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SUMMARY: Linear stability analysis of flat plate boundaryé&as implies, for wave like perturba-
tions, to solve the so called Orr-Sommerfeld equations wbkalution can be expressed in terms of
a continuous, and discrete spectrum. As the number of désanedes change with the Reynolds
number, and further seem to disappear behind the contirggetrum at certain Reynolds num-
bers, it is of interest to investigate if an all-discreteremntation of the solution is possible. This
can be done solving the response of the flat plate boundazgddnstantaneously in space. Since
the solution of the forced and homogeneous Laplace tramsfdiproblem both depend on the free
stream boundary conditions, it is shown here that an oppernthange of variables can remove the
branch cut in the complex eigen value plane. As a result iatem of the inversed Laplace trans-
form along the new path corresponding to the continuoustspagwhich is now given by a straight
line, equals the summation of residues of additional dise@en values appearing to the left of it.
It is further shown that these additional modes are compatedunting for solution which grow in
the wall normal direction. A similar problem is found in theebry of optical waveguides, such as
optical fibers, where so callddaky wavesre attenuated in the direction of the wave-guide, while
it grows unbounded in a direction perpendicular to it. Theotly is here applied to the case of
two-dimensional flat plate boundary layers, of incomptasdiows, subject to a pressure gradient.

1. INTRODUCTION

Laminar-turbulent transition in a flat plate boundary lageject to a low free stream turbulence
level is usually caused by perturbations with infinitesiraaiplitude which grow as they propa-
gate downstream. These perturbations are commonly awdalgieg the Orr-Sommerfeld equations
(OSE), either in a temporal or a spatial framework. In botsesathe mode structure of the OSE is
composed of a finite number of discrete modes which decayiaitjnin the wall normal direction
(y), and a continuous spectrum of propagating modes behasiagpd+\ y) at infinity, wherex
is a complex wave number in the wall normal direction, see [Bhe number of discrete modes
changes with Reynolds number and following the trajectdry certain discrete mode, it seems as
if it disappears behind the continuous spectrum at a ceRajmolds number. It is therefore of in-
terest to investigate if something in particular happentase modedisappear Further, since the
representation of a given solution as a superposition ofandglnot unique, i.e. an all-continuous
representation always exist, it is of interest to inveségé it is possible to find an all-discrete



representation. Such a representation has several posagiplications. It might help the physical
understanding and ordering bighermodes (discrete modes other than the least stable one such as
the Tollmien-Schlichting waves). It can further be usefulpplications where these higher modes
are important, e.g. evaluating the first order correctiothefeigen functions in the multiple scales
method. An intrinsic problem with the discrete modes apipgan the vicinity of the continuous
spectrum is that they are ill-conditioned. This is an addil problem in applications where higher
modes are important. The analysis is here made looking atetmonse in a flat plate boundary
layer forced instantaneously at a point in space and timeceSthe solution of the forced and ho-
mogeneous Laplace transformed problem both depend ongbetiram boundary conditions, it is
shown here that an opportune change of variables can remevsanch cut in the complex eigen
value plane. As a result integration of the inversed Laptagesform along the new path corre-
sponding to the continuous spectrum, which is now given kiyeaght line, equals the summation of
residues of additional discrete eigen values appearingetdeft of it. It is further shown that these
additional modes are computed accounting for solution wgiow in the wall normal direction. A
similar problem is found in optics, and especially in theottyeof optical waveguides (such as opti-
cal fibers), where a general solution of the inhomogeneolsht#tz equation are inhomogeneous
plane waves. A solution can either be represented as armihcous spectrum or a sum of residues
and branch cuts corresponding to the discrete and continsjgectrum respectively, depending on
the integration contour made in respective complex wavebmirplane. In the latter case, non-
parallel plane waves are accounted for and the integraleofdimtinuous spectrum becomes almost
negligible with respect to the discrete sum of residuescdfspm), viz. a complete solution is well
approximated by the discrete spectrum which is a rapidlyenging summation. In this particular
case, non-parallel waves are introduced using complex wak®ers associated with the so called
leaky wavesAssociated in the sense that the non-parallel plane wavaesthave total reflection, it
leaksor refracts some energy in to the surrounding media, andfiverthe name leaky waves (LW).
A characteristics of LW is that while they are attenuatedna direction, such as the direction of the
wave-guide, it grows unbounded in a direction perpendidol#. The solution of leaky waves can
be seen as e.g. a superposition of inhomogeneous plane,saed$§], or e.g. as a resonant solution
of a boundary value problem, see [5]. The theory is here egpb spatial linear stability analysis
of two-dimensional flat plate boundary layer flows subjed fressure gradient.

