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Shape Optimization for Delay of Laminar–Turbulent Transition
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A method using gradient-based optimization is introduced for the design of wing profiles with the aim of natural
laminar flow, as well as minimum wave drag. The Euler equations of gasdynamics, the laminar boundary-layer
equations for compressible flows on infinite swept wings, and the linear parabolized stability equations (PSE) are
solved to analyze the evolution of convectively unstable disturbances. Laminar–turbulent transition is assumed to
be delayed by minimizing a measure of the disturbance kinetic energy of a chosen disturbance, which is computed
using the PSE. The shape gradients of the disturbance kinetic energy are computed based on the solutions of the
adjoints of the state equations just named. Numerical tests are carried out to optimize the RAE 2822 airfoil with
the aim to delay simultaneously the transition, reduce the pressure drag coefficient, and maintain the coefficients
of lift and pitch moments. Constraints are also applied on the geometry. Results show a reduction of the total
amplification of a large number of disturbances, which is assumed to represent a delay of the transition in the
boundary layer. Because delay of the transition implies reduction of the viscous drag, the present method enables
shape optimization to perform viscous drag reduction.

Nomenclature
As = stiffness matrix for d2/ds2

a = design variables, Rn

b = values of geometrical constraints, Rm

C = constant coefficients matrix, Rn × m

CD, CL , CM = drag, lift, and pitch-moment coefficients
Cp = pressure coefficient
c = sound speed, m/s
cp = specific heat at constant pressure
d = dimension, 2
E = total energy density, kg/m/s2

E = set of edges
f = flux density, 3-by-1 matrix of tensors
h1 = scale factor, curvilinear coordinates
i j = edge between nodes i and j
L = constant coefficients matrix, Rd N × n

l0 = reference length scale, m
M = Mach number
MQ = diagonal matrix diag(0, 1, 1, 1, 0)
Ms = mass matrix
m = number of geometric constraints
m = momentum density ρu
N = total number of nodes in Euler grid
NE = N factor based on disturbance kinetic energy
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Ni = set of nodes connected to i by edge
n = number of nodes on airfoil
n = outward directed surface normal vector
n̂ = outward directed unit normal vector
P = pressure, dimensionless
Pr = Prandtl number
p = pressure, Pa
Q̄ = state of mean flow, [Ū , V̄ , W̄ , T̄ ]T

Q̃ = disturbance state vector, [ρ̃, Ũ , Ṽ , W̃ , T̃ ]T

R = specific gas constant
Res, Re = reynolds numbers based on lengths s and l0

Ri = residual at node i , 3 × 1 matrix of tensors
ss = arclength from stagnation point
st = arclength from trailing edge
T = temperature, dimensionless
t = time
U, V, W = velocity components, dimensionless
u = velocity tensor, m/s
V = dual control volume
V(�) = set of nodes in �
V(∂�) = set of boundary nodes of �
v = primitive variables, [ρ, u, p]T

w = conservative variables, [ρ, m, E]T

X = vector of Euler nodal coordinates, RNd

Xn1 = branch 1 of neutral stability curve
X S = streamwise position of stagnation point
X1 = downstream position of viscous computation
x, y, z = cartesian body axes, m
x1, x2, x3 = curvilinear coordinates
y = nodal displacements on the airfoil, Rn

Z0, Z1 = spanwise periodic interval boundaries
α, β = streamwise, spanwise wave number
αl = angle of attack, deg
γ = ratio of specific heats
η = wall-normal distance, m
κ = heat conductivity, dimensionless
λ = vector of Lagrange multipliers, Rm

μ, ν = dynamic, kinematic viscosities, dimensionless
ρ = density, kg/m3

σ = growth rate
ψ = sweep angle
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� = domain of discretized Euler equations
�B, �P = domains for mean flow and stability analysis
ω = angular frequency

Subscripts

e = boundary-layer edge
i = node index
i j = edge index
w = wall
0 = reference position
∞ = freestream

Superscripts

H = conjugate transpose
k = kth design
n + 1 = time level
T = transpose
0 = initial design
∗ = adjoint quantity
¯ = dimensionless mean flow quantity
ˆ = amplitude function
˜ = dimensionless disturbance quantity

I. Introduction

D RAG reduction for high-speed vehicles is a challenging task.
The use of laminar flow control techniques aims at delaying

the laminar–turbulent transition, which is known to reduce the vis-
cous drag coefficient. The research in the area regarding active flow
control is vast; see Joslin1 for a thorough review on the topic of
laminar flow control. Computational fluid dynamics (CFD)-based
design optimization has proved to be successful in reducing the
pressure drag at transonic flow regime; see, for example, Jameson.2

However, attempts to minimize the total drag by regular CFD-based
design optimization have relied on a fixed laminar–turbulent transi-
tion point or on the assumption that the flow is fully turbulent, as in
Ref. 3.

Laminar–turbulent transition in the boundary layer on aircraft
wings is usually caused by the breakdown of small disturbances that
grow as they propagate downstream. The amplification of these dis-
turbances can be analyzed using linear stability theory, in which it is
assumed that disturbances with infinitesimal amplitude are superim-
posed on the laminar mean flow. The growth rate of the disturbances
can then be used to predict the transition location using the so-called
eN method.4−6 Linear stability analysis has been used in some in-
vestigations with the aim of designing shapes such that the laminar
portion is increased. This approach is denoted as natural laminar
flow (NLF) design. In Ref. 7, a target pressure is found, based on a
simplified relation between pressure and N factor, which is used to
state an inverse problem to find a geometry that may delay transition.
In Ref. 8, a surface panel method was coupled with an approximative
boundary-layer calculation and linear stability analysis. However,
none of these investigations calculated the sensitivities based on the
linear stability analysis to formulate optimality conditions.

Both CFD-based shape optimization and flow control approaches
may be treated as optimization problems constrained by systems of
partial differential equations (PDEs). When an adjoint system of
partial differential equations is solved, the gradient of the objective
function can be obtained at a cost that is independent of the number
of parameters subject to the optimization. The use of adjoint equa-
tions in design optimization may be viewed as an offspring of the
theory of optimal control for PDE developed by Lions.9 Based on
this approach, the optimal shape of a body in Stokes flows was de-
rived by Pironneau10 in 1973. In 1988, Jameson11 formulated the ad-
joints of the full potential flow equations and of the Euler equations
to solve inverse problems. Thereafter, research teams have devel-
oped adjoint codes for the design of aircrafts with lower drag.12−21

The reader will find an introduction to the method of adjoints ap-
plied to aerodynamic design in Ref. 22. As mentioned earlier, an
approach of optimal NLF design is to formulate an inverse problem

in which the target pressure is designed to damp the amplification of
disturbances and the parameters of optimization describe the shape,
as in Refs. 23–25. Inverse problems of this kind were investigated
first by Lighthill26 and, through an optimal control approach, by
Jameson.11

In the present contribution, a CFD calculation is coupled to an
analysis of the growth rate of disturbances superimposed on the
laminar flow in the boundary layer. With this approach, the shape,
here an airfoil, can be optimized with respect to the energy of dis-
turbances for the purpose of delaying laminar–turbulent transition.
To relate the amplification of disturbances to the parameterization
of the shape, and to keep computational costs at a reasonable level,
the flow is divided into an inviscid outer flowfield and a viscous part
describing the boundary layer at the surface. In this way, the growth
rate of a disturbance superimposed on the boundary layer of a given
geometry (shape) can be calculated as follows:

1) The solution of the Euler equations provides a pressure distribu-
tion on the surface of the geometry defined by the design parameters.

2) The viscous mean flow is obtained by solving the boundary-
layer equations for compressible flows over infinite swept wings,
given the pressure distribution and the geometry.

3) The linear stability equations are solved given the viscous
mean flow and the geometry, providing the amplitude and phase of
a specific disturbance.

It has been shown by Pralits and Hanifi27 and Pralits et al.28 that
reducing a measure of the kinetic energy of a specific disturbance
causes a reduction of the total amplification of a large number of
disturbances, which can be assumed to represent a delay of the tran-
sition in the boundary layer. An optimal control approach provides
an efficient method for the calculation of the gradient of the afore-
mentioned measure by solving only three adjoint equation systems,
one for each of the aforementioned state equations.

The presentation is structured as follows: The state equation sys-
tems, objective functions, and systems of adjoint equations are pre-
sented in the next section. Details of the implementation, such as the
mesh movement algorithm and the parameterization, are presented
thereafter. This is followed by a summary of results on the accuracy
of the gradients computed by the present adjoint method. In another
section, the results of optimization of the airfoil RAE 2822 are pre-
sented. The first test aims at delaying only the transition, whereas
a second test simultaneously seeks the reduction of the pressure
drag and delay of the transition at constant lift and pitch moment
coefficients. All shapes are constrained in a set of feasible designs
that is presented in the implementation part. A summary and dis-
cussion section contains comments on the current achievements and
on future works. The coupling of the adjoint equation systems and
gradient expression are given in Appendix A.

