A global stability analysis of a thin-airfoil wake
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SUMMARY. In this paper we review the problem of the wake-floiakslity for a thin airfoil by
using both a locally plane-wave analysis, based on a WKBdoappation, and a global numerical
stability analysis. The core of the instability is furthecélized by performing a structural sensitivity
analysis of the linearized Navier-Stokes operator asreedlin [7]. In particular the sensitivity of
the eigenvalue to a spatially-localized feedback from eigjoto force is evaluated by using the
product of the direct and adjoint global mode. It is showrnipgs plane wave analysis, that the
flow at the trailing edge is absolutely unstable for any Régmaumber for values of the parameter
m corresponding to separation of the base flow. The analysiseushows that the base flow at
the trailing edge is not absolutely unstable as the value ¢énds to zero. The global eigenvalue
analysis shows that the frequency and growth rate are vamjasito what is found with the local
plane wave analysis at the trailing edge. Finally, the $tmat sensitivity analysis indicates that the
wavemaker is situated just downstream of the trailing edge.

1 INTRODUCTION

The problem of wake-flow instability behind a flat plate omthirfoils has been the subject
of many analytical and numerical studies. The first invediims of the stability of these flows
dealt with the flat plate geometry and the characteristidh®fvake behind the trailing edge were
modeled with analytical profiles. An example is offered bg #ork of [1] who solved the temporal
and spatial linear instability problems, both numericétliyorder-one growth rates and analytically
for the small- and large-wavenumbers. Their results areodgagreement with the experimental
results of [2]. In this and other experiments the focus wasamvective-type instabilities which were
forced by loudspeaker excitation of the flow. Self-excitaditbations in the wake of a thin airfoil
were successively examined by [3] and [4] who used the thebapsolute instability, as discussed
by [5], to investigate the global stability characteristaf the flow. By numerically integrating the
boundary layer equations on a thin airfoil they showed thatflow at the trailing edge can be well
modeled by a double Falkner-Skan profile with an adversespregyradient. Their analysis shows
that in a given range of parameters the wake becomes glabatable, promoting the development
of a Karman vortex shedding. The frequency of the globalllasicin was determined, in [3], at
leading order using a multiple-scales-type WKBJ analyassuming the flow to be slowly varying
in the streamwise direction. More recently [6] repeatedath@ysis on the thin airfoil wake in order
to investigate the nonlinear development of the pertuobaéind locate the front of the nonlinear
global mode.

In this paper we review the problem of the wake-flow stabildy a thin airfoil by using both
a locally plane-wave analysis, based on a WKBJ approximatiad a global numerical stability
analysis and compare our results with those by [3]. The cbtheinstability is further localized
by performing a structural sensitivity analysis of the &rnieed Navier-Stokes operator as outlined
in [7]. In particular the sensitivity of the eigenvalue topatially-localized feedback from velocity
to force is evaluated by using the product of the direct andiaidglobal mode. In such way, the
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Figure 1: Computational domain whefg is the length of the final part of the airfoil before the
trailing edge.

position of the "wavemaker" of the asymptotic theory can b&dnined by inspecting where in
space the sensitivity reaches its maximum level.

2 PROBLEM FORMULATION

The aim of this study is to investigate the stability chaesstics of the wake-flow behind an
airfoil. It is assumed that the airfoil is thin and symmefsiech that the flow at the trailing edge
can be well approximated by the Falkner-Skan similarityisoh, as discussed by [3]. In both [3]
and [4], performing a local stability analysis, it was fouthat for certain values of the Reynolds
number and pressure gradient the flow is absolutely unssaltkee trailing edge. In order to avoid
an absolutely unstable flow at the inlet of the computaticlmahain we have added a flat plate of
infinitesimal thickness upstream of the trailing edge inesrd model the downstream part of the
airfoil. The computational domain is given in figure 1 showitne Cartesian coordinate system
with its origin at the trailing edge. The domain is charaetst by three different lengths: the
downstream part of the airfoil denotdg, the length of the computational domain downstream of
the trailing edge., and the domain heigli,.

