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SUMMARY: Linear stability analysis of flat plate boundary layers implies, for wave like perturba-
tions, to solve the so called Orr-Sommerfeld equations which solution can be expressed in terms of
a continuous, and discrete spectrum. As the number of discrete modes change with the Reynolds
number, and further seem to disappear behind the continuousspectrum at certain Reynolds num-
bers, it is of interest to investigate if an all-discrete representation of the solution is possible. This
can be done solving the response of the flat plate boundary forced instantaneously in space. Since
the solution of the forced and homogeneous Laplace transformed problem both depend on the free
stream boundary conditions, it is shown here that an opportune change of variables can remove the
branch cut in the complex eigen value plane. As a result integration of the inversed Laplace trans-
form along the new path corresponding to the continuous spectrum, which is now given by a straight
line, equals the summation of residues of additional discrete eigen values appearing to the left of it.
It is further shown that these additional modes are computedaccounting for solution which grow in
the wall normal direction. A similar problem is found in the theory of optical waveguides, such as
optical fibers, where so calledleaky wavesare attenuated in the direction of the wave-guide, while
it grows unbounded in a direction perpendicular to it. The theory is here applied to the case of
two-dimensional flat plate boundary layers, of incompressible flows, subject to a pressure gradient.

1. INTRODUCTION
Laminar-turbulent transition in a flat plate boundary layersubject to a low free stream turbulence

level is usually caused by perturbations with infinitesimalamplitude which grow as they propa-
gate downstream. These perturbations are commonly analysed using the Orr-Sommerfeld equations
(OSE), either in a temporal or a spatial framework. In both cases, the mode structure of the OSE is
composed of a finite number of discrete modes which decay at infinity in the wall normal direction
(y), and a continuous spectrum of propagating modes behaving as exp(±λ y) at infinity, whereλ
is a complex wave number in the wall normal direction, see [3]. The number of discrete modes
changes with Reynolds number and following the trajectory of a certain discrete mode, it seems as
if it disappears behind the continuous spectrum at a certainReynolds number. It is therefore of in-
terest to investigate if something in particular happens asthese modesdisappear. Further, since the
representation of a given solution as a superposition of modes is not unique, i.e. an all-continuous
representation always exist, it is of interest to investigate if it is possible to find an all-discrete
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representation. Such a representation has several possible applications. It might help the physical
understanding and ordering ofhighermodes (discrete modes other than the least stable one such as
the Tollmien-Schlichting waves). It can further be useful in applications where these higher modes
are important, e.g. evaluating the first order correction ofthe eigen functions in the multiple scales
method. An intrinsic problem with the discrete modes appearing in the vicinity of the continuous
spectrum is that they are ill-conditioned. This is an additional problem in applications where higher
modes are important. The analysis is here made looking at theresponse in a flat plate boundary
layer forced instantaneously at a point in space and time. Since the solution of the forced and ho-
mogeneous Laplace transformed problem both depend on the free stream boundary conditions, it is
shown here that an opportune change of variables can remove the branch cut in the complex eigen
value plane. As a result integration of the inversed Laplacetransform along the new path corre-
sponding to the continuous spectrum, which is now given by a straight line, equals the summation of
residues of additional discrete eigen values appearing to the left of it. It is further shown that these
additional modes are computed accounting for solution which grow in the wall normal direction. A
similar problem is found in optics, and especially in the theory of optical waveguides (such as opti-
cal fibers), where a general solution of the inhomogeneous Helmholtz equation are inhomogeneous
plane waves. A solution can either be represented as a all-continuous spectrum or a sum of residues
and branch cuts corresponding to the discrete and continuous spectrum respectively, depending on
the integration contour made in respective complex wave number plane. In the latter case, non-
parallel plane waves are accounted for and the integral of the continuous spectrum becomes almost
negligible with respect to the discrete sum of residues (spectrum), viz. a complete solution is well
approximated by the discrete spectrum which is a rapidly converging summation. In this particular
case, non-parallel waves are introduced using complex wavenumbers associated with the so called
leaky waves. Associated in the sense that the non-parallel plane waves do not have total reflection, it
leaksor refracts some energy in to the surrounding media, and therefore the name leaky waves (LW).
A characteristics of LW is that while they are attenuated in one direction, such as the direction of the
wave-guide, it grows unbounded in a direction perpendicular to it. The solution of leaky waves can
be seen as e.g. a superposition of inhomogeneous plane waves, see [6], or e.g. as a resonant solution
of a boundary value problem, see [5]. The theory is here applied to spatial linear stability analysis
of two-dimensional flat plate boundary layer flows subject toa pressure gradient.

