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1 Introduction

The word fluid is used to describe common liquids and gases that continually deforms
under an applied shear stress. If we consider the presence of more fluids, their molecules
can be mixed or separated from surfaces that refer to fluid interfaces.

In order to account for the presence of interfaces, it is important to understand which
physical and chemical phenomena have to be introduced in the continuum description
of fluids. These phenomena occurring on the separation surface between two different
phases, result fundamental in physics, chemistry, biology and technology.

Microscopically, liquids are made up of molecules, including forces (cohesion forces),
mainly of electrical origin. A molecule inside the liquid is attracted to all the other
molecules surrounding it, but a molecule close to the free surface suffers a direct force
towards the inside of the liquid (figure 1). Moreover the cohesive force between the
molecules provides a tangential force to the surface. Thus, the surface of a liquid acts
as an elastic membrane that wraps and compresses the liquid below. Surface tension
expresses the force with which surface molecules attract each other.

Therefore it is interesting to understand how surface tension and other interface prop-
erties can be modified and controlled by changing the chemical properties of the fluids,
adding for example molecules different from those of the liquid.

It is well known that surfactants are often added to liquids in order to decrease the
surface tension and achieve a desired effect. In fact, for these chemicals, the equilibrium
configuration is when nearly all the molecules in the interfacial region are actually at the
interface itself, resulting in a dramatic change of the value of the surface tension compared
to that of pure liquid. These agents are formed by molecules that have a hydrophilic head
and a hydrophobic tail which leads a portion of them on the surface of the fluid forming
the monomolecular layer (figure 1).

The purpose of this study is to understand how microscale fluid flow can be efficiently
induced and controlled by changing the properties of interfaces.

Figure 1: Diagram of the attraction forces between the molecules of a liquid (up); At
the interface the surfactant molecules form a monomolecual layer with the polar heads
oriented to the aqueous solution (bottom).
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2 Formulation of the problem

We can consider the chemical behaviour of the sufactant molecules, which tend to ac-
cumulate at the interface forming a monolayer, as a film that is not expected to remain
uniform under small forces.

In fact, we expect that a varition in the surfactant concentration will generate a shear
stress and thus a liquid flow, which could deform the interface.

2.1 Two-dimensional lubrication-type model

The configuration that provides a good interface reproduction is a long and thin do-
main, whose profile will be changing in time. Ajaev (2012) developed a two-dimensional
lubrication-type model of evolution of a layer of initially uniform thickness d in which
the flow is driven by a nonuniform surfactant concentration in the limit of small capillary
numbers (figure 2). The probelm of interest is different from the classical lubrifcation
theory of Reynolds since only one boundary is a solid surace, while the other one is a
deforming fluid interface.

Figure 2: A snapshot of a liquid-air interface deforming under the effect of surfactants.

This model consider a deforming layer under the action of small stresses, where the
fluid flow is the result of the dependence of the surface tension. The surface tension under
isothermal conditions can be expressed as a function of surfactant interfcial concentration
(Γ∗) if this quantity is small, through the linear equation:

σ = σ0 − γΓΓ
∗ (1)

where σ0 is the value of the surface tension of pure water and γΓ is a constant which
depends on the properties of the surfactant.

As the flow of liquid directed from the regions of higher concentration to the regions of
lower concentration develops (γΓ > 0), the interface will deform and the film will gradually
be depleted near x = 0, resulting in interface shapes such as the one illustrated in figure
2.

The Navier-Stokes and continuity equations for the two-dimensional flow in the film
are
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∂u

∂x
+

∂v

∂y
= 0. (4)

In order to smplify the governing equations some assumptions were introduced:

• with Lx the characteristic lenght scale of the flow in x−direction, the ratio of the
scales ε = d/Lx is small and therefore the second derivatives with respect to x in
(2) and in (3) can be neglected.

• With U the characteristic value of u the horizontal velocity component, then v is of
the order of εU so that the continuity equation and the standard boundary condition
(u = v = 0 in y = 0)guarantee a constant film thickness.

• A small Reynolds number is considered in order to necglected the non-linear termes

in (2) and the term µ
∂2v

∂y2
in (3).

