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The concept of “structural sensitivity” of a global mode is introduced and used to study
the formation of the classical Karméanvortex street in the wake of a circular cylinder.
By evaluating the functional derivative of the global mode frequency with respect to an
external local feedback from velocity to force, we show how to locate the “wavemaker” of the
asymptotic theory, ¢.e.the point in space where the instability originates and from which
propagates as a wave in all direction. This can be done by exploiting the properties of the
numerically computed direct and adjoint global eigenfunctions, without any assumptions
on the quasi-parallelism of the flow. This new approach is presented both in the context of
linear as well nonlinear oscillations. Finally, recent results obtained by the application of
the structural sensitivity concept to the study of the secondary instability of the cylinder

wake are shown and discussed.

Floquet exponent

Spanwise wavenumber

Shedding period

Reynolds number

Strouhal number

Shedding frequency

Linearised Navier-Stokes operator
Adjoint Navier-Stokes operator
Velocity vector

Reduced pressure

Sensitivity to momentum forcing
Sensitivity to mass injection
Sensitivity tensor

Spectral norm

Modulus of a complex number
Trace of a matrix

Nomenclature

Introduction

N specific conditions, a large class of spatially developing flows sustain synchronised periodic oscillations
Iover extended regions of the flow field, displaying an intrinsic dynamics characterised by a sharp frequency
selection. The whole flow field behaves like a global oscillator and the structure underlying the spatial
distribution of the fluctuations is usually termed “global mode”. The asymptotic theoretical approach to
global modes, initially formulated by Huerre & Monkewitz (1990)! and recently reviewed by Chomaz (2005),>
takes life as an extension of the theory of absolute instabilities, introduced in the sixties in the context of
plasma instabilities, to propagation media with slowly varying properties in space. Using a quasi-parallel
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(WKBJ) approximation, at times pushed to the limits of its domain of applicability, this theory determines,
in the absolutely unstable region, a specific point in space, possibly of complex coordinates, which acts as a
“wavemaker” and from which the instability originates and propagates as a wave in all directions. The growth
or damping rate of the wave at this particular point coincides with the global amplification or damping rate.
For example, in a linear setting, the complex global frequency w, is obtained by the saddle-point condition

wg = wo(X,) with %(XS) =0 (1)
based on the analytic continuation of the local absolute frequency curve wy(X) in the complex X-plane, with
X denoting here the slow streamwise variable. A result obtained by Giannetti & Luchini (2007),> was to
link the originating point of the wave predicted by this theory with the behaviour of numerical simulations,
in particular of the cylinder wake. The tool enabling this result was the "structural sensitivity" of the global
mode, i.e.the functional derivative of its frequency with respect to an external local feedback from velocity to
force, seen as a function of the point in space where the feedback is applied. This sensitivity can be computed
numerically from direct and adjoint global modes without any assumption of local quasi-parallelism. The
underlying rationale is that, if a part of the spatial range of the instability acts as the driving oscillator
(wavemaker), and another part as an amplifier of these oscillations, the amplitude of the direct mode may
well be larger in the amplifier, but the structural sensitivity will be largest where the oscillator resides. The
concept of structural sensitivity makes perfect sense for nonlinear as well as linear oscillations. More recent
work led us to computing the structural sensitivity of the finite-amplitude periodic cycle of the cylinder wake
for supercritical Reynolds numbers, showing among other results that the mean-flow modification induced
by a small perturbing body is responsible for a much larger effect than the direct influence of the perturbing
body on the oscillation. Needless to say, that the structural stability analysis is also a very useful tool for
the design of control systems. Here we will review the concept of “structural sensitivity” by applying it to a
classical problem in hydrodynamics, namely the flow behind a circular cylinder. After presenting the results
for the linear and nonlinear evolution of the vortex shedding we will introduce some recent development of
the theory and show how a similar approach can also be used to study the characteristics of the secondary
instability of the cylinder wake.

II. Problem formulation and governing equation

A classical example of fluid motion which, in a specific parameter range, behaves like a global oscillator
is represented by the flow past an infinitely long circular cylinder. The steady two-dimensional symmetric
flow existing at low Reynolds numbers becomes unstable when Re is increased beyond the critical value
Re.1 ~ 47 (Provansal et al. 1987).* The transition from steady to unsteady state occurs via a Hopf
bifurcation (Noack & Eckelmann 1994°) which breaks the symmetry of the flow field and gives rise to a
periodic self-sustained structure usually termed von Karméanvortex street. For Reynolds numbers lower than
Re 2, where 189 < Re.2 < 190, the flow remains strictly two-dimensional (Barkley & Henderson 1996;°
Williamson 1988,” 1996%) while for Re > Re. 2 the flow becomes unstable to 3D perturbations and quickly
evolves towards a complex three-dimensional state. The equations describing the motion of an incompressible
fluid around an infinitely long cylinder are the classical incompressible Navier—Stokes equations

