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SUMMARY. We consider a flat solid surface located at y∗ = 0, performing sinusoidal oscilla-

tions along the x∗–direction, with (x∗, y∗) being a Cartesian system of coordinates. We assume that

two immiscible fluids occupy the region of space y∗ ≥ 0. The interface between the two fluids is at

y∗ = d∗; fluid 1 occupies the region 0 ≤ y∗ ≤ d∗, and fluid 2 extends from d∗ to infinity. We study

the linear stability of the interface using the normal mode analysis and assuming quasi-steady flow

conditions, e.g. assuming that perturbations evolve on a time scale significantly smaller than the pe-

riod of oscillations of the basic flow. The stability problem leads to two Orr-Sommerfeld equations

for the streamfunctions in fluids 1 and 2, coupled with suitable boundary conditions. The resulting

eigenvalue problem is solved numerically employing a second order finite-difference scheme and

using an inverse iteration approach. The results show that instability of the interface is possible

for long enough waves. We study how stability conditions depend on the dimensionless controlling

parameters, showing, in particular, the relevant role played by the surface tension between the two

fluids.

The work represents a first attempt to understand the instability of the aqueous humour–vitreous

substitute instability in vitrectomised eyes. The simple geometrical configuration considered in this

work well represents the real case when the thickness of the aqueous layer in contact with the retina

is much smaller than the radius of the eye, which is often the case. Our results suggest that shear

instability at the aqueous humour–vitreous substitute interface is a plausible mechanism responsible

for the onset of emulsification in the vitreous chamber.

1 INTRODUCTION

We consider a flat solid surface, located at y∗ = 0, performing sinusoidal oscillations along the

x∗–direction, see Figure 1. Throughout the paper superscript asterisks denote dimensional variables.

We assume that two immiscible fluids occupy the region of space y∗ ≥ 0, the undisturbed position

of the interface between the two fluids being located is at y∗ = 0. We study the linear stability of the

interface between the two fluids. For simplicity we assume that the two fluids have the same density

and thus focus on shear-induced instability.

The study is motivated by the need of understanding the behaviour of vitreous substitutes injected

into the vitreous chamber of the eye after vitrectomy (see Figure 2(a)). This is a surgical procedure

often adopted to treat retinal detachments. With this procedure the vitreous body (the substance that

fills the vitreous chamber of the eye), is surgically removed and substituted with “vitreous replace-

ments”. Various fluids can be used in vitrectomy procedures, depending on the particular condition

of the patient. In this paper we focus on vitreous replacements that are immiscible with water. In

this category fall silicon oils, perfluorocarbon liquids and semifluorinated alkane liquids. Mechani-

cal properties, indications for adoption and main complications associated with the existing vitreous

substitutes are extensively described in the literature (e.g. [1]).
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Figure 1: Sketch of the geometry considered and notation.

At present no vitreous replacement fluid exists that can be left indefinitely in the vitreous cham-

ber, since various complications might arise. In particular, vitreous substitutes that are immiscible

with water tend to produce an emulsion of droplets in the aqueous. This can lead to various postop-

erative complications, including cataract, keratopathy, and glaucoma.

In-vivo, owing to the hydrophobic nature of vitreous substitutes, a thin layer aqueous humour

(the fluid produced in the anterior part of the eye) is likely to be present between the retina and the

vitreous substitute [2]. Emulsification may originate both at the wall (in correspondence of this thin

film) [3, 4] and at the tamponade fluid–aqueous free interface where, in the case of incomplete filling

of the vitreous chamber, the thickness of the aqueous pocket can be quite large, see Figure 2(b). We

focus in this paper on the shear flow instability mechanism that might occur in correspondence of

the thin layer separating the vitreous substitute from the retina.

The assumed geometry represents in a highly idealized way the aqueous–vitreous substitute in-

terface in the case in which the thickness of the aqueous layer is much smaller than the eye radius

and perturbations are not too long.

The aim of the work is to gather some mechanistic insight on the instability mechanism of the

interface between the two fluids, assessing the role that each of the physical quantities involved

in the problem has in the instability mechanism, which is regarded as the incipient phase towards

emulsification.