2. LINEAR STABILITY ANALYSIS
A two-dimensional flat plate boundary layer is considere@retthe flow conditions are such that
the fluid is assumed incompressible. A Cartesian coordsaem is used where x, and y are the
streamwise and wall-normal coordinates respectively. ddreesponding dimensionless velocity
components aré, ando, andp is the pressure. The velocity components are made dimdasgn
using a reference velocity’_, the pressure using two times the dynamic pressure, andthrdie
nates using a reference scale Using these reference quantities, the Reynolds numbévés gs
Re = u’_0* /v, wherev is the kinematic viscosity. We want to analyse the evolutibperturbations
with infinitesimal amplitude inside the boundary layer, @odsider therefore the flow decomposed
into a steady mean flow/, and a perturbation’ asu(x,y,t) = U(y) + v (x,y,t). If the flow
decomposition is introduced into the Navier-Stokes eguatfor two-dimensional incompressible



flow, the mean flow is subtracted, and omitting non-lineatypbation terms, the linearised Navier-
Stokes equations are obtained for two-dimensional flowss. flirther assumed wave-like solutions
of the form

(2, y, 1) = uly)e . 1)

whereq is the streamwise wave number, ands the angular frequency. If the ansats (1) is intro-
duced into the linearised Navier-Stokes equations, thdtheg equations can be written

Aq+ Bd—o1 =0. (2)
dy

The wall-normal derivative of equation (2) has been reduoditst order usingil = u,, vl = vy,
and the continuity equation has then been used to obtaintdbe wectorq = (ul, u,v,p). The
coefficients of the four by four matrices, andB are found in the appendix. Equation (2) is subject
to the following boundary conditions(0) = v(0) = 0, and(u(y), p(y)) — (0,0) asy — co. A
spatial stability analysis is obtained withas a real valued parameter, and solving (2) as an eigen
value problem for the complex wave numher The real part oty is the associated wave number
and minus the imaginary part is the spatial growth rate.

2.1 Asymptotic behaviour in the free stream
The free stream boundary conditions of (2) are giveny approaches infinity. In order to have a
finite domain in the analysis, which is necessary in the csis 6olved numerically, it is favourable
to analyse its asymptotic behaviour when the mean flow besa@omestant, and corresponding wall-
normal derivatives are zero. In this case (2) becomes amsystequations with constant coefficients
whose solution can be written
u(y) = Zai Ui e MY, 3)
3

whereaq; is a constant, and,; is the normalised value af outside the boundary layer, for the ith
component. If the solution(y) = a@e™ Y is introduced into (2), we obtain the following eigen
value problem

[A—AB]g=0. (4)
The above equation can be solved analytically from whichféflewing four eigen values are ob-
tained

A2 = *a, (5)

A3a = Eva?+iRe(a —w), (6)
Inserting these eigen values into equation (3), it can ba #es there are two terms in the sum
which grow asy goes to infinity, and two terms which decay. Choosing the tigerevalues which
result in a decaying solution give the asymptotic behavafuy in the free stream. An alternative
way to impose the free stream boundary conditions is to usenditon which exclude solutions

which grow at infinity. This can be obtained using the bi-oghnality relation between the righ,
and the lefty, eigen vector of (4), where the left eigen vector is the sofuof the equation

v-[A = AB] =0. ©)



Using (4), and (7), the following equation is obtained

(A —Aj)v;-Bq; =0, (8)
whose solutions can be written
vi-Bq; =0, if i#j, %)

if a normalisation is used such that- B q; = 1. Itis now evident from equation (9), that cancelling
one of the four terms in (3) is obtained by the scalar prodetiben the corresponding left eigen
vector andB q. The new free stream boundary conditions therefore become

v;-Bq=0, j=k]I, (12)

wherej = k, [ are the two undesired solutions.