2. LINEAR STABILITY ANALYSIS
A two-dimensional flat plate boundary layer is considered where the flow conditions are such that
the fluid is assumed incompressible. A Cartesian coordinatesystem is used where x, and y are the
streamwise and wall-normal coordinates respectively. Thecorresponding dimensionless velocity
components arẽu, andṽ, andp̃ is the pressure. The velocity components are made dimensionless
using a reference velocityu⋆∞, the pressure using two times the dynamic pressure, and the coordi-
nates using a reference scaleδ⋆. Using these reference quantities, the Reynolds number is given as
Re = u⋆∞δ

⋆/ν, whereν is the kinematic viscosity. We want to analyse the evolutionof perturbations
with infinitesimal amplitude inside the boundary layer, andconsider therefore the flow decomposed
into a steady mean flowU , and a perturbationu′ as ũ(x, y, t) = U(y) + u′(x, y, t). If the flow
decomposition is introduced into the Navier-Stokes equations for two-dimensional incompressible
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flow, the mean flow is subtracted, and omitting non-linear perturbation terms, the linearised Navier-
Stokes equations are obtained for two-dimensional flows. Itis further assumed wave-like solutions
of the form

u′(x, y, t) = u(y)ei(αx−ωt). (1)

whereα is the streamwise wave number, andω is the angular frequency. If the ansats (1) is intro-
duced into the linearised Navier-Stokes equations, the resulting equations can be written

Aq+B
dq

dy
= 0. (2)

The wall-normal derivative of equation (2) has been reducedto first order usingu1 = uy, v1 = vy,
and the continuity equation has then been used to obtain the state vectorq = (u1, u, v, p). The
coefficients of the four by four matricesA, andB are found in the appendix. Equation (2) is subject
to the following boundary conditionsu(0) = v(0) = 0, and(u(y), p(y)) → (0, 0) asy → ∞. A
spatial stability analysis is obtained withω as a real valued parameter, and solving (2) as an eigen
value problem for the complex wave numberα. The real part ofα is the associated wave number
and minus the imaginary part is the spatial growth rate.

2.1 Asymptotic behaviour in the free stream
The free stream boundary conditions of (2) are given asy approaches infinity. In order to have a
finite domain in the analysis, which is necessary in the case (2) is solved numerically, it is favourable
to analyse its asymptotic behaviour when the mean flow becomes constant, and corresponding wall-
normal derivatives are zero. In this case (2) becomes a system of equations with constant coefficients
whose solution can be written

u(y) =
∑

i

ai ūi e
−λiy, (3)

whereai is a constant, and̄ui is the normalised value ofu outside the boundary layer, for the ith
component. If the solutionu(y) = a ū e−λy is introduced into (2), we obtain the following eigen
value problem

[A− λB] q̄ = 0. (4)

The above equation can be solved analytically from which thefollowing four eigen values are ob-
tained

λ1,2 = ±α, (5)

λ3,4 = ±
√
α2 + iRe(α− ω), (6)

Inserting these eigen values into equation (3), it can be seen that there are two terms in the sum
which grow asy goes to infinity, and two terms which decay. Choosing the two eigen values which
result in a decaying solution give the asymptotic behaviourof q in the free stream. An alternative
way to impose the free stream boundary conditions is to use a condition which exclude solutions
which grow at infinity. This can be obtained using the bi-orthogonality relation between the right,q,
and the left,v, eigen vector of (4), where the left eigen vector is the solution of the equation

v · [A− λB] = 0. (7)
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Using (4), and (7), the following equation is obtained

(λi − λj)vj ·Bqi = 0, (8)

whose solutions can be written

vj ·Bqi = 0, if i 6= j, (9)

vj ·B q̄i = ai, if i = j, (10)

if a normalisation is used such thatpi ·B q̄i = 1. It is now evident from equation (9), that cancelling
one of the four terms in (3) is obtained by the scalar product between the corresponding left eigen
vector andBq. The new free stream boundary conditions therefore become

vj ·Bq = 0, j = k, l, (11)

wherej = k, l are the two undesired solutions.