8—U+U-VU=—VP+RLAU (2a)
(&

ot
V-U=0 (2b)

where U is the velocity vector with components U = (U, V, W) and P is the reduced pressure. To set the
notation, a Cartesian coordinate system is placed in the cylinder centre, with the z axis pointing in the flow
direction and the z axis running along the cylinder centreline. Equations (2) are made dimensionless using
the cylinder diameter D* as the characteristic length scale, the velocity of the incoming uniform stream U7, as
the reference velocity and p*UZ? as the reference pressure. The boundary conditions for the problem are the
classical no-slip and no-penetration conditions on the surface of the cylinder together with the requirement
that the flow approaches asymptotically the incoming uniform stream.
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II.LA. Linear Stability Analysis

The occurrence and the characteristics of the various instabilities of the cylinder wake at different Reynolds
numbers can be studied through a linear stability analysis. The total field Q = {U, P} is here decomposed
into the sum of a two-dimensional base flow and a small unsteady perturbation as

1 e .
m/_oo u(z,y, K, t)) exp(ikz)dr (3a)

\/12_7T /jo p(z,y, Kk, t) exp(ikz)dk (3b)

U(xayu Zut) = Ub(.’II,y, t) +€

P(xayuzut)zpb(xayut)+€

where the amplitude € is assumed small and a Fourier transform is used to express the span-wise dependence
of a general three-dimensional perturbation. Such decomposition can be used to study both the stability
of the stationary base flow which exists for Re <= Re.; and of the periodic Karmanstreet which persists
in the range Re.;1 < Re < Re.». Note in fact that any steady field can be viewed as a particular case of
a periodic field for which the period is infinite. Thus, for sake of generality, it is convenient here to derive
the results for a two-dimensional periodic base flow Qp(z,y,t) = Qp(z,y,t + T) and use more restrictive
assumptions only when specifically required. Introducing (3) in (2) and linearising, we obtain two problems
describing respectively the evolution of the two-dimensional base flow and the development of the three-
dimensional perturbation. In particular the base flow is governed by the two-dimensional version of (2),
while the perturbed field is described by the following set of linearised unsteady Navier—Stokes equations
(LNSE)

ou + L.{Up,Re}u=—V,p (4a)

ot
Ve-u=0 . (4b)
0

In the above expressions V,, = (—, 82’ ir) is the modified gradient operator and L, stands for the modified
three-dimensional linearised Navigrfstokes operator which in vector notation can be written as
1

Re
where A, = V,, -V, is the modified Laplacian operator. Note that for x = 0 the spanwise component of
the momentum equation is decoupled and reduces to a simple convection-diffusion equation: this implies
that in these circumstances the stability of the flow can be studied trough a pure two-dimensional analysis.
In such cases, to simplify the presentation, we will neglect the subscript %, intending in this way the two-
dimensional version of the equations. To perform a stability analysis equations (5) must be supplemented with
homogeneous boundary conditions on the surface of the cylinder and in the far field. In order to determine
the time asymptotic behaviour of (4) it is convenient to adopt a normal mode expansion. In particular, for a
given value of x, we will look for Floquet modes, i.e.solutions of the homogeneous Linearised Navier—Stokes
equations (4) of the form

L.{Uy,Re}tu=U;,-V,u+u-V,U, — A.u, (5)

u(z,y, k, t) = a(z,y,k,t) exp(ot) (6a)
p(z,y, K, t) = p(x,y, K, t) exp(ot) . (6b)

Here o is the Floquet exponent, i.e. the eigenvalue of the Floquet transition operator, while § = {1, p} is a
non trivial periodic complex field

a(z,y, k5, t+T) = a(z,y, k) (7)
satisfying equations
o6
6—‘; 4ot + L {U,, Re}d + Vp = 0 (8a)
V-a=0 (8b)

along with homogeneous boundary conditions on the cylinder surface and appropriate far-field radiation
conditions. Note that if the base flow is steady, q does not depend on time and consequently the temporal
derivative in (8) drops out. The system of equations (8) along with its boundary conditions in space and
the condition (7) in time represents an eigenvalue problem for o. For Re(o) < 0 the flow is stable while
for Re(o) > 0 the mode is unstable and the perturbation grows exponentially in time until nonlinear effects
become important.
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II.B. Adjoint Equations

An important concept, strictly related to the notion of“structural sensitivity”, is that of adjoint of a differential
operator. For any pair of suitably differentiable fields q = {u,p} and g™ = {f*,m™}, which do not have to
satisfy equations (4), the following Lagrange identity is constructed using differentiation by parts

_|_

[ <(?9_1t1 + L.{Up, Re}u + V5p> AT+ (Ve -u) m™

£+
u- (8_ + LU, Re}f™ + V,{m+> +p (VK . f*)] =

ot
ou-ft
5t Ve dilagh) - (9
In the above expression J(q,g") is the “bilinear concomitant”
1
J.(q,g") =Uy(u-fh) + Te (Vef" u—Veou-fH) +mTu+p fF (10)
e

and L} is the adjoint linearised Navier-Stokes operator which in vector notation can be expressed as
1
L:{Ub, Re}f+ =U,- an+ - V.U, T R—A,if-i_. (11)
e