2 FORMULATION OF THE MATHEMATICAL PROBLEM

2.1 Basic flow

We consider the two immiscible fluids showed in Figure 1 and assume that they are characterised

by different kinematic viscosities ν∗1 and ν∗2 and have the same density ρ∗. The flow is induced by

periodic motion of the rigid wall located at y∗ = 0 in the x∗–direction, according to the following

time law

u∗w = V ∗ cos(ω∗t∗) =
V ∗

2

(

eiω
∗t∗ + c.c.

)

, (1)

where V ∗ is the amplitude of the oscillations, t∗ is time, ω∗ is the frequency and c.c. denotes the

complex conjugate.

Let u∗

i be the velocity vector and p∗i the pressure, where the index i (= 1, 2) identifies the fluid.

We scale the problem as follows

x =
x
∗

d∗
, ui =

u
∗

i

V ∗
, pi =

p∗i
ρ∗V ∗2

, t =
V ∗

d∗
t∗, ω =

d∗

V ∗
ω∗. (2)
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Figure 2: Schematic sketch of a cross-section of an eye (a) and of the vitreous chamber filled with a

vitreous replacement fluid (b).

Velocity and pressure are decomposed into a basic state (capital letters) and a perturbation (over-

lined variables), as follows:

ui = Ui + ui, pi = Pi + pi. (3)

The basic flow is unidirectional, such that Ui = [Ui(y, t), 0, 0]. It can be readily shown that the

basic flow pressure is hydrostatic and that the solution for the basic flow velocity reads

U1 =
(

c1e
−ay + c2e

ay
)

eiωt + c.c., (4a)

U2 = c3e
−byeiωt + c.c., (4b)

where

a =
√
iωR, (5a)

b =

√

iωR

m
, (5b)

c1 =
ea−b(a+mb)

2[ea−b(a+mb) + e−a−b(a−mb)]
, (5c)

c2 =
e−a−b(a−mb)

2[ea−b(a+mb) + e−a−b(a−mb)]
, (5d)

c3 =
a

ea−b(mb+ a) + e−a−b(mb − a)
. (5e)

In the above expression we have introduced the following dimensionless numbers:

R = V ∗d∗/ν∗1 , m = ν∗2/ν
∗

1 , (6)

with R being the Reynolds number characteristic of the flow.

2.2 The differential system governing the stability

We now study the stability of the basic flow (4a) and (4b) with respect to infinitesimally small

perturbations. Squire’s theorem states that, for a steady parallel shear flow, the flow first becomes
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unstable to two-dimensional perturbations [5]. Conrad and Criminale [6] showed that the validity

of this theorem can be extended to unidirectional unsteady flows. Therefore, we consider two-

dimensional perturbations only, so that ui = (ui, vi, 0), and we introduce the streamfunctions

ui =
∂ψi

∂y
, vi = −∂ψi

∂x
. (7)

In this work we adopt the quasi-steady approach, i.e. we assume that perturbations evolve on a

time scale that is significantly smaller than the characteristic scale of the basic flow. This implies

that we study the stability of a “frozen” basic flow at time τ , with 0 ≤ τ < 2π/ω. The suitability

of this approach can be verified a posteriori by checking the relative magnitude of the time scale of

perturbations with respect to that of the basic flow. Taking advantage of the infinite extension of the

domain in the x–direction we expand the unknowns in Fourier modes as follows

ψi = eiα(x−Ωt)ψ̂i(y, τ) + c.c., (8)

where α is the dimensionless wavenumber, the imaginary part of Ω (ℑ(Ω)) represents the growth

rate of perturbations, while its real part (ℜ(Ω)) is the phase velocity.