3. MEAN FLOW
We consider a steady two-dimensional flat plate boundary layer subject to a pressure gradient where
x , y denote the streamwise, and wall-normal coordinates, respectively. HereU , andV are the
streamwise, and wall-normal velocity components respectively, ⋆ denote dimensional quantities,
and the mean flow at the boundary layer edge is assumed to satisfy U⋆

∞ = U⋆
0 (x

⋆/x⋆0)
βH/(2−βH). If

we introduce the dimensionless coordinateη = y⋆/δ⋆, with δ⋆ =
√
(2− βH)νx⋆/U⋆∞ and a stream

functionψ⋆ =
√
(2− βH)U⋆∞νx⋆ f(η) with U⋆ = ψ⋆

y⋆ andV ⋆ = −ψ⋆
x⋆ , then the boundary layer

equations can be written as a function of a single similarityvariable,η,

f ′′′ + βH(1− f ′2) + ff ′′ = 0, (12)

where prime denotes derivative with respect toη. The boundary conditions of equation (12) are
given asf ′(0) = f(0) = 0, andf ′(η) → 1, asη → ∞. The solution of equation (12) is usually
denoted the Falkner-Skan boundary layer and from the solution off we obtain the streamwise mean
flow profile asU(y) = f ′(η).

4. LEAKY WAVES IN BOUNDARY LAYER FLOW
In this section a motivation is given for the appearance of leaky waves in flat plate boundary layer
flow, considering the Orr-Sommerfeld equations as an initial value problem. The stability equation
(2) is written using as primitive variables the perturbation velocities, wall normal derivative of the
streamwise component, and the pressure. An often used alternative approach is the velocity-vorticity
(v − η) formulation, see e.g. [4], in which the linearised Navier-Stokes equations are written as two
equations; one for the wall-normal perturbation velocity,and one for the wall normal vorticity. If
an ansatz asu′(x, y, t) = u(y) exp(iαx), which considers two-dimensional waves, is assumed then
the two equations are uncoupled. The equation for the wall-normal perturbation velocity can, in the
temporal case, be written

(
∂

∂t
+ iαU)∆2 v + iαU ′′v =

1

Re
∆2 ∆2v (13)
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with v = 0, andDv = 0 at the wall and in the free stream,D denotes the wall normal derivative,
and∆2 = D2 − α2. Equation (13) is, at timet = 0, given an initial conditionv(y, t = 0) = v0(y).
Problems of this type are commonly solved using a Laplace transform which forv can be written

ṽ(α, y, σ) = L(v) =
∫ ∞

0

v(α, y, t) e−σt dt

Introducing the Laplace transform into equation (13) we obtain an inhomogeneous equation which
solution can be written

v =
1

2πi

∫ ∫
G(y, y′, σ, α)∆2 v0(y

′) dy′eσtdσ, (14)

whereG is the Green’s function. The above solution can be found by the method of variation of
parameters, see [1]. Equation (13) is now written in terms ofthe Green’s function as

(σ + iαU)∆2G+ iαU ′′G− 1

Re
∆2 ∆2G = δD(y − y′) (15)

with boundary conditionsG(0) = G′(0) = 0, andG → 0 asy → ∞. HereδD denotes the delta
function. The resulting Green’s function singularities isgiven by the free stream boundary condi-
tions. We can note that equation (15) only has one solution, so does its homogeneous counterpart.
Further, the behaviour asy → ∞ for either case is given by the solution of the inviscid problem,
viz. whereU = 1, andU ′′ = 0. In this case equation (15) reduces to

(
σ + iα− 1

Re
∆2

)
∆2G = 0. (16)

We can assume that∆2G behaves asexp(−βy) asy → ∞, and the solution ofβ can be derived
from equation (16) as

β2 = α2 +Re (σ + iα). (17)

As the wall normal wave numberβ is solved from a second order equation, a general solution can
be writtenA1 exp(βy) + A2 exp(−βy). A combination of equation (15) and its homogeneous
counterpart can be used to obtain a solution which decays asy → ∞, provided thatA1(σ) 6= 0.
The equationA1(σ) = 0 on the other hand determines the pole singularities. It is further important
to note that the square root relation betweenσ andβ determines the branch point. The latter will be
further investigated in the next section.