II. Formulation of Design Optimization
A. Inviscid Flow

The program EDGE29 solves a node-centered and edge-based
finite volume approximation of the system of Euler equations, ex-
pressed here with dimensional flow quantities. The discretization
is based on a dual grid (Fig. 1). For an introduction to this type of
discretization, we refer to Barth.30 In steady state, the vectors of
conservative variables are solved by explicit time integration of the
system

Vi
dwi

dt
+ Ri = 0, ∀i ∈ V(�̄) (1)

Fig. 1 Inviscid flow compu-
tation and integrated normal
vector associated with edge ij:
- - - -, dual grid.
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until the residuals vanish within some tolerance, where

Ri =
∑
j ∈Ni

(ni j · fi j + di j ), ∀i ∈ V(�)

Ri =
∑
j ∈Ni

(ni j · fi j + di j ) + ni · f BC
i , ∀i ∈ V(∂�) (2)

The fluxes on a control surface associated with ni j are approximated
by fi j chosen here to give a central scheme because ( fi + f j )/2,
where fi = f (wi ) and

fi = [ρi ui , ρi ui ⊗ ui + I pi , ui (Ei + pi )]
T (3)

Convergence to steady state is accelerated by local time stepping
and the use of a multigrid. Expression (3) is calculated assuming an
ideal fluid and the law of perfect gas, which yields

pi = (γ − 1)
[

Ei − 1
2

(
m2

i

/
ρi

)]
(4)

An impermeability boundary condition, ui · ni = 0, is applied on the
wall boundary, yielding the boundary fluxes

f BC
i = [0, I pi , 0]T (5)

On a far-field boundary, the fluxes (3) are computed using the char-
acteristic primitive variables based on either the far-field data for
incoming characteristics, or on the flow data at the preceding time
step for outgoing characteristics,

vc
i (n̂i ) = L(n̂i , v∞)H(λi )L−1(n̂i , v∞)vi + L(n̂i , v∞)(I − H(λi ))

× L−1(n̂i , v∞)v∞ (6)

where L(n̂i , v∞) diagonalizes the Jacobian matrix of the flux in
primitive variables along the outward-directed unit normal n̂i , H(λi )
is a diagonal matrix whose diagonal is 0 for negative eigenvalues
and 1 for positive ones, and I is the identity matrix. The boundary
flux takes the form

f BC
i = f

(
vc

i (n̂i )
)

(7)

An artificial dissipation flux di j , a blend of second- and fourth-order
differences of the Jameson type, is used.

B. Viscous Flow
The flowfield considered here is the boundary layer on a

swept wing with infinite span, which is obtained by solving the
mass, momentum, and energy conservation equations for a vis-
cous compressible fluid. The equations are written in an orthog-
onal curvilinear coordinate system where x1, x2, and x3 are the
streamwise, spanwise, and wall-normal directions, respectively. A
length element, assuming an infinite swept wing, is defined by

ds2 =(h1 dx1)
2 + (dx2)

2 + (dx3)
2
, where

(h1)
2 =

3∑
j = 1

(
∂ X j

∂x1

)2

where X j are the Cartesian coordinates and xi the curvilinear coor-
dinates. The total flowfield Qtot is decomposed into a mean Q̄ and
a perturbation part Q̃ as

Qtot(x1, x2, x3, t) = Q̄(x1, x3) + Q̃(x1, x2, x3, t)

where Q̄ is one of the mean variables [Ū , V̄ , W̄ , P̄, T̄ , ρ̄] and Q̃ is
the corresponding disturbance variable among [Ũ , Ṽ , W̃ , P̃, T̃ , ρ̃].
The equations are derived for a quasi-three-dimensional mean flow
with zero variation in the spanwise direction. The evolution of con-
vectively unstable disturbances is analyzed in the framework of
the nonlocal stability theory. All flow and material quantities are
made dimensionless with the corresponding reference flow quan-
tities at a fixed streamwise position x0, except the pressure, which

is made dimensionless with twice the corresponding dynamic pres-
sure. The reference length scale is taken as l0 = (ν0x0/u0)

1/2, and the
Reynolds number and Mach number are defined as Re = l0u0/ν0 and
M = u0/(Rγ T0)

1/2, respectively. Here, l0, Re, and M are defined
using dimensional quantities.

1. Mean-Flow Equations
The dimensionless boundary-layer equations modeling the steady

viscous compressible mean flow on a swept wing with infinite span
written in primitive variable form are given as

1

h1

∂(ρ̄Ū )

∂x1
+ ∂(ρ̄W̄ )

∂x3
= 0 (8)

ρŪ

h1

∂Ū

∂x1
+ ρ̄W̄

∂Ū

∂x3
= − 1

h1

dP̄e

dx1
+ 1

Re

∂

∂x3

(
μ̄

∂Ū

∂x3

)
(9)

ρ̄Ū

h1

∂Ū

∂x1
+ ρ̄W̄

∂ V̄

∂x3
= 1

Re

∂

∂x3

(
μ̄

∂ V̄

∂x3

)
(10)

c̄p
ρ̄Ū

h1

∂ T̄

∂x1
+ c̄pρ̄W̄

∂ T̄

∂x3
= 1

RePr

∂

∂x3

(
κ̄

∂ T̄

∂x3

)

+ (γ − 1)

{
Ū M2

h1

dP̄e

dx1
+ μ̄M2

Re

[(
∂Ū

∂x3

)2

+
(

∂ V̄

∂x3

)2]}
(11)

Under the boundary-layer assumptions, the pressure is constant in
the direction normal to the boundary layer, that is, P̄ = P̄e(x1),
where subscript e denotes values at the boundary-layer edge. The
equation of state can then be expressed as γ M2 P̄e = ρ̄T̄ , and the
streamwise derivative of the pressure is given as

dP̄e

dx1
= −ρ̄eŪe

dŪe

dx1

Given a pressure distribution, given by the pressure coefficient

Cp = (pe − p∞)
/

1
2
ρ∞u2

∞

the values at the boundary-layer edge are given as

P̄e = (pe/p∞)(1/γ M2), T̄e/T̄∞ = (P̄e/P̄∞)(γ − 1)/γ

ρ̄e/ρ̄∞ = (P̄e/P̄∞)1/γ

Ūe = √
(Q̄2

e − V̄ 2
e ), and V̄e = sin ψ , where

P̄e

P̄∞
= pe

p∞
= 1 + 1

2
Cpγ M2, Q̄2

e = 1 + 1 − T̄ec̄p∞
(γ − 1) 1

2
M2

Here, we have used the assumptions that for an inviscid, steady, and
adiabatic flow, the total enthalpy is constant along a streamline and
that the isentropic relations are used to obtain the relation between
total and static quantities. A domain �B is defined for Eqs. (8–11)
such that x1 ∈ [X S, X1], x2 ∈ [Z0, Z1], and x3 ∈ [0, ∞). The no-slip
condition is used for the velocity components, and the adiabatic
wall condition is used for the temperature. In the freestream, the
streamwise and spanwise velocity components and the temperature
take the corresponding values at the boundary-layer edge. This can
be written as[

Ū , V̄ , W̄ ,
∂ T̄

∂x3

]
(x1, 0) = [0, 0, 0, 0], ∀x1 ∈ [X S, X1]

lim
x3 → +∞

[Ū , V̄ , T̄ ](x1, x3) = [Ūe, V̄e, T̄e](x1), ∀x1 ∈ [X S, X1]

Equations (8–11) are integrated in the downstream direction normal
to the leading edge with an initial condition given by the solution
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at the stagnation line. In the following sections, we denote the solu-
tion of the boundary-layer state Q̄ = (Ū , V̄ , W̄ , T̄ ) to simplify the
presentation.

2. Disturbance Equations
The evolution of convectively unstable disturbances is analyzed

in the framework of the nonlocal stability theory. The disturbances
analyzed here are assumed to be time- and spanwise periodic waves
as

Q̃(x1, x2, x3, t) = Q̂(x1, x3)�(x1, x2, t) (12)

where

�(x1, x2, t) = exp i

(∫ x1

X0

α(x ′) dx ′ + βx2 − ωt

)
Here, α is the complex streamwise wave number, β the real span-
wise wave number, and ω the real disturbance angular frequency.
Disturbances are superimposed on the mean flow at a streamwise
position denoted X0. We assume a scale separation Re−1 between
the weak variation in the x1 direction and the strong variation in the
x3 direction. Furthermore, it is assumed that ∂/∂x1 ∼O(Re−1) and
W ∼O(Re−1). When the ansatz (12) and the preceding assump-
tions are introduced in the linearized governing equations and the
terms are kept up to order O(Re−1), a set of nearly parabolic par-
tial differential equations, is derived.31−34 The system of equations,
called parabolized stability equations (PSE), are lengthy and are,
therefore, written here as

AQ̂ + B ∂Q̂
∂x3

+ C ∂2Q̂
(∂x3)2

+ D 1

h1

∂Q̂
∂x1

= 0 (13)

where Q̄ = [ρ̂, Û , V̂ , Ŵ , T̂ ]T . The coefficients of the 5 × 5 matri-
ces A,B, C, and D are found in Ref. 35. A domain �P for Eq. (13)
is defined such that x1 ∈ [X0, X1], x2 ∈ [Z0, Z1], and x3 ∈ [0, ∞).
The boundary conditions corresponding to Eq. (13) are given as

[Û , V̂ , Ŵ , T̂ ](x1, 0) = [0, 0, 0, 0], ∀x1 ∈ [X0, X1]

lim
x3 → +∞

[Û , V̂ , Ŵ , T̂ ](x1, x3) = [0, 0, 0, 0], ∀x1 ∈ [X0, X1]

To remove the ambiguity of having x1 dependence of both the am-
plitude and wave function in the ansatz, and to maintain a slow
streamwise variation of the amplitude function Q̂, a so-called aux-
iliary condition is introduced:∫ +∞

0

Q̂
H ∂Q̂

∂x1
dx3 = 0 (14)

Equation (13) is integrated in the downstream direction normal to the
leading edge with an initial condition given by local stability theory.
At each x1 position the streamwise wave number α is iterated such
that the condition given by Eq. (14) is satisfied. After a converged
streamwise wave number has been obtained, the growth rate based
on the disturbance kinetic energy is calculated from the relation

σ = −αi + ∂

∂x1

(
ln

√
Ê
)

where

Ê =
∫ +∞

0

ρ̄(|Û |2 + |V̂ |2 + |Ŵ |2) dx3

The growth rate can then be used to predict the transition location
using the so-called eN method.4−6 The N -factor based on the dis-
turbance kinetic energy of a single disturbance is given as

NE =
∫ X

Xn1

σ dx1

A complete description of Eq. (13) is found in Ref. 35, and the
numerical schemes used here are given in Ref. 36.