Moreover, let η denote the dimensionless perturbation of the interface position, measured in units

of d∗. We impose

η = η̂(t)eiα(x−Ωt) + c.c. (9)

The equations governing the evolution of the perturbations are then found to be two Orr-Sommerfeld

equations that read:

ψ̂′′′′

1 − 2α2ψ̂′′

1 + α4ψ̂1 + iαR

[

ψ̂1
∂2U1

∂y2
− U1

(

ψ̂′′

1 − α2ψ̂1

)

]

= −iαRΩ
(

ψ̂′′

1 − α2ψ̂1

)

, (10a)

ψ̂′′′′

2 − 2α2ψ̂′′

2 + α4ψ̂2 +
iα

m
R

[

ψ̂2
∂2U2

∂y2
− U2

(

ψ̂′′

2 − α2ψ̂2

)

]

= − iα
m
RΩ

(

ψ̂′′

2 − α2ψ̂2

)

, (10b)

where the symbol ′ denotes derivation with respect to y and the basic flow velocity Ui is computed

at the generic time τ . The above equations have to be solved subject to the following boundary

conditions:

ψ̂1 = 0 (y = 0) (11a)

ψ̂′

1 = 0 (y = 0)
(11b)

U1η̂ + ψ̂1 = Ωη̂ (y = 1), (11c)

ψ̂′

1 + η̂
∂U1

∂y
= ψ̂′

2 + η̂
∂U2

∂y
(y = 1),

(11d)

ψ̂′′

1 + α2ψ̂1 + η̂
∂2U1

∂y2
= m

(

ψ̂′′

2 + α2ψ̂2 + η̂
∂2U2

∂y2

)

(y = 1), (11e)

iαR
(

ψ̂1U
′

1 − U1ψ̂
′

1

)

− iαR
(

ψ̂2U
′

2 − U2ψ̂
′

2

)

+

+
(

ψ̂′′′

1 − 3α2ψ̂′

1

)

−m
(

ψ̂′′′

2 − 3α2ψ̂′

2

)

− iα3RSη̂ = −iαRΩ
(

ψ̂′

1 − ψ̂′

2

)

(y = 1), (11f)
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Figure 3: Neutral stability curves in the L − (ωt/π) plane for different values of the parameter m
(m = 5, 10, 15, 20). The arrow indicates the direction of increase of m. R = 12, ω = 0.003,

S = 14.

ψ̂2 = 0 (y → ∞),
(11g)

ψ̂′

2 = 0 (y → ∞),
(11h)

where we have introduced the dimensionless surface tension S, defined as S = σ∗

ρ∗d∗V ∗2 , where σ∗

denotes the dimensional surface tension. Note that S is the inverse of the Weber number.

Conditions (11b) and (11a) are the no-slip conditions at the wall. Continuity of the tangential and

normal components of the velocity at the interface is enforced by (11c) and (11d). Condition (11e)

imposes the continuity of the tangential stress at the interface and (11f) states that the difference

between the normal stresses across the interface is balanced by surface tension. Finally, (11g) and

(11h) enforce vanishing velocity as y → ∞. Note that, owing to linearisation, the conditions at the

interface are imposed in the undisturbed position of the surface, y = 1.

The above system of equations can be written as a generalized eigenvalue problem

Av̂ = ΩBv̂, (12)

where

v̂ =
(

ψ̂1, η̂, ψ̂2

)T

. (13)

This is solved numerically employing a second-order finite-difference scheme with uniform discreti-

sation. The eigenvalue problem is solved using an inverse iteration approach. Boundary conditions

(11g) and (11h) are enforced using standard asymptotic inviscid solutions.

3 RESULTS

In the following we restrict out attention to a range of values of the controlling parameters that

is significant for the ocular application that motivated this study. As baseline values we assume
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Figure 4: Length of the shortest unstable perturbation Lmin versus m. R = 12, ω = 0.003, S = 14.

d∗ = 5 × 10−5 m for the thickness of the layer of fluid 1, and σ∗ = 0.05 N/m for the dimensional

surface tension between the two fluids. Considerations of the characteristics of real eye movements

(see for instance Becker [7]) allow us to establish relationships between R, ω and S. Vitreous

substitutes employed in the surgical practice have viscosities varying within a very wide range of

values. Since our main aim is to investigate the role of the mechanical properties of the fluids on the

instability mechanism, we vary the parameters m within a fairly large range. Finally, owing to the

assumption of quasi-steadiness, we focus on relatively low frequency wall motion. This corresponds

to consider large amplitude eye rotations that we assume are more likely to generate instability. We

note that in all cases discussed in the following the quantity αℜ(Ω) (which is a measure of the

dimensionless frequency of perturbations) is significantly larger than ω, thus ensuring the separation

of time scales required for the quasi-steady approach to be valid.