2.1 Governing equations
The wake flow is described by the two-dimensional unsteadgrmpressible Navier-Stokes
equations

Y.u.vu = —vr+ RieAU, 1)

ot
V.U = o0, )

whereU is the velocity vector with component$ = (U, V) and P is the reduced pressure. Equa-
tions (1)—(2) are given the following boundary conditioffsvo Falkner Skan similiarity solutions
are used as an inlet conditionat= —L, and the non-slip condition is used on both sides of the
flat plate. In the far field the flow approaches the incomindarm stream, that i¥J — (U, 0) as

y — zoo. The Falkner-Skan solution is a function of the pressureigra which is expressed by
the power-law parametet. The characteristic length scale is taken to be the displaogthickness



0* of the inlet profile. The two parameters which define the presenfiguration are the Reynolds
numberRe = =%~ and power-law parametet.

>

3 LOCAL STABILITY ANALYSIS

The analysis in this section is made considering steadyllpbflaw in the x direction. In the
first part we analyse the stability characteristics of theelffow at the trailing edgez(= 0) where
the steady flow is taken as the Falkner Skan similarity smutin a next step we perform a local
stability analysis of the steady base flow obtained as theieal of the steady version of equation
(1)-(2).

The stability problem for a strictly parallel, viscous twlimensional flow is described by the Orr-
Sommerfeld equation, which is written in terms of the undyeeelocity perturbation(z,y,t) =
0(y) exp(—iwt + icz) in the form

2 2 2
[(ian — iw) (aa—yQ — a2) — iaUé’} 0= Rie (88—312 - a2) 0, (3)

wherew anda are the angular frequency and streamwise wave numbergtegdg U, is the steady
base flow and the superscript prime denotes the derivatitheein direction. In the free stream we
impose asymptotic boundary conditions derived from (3) bysidering a constant base flow. At
y = 0 the base flow is discontinuous in the derivatives. It is tfeweenecessary to impose boundary
conditions for the perturbations which take into accourth@f discontinuity. Two possible solutions
are found; symmetric and antisymmetric modes. The bouncamgitions for these two solutions
are given as

0(0) = 9"(0) =0, (4)
o'(0) = 9"(0) + iaRelU;(0)5(0) = 0, (5)

respectively.

3.1 Absolute instability

It has already been found in previous investigations, f@aneple [3] and [4], that no absolute
instability is obtained for the symmetric modes. This hasrbeonfirmed with our own computations
and we therefore only investigate the antisymmetric casedfe. The absolute instability, as defined
by [8] in plasma physics when studying the causal responsegalsive forcing, arises when two
(or more) spatial modes originating in opposite half plapiesh together as the temporal contour
is lowered towards the real axis. This pinch correspondstarsstable mode with zero group
velocity, and hence to disturbances which grow in time atedfigoint in space and potentially lead
to nonlinear behavior. We can define the absolute instahiljtas

wo = w(ap) with g—Z(ao) =0. (6)
3.2 Numerical results
Equation (3) together with boundary conditions (5) aremditzed using second order finite dif-
ferences on a uniform grid. The eigenvaluéor a givena and Reynolds number is computed using
an inverse iteration procedure. The absolute instabdityalculated using a Newton procedure in
order to find the streamwise wavenumbewhich satisfies (6).
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Figure 2: Growth rate of instability of type 1 at saddles asiacfion of the the parametet for
different Reynolds numbers computedrat 0.

The results shown here have been obtained using the sanes¥ahthe Reynolds number and
power-law parametei as in [4] for comparison. In figure 2 the growth rate of the testable
mode is shown for different Reynolds numbers and values between zero and -0.09. Note that
-0.09 is close to value which corresponds to separationeob#ise flow. In all cases the condition
(6) is satisfied and the growth rate is positive. For valuesiaflose to separation the value of the
growth rate is independent of the Reynolds number. Furtbelarge Reynolds numbers the growth
rate tends to zero as value@f approaches that of the Blasius boundary layer=£ 0). However,
for lower Reynolds numbers is seems to exist a valuerf@bove which the growth rate increases
implying that the Blasius boundary layer is absolutely ahkt.

This is however not true, as also shown by [4], since anotaédls point exists at which the
mode satisfying condition (6) is unstable and both solgiomist be considered in order to have the
correct causal response to impulsive forcing. We denote) f4, the solution shown in figure 2
type | saddles. The second solution, denoted type Il saddlskown in figure 3 for different values
of m andRe. It is found that this solution is stable for base flows classdparation and for values
of m close to zero. Moreover, for certain valuesofandRe both solutions are unstable.