C. Problem of Optimal NLF Design
As discussed in the Introduction, our approach of aerodynamic

design optimization intends to reduce the viscous drag by delaying
the transition in the boundary layer. The objective function must,
therefore, include a measure related to the transition process. The
complete aerodynamic design, however, must minimize both the
viscous and pressure drag and include constraints on the lift and
pitch moment coefficients as well as on the feasible geometries.

1. Measure Related to Transition

One choice is to measure the kinetic energy of a certain dis-
turbance at a downstream position, for example, X f . This can be
written as

E f = 1

2

∫ z1

z0

∫ +∞

0

Q̃H MQQ̃h1 dx2 dx3
∣∣

x1 = X f
(15)

which means that the disturbance kinetic energy is calculated from
the disturbance velocity components. If the position X f is chosen
as the upper branch of the neutral curve, then the measure can be
related to the maximum value of the N factor of a given disturbance
as

Nmax = ln
√

E f /E0 (16)

If, in addition, the value of the N factor of the measured distur-
bance is the one that first reaches the transition N factor, then the
position can be related to the onset of laminar–turbulent transition.
It is, however, not clear, a priori, that minimizing such a measure
will damp the chosen or other disturbances in the whole unstable re-
gion, especially if different types of disturbances are present, such as
Tollmien–Schlichting (TS) and crossflow waves. For Blasius flow,
it has been shown that an objective function based on a single TS
wave is sufficient to damp successfully the amplification of other
TS waves; see Pralits et al.28 and Airiau et al.37 On a wing, how-
ever, it is common that both TS and crossflow waves are present
simultaneously.

An alternative is, therefore, to measure the kinetic energy as the
streamwise integral over a defined domain. When such an approach
is used, several different disturbances can be accounted for, with
respective maximum growth rates at different positions. This has
shown to be successful in an optimal control problem using mean
flow suction as control variable; see Pralits and Hanifi.27 The size
of K disturbances superimposed on the mean flow at an upstream
position X0 is measured by their total kinetic energy as

EK = 1

2

K∑
k = 1

∫ Xme

Xms

∫ z1

z0

∫ +∞

0

Q̃H
k MQQ̃kh1 dx1 dx2 dx3 (17)

Here Xms and Xme are the first and last streamwise positions between
which the disturbance kinetic energy is integrated, and they add the
possibility to evaluate EK in a streamwise domain within [X0, X1].

2. Objective Functions
In a first approach, the objective function J is the total distur-

bance kinetic energy of a single disturbance (17), here using the
disturbance that gives the largest value of E1. The objective func-
tion depends explicitly on Q̃ and on the shape of the airfoil �:

J = E1(≡ J (Q̃, �)) (18)

Constraints are further imposed on the feasible designs to produce
smooth shapes and to enforce geometric features. These are constant
cross-sectional area, fixed trailing edge, and a fixed region of the air-
foil around the leading edge. The last is applied to a region between
0 of the chord length and Xms (given in Table 1) and is meant to elim-
inate variations in the location of the stagnation point, which, in the
current state of development of our codes, could not be accounted
for in the sensitivity of the propagation of the disturbances.

A second objective function JC is considered to delay simulta-
neously the transition; reduce the pressure drag; and, in addition,
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Table 1 Optimization tests description

Objective Re∞, [f , β] [Xms , Xme]

Case function M∞ × 10−6 [kHz, 1/m] × 102

T11 J (= E1) 0.734 17 [15.5, 0] [4.3, 45]
T12 J (= E1) 0.734 6.5 [11, 500] [4.3, 45]
T31 JC 0.734 17 [15.5, 0] [4.3, 45]
T32 JC 0.734 6.5 [11, 500] [4.3, 45]

penalize changes in the coefficients of lift and pitch moment. The
geometrical constraints are identical to the first type of optimization
described earlier. This second objective function is defined as

JC = λU E1 + λDCD + 1
2
λL

(
CL − C0

L

)2 + 1
2
λM

(
CM − C0

M

)2
(19)

where the drag, lift, and pitch moment coefficients are calculated
only from the inviscid flow as

CD =
∑

i ∈V(∂�w)

pi ni · dD

1
2
ρ∞u2

∞Sref

, CL =
∑

i ∈V(∂�w)

pi ni · dL

1
2
ρ∞u2

∞Sref

CM =
∑

i ∈V(∂�w)

pi dM · (xi − Oref) × ni

1
2
ρ∞u2

∞Sref L ref

(20)

where dD is a unit vector in the direction of the far-field velocity,
dD = −v∞/|v2

∞|; dL is a unit vector orthogonal to dD ; and dM is a
unit vector orthogonal to dD and dL . Note that this second objective
function depends explicitly on the modeled disturbance Q̃, on the
shape �, and on the solution of the inviscid flow w.

D. Gradient Calculation
The minimization of objective function (18) by gradient-based

optimization requires the gradient, denoted ∇ J , with respect to the
variables of design (for a given parameterization of �). It is shown
in Appendix A that the adjoint approach used here enables an ef-
ficient computation of ∇ J . The coupling between the solutions of
the three adjoint equation systems is described in the next section.
Additional details of the gradient computation are discussed in the
section “Implementation.”

The gradient of objective function (19) is a linear combination of
the gradients of E1(≡J ), CD , CL , and CM . We refer to Amoignon38

for the calculation of the gradients of the drag, lift, and pitch moment
coefficients using the discrete adjoint of the Euler equations.

The contribution from the boundary layer and stability analysis
to the gradient of the objective function [the three first terms in
Eq. (A31)] with respect to the surface nodes is given hereafter. A
variation of the objective function with respect to the scale factors
of the curvilinear coordinates is written

δ J =
〈

1

2
Q̃H

1 MQQ̃1, δh1

〉
+

〈(
∂Q̂∗

∂x3

)H

A1Q̂

+ Q̂∗H

(
A2

∂Q̂
∂x3

+ A3Q̂ + A4

1

h1

∂Q̂
∂x1

)
, δh1

〉

+
〈

W̄ ∗ 1

h1

∂(ρ̄Ū )

∂x1
+ V̄ ∗ ρ̄Ū

h1

∂ V̄

∂x1
+ Ū ∗

(
ρ̄Ū

h1

∂Ū

∂x1
+ 1

h1

dPe

dx1

)

+ T̄ ∗
(

cp
ρ̄Ū

h1

∂ T̄

∂x1
− (γ − 1)

Ū M2

h1

dPe

dx1

)
, δh1

〉
(21)

where

〈·, ·〉 =
∫ X1

X0

∫ Z1

Z0

∫ +∞

0

dx1 dx2 dx3

The nonzero elements of the 5 × 5 matrices A1,A2,A3, and A4 are
given in Appendix B. For an infinite swept wing, the scale factor h1

can be written

h1 = 1 + x3
{|y′′

w|/[
1 + (y′

w)2
] 3

2
}

Here, yw = yw(xw), prime denotes derivative, and xw and yw are the
streamwise and wall-normal coordinates of the surface. A variation
of h1 = h1[yw(xw)] gives

δh1 = ∂h1

∂yw

δyw + ∂h1

∂yw

∂yw

∂xw

δxw

which is then substituted into expression (21).
The variation of the objective function corresponding to a vari-

ation of the solution of the Euler equations alone [last term in
Eq. (A31)] due to a variation δX of the nodal coordinates in the
entire Euler grid is given here in terms of the variation in the normal
vectors associated with the control volumes,

δ J = −
∑

i j ∈E(�̄)

(
w∗

i − w∗
j

)T
fi j · δni j −

∑
i ∈V(∂�h )

w∗
i

T f BC
i · δni (22)

Expression (22) is used to obtain the variation of the objective func-
tion with respect to a variation in the nodes coordinates by expressing
δn in terms of δX; see Amoignon.38

E. Adjoint of Viscous Flow Equations
1. Adjoint of PSE

The adjoint of the PSE (13) and (14) are derived using a contin-
uous approach. The derivation in Ref. 35 yields

ÃQ̂∗ + B̃ ∂Q̂∗

∂x3
+ C̃ ∂2Q̂∗

(∂x3)2
+ D̃ 1

h1

∂Q̂∗

∂x1
= S∗

P (23)

∂

∂x1

∫ +∞

0

Q̂∗H

(
∂A
∂α

+ ∂B
∂α

)
Q̂h1 dx3

= 0, ∀x1 /∈ [Xms, Xme]

= −i |�|2
∫ +∞

0

Q̂
H

MQQ̂h1 dx3, ∀x1 ∈ [Xms, Xme] (24)

where

S∗
P =

⎧⎪⎪⎨⎪⎪⎩
−ᾱ∗ ∂Q̂

∂x1
− ∂(α∗Q̂)

∂x1
, ∀x1 /∈ [Xms, Xme]

−ᾱ∗ ∂Q̂
∂x1

− ∂(α∗Q̂)

∂x1
+ M H

Q Q̂|�|2, ∀x1 ∈ [Xms, Xme]

and the 5 × 5 matrices Ã, B̃, C̃, and D̃ are found in Ref. 35. Here,
Q̂∗ = [ρ̂∗, Ū ∗, V̂ ∗, Ŵ ∗, T̂ ∗]T , and the preceding equations are sub-
ject to the following boundary conditions:

[Û ∗, V̂ ∗, Ŵ ∗, T̂ ∗](x1, 0) = [0, 0, 0, 0], ∀x1 ∈ [X0, X1]

lim
x3 → +∞

[Û ∗, V̂ ∗, Ŵ ∗, T̂ ∗](x1, x3) = [0, 0, 0, 0], ∀x1 ∈ [X0, X1]

The initial conditions are

Q̂∗(X1, x3
) = 0 ∀x3 ∈ [0, +∞)

α∗(X1) = 0 ∀x3 ∈ [0, +∞)