3. MEAN FLOW
We consider a steady two-dimensional flat plate boundamerlsybject to a pressure gradient where
x ,y denote the streamwise, and wall-normal coordinates, ctgply. HereU, andV are the
streamwise, and wall-normal velocity components respelgtix denote dimensional quantities,
and the mean flow at the boundary layer edge is assumed ttydatis= Uz (¢* /xf)#/(=Fu) i
we introduce the dimensionless coordingte y* /6*, with 6* = /(2 — By )va*/U% and a stream
functiony* = /(2 — Br)U%va* f(n) with U* = . andV* = —y7., then the boundary layer
equations can be written as a function of a single similasyable,n,

"+ Bp(L =)+ ff" =0, (12)

where prime denotes derivative with respectjtoThe boundary conditions of equation (12) are
given asf’(0) = f(0) = 0, andf’(n) — 1, asn — oo. The solution of equation (12) is usually
denoted the Falkner-Skan boundary layer and from the solofi f we obtain the streamwise mean
flow profile asU (y) = f'(n).

4. LEAKY WAVES IN BOUNDARY LAYER FLOW
In this section a motivation is given for the appearance akyewaves in flat plate boundary layer
flow, considering the Orr-Sommerfeld equations as an Iniihue problem. The stability equation
(2) is written using as primitive variables the perturbati@locities, wall normal derivative of the
streamwise component, and the pressure. An often usedatitar approach is the velocity-vorticity
(v — n) formulation, see e.g. [4], in which the linearised NavBtokes equations are written as two
equations; one for the wall-normal perturbation velodtyd one for the wall normal vorticity. If
an ansatz as'(x,y,t) = u(y) exp(i a x), which considers two-dimensional waves, is assumed then
the two equations are uncoupled. The equation for the valral perturbation velocity can, in the
temporal case, be written

0 1
(E +ial)Az v +ialU"v = EAQ Asv 13)



with v = 0, andDv = 0 at the wall and in the free strearfy, denotes the wall normal derivative,
andA, = D? — o2, Equation (13) is, at time = 0, given an initial condition(y,t = 0) = vg(y).
Problems of this type are commonly solved using a Laplacestoam which forv can be written

#(a,y,0) = L(v) = / o(a,y.t) et di
0

Introducing the Laplace transform into equation (13) weagbtin inhomogeneous equation which
solution can be written

1
T o

v //G(y7 yla a, a)AQ 'U()(yl) dy/eo-tdo—a (14)
whereG is the Green’s function. The above solution can be found kynilethod of variation of

parameters, see [1]. Equation (13) is now written in termbiefGreen’s function as
1
(0 +ialU)Ay G +ialU"G — EAQ AsG =6p(y—v) (15)

with boundary condition&(0) = G’(0) = 0, andG — 0 asy — oo. Heredp denotes the delta
function. The resulting Green'’s function singularitiegjigen by the free stream boundary condi-
tions. We can note that equation (15) only has one solutimdogs its homogeneous counterpart.
Further, the behaviour as — oo for either case is given by the solution of the inviscid pesh)
viz. whereU = 1, andU"” = 0. In this case equation (15) reduces to

1
(O’ -+ o — —Ag) AQG =0. (16)
Re

We can assume that, G behaves asxp(—fy) asy — oo, and the solution off can be derived
from equation (16) as
B? = o’ + Re (0 +ia). 17)

As the wall normal wave numbeét is solved from a second order equation, a general solution ca
be written 4; exp(By) + A2 exp(—Sy). A combination of equation (15) and its homogeneous
counterpart can be used to obtain a solution which decays-as oo, provided thatd; (o) # 0.
The equatiomd; (o) = 0 on the other hand determines the pole singularities. Itrihér important

to note that the square root relation betweesnd 5 determines the branch point. The latter will be
further investigated in the next section.