• The gravity is considered negligible.

The problem formulated involves dimensional parameters, thus it is convenient that the
actual solution of the problem is out to depend only on fewer dimensionless combinations
of the dimensional quantities as descrived below

(y∗, h∗) =
(y, h)

d
, x∗ =

x

Lx

, t∗ =
t

Lx/U
, u∗ =

u

U
, v∗ =

v

εU
, p∗ =

p− p0
P

, Γ =
Γ∗

Γ0

;

(5)

where the choice of P = σ0d/L
2
x reflects the fact that pressure gradients in the film

appear because of the deformation of the interface and are therefore directly related to
curvature (see section 2.1.1), and Γ0 is the maximum initial surfactant concentration.

The governing equations (2)-(4) take the following nondimensional form where all
variables will be assumed nondimensional unless noted otherwise:

∂p

∂x
= ε−3Ca

∂2u

∂y2
, (6)

∂p

∂y
= 0, (7)

∂u

∂x
+

∂v

∂y
= 0. (8)

2.1.1 Scales fot the Cartesian coordiantes

The characteristic velocity U is used in the definition of the capillary number,

Ca =
µU

σ0

, (9)

which measures the importance of viscous effects relative to surface tension and is
typically small, so that an asymptotic approximation can be developed in the limit Ca −→
0.
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However the capillary numeber in (6) multiplies a large parameter ε−3. This implies
that it is necessary to consider both surface tension and viscous effects. To achieve this

goal it is necessary that ε−3Ca = 1 and thus ε =
1

Ca−1/3
.

Recall the assumption ε =
d

Lx

we can define Lx = dCa−1/3 as the scale for the

Cartesian coordinate x, and banally d as the scale of the y coordinate.

For the same reason t is the time variable scaled by
Ca−1/3d

U
. Accordingly the (6)

takes the simple form

∂p

∂x
=

∂2u

∂y2
. (10)

As regars the boundary conditions at the air-liquid interface, defined by a time-
dependent thickness of the film y = h(x, t), in the limit Ca −→ 0 are:

∂h

∂t
+ u

∂h

∂x
− v = 0 (11)

p = −∂2h

∂x2
(12)

µ
∂u

∂y
=

∂σ

∂x
, (13)

where (11) is the kinematic condition which relates the rate of change of the interface
height and the components of the local flow velocity, while the other two conditions
reflect the balances of normal and tangential components of the stress. In particular
the tangential stress condition has to include a contribution due to the surfactant, thus
substituing the nondimensional surfactant concentration Γ∗ in the equation (1) we can
estimate the derivative:

|dσ|
|dx|

= −γΓΓ0Γx

Lx

= −γΓΓ0Ca1/3

d
Γx. (14)

Starting with the general dimensional version of the tangential stress balance (t · T · nt · T · nt · T · n =
∂σ

∂x
) and using the scales described above, we can obtain the left-hand side of the equation

(13) which takes the form:

µU

d
uy = −γΓΓ0Ca1/3

d
Γx. (15)

The two sides of this equation are equal when
µU

d
=

γΓΓ0Ca1/3

d
, from which we define

the characteristic velocity through the capillary number:

U =
(γΓΓ0)

3/2

µσ
1/2
0

, (16)

and (13) takes the form

uy = −Γx, (17)
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which includes the contribution of the surfactants.
Hence, we can obtain the velocity profile

u = −1

2
hxxx(y

2 − 2yh)− Γxy (18)

integrating twice the equation (10) since the pressure is not a function of y as suggested
by (7), and using (17) and the no-slip condition to find the constants of integration.

Substituting this profile into the standard integral mass balance ht + (
∫ h

0
udy)x, we

obtain the following evolution equation for the film thickness h:

ht + (
h3

3
hxxx −

h2

2
Γx)x = 0. (19)

2.2 The surfactant concentration

The surfactant concentration Γ in equation (19) is unknown then a second equation has
to be determined to solve the problem.