Equation (23) is solved by backward integration in the streamwise
direction. Reusing the code developed for the PSE, we solve the
adjoint PSE iteratively to satisfy the auxiliary condition (24) for α∗

at each streamwise position.
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2. Adjoint of Boundary-Layer Equations
The adjoint of the boundary-layer equations (8–11) are derived

using a continuous approach. The derivation in Refs. 27 and 39
yields

ρ̄
∂(h1W̄ ∗)

∂x3
− h1ρ̄

(
∂Ū

∂x3
Ū ∗ + ∂ V̄

∂x3
V̄ ∗ + c̄p

∂ T̄

∂x3
T̄ ∗

)
= S∗

W (25)

∂(ρ̄ŪŪ ∗)
∂x1

+ ∂(h1ρ̄W̄Ū ∗)
∂x3

+ (γ − 1)M2 dP̄e

dx1
T̄ ∗

− ρ̄

(
∂Ū

∂x1
Ū ∗ + ∂ V̄

∂x1
V̄ ∗ − ∂W̄ ∗

∂x1
+ c̄p

∂ T̄

∂x1
T̄ ∗

)
− 2(γ − 1)

Re
M2 ∂

∂x3

(
h1μ̄

∂Ū

∂x3
T̄ ∗

)
+ 1

Re

∂

∂x3

(
μ̄

∂(h1Ū ∗)
∂x3

)
= S∗

U (26)

∂(ρ̄Ū V̄ ∗)
∂x1

+ ∂(h1ρ̄W̄ V̄ ∗)
∂x3

− 2(γ − 1)

Re
M2 ∂

∂x3

(
h1μ̄

∂ V̄

∂x3
T̄ ∗

)
+ 1

Re

∂

∂x3

(
μ̄

∂(h1V̄ ∗)
∂x3

)
= S∗

V (27)

c̄p
∂(ρ̄Ū T̄ ∗)

∂x1
+ c̄p

∂(h1ρ̄W̄ T̄ ∗)
∂x3

+ ρ̄Ū

T̄

(
∂Ū

∂x1
Ū ∗ + ∂ V̄

∂x1
V̄ ∗ − ∂W̄ ∗

∂x1

)
+ ρ̄Ū

T̄
c̄p

∂ T̄

∂x1
T̄ ∗ + κ̄

RePr

∂2(h1T̄ ∗)
(∂x3)2

+ (γ − 1)

Re
M2 dμ̄

dT̄

[(
∂Ū

∂x3

)2

+
(

∂ V̄

∂x3

)2]
T̄ ∗

− 1

Re

dμ̄

dT̄

[
∂Ū

∂x3

∂(h1Ū ∗)
∂x3

+ ∂ V̄

∂x3

∂(h1V̄ ∗)
∂x3

]
= S∗

E (28)

where the right-hand side S∗
B = [

S∗
W , S∗

U , S∗
V , S∗

E

]T
is given as

S∗
B =

{
[FW , FU , FV , FT + FW (W̄/T̄ )]T h1, ∀x1 ∈ (X0, X1)

0, ∀x1 ∈ (X S, X0]

The nonzero right-hand side is the coupling between the adjoint
parabolized stability equations (APSE) and the adjoint boundary-
layer equations (ABLE) and expresses the sensitivity of the PSE with
respect the variations in W̄ , Ū , V̄ , and T̄ , respectively. A detailed
description is found in Ref. 39. The preceding equations are subject
to the boundary conditions[

Ū ∗, V̄ ∗,
∂(h1T̄ ∗)

∂x3

]
(x1, 0) = [0, 0, 0], ∀x1 ∈ [X0, X1]

lim
x3 → +∞

[Ū ∗, V̄ ∗, W̄ ∗, T̄ ∗](x1, x3) = [0, 0, 0, 0], ∀x1 ∈ [X0, X1]

Equations (25–28) are solved by backward integration in the stream-
wise direction with the initial condition given at x1 = X1 as

Q̄∗(X1, x3) = 0 ∀x3 ∈ [0, +∞)

The Euler and the boundary-layer equations are coupled through the
pressure distribution Pe and the mesh given by the nodal coordinates
X. A variation of the geometry that affects the Euler solution will,
therefore, appear as variations of the pressure distribution in the
boundary-layer equations, which consequently will affect the solu-
tion of the stability equations. Pralits et al.28 considered an optimal
control problem using the pressure distribution as control variables
and the total disturbance kinetic energy as the objective function.
From the coupled APSE and ABLE for incompressible flows, an ex-
pression was derived for the gradient of the objective function with
respect to the pressure distribution. From the present APSE and

ABLE, a similar expression valid ∀x1 ∈ (X S, X1) can be evaluated
as

∂ J

∂ P̄
=

∫ +∞

0

[
−∂Ū ∗

∂x1
+ (γ − 1)M2 ∂(T̄ ∗Ū )

∂x1

]
dx3 (29)

Setting the Mach number equal to zero in expression (29), we find
exactly the same expression as the one derived in Ref. 28. Note
that a variation of X will also affect the nodal coordinates of the
boundary-layers equations (BLE) and PSE. This can be seen in
expression (A31) in Appendix A.

F. Adjoint of Inviscid Flow Equations
The adjoint of the discretized Euler equations (1) and (2) are

solved following the same technique used for solving the Euler
equations, namely, explicit time integration of the system

Vi
dw∗

i

dt
+ R∗

i = 0, ∀i ∈ V(�̄) (30)

until the residuals R∗
i vanish within some tolerance. The complete

derivation based on discrete sensitivities can be found in Ref. 38.
The following gives expression for the adjoint residuals:

R∗
i =

∑
j ∈Ni

[
∂( fi · ni j )

∂wi

]T (
w∗

i − w∗
j

)
2

+
∑
j ∈Ni

d∗
i j , ∀i ∈ V(�)

R∗
i =

∑
j ∈Ni

[
∂( fi · ni j )

∂wi

]T (
w∗

i − w∗
j

)
2

+
∑
j ∈Ni

d∗
i j

+
[

∂
(

f BC
i · ni

)
∂wi

]T

w∗
i , ∀i ∈ V(∂�)

R∗
i =

∑
j ∈Ni

[
∂( fi · ni j )

∂wi

]T (
w∗

i − w∗
j

)
2

+
∑
j ∈Ni

d∗
i j

+
[

∂
(

f BC
i · ni

)
∂wi

]T

w∗
i − g∗

i , ∀i ∈ V(∂�o) (31)

where V(∂�o) is the set of nodes at which the pressure Pe is mea-
sured, according to the definition of the BLE (8–11). The term g∗

i
in Eq. (31) relates the solution of the ABLE, via Eq. (29), to the
adjoint of the inviscid flow equations (30). This term is defined in
Appendix A as the right-hand side of Eq. (A30). The flux d∗

i j , ad-

joint of the artificial dissipation flux di j , is obtained by freezing the
artificial viscosities; see Amoignon.38 A similar freezing of the co-
efficients in the far-field boundary conditions yields the following
expression for the Jacobian of the far-field flux:

∂
(

f BC
i · ni

)
∂wi

= ∂( f · ni )

∂vi
L(n̂i , v∞)H(λi )L−1(n̂i , v∞)

dvi

dwi
(32)

The Jacobian of the Euler wall flux function is

∂
(

f BC
i · ni

)
∂wi

= (γ − 1)

[
1

2
|ui |2, −ui , 1

]T

(33)

III. Implementation
Objective function (18) depends on the shape, defined by the nodal

coordinates X, and, implicitly, on the pressure Pe calculated from
the discretized Euler equations (1) and (2). As mentioned earlier,
the adjoint of the Euler equations is derived based on the discrete
sensitivities. Thus, any modification of the mesh may perturb the
solution of the inviscid flow, which, in turn, would perturb the so-
lutions of the BLE, the PSE, and the value of J . The gradient of J
as a function of X is denoted ∇ JX in Appendix A.
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For the sake of simplicity, each node on the airfoil can only be
displaced in the direction normal to the airfoil at initial design. Fur-
thermore, to retain mesh quality, when the airfoil shape is changed,
we use a mesh movement mapping to deform the mesh also inside
the domain of computation for the Euler equations. In the following
text, an adjoint of the mesh movement mapping yields the gradient
∇ Jy of J as a function of the normal displacements on the airfoil y.
We use a particular parameterization of the airfoil normal displace-
ments y that simultaneously imposes the geometric constraints and
enforces smoothness. An adjoint of the mapping that defines the
parameterization yields an expression for the gradient of J with
respect to the variables of design a, denoted ∇ Ja .

A. Mesh Displacements
In the current study, an explicit affine mapping is used to propagate

changes smoothly in the geometry to the entire Euler mesh. It is
formulated as

Xk = X 0 + Lyk (34)

Given a function JX of the nodal coordinates, expression (34) may
be used to define a function Jy( y) ≡ JX (X( y)) of the normal dis-
placements y on the airfoil. The chain rule yields the gradient of Jy

by the matrix–vector product

∇ Jy = LT ∇ JX (35)

We used a C-type mesh, a mesh that has smooth grid lines normal
to the airfoil, because it makes the derivation of sparse matrices
L easier; see Amoignon et al.40 for details. Other mesh deforma-
tion algorithms will be necessary for meshes not having a special
structure.