4.1 Theo-, andg formulations
The representation commonly used of the initial value obiwhich we denote the-formulation,
is given by equation (15) with boundary conditioB§0) = G’(0) = 0 aty = 0, and for solutions
decaying ay — oo the solution is written

G = Cef\/a2+Re (o+ia)7



whereC'is a constant. The solution gat— oo in this case is multi valued with its origin situated at
the branch point. A different formulation, denoted théormulation, is therefore proposed in order
to render the solution at infinity one-valued. From equatiof) we can write an expression foras

o= —ia+ %(52 —a?) (18)

If equation (18) is substituted into equation (15) we obth@equation
1 1
(—iov + E(52 —a?) +ialU)Ay G +iaU"G — Tl 8o = op(y —v) (19)

with boundary conditiong?(0) = G’(0) = 0 aty = 0, and for solutions ay — oo G can be
written
G=Ce PV (20)

which is now one valued. The result of this new formulatiogiigen in the next section.

4.2 Appearance of leaky modes
The difference between the two formulatiofs,ando, can be seen comparing integration paths in
respective complex plane. In figure 1 a sketch of the integvatath’s,P;, are given in ther-, and
B plane respectively. The branch point is given by the filledlei and the singularities are given by
open circles. If pathP, is chosen in the-plane, figure 1(a), then the integration path can be closed

W7 , 7 real modes
o ) ;
o © leaky modes | | o ’
o; ' ﬁz
Py P Py P
(@) (b) '+ o-plane—

Figure 1: Sketch of integration path’s in the complexdg)lane, (b)3-plane.

in the counter clock-wise direction and thus satisfying@aeichy integral theorem. The result is the
sum of residues due to the pole singularities plus an integgag the sides of the branch cuts which
is associated with the continuous spectrum. If we instelolMidhe pathP,, then it can be seen that
the integral will be given only by the contribution due to #ides of the branch cut. A sketch of the
spectrum when thg-formulation is used is found in figure 1(b). In this c&sgesee expression (20),
is one valued function of and the unique solution is defined f&r3, noting thats is a two-valued



function ofo. The branch cut in the-plane is now found as a straight line in theplane. To the
right of it, theo-plane is found containing its original poles. To the leftyanber of new modes, the
so calledeaky modesappear. Using the residue theorem, an integral alongathssociated with
the continuous spectrum, equals the sum of the residues ¢téaky modes.

5. NUMERICAL SOLUTION OF LEAKY WAVES
In section 4. it was discussed that the solution of the iniéue problem is depending on the free
stream boundary condition, and its general solution canfittew A, exp Sy + Az exp —Sy. To
compute the leaky modes we need to keep the term which grgw-asco while the decaying term
must vanish. Such a problem is ill-conditioned why we haveagp some attention while solving it.
Here, two different methods are shown.

5.1 Analytical continuation
One way to solve this problem is to think of the solution of &tipn (15) as an analytical solution
and move the wall normal coordinate as a ray into the comgpipbane. The ray can be expressed
using the imaginary part af as a function of the real paw; = f(y.), and the most simple function
is a straight line between the origif}, 0) to the free streanimax(y, ), max(|y;|)). The idea is to
choose the point in the complgxplane which corresponds to the free stream, for which thaired
S is dominant. Obviously, if the function is really analytiten the solution should not depend on
the functiony; = f(y.) between the origin and the point in the free stream. Therdanever
some limitations to the choice of the ray. As the mean flow apjps the coefficients of the Orr-
Sommerfeld equations, it is of importance to see how the rfleanequations are effected by the
introduction of a compley-coordinate. Such an analysis was made by [2], where it ig/shio
what part of the complex-plane the solution converges. Defining an anglgn degrees) such that
tan(¢) = max(y.)/ max(y;), then a region where the mean flow converges is given roughly b
—30 < ¢ < 30.