4.1 Theσ-, andβ formulations
The representation commonly used of the initial value problem, which we denote theσ-formulation,
is given by equation (15) with boundary conditionsG(0) = G′(0) = 0 at y = 0, and for solutions
decaying aty → ∞ the solution is written

G = C e−
√

α2+Re (σ+iα),
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whereC is a constant. The solution aty → ∞ in this case is multi valued with its origin situated at
the branch point. A different formulation, denoted theβ-formulation, is therefore proposed in order
to render the solution at infinity one-valued. From equation(17) we can write an expression forσ as

σ = −iα+
1

Re
(β2 − α2) (18)

If equation (18) is substituted into equation (15) we obtainthe equation

(−iα+
1

Re
(β2 − α2) + iαU)∆2G+ iαU ′′G− 1

Re
∆2 ∆2G = δD(y − y′) (19)

with boundary conditionsG(0) = G′(0) = 0 at y = 0, and for solutions aty → ∞ G can be
written

G = C e−βy (20)

which is now one valued. The result of this new formulation isgiven in the next section.

4.2 Appearance of leaky modes
The difference between the two formulations,β, andσ, can be seen comparing integration paths in
respective complex plane. In figure 1 a sketch of the integration path’s,Pj , are given in theσ-, and
β plane respectively. The branch point is given by the filled circle, and the singularities are given by
open circles. If pathP1 is chosen in theσ-plane, figure 1(a), then the integration path can be closed

(a)

σr

σi

P1P2

(b)

βr

βi

P2 P1

← σ-plane→

real modes

leaky modes

Figure 1: Sketch of integration path’s in the complex (a)σ-plane, (b)β-plane.

in the counter clock-wise direction and thus satisfying theCauchy integral theorem. The result is the
sum of residues due to the pole singularities plus an integral along the sides of the branch cuts which
is associated with the continuous spectrum. If we instead follow the pathP2, then it can be seen that
the integral will be given only by the contribution due to thesides of the branch cut. A sketch of the
spectrum when theβ-formulation is used is found in figure 1(b). In this caseG, see expression (20),
is one valued function ofβ and the unique solution is defined for±β, noting thatβ is a two-valued
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function ofσ. The branch cut in theσ-plane is now found as a straight line in theβ-plane. To the
right of it, theσ-plane is found containing its original poles. To the left, anumber of new modes, the
so calledleaky modes, appear. Using the residue theorem, an integral along pathP2, associated with
the continuous spectrum, equals the sum of the residues of the leaky modes.

5. NUMERICAL SOLUTION OF LEAKY WAVES
In section 4. it was discussed that the solution of the initial value problem is depending on the free
stream boundary condition, and its general solution can be writtenA1 expβy + A2 exp−βy. To
compute the leaky modes we need to keep the term which grow asy → ∞ while the decaying term
must vanish. Such a problem is ill-conditioned why we have topay some attention while solving it.
Here, two different methods are shown.

5.1 Analytical continuation
One way to solve this problem is to think of the solution of equation (15) as an analytical solution
and move the wall normal coordinate as a ray into the complexy-plane. The ray can be expressed
using the imaginary part ofy as a function of the real part,yi = f(yr), and the most simple function
is a straight line between the origin(0, 0) to the free stream(max(yr),max(|yi|)). The idea is to
choose the point in the complexy-plane which corresponds to the free stream, for which the required
β is dominant. Obviously, if the function is really analytical then the solution should not depend on
the functionyi = f(yr) between the origin and the point in the free stream. There arehowever
some limitations to the choice of the ray. As the mean flow appear as the coefficients of the Orr-
Sommerfeld equations, it is of importance to see how the meanflow equations are effected by the
introduction of a complexy-coordinate. Such an analysis was made by [2], where it is shown in
what part of the complexy-plane the solution converges. Defining an angleϕ (in degrees) such that
tan(ϕ) = max(yr)/max(yi), then a region where the mean flow converges is given roughly by
−30 ≤ ϕ ≤ 30.