B. Parameterization and Geometric Constraints
In shape optimization, the combination of gradient methods and

piecewise polynomial interpolations, such as B-splines, may induce
oscillations in the shapes, as investigated by Frank and Shubin.41 In
the current approach, smooth shapes are obtained, together with (lin-
ear) geometric constraints, by taking the vectors of normal displace-
ments y as solution of a quadratic programming problem (QP)38 of
the form

y =
{

min
v ∈ Rn

1
2
vT Asv − vT Msa

CT v = b (36)

where the columns of C are the gradients of the constraints im-
posed on the displacements. In the case without geometric con-
straints [m = 0 in Eq. (36)], the solution to Eq. (36) is solution of
the discretized Poisson problem

As ỹ = Msa (37)

along the surface of the airfoil. Adding constraints [m ≥ 1 in
Eq. (36)] means that the solution of Eq. (36) fulfills exactly the
relations

CT y = b (38)

and, according to some norm, y is the closest to the solution of the
discretized Poisson problem. It is a known result of optimization
theory,42 that the solution of the QP (36) is obtained by solving the
Karush–Kuhn–Tucker system(

As −C

−CT 0

)(
y

λ

)
=

(
Msa

−b

)
(39)

When expression (39) is used, the design variables becomes the
right-hand-side vectors a and b. Given the gradient ∇ Jy of expres-
sion (35), we can calculate the gradient with respect to the design
variables a and b by first solving the adjoint problem(

AT
s −C

−CT 0

)(
y∗

λ∗

)
=

(∇ Jy

0

)
(40)

Fig. 2 Flowchart for case of minimizing disturbance kinetic energy
without aerodynamic constraints.

and then evaluating

∇ Ja = MT
s y∗, ∇ Jb = −λ∗ (41)

see Amoignon.38

C. Optimization Algorithm
Aerodynamic constraints (lift and pitch), when used, are incorpo-

rated in the objective function via a simple penalization technique
(19). Geometrical constraints (fixed volume, fixed trailing edge, and
fixed geometry around a portion of the leading edge) are handled
via the preceding parameterization. Furthermore, the geometric con-
straints are here equalities, so that the right-hand side b in Eq. (36)
is a constant vector. The only control parameter used in our appli-
cations is, therefore, the vector a.

This unconstrained optimization algorithm can, therefore, be
solved using a regular quasi-Newton method [Broyden–Fletcher–
Goldfarb–Shanno (BFGS) method] with a line search algorithm.

Figure 2 shows the order of the various computations that are
needed for derivative calculations in the optimal NLF design. The
design k + 1 is obtained from the optimization routine after possibly
one or several objective functions and only one gradient evaluation
due to the use of the Goldstein conditions in the line search algo-
rithm; see Nocedal and Wright.42

IV. Numerical Tests
Sufficient gradient accuracy is a critical issue in optimization. The

first-order necessary optimality condition is satisfied if the gradient
of the objective function or the Lagrangian vanishes. Difficulties
related to low accuracy, such as to find descent directions even far
from the optimal design, are quite common. There are two pos-
sible sources of inaccuracy in our calculation of the gradient. As
mentioned earlier, the derivation of the adjoint of the discretized
Euler equations makes use of an approximation because it does not
linearize the coefficients of the second-order artificial dissipation.
Moreover, the adjoint equations of the BLE and PSE are derived
from the continuous state equations. Numerical tests are carried out
in Ref. 40.

The accuracy of the gradient at a design point a can be analyzed by
comparing the value obtained by computation of adjoint problems
∇ Ja with an estimate by finite differences (FD),

(∇ Ja)
FD
k ≈ Ja(a + εaek) − Ja(a − εaek)

2εa
(42)

where ek is the vector having component k = 1 with all other com-
ponents being 0. Several calculations of (∇ Ja)

FD
k are commonly

performed, using different values of εa to find the best compromise
between accuracy and rounding errors, the last being inherent to the
FD method. The relative error between the gradient obtained by the
adjoint method ∇ Ja and the one approximated by FD ∇ Ja can be
calculated as

err∇ Ja =
∥∥∇ Ja − (∇ Ja)

FD
∥∥∥∥(∇ Ja)FD

∥∥ (43)

where ‖ ‖ denotes the norm in Rn defined by the dot product.
The tests are performed using a C-type mesh of the RAE 2822

airfoil at Mach number M∞ = 0.734. The size of the mesh is 13,352
nodes with 224 nodes on the airfoil. FD approximations of the gra-
dient given by expression (42) are noted FD. The objective function
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Fig. 3 Gradients of disturbance kinetic energy calculated by the meth-
ods: ——, FD; · · · ·, ADJ1; and - - - -, ADJ2; ADJ3 is not shown;
M∞ = 0.734.

in all tests performed here is Eq. (18). The gradient ∇ Ja is calcu-
lated from the gradient ∇ JX Eq. (A31) as described in the preceding
section. The gradient ∇ JX is given by expression (A31),

∇ JX = ∂ JQ̄

∂X
−

(
∂Aq

∂X

)∗
Q̃∗ +

(
∂AQ

∂X

)∗
Q̄∗︸ ︷︷ ︸

continuous

−
(

∂Aw

∂X

)∗
w∗︸ ︷︷ ︸

discrete

As outlined earlier, the gradient is evaluated from three systems of
adjoint equations that are solved in the following order:

APSE → ABLE︸ ︷︷ ︸
continuous

→ adjoint Euler︸ ︷︷ ︸
discrete

The APSE and ABLE are derived using the continuous approach,
whereas the adjoint Euler is derived using the discrete approach.
The influence on the accuracy of the different approaches and of
the different terms in the preceding gradient expression is summa-
rized here by comparing different ways of calculating ∇ JX (and,
therefore, ∇ Ja):

1) For ADJ1, the terms denoted continuous in the preceding ex-
pression of ∇ JX are neglected. The error (43) is 17.2%.

2) For ADJ2, ∇ JX is computed as in FD–ADJ1, but the right-
hand side (∂ J/∂w) of the adjoint Euler equations is approximated
by FD, where the pressure on the shape is considered as a design
variable for the system BLE–PSE. The error (43) is 4.95%.

3) For ADJ3, the right-hand side of the adjoint Euler equations is
computed as in FD–ADJ2, and the terms denoted continuous in the
preceding expression of ∇ JX are calculated by FD. The error (43) is
reduced by 0.1% compared to that obtained by comparing FD with
ADJ2.

The gradients obtained by the methods FD, ADJ1, and ADJ2 are
shown in Fig. 3. The use of FD for computing the right-hand side
of the adjoint Euler equations is a discrete approach. Therefore, the
comparison of the test FD–ADJ1 with the test FD–ADJ2 indicates
the error due to the use of a continuous approach for the derivation of
the adjoint systems ABLE and APSE. This error is here largely due
to a too coarse distribution of the nodes in the streamwise direction
when solving the BLE, PSE, and their adjoint systems, as discussed
in Ref. 40.

The test FD–ADJ3, compared to FD–ADJ2, indicates that ne-
glecting the terms denoted continuous in ∇ JX has only small effects.

In the following text, ∇ JX is computed as in FD–ADJ1, that is,
neglecting the explicit continuous terms (terms indicated as con-
tinuous in the preceding expression of ∇ JX ) and computing the
right-hand side of the adjoint Euler equations from the solutions of
the adjoint PSE and BLE.

V. Optimization Results
Results are presented here for the minimization of the objective

functions presented earlier. The discretization of the three state equa-
tions are based on the grid described in the preceding section. The
test cases are summarized in Table 1. The thermodynamic proper-

Fig. 4 N-factor values for 165 modes (dots) for cases T12 and T32
(Table 1) at original design.

ties for the different cases correspond to two different altitudes such
that the TX1 cases are given at 0-m above sea level (ASL) and the
TX2 cases are given at 9600-m ASL. Note here that upstream and
downstream positions of the domain where the stability equations
are solved are chosen as X0 = Xms and X1 = Xme.

A. Analysis of Disturbance Amplification
A stability analysis of a large number of modes with different fre-

quencies f and spanwise wave numbers β, corresponding to differ-
ent wave angles, is performed before each optimization case, on the
original design and for the chosen flow conditions. The correspond-
ing N factors are calculated from these results, and the optimization
uses the mode that has the largest N -factor value with respect to all
other modes. The reason of this particular choice is that it has been
shown in previous studies on optimal control27,28 that a control that
successfully decreases the amplification of a single disturbance also
has a damping effect on other instability waves of the same type.
It is common in transition prediction to compute the envelope or
envelopes (EOE) of the N -factor curves, that is, the envelope over
both frequency and spanwise wave number. Transition is then as-
sumed to occur at the position where the EOE curve first attains an
empirically determined value. This curve also serves as a measure
of the efficiency of a control or design, computed by minimizing a
single disturbance on a large number of disturbances.

An example of results from the analysis discussed here is shown
in Fig. 4. The example concerns the initial design with a freestream
Mach number M∞ = 0.734, Reynolds number Re∞ = 6.5 × 106,
and angle of attack αl = 2.1875 deg. A total of 165 modes
have been analyzed with dimensional frequency f = [5, 20] kHz
(� f = 1 kHz) and spanwise wave number β = [0, 2500] 1/m
(�β = 250 1/m). This choice of spanwise wave number corresponds
to wave angles between 0 and 85 deg. The wave angle is defined as
the angle between the wave number vector k and the inviscid stream-
line. The corresponding N -factor values of all modes are given by
dots. The mode chosen to be used in the optimization is given by
the solid line and the EOE curve by the dash line. The values of f
and β given here are used for all EOE analyses made in this paper.

B. Analysis of Results Using Reynolds-Averaged
Navier–Stokes Calculations

Viscous calculations using the Reynolds-averaged Navier–Stokes
(RANS) equations are also carried out with EDGE23 before and
after the optimization tests. These results are used to compare the N
factors based on the pressure distribution obtained from the viscous
calculation with those that are computed using the Euler pressure
distribution. The turbulence model used in the RANS calculations
is the EARSM by Wallin and Johansson43 together with the k−ω
model. These calculations are also used to indicate what degree
of reduction of the viscous drag can be achieved by the present
approach. The C-type grid for the RANS calculations has the size
22,088 nodes with 224 nodes on the airfoil.

An attempt has been made to use the N -factor results of the ini-
tial and final design to determine the respective transition location.
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These results have been used as input to the RANS calculations of
the initial and final design.