In order to better understand these different saddle pai@tnalyse in detail two different points
in the m-Re plane. The values ar@e, m) = (1000, —0.02) and (Re, m) = (1000, —0.06). The
Reynolds number has been chosen small enough such thatthhgate form = —0.02 is clearly
larger with respect to the large Reynolds number limit far thpe | saddle. For both cases the
growth rate has been computed for different values of theptexrstreamwise wave number The
results are shown in figures 4 and 5 where dashed and solidwsrghow negative and positive
growth rate respectively. It can be seen that the two sadifggwith positive growth rate shown in
figures 2 and 3 have been captured for each case.

It turns out that the type | saddles change from pinching to-pimching above a certain value of
m for eachRe and therefore do not lead to an absolute instability, arglighdue to their interaction
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with type Il saddles which are always pinching. Note thahghi” defines modes coalescing from
opposite spatial half planes while non-pinching meanstti@two modes coalesce from the upper
half plane. In both cases the long time behavior is deterdityeghe pinching saddle with the largest
growth rate. For then = —0.06 case both saddles are pinching and the type | mode has thestarg
growth rate. In then = —0.02 case only the type Il mode is pinching and therefore detezmihe
long time behavior. This analysis has been made for diftereandRe it can be concluded that non
absolute instability exists as tends to zero.

The streamwise evolution of the absolute instability indivéoil wake has also been computed.
This was made by first solving the steady version of equaijb)§2) in order to obtain the steady
base flow. The absolute instability was then computed foaah estreamwise position in order to
obtain its streamwise evolution. An example is given in feggérfor Re = 2000, m = —0.09 and
L, = 120. It can be seen that the maximum growth rate is found at thiengadge and that the
mode becomes stableat= 95.

3.3 Global instability
The complex global frequency, is obtained by the saddle-point condition

&uo
wg =wo(xs) where %(:ps) =0

based on the analytic continuation of the local absolutgueacy curvev,(z) in the complex x-
plane, withz; denoting the slow streamwise variable at the saddle point.

4 GLOBAL STABILITY ANALYSIS
In order to validate the results based on the asymptotiayhadully numerical global stability
analysis of the thin-airfoil wake is performed. The insli#ypbnset is studied using linear theory and
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Figure 4: Contours of growth rate;: negative (dashed) and positive (solid), 8¢ = 1000 and
m = —0.06.

o

Figure 5: Contours of growth rate;: negative (dashed) and positive (solid), 8¢ = 1000 and
m = —0.02.
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Figure 6: Growth rate the of absolute instability as a function of the streamwise coordinatir
the case whe®e = 2000 andm = —0.09.
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a normal-mode analysis. The flow quantities are decompaosadieady part and a small unsteady
perturbation adJ(z,y,t) = Uy(z,y) + eu(w,y,t) andP(z,y,t) = By(z,y) + ep(z, y,t), where
the amplitude is assumed to be small. Since we are interested in two-dioreglobal modes an
ansatz is used such thafz, y,t) = a(z, y) exp(ot) andp(zx, y, t) = p(z,y) exp(ot). Introducing
the flow decomposition and the ansatz into equations (13{@)inearising we obtain the linearised
unsteady Navier-Stokes equations

ou+L{U,,Re}u+Vp = 0, (7)
vV.-a = 0, (8)
where the base flow is the solution of the steady version ef{2))and
1
L{Ub, Re}ﬁ =U,-Va+u-VU, — EeAfl (9)

On both sides of the plate; L, < = < 0 andy = 0, a no-slip boundary condition is imposed while
in the far field appropriate radiative boundary conditiors ased, see [7]. At the outflow a zero
normal stress condition is imposed. At the upstream bouynttaa vorticity is set to zero while the
streamwise velocity component is required to vanish. Sirlyil on the upper and lower boundary,
the normal velocity componentis assumed to decay and the vorticity is set to zero. Themsyste
(7)—(8) gives rise to a generalised eigenvalue problenhi@cbmplex eigenvalue. For Réo) < 0

the flow is stable while for Rer) > 0 the mode is unstable and grows exponentially in time.

4.1 Numerical method

The results presented here are obtained with the numeddalaescribed in [7]. A second-order
finite-difference approach is used to compute spatial dévies of the governing partial differen-
tial equations together with an immersed-boundary tealig represent the cylinder surface on



a Cartesian mesh. The computational domain is rectangWith the spatial discretisation and
boundary conditions described above two different proklanme addressed. First, the steady non-
linear Navier-Stokes equations (1)—(2) are solved by Newttration in order to compute the base
flow used for the linear stability analysis. Second, theibtalof the flow is investigated through
the eigenvalue problem defined by the linearised pertwbaguations (7)—(8), where an inverse
iteration algorithm is implemented to compute the leadilstaigenvalue and eigenmode, see [7] for
further details on the numerical approach.