Consider the sketch in figure 3 which represents a part of the interface at time t (solid
line) and at the later time t + ∆T (dashed line) that is the new interface shape under
action of surfactant diffusion. An arbitrary point A of the solid curve is distant from B
of a small quantity ∆s and the points C and D on the dashed line are chosen that the
straight line segments AC and BD are locally normal to the solid line.

Under these premises we can define the segments

|AC| = V A
n ∆t, |BD| = V B

n ∆t, (20)

where V A
n and V B

n are the interface normal velocities at the points A and B, respec-
tively. For small value of ∆s we can use V A

n ≈ V B
n = Vn and we can approximate AB

and CD by circular arcs of the radii k−1 and k−1 + Vn∆t, respectively, where k is the
curvature.

As shown in figure 3 both arcs are centered at a point O; if we define ∆ϕ the angle
between AÔB, then ∆s = k−1∆ϕ and the points C and D will be distant of the quantity

∆s′ = (k−1 + Vn∆t)∆ϕ = ∆s(1 + kVn∆t). (21)

The surfactant mass balance condition is

ΓC∆s′ − ΓA∆s = (ja − jB)∆t, (22)

where ΓC and ΓA are the concentrations, jA and jB are the surfactant fluxes at the
respective points. If the effects of chemical reactions and diffusion of surfactant along the
interface are negligible, the fluxes jA and jB are determined by the amount of surfactant
carried by the flow, so they can be expressed in terms of the values of the velocity along
the interface, ûA and ûB, as follows:

jA = ΓAûA, jB = ΓBûB. (23)

Substituing in the surfactant mass balance condition the equations (21) and (23), tak-
ing the limit of ∆t −→ 0, ∆s −→ 0 and assuming that the arc length value corresponding
to the point A is equal to s we obtain:
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Figure 3: A snapshot of a liquid-air interface for the derivation of surfactant transport
equation. The solid line represents the interface shape at a time t and the dashed line the
new interface shape at a time t+∆t.

[Γt]n + Γ(s, t)k(s, t)Vn(s, t) + (Γ(s, t)û(s, t))s = 0 (24)

where [Γt]n defined as [Γt]n = lim∆t→ 0
ΓC − ΓA

∆t
(Wong et al. (1995)) is the time

derivative of Γ in the direction normal to the interface at the point A.

In order to smplify the equation (24) some assumptions were introduced:

• consider an arbitrary point on the interface can be defined by its horizontal co-
ordiante x or by the arc lenght variable s defined as the distance from the point
corresponding to x = 0 and scaled by d/Ca1/3 (see 2.1.1), thus we can write:

ds

dx
=

√
1 + Ca2/3h2

x. (25)

In the limit of Ca −→ 0 the variable s can be replaced by x.

• The term proportional to the normal velocity Vn is asymptotically negligible.

• [Γt]n = [Γ(x, t)]t.

Therefore, we obtain:

Γt + (Γû)x = 0, (26)

and using the velocity equation (18) and the definition y = h(x, t), the equation for
surfactant concentration Γ(x, t) takes the form

Γt + [(
1

2
h2hxxx − hΓx)Γ]x = 0. (27)
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In order to complete the equation, a term that represents the diffusion fluxes is added
chosen to be proportional to the local derivative of the concentration, to the surfactant
mass balance:

Γt − Pe−1
s Γxx + [(

1

2
h2hxxx − hΓx)Γ]x = 0. (28)

This term is characterized by the surface Peclet number

Pe =
Ud

DsCa1/3
, (29)

where Ds is the surfactant diffusion coefficient. The Peclet number for mass transport is
comparable to the Reynolds number for momentum transport and in engineering appli-
cations it is often very large.

3 Numerical approach

By solving simultaneously (19) and (28) it is possible to determine the evolution of the
thickness in time and space provided that proper boundary and initial conditions and the
distribution of the surfactant.

For the numerical tecnique we consider a film thickness that is initially uniform and
the surfactant distribution is chosen to be Gaussian to simulate a situation in which the
surfactant is localized near x = 0:

h(x, 0) = 1, Γ(x, 0) = exp(−αx2). (30)

Since the flow is generated due to the nonuniform surfactant concentration at the
interface, the characteristic length scale of the flow in the orizontal direction Lx = dCa−1/3

(see section 2.1) has to be of the same order of the characteristic lenght imposed by
equation (30), namely α−1/2.