The transition position on the upper side of the initial design was
taken as the streamwise position corresponding to the maximum
value of the EOE curve of the N factors computed using the pressure
distribution from the Euler solution. Because the EOE curves of the
final designs were lower in magnitude compared to the initial ones,
the transition location of the final designs was set as the downstream
position of the computational domain of the boundary layer and
stability analysis. The same transition position was used on the lower
side, both for the initial and final designs. Note that the transition
location for the initial design is not based on experimental results.
A common reference for the RAE 2822 airfoil is Ref. 44, in which
the boundary layer was tripped at 3% chord in the experiments to
have a well-defined turbulent portion.

C. Minimization of J, Equation (18)
1. Case T11

Results of the T11 case are shown in Fig. 5. The convergence
history is given in terms of the objective function and gradient

a) Objective function

b) Pressure coefficients

c) Norm of gradient of objective function

d) Airfoils

e) Envelope of envelope of N-factor curves

Fig. 5 T11, comparison between ——, initial and - - - -, final design; pressure and EOE of N-factor curves involving RANS equations for –·–·–, initial
and · · · · ·, final design.

norm as functions of the iteration number. The optimization was
stopped when the BLE solver failed to converge. This occurred as
the changes in the geometry caused the shock wave to move into
the computational domain of the BLE. The strong adverse pressure
gradient due to the shock wave cannot be handled using the BLE
because they do not model separation. This can be seen in Fig. 5,
where the pressure coefficient and geometry for the initial and final
design are plotted. At final design, the central upper part of the wing
is thinner, measuring the thickness as the distance of a point on the
airfoil to the chord. Therefore, because of the fixed region around
the leading edge, the region between 4.3% of the chord length, from
the leading edge, up to about 30% of the chord length, situated on
the upper part, has a higher curvature at final design than at initial
design. An increase of the curvature of a wall boundary is known to
reduce the pressure in the fluid flow. This may be the effect that can
be observed in Fig. 5, where the pressure coefficient at final design
has decreased (−Cp is increased) in the region between 10% of the
chord length, from the leading edge, up to about 30% of the chord
length, in comparison to the initial design. In this way, a pressure
gradient is obtained that damps the amplification of disturbances as
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is explained hereafter. However, the faster decrease of the pres-
sure may be responsible for the shock moving upstream. Note
that the deformation of the lower part of the wing is only due to
the constraint that imposes a constant volume. The effect on the
disturbance amplification can be seen in Fig. 5, where the EOE
curves have been plotted for the initial and final design. A large
damping of all modes has been achieved. This can be explained
by the change in pressure gradient from adverse to favorable in
a large part of the region where the disturbances are amplified.
Values of the drag, lift, and pitch moment coefficients for the ini-
tial and optimized designs are summarized in Table 2. The vis-
cous drag, obtained from the RANS calculations, is reduced by
six drag counts (where one drag count is 10−4), and, as could be
expected from earlier observations on the position of the shock,
the pressure drag is also decreased. However, this decrease is a
byproduct of the reduction of the disturbance kinetic energy. Large
changes in the lift and the pitch moment coefficients are observed,
and these effects are controlled by imposing constraints in case
T31.

a) Objective function

b) Pressure coefficients

c) Norm of gradient of objective function

d) Airfoils

e) Envelope of envelope of N-factor curves

Fig. 6 T12, comparison between ——, initial and - - - -, final design; pressure and EOE of N-factor curves involving RANS equations for –·–·–, initial
and · · · · ·, final design.

Table 2 Comparison of aerodynamic coefficients at initial
and final design for cases T11 and T31 (0 m ASL), using Euler

and RANS flow analysis

RANS
Euler,

Case Total Viscous Pressure pressure

Coefficient CD

Initial 2.09 × 10−2 3.35 × 10−3 1.76 × 10−2 1.3 × 10−2

T11 (final) 1.53 × 10−2 2.71 × 10−3 1.26 × 10−2 8.83 × 10−3

T31 (final) 1.78 × 10−2 2.36 × 10−3 1.54 × 10−2 1.04 × 10−3

Coefficient CL

Initial 8.39 × 10−1 −7.9 × 10−5 8.39 × 10−1 8.4 × 10−1

T11 (final) 6.34 × 10−1 −5.62 × 10−5 6.34 × 10−1 6.21 × 10−1

T31 (final) 8.48 × 10−1 −5.03 × 10−5 8.48 × 10−1 8.43 × 10−1

Coefficient CM

Initial 3.15 × 10−1 —— —— 3.4 × 10−1

T11 (final) 2.08 × 10−1 —— —— 2.19 × 10−1

T31 (final) 3.18 × 10−1 —— —— 3.37 × 10−1
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2. Case T12
Results of case T12 are given in Fig. 6. The decrease of the

objective function is of one order of magnitude smaller than it is
for case T11 (Fig. 5). The optimization is terminated here because
no further descent direction could be found. The magnitudes of the
deformations of the airfoil are smaller compared to case T11, but
the trend is similar. The change of the pressure gradient may be
caused by the local increase of the curvature on the upper part of the
wing, between 4.3 and 30% of the chord length downstream of the
leading edge. As a consequence, the shock is moved upstream. The
effect on the disturbance amplification can be seen in Fig. 6, where
the EOE curves have been plotted for the initial and final design.
A large decrease in disturbance amplification is obtained using the
optimized design, similar to the one found for the high Reynolds
number case T11. Also, this is due to the change in pressure gradient
from an adverse to favorable in the upstream part of the domain
where the disturbances become unstable. The shock wave has moved
as far upstream as in case T11.

Values of the drag, lift, and pitch-moment coefficients for the
initial and optimized designs are summarized in Table 3. The viscous
drag is there reduced by 6 drag counts, and, as in case T11, the
pressure drag is decreased and large changes occur in the lift and
the pitch moment coefficients.

a) Objective function

b) Disturbance kinetic energy

c) Pressure coefficients

d) Norm of gradient of objective function

e) Drag

f) Airfoils

g) Lift and pitch moment

h) Envelope of envelope of N-factor curves

Fig. 7 Case T31, comparison between ——, initial and - - - -, final design; pressure and EOE of N-factor curves involving RANS equations for
–·–·–, initial and · · · · ·, final design.

D. Minimizing JC, Equation (19)
1. Case T31

Results of case T31 are shown in Fig. 7. The objective func-
tion is decreased in each step of the optimization, even though the
component of the wave drag is increased between iteration num-
bers 1 and 2. The reason for the increase is that in this interval the
deviation of lift and pitch-moment coefficients is decreased. A re-
duction has been obtained at the last iteration in both disturbance
kinetic energy and wave drag, whereas the lift and pitch moment
coefficients are kept within 1%. The shock wave on the upper side
has moved upstream and is weakened. In comparison with case
T11, which has the same initial conditions, the displacement of the
shock in case T31 is smaller, but the changes in case T31 preserve
the pitch-moment and lift coefficients near to their values at initial
design.

The effect on the disturbance amplification can be seen in Fig. 7,
where the EOE curves have been plotted for the initial and final
design. A damping of the disturbance amplification is obtained in
a large part of the computational domain at final design. Note from
Fig. 7 that the adverse pressure gradient of the initial design, in the
upstream region where the disturbances become unstable, has be-
come zero or weakly favorable in the final design. Close to the shock
wave of the final design, which has now moved farther upstream,



1020 AMOIGNON ET AL.

a) Objective function

b) Disturbance kinetic energy

c) Pressure coefficients

d) Norm of gradient of objective function

e) Drag

f) Airfoils

g) Lift and pitch moment

h) Envelope of envelope of N-factor curves

Fig. 8 T32, comparison between ——, initial and - - - -, final design; pressure and EOE of N-factor curves involving RANS equations for –·–·–, initial
and · · · · ·, final design.

the flow is decelerated. This can be seen in the EOE curve where
the value increases rapidly above that of the initial design.

Values of the drag, lift, and pitch-moment coefficients for the ini-
tial and optimized designs are summarized in Table 2. The decrease
of the viscous drag is somewhat larger than for case T11, but the
decrease of the pressure drag is smaller. However, the lift and pitch-
moment coefficients are maintained very near to their initial values.

2. Case T32
Results of case T32 are presented in Fig. 8. The convergence his-

tory for the lower Reynolds number case T32 is similar compared
to the one found for case T31. Also, here the wave drag experiences
an increase during one optimization step, whereas the deviation of
lift and pitch-moment coefficients decreases. In comparison with
case T12, which has the same initial conditions, the displacement
of the shock is smaller, but the pressure distribution in case T32
penalizes changes in the coefficients of lift and pitch moment. A
decrease occurs in the N -factor values in both results showing the
EOE curves of the final design. This can be explained by the change

Table 3 Comparison of aerodynamic coefficients at initial
and final design for cases T12 and T32 (9600 m ASL), using

Euler and RANS flow analysis

RANS
Euler,

Case Total Viscous Pressure pressure

Coefficient CD

Initial 2.3 × 10−2 4.8 × 10−3 1.8 × 10−2 1.3 × 10−2

T12 (final) 1.62 × 10−2 4.20 × 10−3 1.20 × 10−3 7.00 × 10−3

T32 (final) 1.92 × 10−2 3.72 × 10−3 1.54 × 10−2 8.69 × 10−3

Coefficient CL

Initial 8.4 × 10−1 −7.9 × 10−5 8.4 × 10−1 8.4 × 10−1

T12 (final) 6.87 × 10−1 −8.00 × 10−5 6.87 × 10−1 6.72 × 10−1

T32 (final) 8.68 × 10−1 −8.3 × 10−5 8.68 × 10−1 8.51 × 10−1

Coefficient CM

Initial 3.2 × 10−1 —— —— 3.4 × 10−1

T12 (final) 2.29 × 10−1 —— —— 2.44 × 10−1

T32 (final) 3.21 × 10−1 —— —— 3.38 × 10−1
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in pressure gradient from adverse to zero or favorable in a large part
of the region where the disturbances are amplified.