Integration over space and time of (9) and use of the divergence theorem gives the generalised Green’s
theorem for the LNSE. Examining the second term in the square brackets on the left hand side of the
Lagrange identity (9) we define the adjoint equations as

of" + + +
s + L {Up, Re}fT™ +V,m™ =0 (12a)

V. fF=0 . (12b)

It is through judicious manipulation of the right hand side of (9) that engenders the usefulness of the adjoint
solutions g* = {fT,m™}. In particular for stability and receptivity considerations we are interested in the
Floquet adjoint modes, i.e. non trivial solutions of the adjoint linearised Navier—Stokes equations (12) of the
form

£ (2, y,5,t) = £ (2,9, 5, 1) exp(—ot) (13a)
m*(z,y,k,t) = m*(z,y, k1) exp(—at) . (13b)
More specifically for a given value of k, if q(z,y, k,t) = q(z,y, k, t) exp(cot) is the Floquet mode of the LNSE

corresponding to the exponent o, we define g*(z,y, ,t) = " (x,y, s, t) exp(—ot) its adjoint mode if the
complex field T = {f,7m*} is a non trivial periodic solution

gt (z,y,kt+T) =8 (x,y,K,t) (14)
of equations
oft F+ + #+ =+
5 ~° f"+ LI {Uy, Re}f™ + Vo™ =0 (15a)
V. -ft=0 (15b)

along with homogeneous boundary conditions on the cylinder surface and appropriate radiation conditions
in the far field. As for the direct mode, if the base flow is stationary, the field & does not depend on time
and consequently the temporal derivative in equation (15) drops out.
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III. Structural sensitivity to spatially localised feedbacks

In order to study the self-exciting mechanism which gives rise to the vortex shedding at Re = Re.; ~ 47
or the characteristics of the secondary instability which develops for Re > Re. o =~ 189 it is useful to introduce
the concept of structural sensitivity. In order to explain this notion, let us consider a perturbation in the
structure of the eigenvalue problem (8) and consider the Floquet mode

oq (x,y, k, t) = 0§ (x,y, Kk, t) exp (o't) (16)
which is the solution of the perturbed problem
ow’ |
o +o't + LN{Ub, Re}d’ + V,p' = dH(W',p') (17a)
Vi =dR(W,p) (17Db)

along with the appropriate boundary conditions in space and the periodic condition
& (z,y,5,t+T) =& (2,y,5,1) (18)

in time. Here dH and dR denote two linear differential operators expressing the structural perturbation of the
original differential problem. The drift do of the Floquet exponent and the mode perturbation 6§ = {1, 6p}
caused by the structural perturbation can be related using a simple expansion in terms of the solution of the
unperturbed problem. Assuming @' = 4+ 04, p/ = p+ dp’ and o/ = o + o, inserting in (17) and neglecting
quadratic terms, we easily obtain

98 | 5+ Lo {Uy, Re} 61 + V. 65 — —d0 &+ H(a, p) (19a)

ot
V.- 6=6R(4,p) . (19b)

Multiplying this expression by exp (ot) and introducing the field

oq(z,y, k,t) = 6q(x,y, K, t) exp (ot) , (20)

equation (19) can be recast as
% + L.{Up, Re} Su+V, dp=—do u+ dH(u,p) (21a)
s ou=0R(u,p) . (21b)

If we just wanted to determine the variation of the Floquet exponent for a specific form of the structural
perturbation we could solve the problem as stated above; but we can obtain a much more powerful result,
i.e. the sensitivity of the eigenvalue o to an arbitrary structural perturbation with the aid of adjoint
equations. Applying the Lagrange identity to the field dq (20) and to the adjoint Floquet mode g (z,y,t) =
g7 (x,y,t) exp (—at) corresponding to the eigenvalue o, integrating in time over a period and in space over
the spatial domain D, we obtain

t+T (9(511 N 4o
—— + L.{Uyp, Re}ou+ V. op | - £ + (V- ou) m" d°x dt+

t+T
/ /5u (—+L+{Ub,Re}f++V m >—|—5p (Ve 1) d®x dt =

t+T s t+T
/ / 00u-£7 2 qr + / ]{ (bq,gt)-dldt . (22)
¢ p Ot oD

Assuming now that both the solution of equation (21) and the adjoint mode decay in the far field and
taking advantage of the periodicity of g and %, we easily realize that the two terms on the right hand
sides of (22) vanish. Since the adjoint mode satisfies equations (12) and equation (19) holds, we can further
simplify (22) arriving at the following expression for the eigenvalue drift
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t+T
/ / £t . 0H(u,p) + m" dR(u,p) d®x dt
So =2t D

1T
/ / ft.oud?®x de
t D

Expression (23) is valid for a generic structural perturbation: the associated shift in the eigenvalue can
be calculated once the operators ¢H and dR are specified. Equation (23) can be simplified if we consider
structural perturbations localised in space. Consider for example the effects induced by the existence of a
spatially localised feedback. More precisely let us consider the sensitivity of the Floquet exponent do to
a generic force-velocity coupling. In a linear theory approach the feedback process can be mathematically
described by the following linear relation between force and velocity