Because the derivative of the profile given by (30) is small for x >> α−1/2 it is natural
to expect that the deformation to be small as well for a sufficiently large x. The extent of
the film in the snapshot shown in figure (2) is assumed to be infinite, so the computational
domain size [0, L] has to be sufficiently large so that the variations of h(x, t) and Γ(x, t)
are negligible for |x| > 1.

Thus the boundary conditions in x = L are:

h(L, t) = 1, hx(L, t) = 0, Γ(L, t) = Γx(L, t) = 0. (31)

Based on (30), we expect the solution to be an even function of x, so we consider only
positive values of x and impose symmetry conditions of the computational domain:

hx(0, t) = hxxx(0, t) = Γx(0, t) = Γxxx(0, t) = 0. (32)
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4 Results

The numerical solution allows one to find the interface shape as a function of time.
The goal of this work is to obtain a numerical solution of the equation system given

by (19) and (28) with the conditions (30),(31) and (32).
Ajaev (2012) propose a MATLAB code for this problem and show as result a snapshots

of the interface at different moments in time (4). Using the same code with the parameters
recommended by the authors of this study (Pe = 1000, α = 100), one does not get exactly
the same condition shown in the figure (4) but the result represented in figure (5).

It is clear that the interface thickness is drastically vanished in the region localized
near x = 0, while in figure (4) we can note a simple thinning film. Since the results appear
to be discordant, I decided to evaluate how the interface deforms at shorter time than
those proposed by Ajaev (2012). An expample is shown in figure (6).

Figure 4: Interface shapes at different times found from the numerical solution shown by
Ajaev (2012).

In this case we observe that the liquid film becomes thinner in the middle of the area
with high concentration of surfactant and the flow pushes liquid away from there. In
particular, a maximum deformation value of h is evident that increases in time, while this
condition is not present at higher time value as shown in figure (5). Moreover the extent
of the region of high-interface deformation is significantly wider than the lenght scale of
the chosen initial concentration profile (α = 100 −→ α−1/2 = 0.1).

In order to understand how the value of h in x = 0 may be different in my results
from those of Ajaev (2012) I plot the inital value of the film thickness with respect to t
obtaining the result below shown in figure (7).

It is clear in figure (7) that the MATLAB code proposed by Ajaev (2012) can not
provide the result shown in figure (4) because for a value of t > 100 the thickeness h
tends to zero.

Finally, by changing the Peclet numer of even two orders of magnitude, the results
remain qualitatively the same.
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Figure 5: Interface shapes at different times found from the numerical solution proposed
by Ajaev (2012) but different from those shown by the authors.

Figure 6: Interface shapes found in the range of time 0 ≤ t ≤ 10.
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Figure 7: Evolution of the film thickness vs time in x = 0 (up); interface shapes found in
the range of time 10 ≤ t ≤ 100 (bottom).
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5 Conclusions

(Ajaev, 2012) developed a two dimensional lubrication-type model in order to study
the evolution of a layer under action of a nonuniform surfactant concentration. Through
the adimensionalization of the Navier-Stokes and continuity equations with the appro-
priate boundary and initial conditions, we obtain the analytical system consisting of two
equations (19) and (28): the first describes the evolution of the film thickness, the second
one is the equation of the surfctant concentration.

This study includes a MATLAB code for the numerical finite difference solution of the
analytic system proposed. The authors shown as result the interface shape at different
times demonstrating that the region characterized by a higher concentration of surfactant
(near x = 0 imposed by the initial condition (30)) is thinner due to the decrease of the
surface tension.

Using the same code developed by the authors with the parameters that they are
proposed, the result obtained is not equal. In fact the formation of the depression near
x = 0 is obtained only for at times in the range of 0 ≤ t ≤ 10 while the authors study the
problem at very high value of time.

Moreover the extent of the region of the layer deformation due to the flow driven
by the nonuniform surfactant concentration is wider than the length scale of the initial
concentration. This result is obtained also by the authors but in their case the deformation
results developed more quickly.
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