5.1 Impedance condition

An alternative approach is to directly impose a free streanmnbary condition which contains a
term which grows ag — oo. If we consider the Orr-Sommerfeld equation outlined intisexc2.
then the analytical solutions of the wall-normal wave numbe in the free stream are given by
(5)—(6). As the solution in the free stream behavesa¥, it is clear that for\ with the real part,
A, being positive the solution will decay at infinity. Sinceohsolutions, one viscid and one invis-
cid, remain with the real part being negative it must be fitdiwhich one to impose. We consider
the perturbation (1) which in the free stream has a solutfch@type (3). The wall normal wave
number) is dependent on the input parameters, which for a given Rdgmumber can be written
A = Aw). If the angular frequency is assumed complex then the tinpemigence can be writ-
tenexp (—iwt) = exp (—ifw, + iw;]t) = exp (—iw,t) exp (w;t). Setting the value of; < 0, and
gradually increasing the negative value should, for catveandary conditions imposed in the free
stream, result in a damping of the perturbation. If a corbeetndary condition is imposed or not
will be found by evaluating\, = A, (w;), for different values ofv; < 0, at each Reynolds number.
A ), which decreases or even changes sign as the negative valyemmreases is not a damped



perturbation which means that the boundary conditionsrarerirect. Normally the discrete modes
are solved imposing the two roots from equations (5)—(6xWhliecay in the free stream. Performing
the analysis above using # 0 for a certain discrete mode other than the least dampedtdnens
out that the viscous root with positive real part is incotres free stream boundary condition for
Reynolds numbers such that the discrete mode is close tdensento the continuous spectrum. By
changing the viscous root from positive to negative suchgbhitions growing in the wall-normal
direction are allowed, it is possible to continue to folldve tdiscrete mode at even lower Reynolds
numbers. The free stream boundary conditions are here edpasing equation (11) which means
that solution containing four terms, equation (3), is sdglaultiplied with the two left eigenvectors
corresponding to the terms we do not wish to impose. In the w&simpose as boundary condition
the sum of the damped inviscid root and the growing viscoositds possible to introduce errors,
as we are computing the sum of a very large and a very small eunilo avoid this the four by
four matrices, equation (4), used to compute the eigen \sdlwion in the free stream are derived
directly from the discretised eigen value problem equaf®&)n

6. SOLVING THE EIGEN VALUE PROBLEM
To solve the non-linear eigen value problem we use an inviersgion algorithm (11A), which for an
initial guess in the vicinity of the desired eigen value cemyes in a few iterations. In order to com-
pute several eigen values, we have to make sure that thal mniss of the nth eigen valug),, does
not converge to an old one. This is obtained using the llAegia converged solution, by subtract-
ing fromq? the previous solution using the bi-orthogonality betwéenrtght and left eigen vector.

7. NUMERICAL SOLUTION
The numerical solution is obtained discretising equat®rir( the wall-normal direction using a sec-
ond order accurate central difference scheme on a uniforsihnihe stream-wise and wall-normal
momentum equations, and the perturbation velocity compisria respective directions are given
at the node points, and the continuity equation, pertushgiressure, and the equatioh = u,, are
staggered half a node point. The discretised version ofs(d)det of algebraic equations which are
written in a block tri-diagonal form. Inversion of the opts, as shown in lIA, is made using a LU
decomposition of the matrix. The similarity solution of thnrean flow, equation (12), is discretised
using a second order accurate central difference schering, the same node points as for the dis-
cretised form of equation (2). The equation is solved iteest given an initial guess of”/(0), and
convergence is reached when the absolute value of theetifferbetween two consecutive iterations
of the streamwise velocity components wall-normal defieasit the wall, is less thah0—8. The
convergence criteriayr, of the inverse iteration algorithm has a valueeof = 1010,

8. RESULTS
The case studied here is a flat plate boundary layer subjetirée different pressure gradients
which are given by the Hartree parametggs= —0.1,0,0.1. The computations are, for each pres-
sure gradient case, performed at three different Reynaldsbers for a fixed reduced frequency
F = w/Re = 25.1075. The latter is chosen such that the amplificatibiiA/A4y), of the corre-
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Figure 2: Spatial eigen value spectrum,for three values of the Reynolds number including the
trajectories of the discrete eigen values, given a redusggiencyF = 25.10-%. The streamwise
pressure gradient in the mean flow is given by the Hartreenpetex ()55 = 0.1, (b) By = 0, (C)