(23)

0H = C(z,y,k) 0 . (24)

Here C denotes the matrix of the coupling coefficients which in general may be functions of the spatial
coordinates (z,y). If the feedback is localised in space, however, we can simplify the model by assuming

C(z,yr) = 6(x — w0,y — yo) Co(k) (25)

where Cy is now a constant coefficient matrix (for a given value of k), (xo, yo) indicates the position where the
feedback acts and d(x — o,y — yo) denotes the Kronecker delta function. In this case the Floquet exponent
drift can be derived by taking 0H(u,p) = C(z,y, ) u and 0R(u,p) = 0 in (23). In this way, using (25), we

easily obtain
t+T o
/ /f+.C(;1;,y)~ﬁd2X dt
)y ~ o) Co= Y Sulon) oy (9

t+7T R
/ / .0 d’x de ij
t D

where we have defined the sensitivity S as

t+T R
/ (e, y, 1, t) B (2, 1) dt
oo .
S(z,y) = 3Cy . (27)

t+T R
/ / ft.ad?x de
t D

In the above expressions the notation G f* indicates the dyadic product between the direct and adjoint
Floquet modes. Notice that Cy is a tensor quantity, relating a force to a velocity, and so is S. In the
next sections we will show how the information contained in the sensitivity tensor can be used to study the
characteristics and the development of the instabilities occurring in the wakes of bluff bodies.

IV. Structural sensitivity of the first instability of the cylinder wake

The theory developed in the previous section was initially introduced in a more simple setting by Giannetti
& Luchini (2007) who studied the first instability of the cylinder wake. This occurs for two-dimensional
perturbations (k = 0) at Re = Re.1 ~ 47. Giannetti & Luchini (2007) determined numerically the
steady symmetric solution of the Navier-Stokes and studied its stability characteristics by performing a
two-dimensional global stability analysis. The direct and adjoint global modes were determined numerically
through the use of an inverse iteration algorithm. As an example figure 1 shows the modulus of the velocity
of the direct mode and its receptivity to momentum forcing at Re = 50 (i.e. the modulus of the adjoint field
fr).

It is interesting to note that the maxima of the direct mode are located far downstream of the recirculating
region (the white line in the figures) while the regions of maximum receptivity to momentum forcing and
mass injection (not shown here) are localised in the near wake of the cylinder, close to separation points.
This large spatial separation is a characteristic of non-normal operators (Chomaz 2005).2 Locating the zones
where the maximum receptivity is attained it is however not sufficient to analyse the process which gives rise
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Figure 1. (a) Spatial distribution of the velocity field modulus |G(z,y)|| at Re = 50. (b) Receptivity to momentum
forcing and initial conditions (||f*(z,v)||) at Re = 50.

to the von Karman street. The vortex shedding behind bluff bodies, in fact, is generated by a self-exciting
mechanism which needs a different approach to be fully understood. In the context of slowly evolving media,
for example, the asymptotic theory developed by Chomaz et al. (1991),° Monkewitz et al. (1993)'° and Le
Dizés et al. (1996)' endows the region around the saddle point with the fundamental role of “wavemaker”
in the excitation of the global mode. In the context of a two-dimensional modal analysis Giannetti & Luchini
(2007)3 introduced a concept similar to that of “wavemaker” by investigating where in space a modification
in the structure of the problem is able to produce the greatest drift of the eigenvalue. This being the case,
in fact, it would be justified to claim that the structural perturbation has hit the “core” of the instability
mechanism. More precisely, they investigated the sensitivity of the eigenvalue do with respect to a generic
force-velocity coupling. Such a feedback could be in theory produced by introducing in the flow field a
small device which exerts on the fluid a force whose direction and strength depend on the local value of
the velocity perturbation. In a sense, a similar mechanism can be considered as the “wavemaker” of the
asymptotic theory.
For a steady base flow, equation (27) simplifies to

£ (z,y) A(z,y)

/f+~ﬁd2x
D

since the direct and adjoint modes § = {,p} and g+ = {fT,/m"} satisfying respectively equations (8)
and (15) do not depend on time. The information contained in the tensor S(z,y) can be used to build a
spatial sensitivity map. By looking for regions where the sensitivity is high, Giannetti & Luchini (2007)3
determined the core of the instability, identifying, in this way, the wavemaker of the asymptotic theory.
Since S is a tensor, various quantities may be chosen to represent the sensitivity. As an example figure 2
shows the spatial map obtained at Re = 50 by taking at each point in space the spectral norm of S. This
quantity represents the receptivity to spatially localised feedbacks due to a local force proportional to a local
velocity of the worst possible direction. Other choices can be the Frobenius norm (sum of the squares of
all four components) or the modulus of the trace (sensitivity to a force locally aligned with velocity, i.e. a
pure resistance). This last quantity for example is shown in figure 3. Both maps show that large values of
the sensitivity are attained in two lobes located symmetrically across the separation bubble. Note that both
close to the cylinder and far from it the product of the adjoint and direct modes is small. This shows that
these areas of the flow are not really important for the instability dynamics.