5.1 Impedance condition
An alternative approach is to directly impose a free stream boundary condition which contains a
term which grows asy → ∞. If we consider the Orr-Sommerfeld equation outlined in section 2.
then the analytical solutions of the wall-normal wave number, λ, in the free stream are given by
(5)–(6). As the solution in the free stream behaves ase−λy, it is clear that forλ with the real part,
λr, being positive the solution will decay at infinity. Since two solutions, one viscid and one invis-
cid, remain with the real part being negative it must be clarified which one to impose. We consider
the perturbation (1) which in the free stream has a solution of the type (3). The wall normal wave
numberλ is dependent on the input parameters, which for a given Reynolds number can be written
λ = λ(ω). If the angular frequency is assumed complex then the time dependence can be writ-
tenexp (−iωt) = exp (−i[ωr + iωi]t) = exp (−iωrt) exp (ωit). Setting the value ofωi < 0, and
gradually increasing the negative value should, for correct boundary conditions imposed in the free
stream, result in a damping of the perturbation. If a correctboundary condition is imposed or not
will be found by evaluatingλr = λr(ωi), for different values ofωi < 0, at each Reynolds number.
A λr which decreases or even changes sign as the negative value ofωi increases is not a damped
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perturbation which means that the boundary conditions are incorrect. Normally the discrete modes
are solved imposing the two roots from equations (5)–(6) which decay in the free stream. Performing
the analysis above usingωi 6= 0 for a certain discrete mode other than the least damped one, it turns
out that the viscous root with positive real part is incorrect as free stream boundary condition for
Reynolds numbers such that the discrete mode is close to or enters into the continuous spectrum. By
changing the viscous root from positive to negative such that solutions growing in the wall-normal
direction are allowed, it is possible to continue to follow the discrete mode at even lower Reynolds
numbers. The free stream boundary conditions are here imposed using equation (11) which means
that solution containing four terms, equation (3), is scalarly multiplied with the two left eigenvectors
corresponding to the terms we do not wish to impose. In the case we impose as boundary condition
the sum of the damped inviscid root and the growing viscous root it is possible to introduce errors,
as we are computing the sum of a very large and a very small number. To avoid this the four by
four matrices, equation (4), used to compute the eigen valuesolution in the free stream are derived
directly from the discretised eigen value problem equation(2).

6. SOLVING THE EIGEN VALUE PROBLEM
To solve the non-linear eigen value problem we use an inverseiteration algorithm (IIA), which for an
initial guess in the vicinity of the desired eigen value converges in a few iterations. In order to com-
pute several eigen values, we have to make sure that the initial guess of the nth eigen value,q0

n, does
not converge to an old one. This is obtained using the IIA, given a converged solution, by subtract-
ing fromq0

n the previous solution using the bi-orthogonality between the right and left eigen vector.

7. NUMERICAL SOLUTION
The numerical solution is obtained discretising equation (2) in the wall-normal direction using a sec-
ond order accurate central difference scheme on a uniform mesh. The stream-wise and wall-normal
momentum equations, and the perturbation velocity components in respective directions are given
at the node points, and the continuity equation, perturbation pressure, and the equationu1 = uy are
staggered half a node point. The discretised version of (2) is a set of algebraic equations which are
written in a block tri-diagonal form. Inversion of the operators, as shown in IIA, is made using a LU
decomposition of the matrix. The similarity solution of themean flow, equation (12), is discretised
using a second order accurate central difference scheme, using the same node points as for the dis-
cretised form of equation (2). The equation is solved iteratively given an initial guess off ′′(0), and
convergence is reached when the absolute value of the difference between two consecutive iterations
of the streamwise velocity components wall-normal derivative at the wall, is less than10−8. The
convergence criteria,err, of the inverse iteration algorithm has a value oferr = 10−10.