Values of the drag, lift, and pitch-moment coefficients for the ini-
tial and optimized designs are summarized in Table 3. The decrease
of the viscous drag is larger than for case T12, and the decrease of the
pressure drag is smaller than for case T12, but the lift and the pitch-
moment coefficients are maintained closed to their initial values.

VI. Summary
An adjoint method has been developed and applied to perform

shape optimization with the aim of transition delay and, thus, a de-
crease of the viscous drag. The location of laminar–turbulent transi-
tion is analyzed using linear stability theory, in which perturbations
with infinitesimal amplitude are superimposed on the laminar mean
flow. It is then assumed that transition will occur at the location
where the total amplification of disturbances, with respect to the first
streamwise position where the disturbance starts to grow, attains an
empirically determined value whose logarithm is generally denoted
by N . The inviscid flow is obtained by solving the Euler equations
for compressible flows, and the viscous mean flow is obtained from
the solution of the BLE for compressible flows on infinite swept
wings. The evolution of convectively unstable disturbances is ana-
lyzed using the linear PSE. It has been shown that the gradient of the
objective function with respect to the design variables can be evalu-
ated from the solution of adjoint of the Euler, BLE, and PSE. Using
the adjoint equations, as opposed to other perturbation techniques,
constitutes an efficient way to evaluate functional gradients when
the number of design variables is large compared to the number of
objective functions.

In the present approach, an iterative gradient-based optimization
procedure is used, and tests are carried out for transonic flows, with
Reynolds numbers of 6.5 × 106 and 1.7 × 107, around the RAE 2822
airfoil. One objective function is formulated to produce a reduction
of the disturbance kinetic energy. A second one is formulated to
simultaneously reduce the wave drag and the disturbance kinetic
energy while maintaining lift and pitch-moment coefficients near
their values at initial design. The parameterization of the shape is
formulated to generate smooth shapes and to satisfy linear con-
straints; here the volume, the position of the trailing edge, and a part
of the shape around the leading edge are kept constant.

The work presented here is an ongoing project and current efforts
are being made to improve the accuracy of the gradients and to
include additional physical modeling, for example, to account for
the occurrence of separated flows. From the point of view of the
grid resolution there is a tradeoff between gradient accuracy and
computational efficiency. Coarser grids penalize the accuracy of
the sensitivities based on the PDEs (adjoint BLE and adjoint PSE),
whereas finer grids penalize the cost of the Euler flow computation.
A possible solution is to use interpolation techniques to couple the
state equations (Euler and BLE), so that these could be discretized
using different resolutions at the surface of the airfoil.

We do not consider the coupling between the pressure distribution
and the thickness of the boundary layer, so-called viscous–inviscid
interaction. However, the influence of this approximation is quite
limited because it has been shown that the reduction of the N -
factor values, obtained by optimization, is also observed by solving
the RANS equations instead of the Euler equations to provide the
pressure distribution for the boundary-layer analysis. Furthermore,
the strategy used to obtain the gradient by an adjoint approach would
remain unchanged if using the RANS equations instead of Euler
equations during the optimization process. This development would
only require an adjoint of the RANS equations.

As far as the numerical results are concerned, several studies can
be performed without major changes to the current implementation.
For example, an objective function can be defined such that transi-
tion on both sides of the wing is delayed. The objective function can
also be the sum of a number of convectively unstable disturbances.
Another extension, which can include both objective functions, is
to use multiple design points in the optimization. In such a case the
objective function is the sum of a chosen cost function at different
Mach numbers and/or different disturbances.

Appendix A: Sensitivities of State Equations
The objective function J in expression (18) depends explicitly

on Q̃ and on the (Euler) mesh, represented here by the vector of
nodal coordinates X. (The nodes on the airfoil are common to the
three discretized equations: Euler, BLE, and PSE.) The aim is to
minimize J , where Q̃ is the solution of the PSE (13) and (14), given
here as

AQ̃(Q̃, Q̄, X) = 0 (A1)

defined for given X and Q̄. The mean flow Q̄ is solution of the BLE
(8–11), denoted here

AQ̄(Q̄, w, X) = 0 (A2)

which is defined for a given X and w. Finally, the inviscid flow w is
the solution of the Euler equations (1) and (2), denoted

Aw(w, X) = 0 (A3)

In the presentation of the adjoint problems, it will be convenient
to introduce the functions JX , JQ̄ , and Jw , defined as the
objective function

VQ̃ × VX

{Q̃, X} −→ R
J (Q̃, X)

subject to Eq. (A1)

VQ̄ × VX

{Q̄, X} −→ R
JQ̄(Q̄, X) ≡ J (Q̃ (Q̄, X), X)

or, subject to Eqs. (A1) and (A2),

Vw × VX

{w, X} −→ R
Jw(w, X) ≡ JQ̄(Q̄ (w, X), X)

or, subject to Eqs. (A1–A3),

VX

X −→ R
JX (X) ≡ Jw(w (X), X)

These are just function J in which various intermediate quantities
are regarded as independent variables.

Given the function JX of the variable X just defined, it will also
be convenient to define Jy and Ja as

Jy(y) = JX (X(y)), Ja(a) = Jy(y(a)) (A4)

where X is obtained by Eq. (34) and y is the solution of Eq. (39).
To summarize, the aim is to compute ∇ Ja , that is, the gradient

of J subject to Eqs. (A1–A3), (34), and (39) with respect to the
design parameters a. In the following text it is assumed that Q̃ ∈ VQ̃ ,
Q̄ ∈ VQ̄ , w ∈ Vw , and X ∈ VX , and that VQ̃ , VQ̄ , Vw , and VX are vector
spaces equipped with the inner products 〈·, ·〉Q̃ , 〈·, ·〉Q̄ , 〈·, ·〉w , and
〈·, ·〉X , respectively. Furthermore, it is assumed that all mappings
are differentiable and, for example, ∂Aq/∂Q̃ denotes linearization
with respect to variable Q̃ of the mapping AQ̃ , at the given state
{Q̃, Q̄, w, X}. The notations (∂Aq/∂Q̃)−1 and (∂Aq/∂Q̃)∗ denote the
inverse and the adjoint of the linearized mapping ∂Aq/∂Q̃, respec-
tively. Finally, the notation (∂Aq/∂Q̃)δQ̃ denotes the application of
∂Aq/∂Q̃ on δQ̃.

A. Sensitivity of PSE
For arbitrary variations {δQ̄, δX} ∈ VQ̄ × VX of {Q̄, X} in the

PSE (A1), the first variation of the solution of the PSE is denoted
δQ̃ ∈ VQ̃ and is the solution of the sensitivity equations,

∂Aq

∂ Q̃
δQ̃ = −∂Aq

∂Q̄
δQ̄ − ∂Aq

∂X
δX (A5)
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Furthermore, for any variations {δQ̃, δX} in VQ̃ × VX we define the
first variation of the objective function J as

δ J =
〈
∂ J

∂Q̃
, δQ̃

〉
Q̃

+
〈
∂ J

∂X
, δX

〉
X

(A6)

In the remainder of this paper, δQ̃ is the solution of the sensitivity
equations (A5), which yields a new expression for Eq. (A6)

δ J =
〈
∂ J

∂Q̃
,

(
∂Aq

∂ Q̃

)−1(
−∂Aq

∂ Q̄
δQ̄ − ∂Aq

∂X
δX

)〉
Q̃

+
〈
∂ J

∂X
, δX

〉
X

(A7)

and, for the Q̃ solution of Eq. (A1) and the δQ̃ solution of Eq. (A5),
the definition of JQ̄ given earlier yields

δ JQ̄ = δ J (A8)

The gradient (∇ JQ̄) of the functional JQ̄ is {∂ JQ̄/∂Q̄, ∂ JQ̄/∂X} and
is a vector of the product space VQ̄ × VX such that for all {δQ̄, δX}
in VQ̄ × VX we have

δ JQ̄ =
〈
∂ JQ̄

∂Q̄
, δQ̄

〉
Q̄

+
〈
∂ JQ̄

∂X
, δX

〉
X

(A9)

Using the definition of the adjoint of the operator ∂Aq/∂Q̃ in ex-
pression (A7) and using Eq. (A8), we obtain

δ JQ̄ =
〈[(

∂Aq

∂ Q̃

)−1]∗
∂ J

∂Q̃
, −∂Aq

∂ Q̄
δQ̄ − ∂Aq

∂X
δX

〉
Q̃

+
〈
∂ J

∂X
, δX

〉
X

(A10)

which is in turn rewritten using the definition of the adjoint of

∂Aq/∂Q̃ and ∂Aq/∂X, respectively, as

δ JQ̄ = −
〈(

∂Aq

∂ Q̄

)∗[(
∂Aq

∂Q̃

)−1]∗
∂ J

∂Q̃
, δQ̄

〉
Q̄

−
〈(

∂Aq

∂X

)∗[(
∂Aq

∂ Q̃

)−1]∗
∂ J

∂Q̃
, δX

〉
X

+
〈
∂ J

∂X
, δX

〉
X

(A11)

Therefore, by introducing the adjoint state solution Q̃∗ of the system(
∂Aq

∂ Q̃

)∗
Q̃∗ = ∂ J

∂Q̃
(A12)

we obtain

∂ JQ̄

∂Q̄
= −

(
∂Aq

∂ Q̄

)∗
Q̃∗,

∂ JQ̄

∂X
= ∂ J

∂X
−

(
∂Aq

∂X

)∗
Q̃∗ (A13)

The cost for obtaining the gradient of JQ̄ is reduced to one solution
of the system (A12) and two matrix–vector products as shown in
Eq. (A13).