S(z,y) = (28)

IV.A. Sensitivity of the eigenvalue to the size of the computational domain

The spatial distribution of the product between the direct and adjoint eigenfunctions suggests that the
characteristics of the global mode are dictated mainly by the conditions existing in the region where the
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Figure 2. Receptivity to spatially localised feedbacks at Re = 50 due to local force proportional to a local velocity of
the worst possible direction (]|S]|2)
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Figure 3. Receptivity to spatially localised feedbacks at Re = 50 due to local force proportional to a local velocity of
the same direction (Modulus of the trace of |Tr(S)|)

value of ||S||2 is sufficiently large. In order to check this hypothesis, Giannetti & Luchini (2007)? repeated
the stability analysis on progressively shortened domains in order to verify the influence of the different
regions of the flow on the eigenvalue. Note that the problem of determining the sensitivity of o to the size
of the computational domain naturally fits in a structural stability framework: resizing the domain, in fact,
is substantially equivalent to changing the boundary conditions of the discretized problem. The numerical
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results showed excellent agreement with the predictions based on the spatial map displayed in figure 2. The
analysis showed that the eigenvalue varies significantly only when the boundary conditions are placed in
proximity of the regions in which the sensitivity is significantly different from zero. Until the instability core
was not included inside the computational boundaries the eigenvalue drift remained relatively small. The
spatial structure of the mode was also substantially preserved. As expected, imposing the inflow conditions
near the cylinder surface was less effective than setting the outflow boundary across the separation bubble.
Even when the cylinder was excluded from the computational domain a reasonable value for ¢ was found.
A similar behaviour was also noticed by Triantafyllou & Karniadakis (1990)!? who numerically reproduced
a vortex street by using a computational domain restricted to the region downstream of the obstacle. All
these results show that the core of the instability is located behind the cylinder, almost at the end of the
recirculating region.

V. Analysis of the finite-amplitude periodic vortex shedding

From a theoretical point of view the approach introduced by Giannetti & Luchini (2007),> which is
based on the properties of the steady base flow, is only valid in a neighbourhood of the neutral point. For
Re > Re. 1, in fact, the steady symmetric flow becomes unstable and a Karmanvortex street develops. In
such conditions, after an initial transient, the flow becomes periodic

Uz,y,t +T) =U(z,y,t) , Plz,y,t+T) = P(z,y,1) (29)

with period T, Strouhal number St = 1/T and angular pulsation w = 27/T. Giannetti, Pralits & Luchini
(2007)** and Luchini, Pralits & Giannetti (2008)'* have extended the approach described in the previous
section to study finite-amplitude vortex shedding, in order to assess how unsteadiness and saturation can
modify the results obtained in the neighbourhood of the critical Reynolds number.

As described in the previous section, in order to locate the wavemaker of the instability, Giannetti
& Luchini (2007)3 determined the space distribution of the sensitivity of the eigenvalue to a structural
perturbation of the problem. The analogous quantity for the nonlinear periodic oscillation is the space
distribution of the sensitivity of its frequency to a structural perturbation of the problem. Suppose, therefore,
to give a structural perturbation directly to the nonlinear two-dimensional equations (2), in the form of a
body force dH depending on the local velocity U. If the perturbation is small the new solution will remain
periodic but with a different period (in contrast with the corresponding linear problem whose frequency will
in general become complex and bring about either amplification or damping). In order to be able to treat
the problem perturbatively and avoid secular effects, it is convenient to scale the time variable on the period
of the solution itself. Thus introducing the scaled time

t
the perturbed equations can be rewritten as
10U 1
——+4+U-VU=-VP+—AU+/H(U 1
T +U.-V VP + e + 0H(U) (31a)
V-U=0 (31b)

where T' is an additional unknown and the period in the variable 7 is constant and equal to 1.
Writing the perturbed solution as

{U(z,y,7), P(x,y,7)} = {Up(,9,7) + u(z,y,7), B2, y,7) + p(7)}, (32)

where Qp, = {Uy, P} denotes the unperturbed periodic flow and q = {u, p} have become the small pertur-
bations induced by the added forcing, and inserting it into the equations together with the small external
forcing 0H(U) = C(z,y) U(z,y,T) we obtain

1 6(Ub + u) . 1
T1oT  or +(Up+u)-V(Up +u)+ V(P +p) = ReA(Ub +u) + H(Up +u) (33a)
V-(Up+u)=0 (33b)
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If the effect of the structural perturbation is small, we can linearise these equations and obtain an equation
for the perturbation

1 0u 0T Uy
TE + L{Ub, Re} u+Vp= ﬁ? + 5H(Ub) (343)

V-u=0 (34b)

where L{Uy, Re} is the two-dimensional Linearised Navier—Stokes operator defined by (5). This linear
problem can be studied through Floquet analysis, and, as is well known, the resulting perturbation will in
general not be periodic, but modified by the Floquet exponent. The condition, implicit in the definition of
7, that a constant period equal to 1 be maintained, constitutes a compatibility condition determining 67,
which is exactly the variation of period induced by the structural perturbation 6H = CUy,.