5 SENSITIVITY ANALYSIS

The sensitivity of the unstable shedding mode is used tatfgethe core of the instability. In
weakly non-parallel flows the WKBJ approach enables to ifleatspecific spatial position in the
absolutely unstable region which acts as a wave-makerdetieg e.g. the oscillation frequency by
the saddle point criterion [10, 11, 9]. For more complex aunfations strong non-parallel effects
prevent us from using the asymptotic theory and a globalyaisals necessary. In this context, a
concept similar to that of wave-maker can be introduced kgstigating where in space a modifi-
cation in the structure of the problem produces the largefitaf the eigenvalue: this is done by
determining the region where feedback from velocity to éoix most effective. The derivation is
briefly outlined here for continuous operators and furtregails can be found in [7].

We consider the perturbed eigenvalue problem satisfyia@tfuations

o't + L{Up,Re}t’ + V' = dM(z,y) -, (10)
v.d = 0, (11)

where the right hand side of (10) is a structural perturlpdticalised in space in the form of a local
force proportional to a local velocity and

5M(‘T7y) = 5(‘1' —Z0o,Y — y()) 6M07

wheredM, is a 2 by 2 matrix of the coupling coefficients expressing thetipular form of the
localised structural perturbation atfc — x0,y — yo) stands for the Kronecker delta function. The
eigenvalue driféo and corresponding variation of the eigenfunctions witipeesto the unperturbed
problem can be derived using the expansidn= @ + éu andp’ = p + Jdp. Introducing the
perturbation decomposition into (10)-(11) and furtherithgrange identity, as in [7], we can express
the eigenvalue drift due to the local feedback as

+6M - 6 .
/Qf M-S oo g

50’(:17(), y()) = N N =8S: 5M() = Z Sij 5M0ija (12)
/f*oﬁdS /f*-ﬁdS ij
Q Q
where .

f+(xo, yo) u(xo,
S(zg. o) = (20,00 BT0-10) (19

/ f+.adS

Q

Hereg® = {f*, m™} satisfy the adjoint equations given in [7]. In the above espion the notation
f+ 4 indicates the dyadic product between the direct and adjoodes. Different norms of the
tensorS can be used to build a spatial map of the sensitivity. Thetsplemorm is chosen here to
study the worst possible case.
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Figure 7: Real part of the vorticity of the least stable glahade for Re = 2000 andm = —0.09.

5.1 Numerical results

The results presented here have been computdgifer 2000 andm = —0.09. The dimensions
of the domain used atk, = 28, L, = 120 andL, = 50. In figure 7 the real part of the vorticity is
shown and the usual Karman vortex pattern can be observie iownstream part of the domain.
The global frequency and growth rate &ré63 and0.0193, respectively, which are quite similar to
the values of the absolute instability at the trailing edyeltie same parameters, namely61 and
0.012. In figure 8 the structural sensitivity is plotted. It canarly be seen that the maximum is
localised in the vicinity, just downstream, of the trailiedge.

6 Conclusions

In this paper we have reviewed the problem of the wake-floilitafor a thin airfoil by using
both a locally plane-wave analysis, based on a WKBJ appraim, and a global numerical stability
analysis. The core of the instability has further been iaedlby performing a structural sensitivity
analysis of the linearized Navier-Stokes operator asreedlin [7]. In particular the sensitivity of the
eigenvalue to a spatially-localized feedback from velotitforce is evaluated by using the product
of the direct and adjoint global mode. In such way, the positif the "wavemaker" of the asymptotic
theory can be determined by inspecting where in space tls#tiséy reaches its maximum level.

It has been shown, using a plane wave analysis, that the fltheatailing edge is absolutely
unstable for any Reynolds number for values of the parametssrresponding to separation of the
base flow. The analysis further shows that the base flow atahi@g edge is not absolutely unstable
as the value ofn tends to zero.

The global eigenvalue analysis shows that the frequencgeowith rate are very similar to what
is found with the local plane wave analysis at the trailingedFinally, the structural sensitivity
analysis indicates that the wavemaker is situated just doeam of the trailing edge.
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