B. Sensitivity of BLE
For arbitrary variations {δw, δX} ∈ Vw × VX of {w, X} in the

BLE (A2), the first variation of the solution of the BLE is denoted
δQ̄ ∈ VQ̄ and is the solution of the sensitivity equations

∂AQ

∂Q̄
δQ̄ = −∂AQ

∂w
δw − ∂AQ

∂X
δX (A14)

Furthermore, from the definition (A9) and the expression of the
gradient (A13) for arbitrary variations {δQ̄, δX} in VQ̄ × VX , the
variation δ JQ̄ is

δ JQ̄ =
〈

−
(

∂Aq

∂Q̄

)∗
Q̃∗, δQ̄

〉
Q̄

+
〈
∂ J

∂X
−

(
∂Aq

∂X

)∗
Q̃∗, δX

〉
X

(A15)

In the following text, δQ̄ is the solution of the sensitivity equa-
tion (A14). The variation δ JQ̄ is expressed, making use of Eqs. (A15)
and (A14) as

δ JQ̄ =
〈(

∂Aq

∂Q̄

)∗
Q̃∗,

(
∂AQ

∂Q̄

)−1(
∂AQ

∂w
δw + ∂AQ

∂X
δX

)〉
Q̄

+
〈
∂ J

∂X
−

(
∂Aq

∂X

)∗
Q̃∗, δX

〉
X

(A16)

and, for the solution Q̄ of Eq. (A2) and the solution δQ̄ of Eq. (A14),
the definition of Jw yields

δ Jw = δ JQ̄ (A17)

The gradient of Jw is the vector {∂ Jw/∂w, ∂ Jw/∂X} in the product
space Vw × VX such that for all {δw, δX} in Vw × VX we have

δ Jw =
〈
∂ Jw

∂w
, δw

〉
w

+
〈
∂ Jw

∂X
, δX

〉
X

(A18)

When the adjoint of the inverse linearized BLE operator
(∂AQ/∂Q̄)−1 is used in Eq. (A16), δ Jw [Eq. (A17)] is expressed
as

δ Jw =
〈[(

∂AQ

∂Q̄

)−1]∗(
∂Aq

∂Q̄

)∗
Q̃∗,

∂AQ

∂w
δw + ∂AQ

∂X
δX

〉
Q̄

+
〈
∂ J

∂X
−

(
∂Aq

∂X

)∗
Q̃∗, δX

〉
X

(A19)

Using the adjoints of ∂AQ/∂w and ∂AQ/∂X enables us to rewrite
relation (A19) as

δ Jw =
〈(

∂AQ

∂w

)∗[(
∂AQ

∂Q̄

)−1]∗(
∂Aq

∂Q̄

)∗
Q̃∗, δw

〉
w

+
〈(

∂AQ

∂X

)∗[(
∂AQ

∂Q̄

)−1]∗(
∂Aq

∂Q̄

)∗
Q̃∗, δX

〉
X

+
〈
∂ J

∂X
−

(
∂Aq

∂X

)∗
Q̃∗, δX

〉
X

(A20)

This suggests, as earlier, defining an adjoint state Q̄∗ as(
∂AQ

∂Q̄

)∗
Q̄∗ =

(
∂Aq

∂Q̄

)∗
Q̃∗ (A21)

Setting Q̄∗ in Eq. (A20) and identifying the new expression with
Eq. (A18), we obtain

∂ Jw

∂w
=

(
∂AQ

∂w

)∗
Q̄∗

∂ Jw

∂X
= ∂ J

∂X
−

(
∂Aq

∂X

)∗
Q̃∗ +

(
∂AQ

∂X

)∗
Q̄∗ (A22)

The use of adjoint equations limits the cost for obtaining the gradient
of Jw to solving the systems (A12) and (A21), as well as four matrix–
vector products: one to assemble the right-hand side of the adjoint
system (A21) and three to obtain the final expression (A22).

C. Sensitivity of the Euler equations
For arbitrary variations δX ∈ VX of X in the Euler equation (A3),

the first variation of solution of the Euler equation is denoted δw ∈ Vw

and is solution of the sensitivity equation

∂Aw

∂w
δw = −∂Aw

∂X
δX (A23)
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Furthermore, for arbitrary variations {δw, δX} in Vw × VX , the first
variation of the functional Jw is expressed, from the gradient (A22)

δ Jw =
〈(

∂AQ

∂w

)∗
Q̄∗, δw

〉
w

+
〈
∂ J

∂X
−

(
∂Aq

∂X

)∗
Q̃∗+

(
∂AQ

∂X

)∗
Q̄∗, δX

〉
X

(A24)
In the following text, δw is the solution of the sensitivity equa-
tion (A23), which enables us to rewrite expression (A24) as

δ Jw =
〈(

∂AQ

∂w

)∗
Q̄∗, −

(
∂Aw

∂w

)−1
∂Aw

∂X
δX

〉
w

+
〈
∂ J

∂X
−

(
∂Aq

∂X

)∗
Q̃∗ +

(
∂Aq

∂X

)∗
Q̄∗, δX

〉
X

(A25)

and, for solution w of Eq. (A3) and solution δw of Eq. (A23), the
definition of JX yields

δ JX = δ Jw (A26)

The gradient of JX is the vector ∇ JX in the space VX such that for
all δX in VX we have

δ JX = 〈∇ JX , δX〉X (A27)

The adjoint of the linearized Euler operator is used in Eq. (A25) to
express δ JX [Eq. (A26)] as

δ JX =
〈[(

∂Aw

∂w

)−1]∗(
∂AQ

∂w

)∗
Q̄∗, −∂Aw

∂X
δX

〉
w

+
〈
∂ J

∂X
−

(
∂Aq

∂X

)∗
Q̃∗ +

(
∂AQ

∂X

)∗
Q̄∗, δX

〉
X

(A28)

The adjoint instead of the linear operator ∂Aw/∂X is used in
Eq. (A28) and leads to

δ JX =
〈
∂ J

∂X
−

(
∂Aq

∂X

)∗
Q̃∗ +

(
∂AQ

∂X

)∗
Q̄∗, δX

〉
X

−
〈(

∂Aw

∂X

)∗[(
∂Aw

∂w

)−1]∗(
∂AQ

∂w

)∗
Q̄∗, δX

〉
X

(A29)

The method of adjoint is again applied as we define an adjoint state
w∗, here the solution of the system(

∂Aw

∂w

)∗
w∗ =

(
∂AQ

∂w

)∗
Q̄∗ (A30)

which enables us to give expression for the gradient (A27),

∇ JX = ∂ J

∂X
−

(
∂Aq

∂X

)∗
Q̃∗ +

(
∂AQ

∂X

)∗
Q̄∗ −

(
∂Aw

∂X

)∗
w∗ (A31)

The total cost of this gradient evaluation is three adjoint systems
(A12), (A21), and (A30) and five matrix–vector products: two for
the assembly of the right-hand sides of the systems (A21) and (A30)
and three for the final expression (A31).

Appendix B: Matrix Coefficients
Coefficients of the matrices used in expression (21) are

a1(1, 4) = ρ̄, a1(2, 4) = ρ̄Ū , a1(4, 1) = −Ū 2

a1(4, 2) = −2ρ̄Ū , a2(1, 4) = ρ̄

a2(2, 4) = ρ̄Ū − iα
μ̄

Re

(
λ

μ̄
+ 1

)

a2(4, 2) = −ρ̄Ū2 + iα
μ̄

Re

a3(1, 1) = iαŪ + D1(Ū ), a3(1, 2) = D1(ρ̄) + ρ̄iα

a3(1, 4) = D3(ρ̄) + ρ̄m13

a3(2, 1) = D1(Ū )Ū + 1

γ M2
(D1(T̄ ) + iαT̄ )

a3(2, 2) = ρ̄[D1(Ū ) + iαŪ ] + 2α2 μ̄

Re

(
λ

μ̄
+ 2

)

a3(2, 3) = αβ
μ̄

Re

(
λ

μ̄
+ 1

)
a3(2, 4) = Ū D3(ρ̄) + ρ̄

[
D3(Ū ) + Ūm13

] − iα

Re

dμ̄

dT̄
D3(T̄ )

a3(2, 5) = 1

γ M2
[D1(ρ̄) + iαρ̄]

a3(3, 1) = D1(V̄ )Ū

a3(3, 2) = D1(V̄ )ρ̄ + αβ
μ̄

Re

(
λ

μ̄
+ 1

)
a3(3, 3) = iαρ̄Ū + 2

μ̄

Re
α2

a3(4, 1) = −2D3(Ū )Ū − Ū 2m13 + iα

ρ̄

μ̄

Re

(
λ

μ̄
+ 2

)
D3(Ū )

a3(4, 2) = −2D3(ρ̄Ū ) − iα

Re

dμ̄

dT̄

λ

μ̄
D3(T̄ ) − ρ̄Ū2m13

+ iα

ρ̄

μ̄

Re

(
λ

μ̄
+ 2

)
D3(ρ̄)

a3(4, 4) = 2
μ̄

Re
α2 + ρ̄Ū iα, a3(4, 5) = − iα

Re

dμ̄

dT̄
D3(Ū )

a3(5, 1) = (γ − 1)

γ
[Ū T̄ iα + Ū D1(T̄ )] − c̄pŪ D1(T̄ )

a3(5, 2) = (γ − 1)M2 D1(P̄) − ρ̄c̄p D1(T̄ )

a3(5, 4) = (γ − 1)M2 D3(Ū )2iα
μ̄

Re

a3(5, 5) = (γ − 1)

γ
[Ū D1(ρ̄) + Ū ρ̄iα]

− Ū ρ̄

[
c̄piα + dc̄p

dT̄
D1(T̄ )

]
− 2

RePr
κ̄α2

a4(1, 1) = Ū , a4(1, 2) = ρ̄, a4(2, 1) = T̄

γ M2

a4(2, 2) = ρ̄Ū , a4(2, 5) = ρ̄

γ M2
, a4(3, 3) = ρ̄Ū

a4(4, 4) = ρ̄Ū , a4(5, 1) = Ū T̄
(γ − 1)

γ

a4(5, 5) = Ū ρ̄

[
(γ − 1)

γ
− c̄p

]
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