Just as in the corresponding linear stability problem, we can obtain the sensitivity of the period to
an arbitrary structural perturbation with the aid of adjoint equations. The key to this approach is the
observation that the unperturbed equations (31) have a non-unique solution, insofar as if Up(z,y,7) is a
periodic solution, Uy (z,y, 7+ 7) is as well. Linearising with respect to 67 we find that 0Uy /J7 is a solution
of the linearised equations (34) in homogeneous form (e.g., with dH = 0). Since equations (34) with periodic
boundary conditions have a nontrivial solution with zero forcing and zero §7T', the original inhomogeneous
linear problem only has a solution if a compatibility condition is satisfied. This compatibility condition
can be derived exploiting the adjoint equations. Note in particular that (33) is a linear partial differential
equation of the same form as (21) but with x = 0, R = 0 and do = 0. Thus we can use equations (23)

0T 9U
to derive the compatibility conditions: in particular taking do = 0 and using ﬁa—b + 0H(Uy) as forcing
T
term we easily obtain
T t+T t+T
N5—:—/ /f+~C-Ubd2xdt where N:/ /f+~8&d2xdt (35)
T t D t D or

where fT represents the neutral adjoint eigenfunction corresponding to the Floquet exponent o = 0. If we
now assume a feedback of the form (25), i.e. a feedback localised in space, the previous expression can be
further simplified. In particular noting that dw/w = —0T /T, we easily obtain the structural sensitivity S of
the oscillation frequency w to a localised feedback Cg as

t+T
:(‘;_é:%/ Uy, £+ dt (36)
t

As in the linear case, the notation Uy fT must be read as a dyadic product.

V.A. Numerical Results and comparison with the linear results

Giannetti, Pralits & Luchini (2007)'3 and Luchini, Pralits & Giannetti (2008)!* numerically determined,
for different Reynolds numbers, both the periodic base solution and the adjoint field T by numerically
integrating the two-dimensional nonlinear and adjoint equations (2) and (12). For spatial discretization a
classical finite difference scheme was adopted. An immersed boundary was used to easily represents the
effects of the cylinder on a Cartesian mesh. The advancement in time was obtained by a classical third order
mixed Runge-Kutta Crank-Nicolson scheme. The periodic base flow and the adjoint field were determined
by letting the corresponding equations evolve in time until a periodic state was found. As in the linear case,
in order to localise the region of high sensitivity, a spatial map was built by taking at each point of the
domain a given norm of the sensitivity tensor.

Figure 4 shows a typical result obtained using this approach: a space distribution of the structural
sensitivity S defined by equation (36) at ® = 50,a slightly unstable configuration. The white line in the
figure indicates the recirculation bubble of the mean flow. As S is a tensor, various representative quantities
may be used to generate the sensitivity map. Here the spectral norm of S was used, but other choices are
equally possible. For this case, however, both the spectral or the Frobenius norm and the modulus of the
trace of S gave almost identical results. The region of high sensitivity is located in two narrow strips starting
close to the separation point of the mean flow and extending downstream for a few diameters. Results for
Re = 60, 80, 100 and 150 are shown in figure 5. Note that as the Reynolds number is increased the region
of high sensitivity shortens and at the same time bends and tends to close.
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Re=50

Figure 4. Structural sensitivity of the periodic wake at Re=50: sensitivity to a local force depending on the local value
of the velocity of the worst direction (||S||2)

V.B. Comparison with the linear results

The results obtained through this analysis agree remarkably well with the experimental data of Strykowski
& Sreenivasan (1990),® who introduced a small perturbing cylinder in the wake of a larger one and reported
the variation in critical Reynolds number as a function of position of the perturbing cylinder (figure 6). It is
however a surprise that the structural sensitivity of the saturated periodic oscillation, even at the relatively
low Reynolds number of 50, does not agree as satisfactorily with the structural sensitivity of the linear
eigenmode as calculated by Giannetti & Luchini (2007)% and displayed in figure 2 ). Actually, if attention is
paid to the colour scale, it will be seen that the two are quite different in amplitude and not just in shape.
This was a puzzle until we realized that the frequency of the nonlinear oscillation can be influenced in two
different ways: by a structural perturbation force determined by the fluctuating velocity alone (as implicitly
assumed in our linear results), or by a force that responds both to the mean and to the fluctuating velocity.
Neither is wrong: they serve different purposes. The structural perturbation depending on the fluctuation
only was the appropriate tool to study the position of the wavemaker, but the perturbation depending on
the full velocity field is the one that was implicitly assumed in the present nonlinear results, and of course
is the one that occurs in the experiments. Once this difference is identified, it is not difficult to extend the
linear eigenmode calculation to account for the frequency variation induced by a perturbation influencing
the base flow. As an example, figure 7 shows the total sensitivity (the spectral norm is used to generate
the map) of the linear instability mode, i.e. the sum of the sensitivities to a base-flow modification induced
by a spatially localised feedback acting at base flow level and to a spatially localised feedback acting at the
perturbation level. It is now evident that a more satisfactory agreement is recovered with both experiments
and nonlinear sensitivity results.

