, and a global numerical stability
analysis. The core of the instability has further been localized by performing a structural sensitivity
analysis of the linearized Navier-Stokes operator as outlined in [7]. In particular the sensitivity of the
eigenvalue to a spatially-localized feedback from velocity to force is evaluated by using the product
of the direct and adjoint global mode. In such way, the position of the "wavemaker" of the asymptotic
theory can be determined by inspecting where in space the sensitivity reaches its maximum level.

It has been shown, using a plane wave analysis, that the flow atthe trailing edge is absolutely
unstable for any Reynolds number for values of the parameterm corresponding to separation of the
base flow. The analysis further shows that the base flow at the trailing edge is not absolutely unstable
as the value ofm tends to zero.

The global eigenvalue analysis shows that the frequency andgrowth rate are very similar to what
is found with the local plane wave analysis at the trailing edge. Finally, the structural sensitivity
analysis indicates that the wavemaker is situated just downstream of the trailing edge.

References
[1] Papageorgiou, D. T. ,Smith, F.T., “Linear stability of the wake behind a flat plate placed parallel

to a uniform stream,”J. Fluid Mech., 208, 67-89 (1989).

[2] Mattingly, G.E. , Criminale, W.O., “The stability of an incompressible two-dimensional wake,”
J. Fluid Mech., 51, 233-272 (1972).

9



 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006
 0.007

-20  0  20  40  60  80
-15

-10

-5

 0

 5

 10

 15

x

y

Figure 8: Real part of the vorticity of the least stable global mode forRe = 2000 andm = −0.09.

[3] Woodley, B.M. , Peake, N., “Global linear stability analysis of thin airfoil wakes,”J. Fluid
Mech., 339, 239-260 (1997).

[4] Taylor, M.J., Peake, N., “A note on the absolute instability of wakes,”Eur. J. Mech. B/Fluids,
18, 573-579 (1999).

[5] Huerre, P. , Monkewitz, P. A. , “Local and global instabilities in spatially developing flows,”
Ann. Rev. Fluid Mech., 22, 473-537 (1990).

[6] Peake, N., Pier, B., “Global nonlinear dynamics of thin aerofoil wakes,” inBook of abstract of
the European Fluid Mechanics Conference, Manchester, U.K., September 14-18, (2008).

[7] Giannetti, F., Luchini, P., “Structural Sensitivity ofthe first instability of the cylinder wake,”J.
Fluid Mech., 581, 167-197 (2007).

[8] Briggs, R., “Electron-Stream Interaction with Plasmas,” MIT Press, (1964).

[9] Chomaz, J.-M., “Global instabilities in spatially developing flows: Non-normality and nonlin-
earity,” Annu. Rev. Fluid Mech. 37, 357-392 (2005).

[10] Chomaz, J. M., Huerre, P. & Redekopp, L. G., “A frequencyselection criterion in spatially
developing flows,”Stud. Appl. Math. 84, 119-144 (1991).

[11] Dizés, S. L., Huerre, P., Chomaz, J. & Monkewitz, P., “Linear global modes in spatially devel-
oping media,”Phil. Trans. R. Soc. Lond. A 354 (1705), 169–212 (1996).

10