In Figure 3 we show neutral stability curves, i.e. curves on which ℑ(Ω) = 0, on the plane

L− (ωt/π), where L = 2π/α represents the perturbation wavelength. Each curve corresponds to a

different value of the ratio between fluid viscosities m; all other dimensionless parameters are kept

fixed. The figure shows that sufficiently long waves are linearly unstable during certain phases of

the basic flow cycle. Whether instability will actually occur over long time scales clearly depends

on the value of the growth rate and on the initial magnitude of perturbations.

The model shows that as the ratio m between the viscosities of the two fluids increases neutral

stability curves shift to longer waves. Thus the system becomes more stable with respect to short

perturbations. This is also clearly shown in Figure 4, where the shortest wavelength which is linearly

unstable, Lmin, is plotted versus m.

Figures 5 and 6 show the effect of changing the surface tension parameter S and the Reynolds

number R. It appears that decreasing S or increasing R leads to an increased instability of shorter

perturbations, the effect of S being particularly strong.

4 DISCUSSION AND CONCLUSIONS

In this paper we have considered the geometry depicted in Figure 1 and studied the linear stability

of the interface between the two immiscible fluids 1 and 2, assuming that fluid motion is induced by
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Figure 5: Length of the shortest unstable perturbation Lmin versus S. R = 12, ω = 0.003, m = 5.

periodic oscillations of the solid wall along the x∗–direction, with amplitude V ∗/ω∗ and frequency

ω∗.

The stability analysis shows that long enough waves are linearly unstable during certain phases

of the cycle, in the range of the controlling parameters considered. In particular, we find that the

shortest unstable wavelength Lmin

i) grows if the ratio m between the viscosities of the two fluids increases,

ii) decreases if the surface tension parameter S decreases,

iii) decreases if the Reynolds numberR increases.

The present work is motivated by the need of understanding the stability conditions of the inter-

face between the aqueous humour layer close to the retina and a vitreous substitute in vitrectomised

eyes. We have adopted a highly idealised geometry, which, however, can provide insight on the

onset of the aqueous–vitreous substitute interface instability in the case in which the thickness of the

aqueous layer is much smaller than the radius of the eye and perturbations are not too long. We note,

however, that assuming d∗ = 5 × 10−5 m for the thickness of the aqueous layer, the wavelengths

found to be unstable are typically small compared to the radius of the eye (≈ 10−2 m), especially if

small values of the surface tension are considered.

Our results are in qualitative agreement with in-vivo and in-vitro observations of the tendency of

vitreous substitutes to produce an emulsion. Indeed, such observations show that:

i) highly viscous vitreous substitutes are more resistant to emulsification than less viscous ones

[8, 9, 10];

ii) the presence of surfactants in vitreous substitutes, which decrease the surface tension, pro-

motes instability [11];

iii) patients with increased eye mobility (higher values of R) are more prone to emulsification

development.
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Figure 6: Length of the shortest unstable perturbation Lmin versus R. ω = 0.003, m = 5, S = 14.

Our model allows us to quantify these effects.

Several assumptions underlie the present work, the most relevant of which are listed and briefly

commented upon in the following.

i) The model is a poor representation of the real situation in vitrectomised eyes either when the

thickness of the aqueous layer is too large or when perturbations are too long. To study the

behaviour of long perturbations in the eye additional effects should be accounted for, such as,

in particular, the sphericity of the domain and thus wall curvature.

ii) Our stability analysis is based on the quasi-steady approach. In order to account for high

frequency oscillations of the wall a stability analysis based Floquet’s theory should be adopted.

iii) We assumed that the retina has a perfectly smooth surface. In reality the retinal surface is

characterized by a roughness that might enhance the tendency to instability of the aqueous–

vitreous substitute interface.

iv) We assumed periodic rotations of the eye. Adoption of a more realistic movements of the wall

might have some influence on the results.

v) We focused on the instability mechanism induced by shear between the two fluids. In the case

of incomplete filling of the vitreous chamber with the vitreous substitute, emulsification can

also be triggered by sloshing of the free interface, see Figure 2(b).
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