In other terms this outcome clearly reveals that the mean-flow modification induced by a small perturbing
body is responsible for a much larger effect than the direct influence of the perturbing body on the oscillation.
This important information show that the analysis based on the structural sensitivity approach may represent
a powerful tool in the design of effective control strategies. The identification of the different contributions
to the total sensitivity also suggest an easy way to identify the wavemaker of the nonlinear state. The core of
the instability in fact can be localised by evaluating the sensitivity of the nonlinear periodic oscillation to a
zero-mean feedback. This is done by subtracting from the previous calculations the effects of the mean-flow
modifications. Figures 8 and 9 show the results obtained by replacing in 35 Uy, with Uy, — Uy, where Uy, is
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Re=100 Re=150

Figure 5. Spatial distribution of the spectral norm of the sensitivity tensor S: (a) Re = 60, (b) Re = 80, (c) Re = 100,(d)
Re = 150

(ST
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x/D

Figure 6. Experiment of Strykowski & Sreenivasan (1990)

the average value of Uy over a shedding period. The resulting maps may now be compared with their linear
equivalent (2) and (3). It can be observed that close to the critical Reynolds number Re. ; the region where
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Re=50

Figure 7. Structural sensitivity of the linear instability mode at Re=50 with base-flow modifications included (the
spectral norm).

Re=50
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Figure 8. Sensitivity of the periodic oscillation to a zero-mean feedback at Re=50 (||S]|2)

the sensitivity is large is similar to that obtained through a linear analysis of the steady unstable base flow.
This is understood by considering that the mean flow and the unstable basic state are, in that case, quite
similar. An even better agreement, at least for what concerns the shape of the region of high sensitivity, can
be recovered if the effects of the phase shift are taken into account. This can be achieved by considering the
spatial distribution of the function
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Figure 9. Sensitivity of the periodic oscillation to a zero-mean feedback at Re=50 (|Tr(S)])

w t+T
Naw) = 5 [ [Usa) £ @)l (1)

which represent the sensitivity to a spatially localised feedback in which the force depends on a local
velocity that takes the worst possible direction at each instant in time. As an example, figure 11 shows the
spatial map obtained from (37): the shape of the region of maximum sensitivity is now in excellent agreement
with that depicted in figure 2.

As the Reynolds number is increased, the shape of the sensitivity map changes and the location of the
wavemaker moves toward the end of the recirculation bubble of the mean flow Uy. This behaviour is
displayed in figure 10 in which the spatial sensitivity maps for Re = 60, 80, 100 and 150 are displayed. In
order to confirm these results a linear stability analysis was also performed on the mean-flow. It is well
known in fact that the imaginary part of the eigenvalue o of the corresponding linear stability problem well
approximates the real shedding frequency of the periodic solution. It is therefore reasonable to suppose that
for this flow a structural sensitivity analysis of the mean-flow can be used to identify the location of nonlinear
wavemaker. As an example figure 12 displays the spectral norm of the sensitivity tensor obtained by a linear
stability analysis of the mean flow. The qualitative agreement with figure 10 (d) is satisfactory and confirms
the validity of the nonlinear approach.

VI. Structural sensitivity of the secondary instabilities

Although the approach based on the structural sensitivity analysis was originally developed to fully
understand the first instability of the cylinder wake and to locate the “wavemaker” of the asymptotic theory,
a similar approach can also be used to study the characteristics of the secondary instability. It is well known in
fact that the two-dimensional time-periodic Karméanstreet described in the previous section becomes unstable
to three-dimensional perturbations when the Reynolds number exceeds a critical threshold of Re. 2 ~ 189.
The secondary instability of the wake of a circular cylinder is a well known phenomenon and has been widely
studied in the last two decades (see, for instance, Barkley et al. (1999),'® Barkley & Henderson (1996)°
and Williamson (1996)%). A Floquet linear stability analysis shows the existence of two separate bands of
synchronous unstable modes: the first one (mode A) appears at Re ~ 189 and is characterised by a spanwise
wavelength of about 4 cylinder diameters, while the second one (mode B) develops for Re > 259 and has
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Re=100 Re=150

Figure 10. Sensitivity of the periodic oscillation to a zero-mean feedback (||S][2): (a) Re = 60, (b) Re = 80, (c)
Re = 100,(d) Re = 150

a shorter spanwise length-scale (about 1 diameter). Several physical mechanisms have been proposed to
explain this transition to a three-dimensional flow. Some authors, for example (see Thompson et al. 2001'7),
suggested that mode A is related to an elliptic instability of the vortex cores of the Karméanstreet, while
mode B is associated with an instability of the braid region between the rollers .