B = —0.1.
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sponding least stable wave for the cas@gf= 0, reaches a maximum value of about 9-10. Note
that A is the perturbation amplitude and subscfifridicates the upstream neutral position. T
discrete modes of the eigen value spectmns found in figure 2 for the three different pressure
gradients, and at three different Reynolds numbers reispct The spectrum for each Reynolds
number is computed by first using the inverse iteration dlgor outlined in section 6.1 with an
initial guess of the streamwise wave number such that thegbelocity ofc, ~ 0.3. The additional
higher modes are then computed using the algorithm giveadtian 6.2. The free stream bound-
ary conditions are imposed using equation (11) such thgtexponentially decaying solutions are
allowed. The discrete modes At = 800 have further been used as a starting solution for the 1A
to compute respective path changing the Reynolds numbeeketRe = [800, 1390], which are
shown in the figure by the dotted lines. In order to render ttaply more clear the discrete rep-
resentation of the continuous spectrum, which for diffeReynolds numbers is found at different
values ofa,., has not been plotted. The computation of the leaky modebéas made using both
methods outlined in section 5. The analytical continuatias computed using a straight line in the
complexy-plane with an angle = tan=!(y;/y.) = —30 degrees. Using the method to compute
the global solution starting with the least stable mode,ralmer of new discrete modes are found at
each Reynolds number. These modes, which are denoted lezdgsmall have the phase velocity
¢, > 1 and are part of the discrete representation of the contsigpactrum. The same method
as earlier described to compute the path changing the Re&ynoimber for each discrete mode, is
again used now including the leaky modes. The results aredfoufigure 3 where the leaky modes
appear, for each Reynolds number, at values,oémaller than for the real modes since the phase
velocity is greater than one. It can be noted that no disnaityi is found following the path from
the real modes to the leaky modes. Following each path feeasing phase velocity, decreasing
a,, it can be noted that that the path of all modes tend towardseron path. The results shown in
figure 3 have also been computed using the impedance candftlis method is in practice com-
putationally more time consuming as, for each Reynolds ramthew;-test has to be performed
in order to impose the correct free stream boundary comdifidhe results in figure 3 are obtained
computing one discrete mode, in the Reynolds number rdtige- [800, 1390], at a time and at
each discrete Re perform thg-test. Since we know that changing the boundary conditiaobes
crucial when we come close to the continuous spectrum, ittisadly enough to start using the test
in its vicinity wherec,. < 1.

9. CONCLUSIONS

The aim of the present work was to investigate if it is pogstblhave an all discrete representation
of the eigen value spectrum of the Orr-Sommerfeld equatimmied to flat plate boundary layer
flows. In addition to investigate why some discrete modeapiear, or seem to disappear behind
the continuous spectrum at certain Reynolds numbers. Tdi#gm is formulated to investigate the
response in a flat plate boundary layer forced instantamgats point in space and time. Since
the solution of the forced and homogeneous Laplace tramgfdiproblem both depend on the free
stream boundary conditions, it is shown here that an oppernthange of variables can remove the
branch cutin the complex eigen value plane. As a resultiatem of the inversed Laplace transform
along the new path corresponding to the continuous spegtwaoh is now given by a straight line,

11



and equals the summation of residues of additional diseigen values appearing to the left of it. It
is further shown that these additional modes are computaaliating for solution which grow in the
wall normal direction. A similar problem is found in optiand especially in the theory of optical
waveguides (such as optical fibers), where it exist solstibrat are attenuated in one direction,
such as the direction of the wave-guide, while it grows umiaad in a direction perpendicular
to it. The solutions are so callddaky waves The theory is here applied both to spatial linear
stability analysis in the case of flat plate boundary layew 8abject to different pressure gradients.
The analysis performed shows that the trajectory of therelisanodes in fact persist behind the
continuous spectrum at each Reynolds number appearilegias wavesvith phase velocitiesc{)
larger than one. These leaky waves are, as discussed alolvef fhe discrete representation of the
continuous spectrum.
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APPENDIX
The matriced\, andB in equation (2) are given as
1 0o 0 0 0 -1 0 0
B 0 U, ia | “Re7' 0 0 0
A= 0 i 0 0 |’ B= 0 0o 1 0}’
iaRe™ 0 S 0 0 0 01

whereS = i(aU — w) + a?Re™ L.
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