8. RESULTS
The case studied here is a flat plate boundary layer subject tothree different pressure gradients
which are given by the Hartree parametersβH = −0.1, 0, 0.1. The computations are, for each pres-
sure gradient case, performed at three different Reynolds numbers for a fixed reduced frequency
F = ω/Re = 25.10−6. The latter is chosen such that the amplification,ln(A/A0), of the corre-
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Figure 2: Spatial eigen value spectrum,α, for three values of the Reynolds number including the
trajectories of the discrete eigen values, given a reduced frequencyF = 25.10−6. The streamwise
pressure gradient in the mean flow is given by the Hartree parameter (a)βH = 0.1, (b) βH = 0, (c)
βH = −0.1.
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Figure 3: Spatial eigen value spectrum,α, for three values of the Reynolds number including leaky
modes and the trajectories, given a reduced frequencyF = 25.10−6. The streamwise pressure
gradient in the mean flow is given by the Hartree parameter (a)βH = 0.1, (b) βH = 0, (c) βH =
−0.1.
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sponding least stable wave for the case ofβH = 0, reaches a maximum value of about 9–10. Note
thatA is the perturbation amplitude and subscript0 indicates the upstream neutral position. Thereal
discrete modes of the eigen value spectrumα is found in figure 2 for the three different pressure
gradients, and at three different Reynolds numbers respectively. The spectrum for each Reynolds
number is computed by first using the inverse iteration algorithm outlined in section 6.1 with an
initial guess of the streamwise wave number such that the phase velocity ofcr ≈ 0.3. The additional
higher modes are then computed using the algorithm given in section 6.2. The free stream bound-
ary conditions are imposed using equation (11) such that only exponentially decaying solutions are
allowed. The discrete modes atRe = 800 have further been used as a starting solution for the IIA
to compute respective path changing the Reynolds number betweenRe = [800, 1390], which are
shown in the figure by the dotted lines. In order to render the graph more clear the discrete rep-
resentation of the continuous spectrum, which for different Reynolds numbers is found at different
values ofαr, has not been plotted. The computation of the leaky modes hasbeen made using both
methods outlined in section 5. The analytical continuationwas computed using a straight line in the
complexy-plane with an angleϕ = tan−1(yi/yr) = −30 degrees. Using the method to compute
the global solution starting with the least stable mode, a number of new discrete modes are found at
each Reynolds number. These modes, which are denoted leaky modes, all have the phase velocity
cr > 1 and are part of the discrete representation of the continuous spectrum. The same method
as earlier described to compute the path changing the Reynolds number for each discrete mode, is
again used now including the leaky modes. The results are found in figure 3 where the leaky modes
appear, for each Reynolds number, at values ofαr smaller than for the real modes since the phase
velocity is greater than one. It can be noted that no discontinuity is found following the path from
the real modes to the leaky modes. Following each path for increasing phase velocity, decreasing
αr, it can be noted that that the path of all modes tend towards a common path. The results shown in
figure 3 have also been computed using the impedance condition. This method is in practice com-
putationally more time consuming as, for each Reynolds number, theωi-test has to be performed
in order to impose the correct free stream boundary condition. The results in figure 3 are obtained
computing one discrete mode, in the Reynolds number rangeRe = [800, 1390], at a time and at
each discrete Re perform theωi-test. Since we know that changing the boundary condition becomes
crucial when we come close to the continuous spectrum, it is actually enough to start using the test
in its vicinity wherecr < 1.

9. CONCLUSIONS
The aim of the present work was to investigate if it is possible to have an all discrete representation
of the eigen value spectrum of the Orr-Sommerfeld equationsapplied to flat plate boundary layer
flows. In addition to investigate why some discrete modes disappear, or seem to disappear behind
the continuous spectrum at certain Reynolds numbers. The problem is formulated to investigate the
response in a flat plate boundary layer forced instantaneously at a point in space and time. Since
the solution of the forced and homogeneous Laplace transformed problem both depend on the free
stream boundary conditions, it is shown here that an opportune change of variables can remove the
branch cut in the complex eigen value plane. As a result integration of the inversed Laplace transform
along the new path corresponding to the continuous spectrum, which is now given by a straight line,
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and equals the summation of residues of additional discreteeigen values appearing to the left of it. It
is further shown that these additional modes are computed accounting for solution which grow in the
wall normal direction. A similar problem is found in optics,and especially in the theory of optical
waveguides (such as optical fibers), where it exist solutions that are attenuated in one direction,
such as the direction of the wave-guide, while it grows unbounded in a direction perpendicular
to it. The solutions are so calledleaky waves. The theory is here applied both to spatial linear
stability analysis in the case of flat plate boundary layer flow subject to different pressure gradients.
The analysis performed shows that the trajectory of the discrete modes in fact persist behind the
continuous spectrum at each Reynolds number appearing asleaky waveswith phase velocities (cr)
larger than one. These leaky waves are, as discussed above, part of the discrete representation of the
continuous spectrum.
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APPENDIX
The matricesA, andB in equation (2) are given as

A =




1 0 0 0
0 S Uy iα
0 iα 0 0

iαRe−1 0 S 0


 , B =




0 −1 0 0
−Re−1 0 0 0

0 0 1 0
0 0 0 1


 ,

whereS = i(αU − ω) + α2Re−1.
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