More recently, Barkley (2005),'® carrying out the Floquet stability analysis on several restricted sub-
domains, showed that only a small region of the flow behind the cylinder plays a role in the development of the
secondary instability. A similar behaviour was also observed by Giannetti & Luchini (2007)? in the study of
the first instability (see section IV.A) and successfully explained in terms of structural sensitivity. Giannetti,
Camarri & Luchini (2008)!? generalised this approach by extending its applicability to three-dimensional
problems with a periodic time-dependent base flow. In this way they arrived to the general formulation
presented in section III. Such approach, being the most general, can be used to recover the original results
of Giannetti & Luchini (2007)® (as shown in section IV) or to derive the compatibility condition for the
nonlinear approach (described in section V), but can also be applied to study the structural sensitivity of
the secondary instability of the cylinder wake. The key to this analysis resides again in formula (VI) which
defines the sensitivity tensor for a spatially localised feedback as

t+T R
/ a(x,y, K, t) £ (2, y, 5, 1) dt
oo Ji
S(z,y) =

S5 T T
0 / /f+-ﬁd2xdt
t D

Note that in contrast with the two-dimensional cases treated in the previous sections, the sensitivity tensor
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Re=50

Figure 11. Spatial distribution of the function \(z,y) at Re=50

Re=150

Figure 12. Structural sensitivity obtained through a linear stability analysis of the mean flow U, at Re=150

is now represented by a 3 by 3 matrix. The stability characteristics of the flow for a given value of x and Re
can be numerically determined by finding the first eigenvalues of the Floquet transition operator ( i.e. the
Floquet exponents o). This can be achieved by using a simple power iteration or more efficiently through the
implementation of an Arnoldi-type iteration. After the evaluation of both the direct and the adjoint Floquet
modes corresponding the unstable exponent it is possible to determine all the components of the tensor S
and consequently build a spatial sensitivity map. This has been recently achieved by Giannetti, Camarri
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& Luchini (2008): as an example of their results, figure (13) shows the spatial maps obtained by plotting
locally the value of the spectral norm of S, respectively for mode A at Re = 200 and mode B at Re = 259 . It
can be noticed that in both cases the instability is highly localised and confined in a region of the wake very
close to the cylinder surface. In order to validate the results, following Barkley, a Floquet stability analysis
was performed on several restricted domains. The results of this analysis confirmed that a non-negligible
drift of the Floquet exponent is obtained only when the computational domain does not contain the whole
region of high sensitivity depicted in figure 13. According to these results the characteristics of mode A and
B are dictated by the conditions of different regions of the flow. Note in fact that while the sensitivity of
mode A is concentrated in a single patch located across the symmetry line, the sensitivity of mode B attains
its maximum in two small regions symmetrically placed and split apart by a distance of about one diameter.
Note also that sensitivity of mode B is much larger than that of mode A.

1.5 25 20
2 15
05 - -
15
10
i
-05 - -
) 05 .
-15
-1 0 1 2 1 0 1 2 0
(a) Mode A (b) Mode B

Figure 13. Sensitivity map (spectral norm) of the Floquet exponent to structural perturbations of the Floquet transition
operator: (a) mode A at Re = 200 and wavenumber k = 1.6; (b) mode B at Re = 259 and wavenumber k = 7.6.

More insights in the development of the secondary instability can be retrieved by inspecting the time
evolution of the integrand of equation (VI). For example figures 14 and 15 shows the time evolution of the

function
[£* (2, y, K, t) ula,y, K, t)]2

4T
/ /f+ ads dt

over a shedding cycle respectively for mode A and mode B.

These results reveal that, both for mode A and B, the regions of high sensitivity evolve in time with a
rather complex behaviour, showing an even more localised structure. A more detailed analysis which tries
to link the properties of the sensitivity tensor to local characteristics of the periodic base flow is actually in
progress and might help to shed a new light on the nature of the secondary instability or to develop effective
control strategies for its suppression.

s(z,y, K, t) = (38)

VII. Conclusion

In this paper we review the concept of “structural sensitivity” and show how such notion may be used
to study the characteristics of the global instabilities arising in the wake of bluff bodies. In particular, by
looking at the structural sensitivity of the linear unstable global mode it is possible to locate the "wavemaker",
i.e.the position in which, according to the asymptotic theory, the instability originates and from which it
propagates in all direction. The original formulation introduced by Giannetti & Luchini (2007)3 is extended
to treat three-dimensional perturbations evolving on a time-periodic base flow and applied to study the finite-
amplitude vortex shedding behind a circular cylinder. By comparing the new results with those obtained by
Giannetti & Luchini (2007)3 it is found that the total sensitivity is composed by two different contributions:
the direct effect of the feedback on the nonlinear oscillation and the effect of the mean-flow modification
induced by the structural perturbation. Such information is used to locate the nonlinear wavemaker, which is
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() b= T

Figure 14. Time evolution of the function s(z,y, k,t) for mode A (Re = 200, k = 1.6)

Figure 15. Time evolution of the function s(z,y, k,t) for mode B (Re = 259, xk = 7.6)

identified by plotting the sensitivity to a zero-mean feedback. Finally, the concept of structural sensitivity is
applied to study the characteristics of the secondary instabilities of the cylinder wake. Following Giannetti,
Camarri & Luchini (2008),' a Floquet stability analysis is performed to determine both the direct and
adjoint unstable Floquet modes. The structural sensitivity to spatially localised feedbacks is then evaluated
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both for mode A and B, showing that such instabilities are extremely localised in space.
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